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Abstract

We present an implementation independent scheme for compiling a subset of the in-
termediate array language TAIL to the functional programming language Futhark, pre-
serving the data parallelism of the host language by using built-in data parallel functions
in the target language to express the TAIL operations. We also present an implementa-
tion of the compilation scheme using this implementation to demonstrate the usefulness
of compiling TAIL to Futhark by comparing the execution time of selected benchmarks
on sequential back-ends to both languages.

Resumé

Vi præsenterer et implementations uafhængigt oversættelses skema for en delmængde
af det intermediære array sprog TAIL til det funktionelle sprog Futhark der bibeholder
den data parallelisme der er i TAIL ved at bruge indbyggede data parallele funktioner i
Futhark til at udtrykke TAIL operationerne i. Vi præsenterer ogs̊a en implementation
og bruger implementationen til at demonstrere anvendeligheden af at oversætte TAIL
til Futhark ved at sammenligne udførselstiden af udvalgte benchmarks p̊a sekventielle
backends til begge sprog.

2



Compiling TAIL to Futhark Anna Sofie Kiehn, Henrik Urms

Contents

1 Introduction 4
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Methods and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 TAIL 7

3 Futhark 10

4 The compilation strategy 12

5 Library functions 12
5.1 The take1, drop1 and reshape1 functions . . . . . . . . . . . . . . . . . . . 12
5.2 Bool equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Xor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 All other library functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 The compilation scheme 14
6.1 The notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 Explanation of the compilation of selected parts of TAIL . . . . . . . . . . 17

7 Implementation 19
7.1 The parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 The compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.3 Pretty print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.4 Test of implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Benchmarks 22
8.1 Matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2 Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.3 Black-Scholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.4 Easter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.5 Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9 Discussion 24

10 Conclusion 25

A Parser source code 27

B Compiler source code 31

C Pretty printer source code 43

D Complete Futhark primes code 45

E Test results 48

3



Compiling TAIL to Futhark Anna Sofie Kiehn, Henrik Urms

1 Introduction

In this report we examine if it is possible, effectively to compile TAIL programs, produced
by the APLTAIL compiler, into Futhark programs and thereby make use of the Futhark
infrastructure for optimization and the possibility for targeting parallel hardware.

In recent years, there has been much focus on leveraging the power of parallel hard-
ware. One approach has been to design programming languages with explicit data-
parallel constructs that can be compiled into highly parallel code. One such language
is Futhark [7]. The aim of Futhark is to target parallel hardware such as GPUs while
still being the target of more programmer-productivity oriented languages. The Futhark
compiler performs several optimizations, such as fusion, which enhance the degree of
parallelism [10] [9] [8].

APL was created in the 1960’s by Kenneth E. Iverson, and is an array programming
language. Its main type is the multi-dimensional array and most of the built-in functions
in the language are array operators that work on this type. Most of its built-in functions
or operators are represented by unicode symbols allowing for very concise code. The
APL language is dynamically typed. It supports first and second order functions and
these functions work on arrays of any rank and base type. APL features a large set of
built-in operations, which, through 50 years of history, have shown to be suitable for a
large range of applications for example in the financial world where large code bases are
still operational and actively developed [6] [2].

Efforts in compiling APL to parallel backends already exist in for example the form
of the language TAIL (Typed array intermediate language) and its compiler [6] that
compiles a subset of APL. The APLTAIL compiler captures the parallelism inherent in
APL source code and brings it to a much more manageable form.

In our work we provide a compiler from TAIL to Futhark thus bridging the gap
between APL and Futhark.

The compilation between TAIL and Futhark is described in terms of a compilation
scheme, which is the main contribution of this work. Figure 1 gives an overview of
the main compilers involved in this project and the code they produce. The figure
gives an overview of how our compiler (the TAIL2Futhark compiler) fits between the
already existing APLTAIL compiler, which compiles APL to TAIL code, and the Futhark
compiler that compiles Futhark to either sequential or parallel code C-code [7].

A major motivation for this work is that compiling APL to Futhark through TAIL
the Futhark compiler can be used to generate parallel code from APL once a parallel
back-end for Futhark is completed.

One of the main point of interest in the compilation between TAIL and Futhark
is compiling the four array operators of TAIL: each, eachV, reduce and zipWith to
Futhark source code, which involves the four second-order array combinators in Futhark:
map, filter, reduce and scan [6] [7]. However as the functionality of these functions is
entirely different the work lies in creating a mapping map the parallelism in the original
code to parallel constructs in the target language. This can be seen in the example below
which illustrate the difference between the functions. The APL code is given first. We
do not describe APL in detail but the comments on each line explain what happens.

a ← 2 2 ⍴ 2 3 4 5     ⍝  make a 2x2 matrix
b ← ×/ a              ⍝  multiply the elements in each row
+/ b                  ⍝  add the products together

The APL code becomes the following TAIL code when using the APLTAIL compiler
and now contains type information. The reason for the i2d (int to double) operator is
that the APLTAIL compiler only accept programs that returns doubles at the moment.

let v1:[int]2 = reshape {[int ] ,[1 ,2]}([2 ,2] ,[2 ,3 ,4 ,5]) in

let v4:[int]1 = reduce {[int ] ,[1]}(muli ,1,v1) in

i2d(reduce {[int ] ,[0]}(addi ,0,v4))

This TAIL code is then compiled to Futhark code where the reduce function is mapped
to a nested reduce function in the Futhark language.
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fun real main() =

let t_v1 = reshape ((2 ,2),reshape1_int ((2 * (2 * 1)),reshape (((

size (0,[2,3,4,5]) * 1)) ,[2,3,4,5]))) in

let t_v4 = map(fn int ([int] x) => reduce(*,1,x),t_v1) in

toFloat(reduce(+,0,t_v4))

The nesting of the operator happens because the reduce function in APL and there-
fore TAIL works on the innermost dimension of the array but the reduce function in
Futhark works on the outermost dimention of the array. In order to get the same func-
tionality, namely reducing the content of the inner arrays, the Futhark function have
to be mapped onto them. This can be seen in the definition of the t v4 variable. The
function reshape1 int is a library function that will be explained later.

This report contributes with a compilation scheme that is implementation indepen-
dent, showing a replicable way of how to translate TAIL, to the functional language
Futhark. Also, this report presents an implementation of the previous mentioned scheme
in Haskell. The effectiveness of this implementation has been tested by comparing bench-
mark results on code generated by the C-backend to TAIL and the generated Futhark
source code by using Futhark’s back-end. The project is open source and the source code
can be found at:
https://github.com/henrikurms/tail2futhark. Both Futhark and TAIL are ongoing re-
search projects and are therefore subject to change. Thus the references cited may not be
up to date (the versions of the languages used in this project was the versions available
on github from Februar 2015 until early May 2015). For a up to date version of the
languages and their compilers we refer to their resepctive github repositories (links for
these repositories can be seen below):

TAIL: https://github.com/melsman/apltail
Futhark: https://github.com/HIPERFIT/futhark

The reader of this report is assumed to have understanding of computer science
concepts of the bachelor level and therefore general computer science concepts (e.g.
parser and compiler) will not be explained.

Figure 1: The three compilers involved in this project and the code they produce

1.1 Scope

In this project we create an implementation independent compilation scheme showing a
compilation between TAIL and Futhark as well as a Haskell implementation of the com-
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pilation scheme, creating the TAIL2Futhark compiler. We also test the implementation
of the compiler.

We have used selected benchmarks that we will adapt to work with our project and
present their results in section 8. We will use benchmarks to see if the compiled Futhark
code is more efficient than the original code.

We implement a subset of the TAIL language so not all TAIL operators are supported
by us. Also we have worked with the version of TAIL that was published before February
2015 and up until early May 2015.

We will not do a detailed analysis of the results of the benchmarks or discuss the
optimization that influence their running time.

We will not present an overview of APL but only refer to [11] and [13].

1.2 Report outline

The following sections of this report is structured as follows. Section 1 includes the
introduction containing the scope and methods and tools used in this project. Section 2
and Section 3 gives an introduction to the source and the target language respectively.
Section 4 presents the overall strategy for compiling TAIL to Futhark is given. Section
6 describes the compilation scheme in detail. Section 7 is an overview of the Haskell
implementation and tests. Section 8 describes the benchmarks used to measure the
efficiency of the generated Futhark code by comparing it to the TAIL back-end. Finally,
Section 9 and Section 10 provide a discussion and a conclusion of the results and contain
ideas to possible future work.

1.3 Methods and tools

In this section we will describe and explain the reasoning behind the methods and tools
we have used in the project.

1.3.1 Compilation scheme and the notation

In this report, a compilation scheme done in a form of mathematical notation is presented.
The reason for using a mathematical notation is to be able to express the compilation of
the different components of the compilation separately and in a detailed precise manner.
We call the compilation of a specific component a conversion rule. The notation should
also help the reader getting an overview of the entire main part of the compiler as well
as create a way of talking about specific conversions. The notation is inspired by similar
notation used in other projects [14] [5] to describe compilation schemes but is not built
on a specific standard as no such standard is known to us. Instead, we have invented
our own notation.

The scheme gives a conceptual understanding of the compilation that are not cluttered
by implementation details. The scheme simply illustrates the concepts of the compilation
and is implementation independent. It should therefore be possible to use the scheme to
create another implementation of the compiler.

Having the compilation scheme also make the implementation easier because it helps
to structure the implementation.

1.3.2 Library functions

To keep the implementation scheme simple, we have made a small library of functions,
which we present in Section 5. We have coded the library functions in the compiler itself
for several reasons. One reason is that we would like the compiler to always output a
valid (runnable) Futhark program given a valid TAIL input program, so we would like
to be able to include the library in the output when we run the compiler. Furthermore,
since Futhark is a statically typed language with no polymorphism, we would like to
be able to generate functions with the same implementations but different types from a
template. That way we can be sure the different versions have the same implementation.
Finally, because we expect future versions of Futhark to feature polymorphism and a
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module system, we would like the solution to be easy to remove once it is no longer
needed [7].

1.3.3 Choice of language for implementation

The implementation described in this project is written in the functional programming
language Haskell. The language constructs in Haskell are similar to our mathematical
notation and functional languages are good for developing compilers in general [14].

1.3.4 Other tools

For building our project and managing external libraries, we have used the cabal pack-
aging system [12]. The cabal packaging system is the standard build architecture for
Haskell and should make it easy to build our code.

We have created a Makefile for building our benchmarks. This made it much easier
for us to rebuild the benchmarks and can also be used as a reference of how to build
them manually.

We have used the Linux command-line tool time for measuring the runtime of our
benchmarks. It is not necessarily the best way but because of time constraints we have
not looked for another solution. One reason it is not ideal is because it also includes
the time spend on reading data from files. We have however tried to create benchmarks
where the execution of the computations overshadow any overhead introduced by input
and output. In particular only, one of our benchmarks read input from files and the
measured difference between time and a built-in timing function of the program only
differed by 1 ms.

1.3.5 Modifying an existing parser

The parser we used for this project is not done by us but was created in another project
that also worked with compiling TAIL to a parallel back-end [1]. The latest version of
the parser can be found in the github repository: https://github.com/mbudde/aplacc.
We did therefore not create the parser ourselves, instead we modified the existing parser
where needed which enabled us to focus our work on the core of our project.

2 TAIL

In this section we present an overview on the language TAIL [6].
The syntax of types in TAIL can be seen below. Types are divided into base types

(κ), shape types (ρ), types (τ), and type schemes (σ).The letter i denotes an integer
scalar value and the letter α, and the letter γ denotes type variables and shape variables,
respectively.

κ ::= int | double | bool | α
ρ ::= i | γ | ρ + ρ′

τ ::= [κ]ρ | 〈κ〉ρ | Sκ(ρ) | SVκ(ρ) | τ → τ ′

σ ::= ∀~α~γ.τ

The type system of TAIL supports array types ([κ]ρ) that keeps track of the rank of the
array in its type. The integer scalar in the array’s shape type denotes the rank of the
array and must be a non-negative integer. The type system also supports vector types
(〈κ〉ρ), which are used specifically to denote vectors of a specific length. For example,
<int>8 denotes a vector of ints of known length 8. If a vector’s length is not statically
known, it can instead be expressed as an array of rank 1. Scalar values that are statically
known can be given the type (Sκ(ρ)), which represents integers, and booleans, for which
the value is contained in the type. In addition, there also exists single-element integer,
double, and boolean vector types (SVκ(ρ)) for singleton vectors where the element is
statically known. Finally there exists function types (τ → τ ′).

The type system makes use of substitution in order to express instances of type
schemes (σ). A type substitution (St) maps type variables to base types and shape
substitution (Ss) maps shape variables to shape types. A general substitution (S) is a
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pair (St,Ss) of a type substitution and a shape substitution. Using the substitution S
on an object B means applying both St and Ss on objects in B. A type τ ′ is an instance
of a type scheme σ = ∀~α~γ.τ (written σ ≥ τ ′) if a substitution S exists such that S(τ) =
τ ′. All type schemes are assumed closed.

The syntax of operators and expressions is given below. The letter x is used to denote
program variables.

// operators

op ::= addi | subi | multi | mini | maxi | addd | subd |

muld | mind | maxd | andb | orb | xorb | nanb |

norb | notb | lti | ltei | gti | gtei | eqi | neqi |

ltd | lted | gtd | gted | eqd | neqd | iota | each |

reduce | i2d | b2i | reshape0 | reshape | rotate |

transp | transp2 | zipWith | shape | take | drop |

first | cat | cons | snoc | shapeV | catV | consV |

snocV | iotaV | rotateV | takeV | dropV | firstV

// expressions

e ::= v
| x
| [~e]
| e e′

| let x = e1 in e2
| op(~e)

// values

v ::= [~a]δ

| λx.e

A TAIL program always consists of a single expression. An expression e can then be
a value, a variable, a list of expressions, a let expression or an operator. Each TAIL
operator has a unique type scheme.

One of the operators with a simple type scheme is the binary operator maxi that
takes two arguments a and b and evaluates to the argument with the highest value. Its
type scheme is as follows:

maxi : int → int → int

Other operators have more complex type schemes. Examples of those are the parallel
operators. There are four parallel operators in the subset of TAIL that we consider,
namely each, eachV, reduce and zipWith. The functions each and eachV are known in
many languages as map. The type scheme for the function each is:

each : ∀αβγ.(α→ β)→ [α]γ → [β]γ

Given a function f and an array a, the application each(f,a) evaluates to an array where
f is applied to each element of a giving the value [f(a1), .., f(an)]. If the rank of the
array is greater than 1 the each function works as a map on the fattened representation
of the array, that is, the function is applied on the inner most dimension of the array, or
seen in another way, on each basic value.

The eachV function is a special case of each and is used on vector types.
The function reduce works similarly to fold known from functional languages. The

type scheme for reduce is:

reduce : ∀αγ.(α→ α→ α)→ α→ [α]1+γ → [α]γ

The function takes as arguments an associative binary operator op (for instance addi),
a neutral element n, (for instance 0) and an array a. The function application evaluates
to the reduction of the elements using the operator. An array of rank γ + 1 is reduced
to an array of rank γ along the inner-most dimension. Unlike fold, reduce makes no
guarantees as to the order of application of the operator. Therefore, the operator has to
be associative and the provided element has to be neutral, which is of course necessary
for parallel execution.

The zipWith function’s type scheme is given as follows:
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zipWith : ∀α1α2βγ.(α1 → α2 → β)→ [α1]
γ → [α2]

γ → [β]γ

Given a function f that works on a pair (x, y) and two arrays a and b, zipWith(f,a,b)
evaluates to an array where the i’th element is f applied to the pair (ai, bi) Like the
other three operators, it works on the inner-most dimension of the array [6].

There are other important operators besides the parallel ones. One of them is the op-
erator reshape(a1,a2). Given two arrays, it reshapes the flattened representation of the
second array a2 to the shape given by the first array, thus reshape([2, 3], [1, 2, 3, 4, 5, 6])
evaluates to [[1, 2, 3], [4, 5, 6]]. reshape([2, 3], [1, 2, 3, 4, 5, 6]) evaluates to [[1, 2, 3], [4, 5, 6]].
If a2 is too long the elements not needed are dropped. That is, reshape([2, 3], [1, 2, 3, 4, 5, 6, 7, 8])
would evaluate to the same as the first example. If a2 is shorter than needed the ele-
ments of a2 are repeated. That is reshape([2, 3], [1, 2, 3]) evaluates to [[1, 2, 3], [1, 2, 3]].
Notice that this is not how arrays are represented in TAIL. Instead of using nested
brackets to represent the dimensions, arrays in TAIL are represented with a shape (i.e.
[1, 2, 3, 4, 5, 6][2,3]). However, using this representation can make what happens less ob-
vious so we use the nested brackets representation instead.

Other important operator expressions are take(i,a) and drop(i,a). They return
an array containing the 1st to ith element of a, and the array containing the i’th to
nth element of a, respectively. If the array is multi-dimensional, the operators work
on the outermost dimension of the array. That is, take(2, [[1, 2], [3, 4], [5, 6]]) evaluates
to [[1, 2], [3, 4]]. If the array contains too few elements, the array is padded with zeros,
whereas the drop operator returns the empty array in the case that more elements are
dropped that than a contains.

The operator snoc(a,e) takes two arrays a and e and returns an array where the i’th
element of e is appended onto the end of the i’th row of a. If there are too few elements
in e an error occurs, except if there is only one element in e in which case the operator
evaluates to an array where the one element from e is appended onto each row of a.

The operator cons(e,a) has very similar semantics as the snoc operator. The only
difference is that it appends the contents of e not on the end but at the beginning of
each row.

The operator cat(a1,a2) takes two arrays that have to have the same outer dimension
and returns an array where the i’th element (i.e., a row if the array is two-dimensional)
of a2 is appended onto the end of the i’th element of a1.

The transp operator takes an array and returns the transposed array. For instance,
transp([[1, 2, 3], [4, 5, 6]]) evaluates to [[1, 4], [2, 5], [3, 6]]. If the array is multi-dimensional
(i.e., a three-dimensional array with the shape 2× 3× 4), the function returns an array
with the shape 4× 3× 2.

TAIL was designed with the purpose of targeting parallel architectures such as GPUs
and allows parallel programs to be expressed in a highly abstract manner. The TAIL
compiler can also efficiently compile TAIL code into sequential code in a C-like language.
The subset of APL operators that TAIL support are shown earlier in this section.

The language TAIL is statically typed and supports polymorphism. Most of the
operators in TAIL are very general. That is, they are polymorphic with respect to array
ranks and base types. Although for some operations a specific type is needed. An
example is the take function. It takes as argument a number (of type int) and an array
of type [α]γ . The TAIL compiler infers types for the values in the APL program and
can annotate polymorphic bindings with instance declarations. Instance lists provide the
base types and ranks of arrays involved in operations.

TAIL’s type system takes the dynamic types of APL and transforms it to a more
manageable form adding explicit type information to the constructs. Another benefit of
the expressiveness of TAILs type system is that it allows the (TAIL) compiler to express
some operators that are primitive in APL using simpler operators. One such operator is
that of the inner product [6].

The aplacc parser for TAIL represents the TAIL expressions in the abstract syntax
tree as variables, constants, infinity, the negative representation of the expression, let
expressions, operators and lambda expressions.

Generally it is not possible to define higher-order lambda expressions in TAIL, how-
ever higher-order operators may use currying of lambda expressions to express multi-
argument functional arguments. This means that lambda expressions that return lambda
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expressions can occur as arguments in higher-order operator applications and nowhere
else.

For details about the TAIL types system, see [6].

3 Futhark

In this section we give a short introduction to the Futhark language. We will only cover
the parts necessary to understand the reasoning behind our compilation approach. For
the full language reference please consult [7].

The syntax of Futhark types can be seen below.

t ::= int (Integers)

| real (Float)

| bool (Booleans)

| char (Characters)

| {t1 ,...,tn} (Tuples)

| [t] (Arrays)

| *[t] (Unique arrays)

The types in Futhark consist of: integers, floating points, booleans, chars, tuples
({t1,...,tn}), arrays ([t]), and unique arrays (*[t]). Tuple types are written as a
comma separated list of types surrounded by braces. For example {int,bool} represents
pairs of integers and booleans. Unlike TAIL, Futhark allows nesting of arrays. Indeed,
nested array types are how multi-dimensional arrays are expressed in Futhark. Array
types are denoted by the elements (base) type enclosed by brackets. The layer of brackets
indicates the dimensionality of the array type. For instance [int] is a one-dimensional
array of integers, and [[[bool]]] is a tree-dimensional array of booleans. Arrays must
be regular. That is, all sub arrays in an array must have the same number of elements.

The Futhark language is statically typed but does not use type inference. Also, the
type system of Futhark is not able to express polymorphism. This means that it is not
possible to make polymorphic functions in Futhark. The exception to this rule is that a
lot of the built-in functions can be used on multiple types.

The syntax of Futhark expressions is show below as follows:

k ::= n (Integer)

| d (Decimal number)

| b (Boolean)

| c (Character)

| {v1 ,...,vn} (Tuple)

| [v1 ,...,vn] (Array)

e ::= k (Constant)

| v (Variable)

| {e1, ..., en} (Tuble expression)

| [e1, ..., en] (Array expression)

| e1 � e2 (Binary operator)

| −e (Prefic minus)

| !e (Logical negation)

| if e1 then e2 else e3 (Branching)

| v[e1, ..., en] (Indexing)

| v(e1, ..., en) (Function call)

| let p = e1 in e2 (Pattern binding)

| zip(e1, ..., en) (Zipping)

| unzip(e) (Unzipping)

| iota(e) (Range)

| replicate(en, ev) (Replication)

| size(i,e) (Array length)

| reshape ((e1, ..., en),e) (Array reshape)

| transpose(e) (Transposition)

| split(e1, e2) (Split e2 at index e1)
| concat(e1, e2) (Concationation)

| let v1 = v2 with (In-place update)
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[e1, ..., en] <- ev in eb
| loop (p = e1) = for v < e2 do (Loop)

e3 in e4

p ::= id (Patterns)

| {p1 ,...,pn}

fun ::= fun t v(t1 v1 ,...tn vn) = e

prog ::= ε | fun prog

l ::= fn t (t1 v1, ..., tn vn) => e (Anonymous function)

| id (e1, ..., en) (Curried function)

| op � (e1, ..., en) (Curried operator)

e ::= map(l, e)
| filter(l, e)
| reduce(l, x, e)
| scan(l, x, e)

Notice that the syntactical construct denoted by l can only occur in map, filter,
reduce and scan. The functions map, filter, reduce and scan are second-order array
combinators, or SOACs for short.

The SOACs operate on arrays with first-order functions given as arguments. Func-
tional arguments used can be function names of first-order functions (either user-defined
or built-in), binary operators, or lambda expressions. Furthermore, in a SOAC expres-
sion, operators and functions can be curried. Lambda expressions require explicit type
annotations for the return type and argument types, and argument bindings follow the
normal shadowing rules.

We do not target the SOACs filter and scan in our compilation, and we will
therefore not discuss them in detail here. The SOACs can be used on arrays of any type
even though it cannot be expressed by Futhark types. For clarity we give the type for
each SOAC that it would have had in a polymorphic language. Below we shortly discuss
map and reduce.

The function map has the following type:

map : ∀αβ.(α→ β)→ [α]→ [β]

The function map(l,a) takes a function l and an array a and evaluates to the array
consisting of l applied to each element of a. In contrast to TAIL, if the array is multi-
dimensional the function is applied to the outer-most dimension. This means that if the
function l is mapped onto a 2-dimensional array, the function would be applied to an
array not the elements of the array.

The type of the function reduce is:

reduce : ∀α.(α→ α→ α)→ α→ [α]→ α

Given a binary operator/function f , the neutral element e of f and an array a, reduce
evaluates to the result of applying f to combine all the elements of a, that is,

e� a[0]� . . .� a[n] where x� y = f(x, y)

Like map, reduce applies the function on the outer-most dimension of the array [7].
The first-order segment of Futhark has many of the typical language features like

constants, variables, many of the usual binary operators, branching, array indexing and
some additional features like in-place updates and looping, which we do not use.

Futhark features array zipping with the built-in zip, which produces an array of
pairs from a pair of arrays. The resulting arrays can then be mapped over with binary
operators such as +.

The iota function, given an integer n, produces an array with integer values ranging
from 0 to n − 1. The replicate function, given an integer n and an array a, returns
an array consisting of n copies of a. The size primitive will, given a positive integer
i and an array a, return the i’th dimension, or put in another way the length of the
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arrays nested with depth i in a. Recall that these arrays will all have the same length.
The reshape function takes a number of dimensions (dim1, ..., dimn) and an array a
and returns an array where the elements of a is reshaped into the shape specified by the
list of dimensions. The number of elements in a must be equal to the product of the
dimensions (i.e. elements of a = dim1 ∗ ... ∗ dimn).

The function transpose takes an array a and returns the transposed a. Transposing
a three-dimensional array with dimensions 2 × 3 × 4 is not like in TAIL an array with
dimensions 4× 3× 2 but instead an array with dimensions 3× 4× 2.

The function split, given an integer n and an array a, partitions a into two arrays
a[0, .., n] and a[n + 1, ...] and returns them as a tuple. The function concat takes two
arrays and concatenates them by concatenating the row/elements of one array with
another. The shape of the two arrays have to be the same except in the first dimension.

The undocumented rearrange function takes as arguments a comma separated list
of dimensions (surrounded in parentheses) and an array. It then rearranges the shape of
the array to the by the list specified.

The aim of Futhark is to be an attractive choice for expressing complex parallel
programs. This goal is pursued by featuring high expressive power without losing the
ability to do aggressive optimization and managing parallelism. This is a challenge
because higher expressive power means optimizations become more difficult. However,
Futhark does support nested parallelism as this is a feature many programs depend upon
even though it does make optimization more difficult [7].

4 The compilation strategy

In this section we will present our general strategy for compiling TAIL to Futhark.
Where possible, TAIL primitives have been mapped directly to their corresponding

versions in the Futhark language. Where direct translation is not possible, the approach
has been to use existing operations as much as possible and generate code to bridge the
gap.

The general strategy for compiling TAIL expressions was to aim for the simplest
conversion and use as much as possible the built-in functions of Futhark to make it easy
for the Futhark compiler to optimize away the overhead that the compilation from TAIL
to Futhark creates. This means that we have not directly focused on optimization in the
compilation. Also, as it was not in the scope of this project. Still, we have tried as much
as possible not to introduce any unecessary inefficiencies.

In the cases where it was not possible to use built-in Futhark functions, library
functions was created instead.

Many of the monomorphic first-order functions of TAIL are mapped directly to a
library function of the same name. This also allows us to use the same mapping when
the functions occur as arguments in SOAC applications.

5 Library functions

In this section explain some of the nontrivial library functions we have defined and discuss
their usefulness. The rest of the library functions can be found in the end of this section.

5.1 The take1, drop1 and reshape1 functions

The take1, drop1 and reshape1 functions implement the TAIL operators take, drop
and reshape in the one-dimensional case. In Section 6, we see how they can be used to
implement the multi-dimensional cases. It is advantageous to use a library function for
only the one-dimensional case as we would otherwise need a separate library function for
each rank and basic type combination which we then needed to call since Futhark only
allows declaration of monomorphic functions [7]. We have implemented the functions
(take1, drop1, and reduce1) as templates written in Haskell. A template is a function
that given a type returns Futhark code for that function with the given type. We have
done this so we can use the same template for making all four functions (one for each
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base type) and can thereby be sure to have the same function code for each type and
make maintaining the functions easier.

5.1.1 The take1 functions

The take1 functions is defined as follow:

1 fun [int] take1_int(int l,[int] x) =

2 if (0 <= l)

3 then if (l <= size(0,x))

4 then let {v1,_} = split ((l),x) in v1

5 else concat(x,replicate ((l - size(0,x)) ,0))

6 else if (0 <= (l + size(0,x)))

7 then let {_,v2} = split (((l + size(0,x))),x) in v2

8 else concat(replicate ((l - size(0,x)),0),x)

Notice that this is the int version. The template, is as mentioned used to make a
boolean, char, and double version as well. See Appendix B for the template function.

The function first checks if it should perform a positive of negative take and then
checks whether it should split so it can return part of the argument or pad the argument
with zeros based on whether the take size was smaller or bigger than the array.

5.1.2 The drop1 functions

The drop1 functions is defined as follows:

1 fun [int] drop1_int(int l,[int] x) =

2 if (size(0,x) <= if (l <= 0) then -l else l)

3 then empty(int)

4 else if (l <= 0)

5 then let {v1,_} = split (((l + size(0,x))),x) in v1

6 else let {_,v2} = split ((l),x) in v2

Again we show only the int version.

5.1.3 The reshape1 functions

The reshape1 function’s int version can be seen below.
To adjust the array, we first make sure it is long enough by extending it using the

function replicate and then truncate it to the correct length with split.

1 fun [int] reshape1_int(int l,[int] x) =

2 let roundUp = ((l + (size(0,x) - 1)) / size(0,x)) in

3 let extend = reshape ((( size(0,x) * roundUp)), replicate(roundUp ,x)) in

4 let {v1 ,_} = split((l),extend) in v1

When we replicate an array in Futhark, the rank of the array increases by one, thus,
we have to reshape the array back to rank 1 before we split it. The number of times we
should replicate the array is the target size divided by the array size rounded up. This
is computed in the variable roundUp. We add denominator plus one to the enumerator
to round up as normal integer division rounds down.

5.2 Bool equality

Futhark has no bool equality so we implemented our own:

1 fun bool eqb(bool x,bool y) =

2 (!((x || y)) || (x && y))

Two booleans are equal if they both are true or none of them are true.
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5.3 Xor

Likewise there is no logical xor operation so we included it in the library:

1 fun bool xorb(bool x,bool y) =

2 (!((x && y)) && (x || y))

The Xor of two booleans is true if one but not both of them are true.

5.4 All other library functions

The rest of the library functions are implemented very straightforward and are therefore
only mentioned as a list here:

boolToInt ,negi ,negd ,absi ,absd ,mini ,mind ,signd ,signi ,maxi ,maxd ,

nandb ,norb ,neqi ,neqd ,resi

The implementation of these functions can be found the compiler source code in Appendix
B.

6 The compilation scheme

The main contribution of this work as mentioned earlier is the compilation scheme pre-
sented in this section. It shows a set of conversion rules of a subset of TAIL’s syntax to
Futhark source code. Also in this section the notation and the compilation of some of
the nontrivial operators or expressions of TAIL is described in detail.

The main part of the compilation scheme that contains the expressions can be seen
in Figure 2. In Figure 3 is the conversion rules for lambda expressions. In Figure 4 are
the functions that are compiled directly to a corresponding function in Futhark and in
Figure 5 are the compilation of the binary operators. Notice that the schemes in the
above mentioned figures are all mutually recursive.

When e is some TAIL expression, and e′ is some Futhark expression we specify the
translation as conversion rules of the form JeK = e′. The rules are syntax-directed in the
sense that they follow the structure of e, recursively.

6.1 The notation

Each line in the scheme consists of a TAIL expression in double brackets J·K on the left,
followed by an equals sign in the middle and a Futhark expression on the right side.
This means that the TAIL expression on the left side should be compiled to the Futhark
expression on the right side. We call such a line a conversion rule. Some rules have side
conditions after a comma which means some conditions must be met before that rule
is legal; otherwise another rule must be chosen. This can be thought of as similar to
pattern matching in functional languages where side conditions are guards. The rules
are exhaustive and non-overlapping. In practice, the compilation can be implemented
using pattern matching by choosing the right ordering of patterns and it is indeed how
our compiler is implemented. We have tried to use such an ordering of rules in our
presentation. An expression wrapped in double brackets can also occur on the right side
of the equal sign, means that this expression should be compiled recursively as part of
the compilation of the parent expression.

Some TAIL expressions have type information as part of their declaration in their
instance lists. This type information is expressed in the compilation scheme as subscript
to the expression. The type information can be either just a type t or a combination
of both type and rank r. The type consist of a type that are one of the TAIL types
described in Section 2. The rank is the number of dimensions.

Some of the rules are subscripted with either op, fun of fn. These are separate sets
of rules that are invoked on the right hand side of regular rules. We also call such a set
a rule. From context it will be clear what we mean when we say rule, for example when
talking about the set of rules subscripted by fn we will just say: the J·Kfn rule. The J·K
rule is also called the default rule.
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JxK = x
JiK = i
JdK = d
JcK = c
J−eK = -JeK
Jlet x : t = e1 in e2K = let JxK = Je1K in Je2K
J[e1, ..., en]K = [Je1K, ..., JenK]
Jop[e1, e2]K = Je1K JopKop Je2K, op ∈ binops
Jop[e1, ..., en]K = JopKfun (Je1K, ..., JenK), op ∈ funs

Jeach[t1,t2,r](f, a)K =

{
map(JfKJt2K

fn , JaK) r = 1

map (fn tr2 (tr1 x) => Jeach[t,r−1](f, x)K, JaK) r > 1

JeachV[t1,t2,r](f, a)K = map(JfKJt2K
fn , JaK)

Jreduce[t,r](f, n, a)K =

{
reduce(JfKJtK

fn, JnK, JaK) r = 1

map (fn tr−1 (tr x) => Jreduce[t,r−1](f, n, x)K, JaK) r > 1

JzipWith[t1,t2,t3,r](f, a1, a2)K ={
map(JfKJt3K

fn ,zip(Ja1K, Ja2K)) r = 1

map(fn tr−1
3 (tr−1

1 x, tr−1
2 y) => JzipWith[t1,t2,t3r−1](f, x, y)K,zip(Ja1K, Ja2K)) r > 1

Jvrotate[t,r](i, a)K = map(fn x => a[x + i % size(0,a)], iota(size(0,a)) , x is fresh

Jvreverse[t,r](a)K = map(fn x => a[size(0,a)−x−1], iota(size(0, a)) , x is fresh

Jreverse[t,r](a)K = rearrange((r − 1, . . . , 0), Jvreverse[t,r](transp[t,r](a))K)
Jrotate[t,r](i, a)K = rearrange((r − 1, . . . , 0), Jvrotate[t,r](i, transp[t,r](a))K)
Jreshape[t,r1,r2](a1, a2)K = reshape(Ja1K, (reshape1JtK(osize, reshape(isize, Ja2K))))

where osize = size(0, a1) ∗ . . . ∗ size(r1, a1)
isize = size(0, a2) ∗ . . . ∗ size(r2, a2)

Jcat[t,r](a1, a2)K =

{
concat(Ja1K, Ja2K) r = 1

map (fn JtKr−1 (JtK x, JtK y) => Jcat[t,r−1](x, y)K, zip(Ja1K, Ja2K) r > 1

Jfirst[t,r](a)K = let x = JaK in x[0, ..., 0︸ ︷︷ ︸
r times

]

JfirstV[t,r](a)K = Jfirst[t,1](a)K
Jtake[t,r](i, a)K = reshape(oshape,take1JtK(osize,reshape(isize,JaK)))

where oshape = (|i|, size(1, JaK), · · · ,size(r,JaK))
osize = (i ∗ size(1, JaK) ∗ . . . ∗size(r,JaK))
isize = size(0,JaK)∗ . . . ∗size(r,JaK)

JtakeV[t](d, a)K = take1JtK(JdK, JaK)
Jdrop[t,r](i, a)K = reshape(oshape, drop1JtK(osize, reshape(isize, JaK))

where oshape = (max(0,size(0,JaK)-|i|),size(1,JaK), . . . ,size(r,JaK))
osize = (i∗size(1,JaK)∗ . . . ∗size(r, JaK))
isize = size(0,JaK)∗ . . . ∗size(r,JaK)

JdropV[t](d, a)K = drop1JtK(JdK, JaK)
Jtransp[t,r](a)K = rearrange((r − 1, · · · , 0), JaK)
Jtransp2[t,r]([a1, · · · , an], b)K = rearrange((a1 − 1, · · · , an − 1),Ja2K), a1, . . . , an literals

Jcons[t,r](e, a)K = rearrange((r, . . . , 0), concat(Jtransp[t,r+1](e)K, Jtransp[t,r+1](a)K))
Jsnoc[t,r](a, e)K = rearrange((r, . . . , 0), concat(Jtransp[t,r+1](a)K, Jtransp[t,r+1](e)K))
Jiota(a)K = map(+ (1), iota(JaK)
JiotaV(a)K = Jiota(a)K
Jshape[t,r](a)K = [size(0, JaK), ..., size(r − 1, JaK)]
JshapeV[t,r](a)K = [r]

Figure 2: Conversion rules for expressions.
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Jfn x : t => eKτfn = fn τ(JtK x) => JeK
Jfn x : t1 => fn y : t2 => eKτfn = fn τ(Jt1K x, Jt2K y) => JeK

JopKτfn =

{
JopKfun op ∈ funs
JopKop op ∈ binops

Figure 3: Conversion rules for lambda expressions.

Ji2dKfun = toReal
JcatV Kfun = concat
Jb2iKfun = boolToInt
Jb2iV Kfun = boolToInt
JlnKfun = log
JexpdKfun = exp
JnotbKfun = !

idFuns = negi, negd, absi, absd, mini, mind, signd, signi, maxi, maxd, eqb, xorb, nandb,
norb, neqi, neqd, resi.

Figure 4: Conversion rules for functions names and functions with a 1:1 correspondence.

JaddiKop = +
JadddKop = +
JsubiKop = −
JsubdKop = −
JmultiKop = ∗
JmultdKop = ∗
JlteiKop = ≤
JltedKop = ≤
JeqiKop = ==
JeqdKop = ==
JgtiKop = >
JgtdKop = >
JgteiKop = ≥
JgtedKop = ≥
JandbKop = &&
JorbKop = ||
JdiviKop = /
JdivdKop = /
JpowiKop = pow
JpowdKop = pow
JltiKop = <
JltdKop = <
JandiKop = &
JanddKop = &
JoriKop = |
JshliKop = <<
JshriKop = >>

Figure 5: Conversion rules for binary operators.
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Apart from the J·K rule, there are also the J·Kop, J·Kfun, and J·Kτfn rules. The first
two are simple lookup rules that map to Futhark operators and functions respectively.
The third is used to compile lambda expressions. Unlike the other rules the fn rule is
parametrized by a Futhark type variable τ which we denote with a superscript so the
rule will usually be written J·Kτfn. The parameter τ represents the return type of the
lambda expression the rule compiles, and must be passed by the caller when the rule is
used.

The set binops is the defined as the set of operators that have an op rule, similarly
the set funs is the set of operators that have a fun rule.

6.2 Explanation of the compilation of selected parts of TAIL

Below is the motivation and explanation for the nontrivial conversion rules from the
compilation scheme.

6.2.1 Basic structural constructs

Basic structural constructs are translated to their Futhark counterparts directly. In let-
expressions the type annotations that exist in TAIL variable bindings are ignored in
Futhark [6] [7].

The letters x, i, d, and c denote variables, integers, doubles, booleans, and chars
respectively. They are all translated to their Futhark equivalents.

This part of the language was easy to compile.

6.2.2 The each operator

In TAIL, applying the each operator produces an array where the argument function
is applied to each basic element in the argument array, regardless of the rank of the
array [6]. Since Futhark views a multidimensional array as nested simple arrays, it
applies the function to every array in the array. That is, it maps the function into the
outer-most dimension of the array [7].

To solve this problem we introduce nested maps to the depth of the array with the
required function. For example, an each operation over an array of rank 2 would have
two maps nested in each other so that the function is mapped on each element of the
basic type.

For example an each operation on an array of rank 2 will look like:

each(f,a) => map(fn x => map (f,x), a)

This rule targets the Futhark map SOAC as directly as possible.

6.2.3 The reduce operator

The reduce operator in TAIL uses an associative binary operator to reduce an array of
rank γ + 1 to an array of rank γ by reducing along the inner-most dimension [6]. The
Futhark reduce, on the other hand, reduces each array in the outer array, (i.e. it reduces
along the outer-most dimension [7]).

We have adopted the same approach as with each by using nested maps to map the
reduce on the innermost dimension.

For example reducing an array of rank 2 emits the following code:

reduce(+,a) => map(fn x => reduce(+,x), a)

Lifting the reduce operation with maps into the inner-most array was the simplest
solution. It utilizes only parallel operations.

6.2.4 The zipWith operator

The zipWith operator applies a scalar binary operator on pairs of elements from two
arrays of the same shape to produce a third array of the same shape as the input arrays [6].
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To do this in Futhark, we use the zip function to convert two arrays to an array of
tuples and map the binary operator on that array of tuples [7].

The rationale behind this rule was the same as in each.
The compilation of the three parallel higher-order operators (each, reduce, zipWith)

has the same recursive structure. Because of the recursive structure some information
can be said to have been lost in the compilation, for example a single each operation
might have been compiled to a set of nested map operations, which seems harder to
compile to lower-level parallel code, since the compiler must inspect the nested maps
to discover that the expression is completely parallel. We rely here on the flattening
analysis of the Futhark compiler to rediscover this information and we believe it will be
able to do so.

6.2.5 The reshape operator

Futhark has a reshape function that only works for arrays of the correct dimensions [7].
To actually change the rank of the array we first ensure that the array is the correct

size and then use the Futhark reshape function to do the final step.
To adjust the size we operate on the flat representation of the array, which is easy to

produce using Futhark reshape.
To adjust the size of the array we use the previously defined library function reshape1.

Actually we use the variant with the correct type, this type is conveniently available in
the instance list.

We make use of the existing reshape operation in Futhark because we assume this
approach has the best chance of optimization by the Futhark compiler [7] [9], [8].

6.2.6 The transp operator

There exists a transpose(a) function in Futhark which does not have the same semantics
as the transp operator from TAIL [7] [6]. The Futhark transpose on a three dimensional
array, for example, produces a (2,0,1) permutation of the dimensions whereas we are
looking for a (2,1,0) or more generally the reverse permutation of the dimensions. By
inspecting the Futhark IL (internal language) generated from a call to transpose, we
discovered that, internally, a function called rearrange is being called with an explicit
permutation parameter. This function is also available in the external language and
simply needed to be called with the correct parameters to match the behavior of the
transp operator.

This conversion is as direct as we could hope.

6.2.7 The transp2 operator

Like we did for the transp operator, we have also converted the operator transp2 to
a rearrange application. The only thing we needed to change was to substract one
from each number in the first argument since Futhark indexes dimensions from zero [7].
Notice that rearrange only supports a list of integer literals in its first argument while
TAIL has no such restriction on transp2. In practice the TAIL compiler will often have
inlined the arguments to transp2 [6].

The operator transp2 has thus a very direct conversion.

6.2.8 The cat operator

Futhark has a concatenate function concat that we wanted to use but it concatenate the
outermost arrays while in TAIL the cat operator concatenates the innermost arrays [7]
[6]. To solve this we lifted the concatenate operation to the innermost dimension with
map. This is the same idea used to compile the reduce, each, and zipWith operators.

Alternatively we could have compiled the cat operator using transpose instead like
we have done in snoc and cons. We did not have any particular reason to choose one
over the other. Both solutions accomplish our goal of being simple and using Futhark
built-in functions.
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6.2.9 The take/drop operators

In a similar fashion to the TAIL reshape function, we have used library functions to
do most of the work. We flatten the array, let the library function work on the flat
representation and finally reshape it to the desired shape. This approach has all the
benefits mentioned in the cat operator section.

We use the same approach to implement the drop operator as the take operator.

6.2.10 The cons/snoc operator

The idea behind the compilation of the cons operator was to transpose the two arrays,
then concatenate the arrays and then transpose the resulting array back again. That
way we would get the desired result of the nth elements from the first array added to
the nth element of the second array.

The snoc operator is compiled similarly the same except the elements are added
behind instead in front.

6.2.11 The iota operator

Due to the fact that the 1-indexing is used in TAIL and 0-indexing is used in Futhark, the
curried +1 is mapped onto the elements of the array created by using the iota function
of Futhark.

6.2.12 Lambda expressions

The higher order operators each, eachV, reduce, and zipWith all take functions as
arguments and these functions are handled by the conversion rules marked with the fn
subscript. In Futhark, lambda expressions need type annotations both for the argument
and the return type [7]. This return type is provided by the context in which the lambda
is used. Namely the type informations is present in the instance lists of the enclosing
operator call, be it each, reduce or zipWith. Arguments are already annotated with
types in TAIL so those are simply compiled to Futhark types and passed to the resulting
lambda. Althougn the syntax of TAIL permits lambda expressions anywhere a expres-
sion could be used (as long as the type is correct), when compiled from APL, lambda
expressions will only be present in higher-order operator calls after the compilation, due
to inlining.

This means that lambda expressions can only occur directly inside of the aforemen-
tioned operator call or another lambda.

In TAIL ,currying is used if lambda expressions are to take more than one argument
while Futhark does not support currying but supports multi-argument lambdas instead
[6]. Since the highest number of arguments that can be used is two (in zipWith) we have
restricted the compiler to this special case which simplifies the compilation. The actual
body of the function is compiled using the expression rule. If the function argument is
an identifier, we use the op and fun rules to compile them. Lambda expressions with
one argument are mapped to lambda expressions with one argument in Futhark.

6.2.13 Binary scalar first-order operators

The binary scalar first-order operators are mapped to their natural Futhark counterparts.

7 Implementation

In this section a Haskell implementation of the compilation scheme is presented. This
compiler is divided into three parts: a parser, a compiler that transforms the TAIL
abstract syntax three (AST) returned by the parser to a Futhark AST and pretty printer
that given the Futhark AST prints the Futhark source code.

Because we have only implemented a subset of TAIL not all TAIL programs can be
compiled.
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7.1 The parser

As mentioned earlier the parser used in this project was made by someone else in another
project [1]. We did not create the parser ourselves. Because of the ongoing development
of the TAIL language, however, we modified the parser to work on the latest version of
the language. We have forked the original repository to work on the modifications of
the parser. The original parser has since been adapted to work with the new version
of TAIL by its author. For the latest version of the parser see the github repository:
https://github.com/mbudde/aplacc.

Below we discuss some of the changes we had to make to the parser and the abstract
syntax tree representation of TAIL.

We had to extend the abstract syntax three to include booleans and chars. The
original parser had type constructors ShT (shape type), SiT (singleton integer type),
and ViT (single element vector type) that all just took a rank. We have changed these
type constructors to VecT (vector type) that takes basic type and rank, S (singleton
integers and booleans), and SV (single element vectors) that take rank. This meant
updating the parser to read angles (<>) since this is the new syntax of vectors.

The parser with our modifications is located in the aplacc/ directory of our project.
The updated code for the parser can be found in Appendix A.

7.2 The compiler

The main part of the compiler is (placed in src/Tail2Futhark/Compile.hs) transforms
the TAIL AST (abstract syntax three) that is returned by the aplacc parser to a Futhark
AST. The definition of the Futhark AST is placed in src/Tail2Futhark/Futhark/AST.hs.
The implementation of the compiler is very close to the conversion rules presented in the
compilation scheme in Section 6. The source code of the compiler can be found in its
entirety in Appendix B.

The module defined in the Compile.hs file exports one function:

1 compile :: Options -> T.Program -> F.Program

The compile function produces a Futhark program given options and a TAIL pro-
gram. Right now the only options provided is --no-include-lib-funs that when used
makes the compiler not include library functions in the output file.

Since a TAIL program is an expression, the compile function calls another function
called compileExpression on the TAIL program. The compileExpression function
pattern matches on the TAIL AST to compile the expression. The most difficult case be-
ing an operator application. In the case of an operator application, the compileOperator
function is called, which matches on the operator names. Notice that the structure of
the compiler is very similar to the compilation scheme with rules being cases in pattern
matching. The resulting Futhark expression is then made the body of the main function
in the Futhark program. In our representation of the Futhark AST, a Futhark program
consists of a list of function declarations that are represented by the type FunDecl.

1 type Program = [FunDecl]

Our library functions are then represented as instances of type FunDecl in the com-
piler (in the Compile.hs file). Library functions are added to the beginning of every file
(except if the --no-include-lib-funs option is used). Some of the functions are created
from our templates. First, the function body is created as a Futhark expression. Then
we make a Futhark function that is parameterized over a Futhark type. We represent
such a function with the Haskell type F.Type -> FunDecl. We can even parametrize the
bodies of the functions by giving them the Haskell type F.Type -> F.Exp. This type is
simply passed from the parametrized function when it is instantiated. We use this for
example in the body of drop where the empty list of the argument Futhark type has to
be returned. Also the body of take is paramterized over the expression with which the
input should be padded, so it has the Haskell type F.Exp -> F.Exp. To produce all the
functions we simply map the parametrized versions over the basic Futhark types.

We add t in front of existing variable names when we compile the expression. That
way when we need to introduce fresh variable names we can use any variable name not

20



Compiling TAIL to Futhark Anna Sofie Kiehn, Henrik Urms

starting with t and not worry about clashing with names in the source code. This was
much easier than including a monad to produce fresh names.

In TAIL there is a function called readIntVecFile for reading input from a file.
This functionality does not exist in Futhark making it difficult to implement [6] [7].
However, we needed the functionality in order to implement some of our benchmarks so
to get around this problem we used the fact that Futhark can take input in a program
as arguments to the main function by reading from StdIn [7]. We therefore added a
check to see if the first expressions in a TAIL program is readIntVecFile. If it is we
compile the expressions to arguments in the Futhark main function. That means that
if the TAIL program reads an input so does the Futhark program. We do not take into
account that the syntax of the data the programs read are different from TAIL and
Futhark. Furthermore, it is the responsibility of the programmer to ensure that if a
TAIL program reads a file, that the programmer pipes the content of the file (maybe in
a different format) to StdIn when Futhark programs are read.

7.3 Pretty print

The final part of the compiler is the pretty printer located at src/ Tail2Futhark/Futhark/Pretty.hs.
The pretty printer takes a Futhark AST and transforms the abstract representation of
the components of the AST to correct Futhark source code.

7.4 Test of implementation

In this sections we discuss the test suite of our implementation.
Both the APLTAIL compiler and the Futhark compiler has an interpreter option

[6] [7]. To test the correctness of our implementation we compare the output of the
APLTAIL interpreter with the output of the Futhark interpreter. The tests can be
found in the tests/our tests/ directory in our project. The test framework compiles
each file with a tail extension in the directory to a fut file of the same name. Then the
Futhark program is executed with the Futhark interpreter and the output is written to
a file with the out extension. Finally this file is compared to a file with the same name
and the ok extension, if the files match the test passed. The ok files were produced by
running the test suite programs with the APLTAIL interpreter.

All tests are originally written in APL code to ensure that the programs we tested
up against was indeed correct TAIL and that no error was introduced by writing TAIL
code ourselves. Also, TAIL was designed as an intermediate language and this approach
comes closer to real world use.

In order to run the tests use ’cabal test’ instruction in the root directory of the
repository after cloning it. You need the tail2futhark and futhark executables in
your $PATH to do this or the tests will fail. You can also run ‘ghc tests/Test &&

tests/Test’ to see the test results in colored output instead for easier readability.
The above mentioned framework enabled us to run the tests whenever new function-

ality was added and thereby check to see that the new functionality had not introduced
bugs that impacted the existing functionality. Whenever a function was implemented
during the development process, test cases would be added to the framework along with
the already existing ones. These tests are all run using our implementation and compared
to the correct output.

We use the tasty package [4] which provides a test framework that we use to implement
our tests. Furthermore we have used the package tasty-golden [3] which is a plug-in for
the tasty framework that allows to test against ”golden” files. A lot of projects implement
their own test frameworks and we could have done the same. We chose not to do so as
this freed us to use our resources on developing the compiler instead.

The test results can be found in Appendix E. Based on the results of the test, we
assume our implementation works as expected on the subset of TAIL we have tested.
However, because the tests are not exhaustive we cannot be sure everything works. In
the next, section we discuss the limitations of the tests.
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7.4.1 Limitations of the tests

In order to thoroughly test the compiler, all functions should be have specific tests that
test the below features that meaningfully apply to the function. The function should:

• work on different data types (both base types and rank)

• work on edge-cases

• work on positive and negative input

• work correct in all branches in if-then-else expressions

However, due to time restraints we have chosen to focus on a smaller subset of the
functionality.

We have not tested for or taken into account the possibility of TAIL code that is
incorrect as it is generated by a compiler and only used as an intermediate language [6].

All tests returns the expected results. As we have not done exhaustive testing we
cannot be sure that all functionality work as expected, only that the one we have tested
for does.

8 Benchmarks

We used a number of benchmarks to measure the performance of the code generated by
our compiler. All benchmarks can be found in the tests/benchmarks directory in our
project. The benchmarks are written in APL and then compiled to C-code using the
APLTAIL compiler to create the TAIL version and the APLTAIL compiler, our compiler,
and the Futhark compiler to make the Futhark version. The path from APL code to
executable file can be seen in Figure 6.

Figure 6: The path for a benchmark from APL to an executable file.

Because no parallel back-end was finished for either TAIL or Futhark, for running
the benchmarks, we use a sequential back-end for both languages [6] [7]. The C-code is
then compiled using gcc with the flags -lm -std=c99 -O3 and the command-line tool
time is used to measure the execution time. Each benchmark is run 10 times each and
then the average is reported. The benchmarks and the results of the benchmarks are
listed in Table 1.

The benchmarks is run on an Intel(R) Core(TM) i7-4500U CPU @ 1.80GHz.

Benchmark Problem size TAIL C Futhark C

Matrix multiplication 512×512 2663.4 2634.2
Pi 40 000 points 8190 663.4
Black sholes - 1 1
Easter 400 639.1 665.6
Primes 10 000 652.8 480.1

Table 1: Benchmark timing in milliseconds.

We made a Makefile to manage the building of the benchmarks. The Makefile is also
placed in the tests/benchmarks directory.
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8.1 Matrix multiplication

The matrix multiplication benchmark takes a matrix and multiplies it with itself trans-
posed. It then reduces the resulting matrix twice, once by using times and once by
using plus (times is used on the outer dimension). The implementation is in the file
matmul.apl.

To run the Futhark version of the benchamark run ’fut matmul < matmul.in’

8.2 Pi

The pi benchmark approximates pi by computing the ratio of points in the range [0, 1]×
[0, 1] that have a distance to (0, 0) of less than 1. It does so by using n×n evenly spaced
points in the interval [0, 1] × [0, 1], it can be helpful to imagine the set of points as a
regular grid. The more fine grained the grid the closer the approximation to pi.

The program first generates n evenly spaced points in the interval [0, 1]. It then
squares those points before replicating them n times to a n × n matrix. Then the
matrix is added with its own transpose and from the resulting matrix a boolean matrix
is produced where all the entries with points with distance less than one from 0 are set
to 1 and the rest to 0. Is is not necessary to take the square root of the sums since that
square root will be less that 1 only if the original sum is less that 1. Finally the matrix is
reduced with plus two times to get the number of points. The amount is divided by the
total number of points and this number is multiplied by 4 to get pi. The implementation
is in the file pi.apl

8.3 Black-Scholes

The Black-Scholes benchmark is taken directly from the benchmark suite of the APLTAIL
compiler repository and computes the price of European style options. We have not mod-
ified this benchmark and while it doesn’t give any insight into performance it demon-
strates that it is possible to compile this benchmark. The implementation is in the file
blackscholes.apl

8.4 Easter

The easter benchmark computes the date of easter and is found in the apltail project
as tests/easter3000.apl. The only modification we have done is to make the date
the result from the program instead of printing it and changed a parameter to scale the
program up.

The implementation is in the file easter3000.apl

8.5 Primes

The primes benchmark computes the number of primes below n and is found in the
apltail project as tests/primes0.apl. Again we have only made the program return
the result instead of printing it and scaled up the parameter n. To show a bigger example
we have chosen to show the code in the primes benchmark. Below is the original code
in APL as well as the generated TAIL and Futhark code. The TAIL code is as follows:

A←1↓⍳9                  ⍝   A stores the array: 2 3 4 5 6 7 8 9
residual ← A∘.|A        ⍝   residual stores all remainders af all numbers in 

       ⍝   A by all numbers in A
b ← 0=residual          ⍝   b is a boolean matrix where all entries with  

       ⍝   zero vauled remainders are asserted
c ← +⌿ b                ⍝   c counts the number of 0 valued remainders in 

       ⍝   each column
d ← 1=c                 ⍝   d is the boolean vector of where indicies for 

       ⍝   columns that have one zero valued remainder are asserted
e ← +/ d                ⍝   e counts the number of prime numbers less than 10

The APLTAIL compiler compiles the code to the following TAIL program:
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1 let v1:<int >8 = dropV{[int ],[8]}(1, iotaV (9)) in

2 let v7:[int]2 = transp {[int ] ,[2]}( reshape {[int ],[1,2]}([8,8],v1))

in

3 let v8:[int]2 = reshape {[int ],[1,2]}([8,8],v1) in

4 let v11:[int]2 = zipWith {[int ,int ,int ] ,[2]}(resi ,v7 ,v8) in

5 let v18:[int]1 = transp {[int ] ,[1]}( reduce {[int ] ,[1]}(addi ,0,each

{[bool ,int ] ,[2]}(b2i ,transp {[bool ] ,[2]}( v13)))) in

6 let v13:[bool]2 = each{[int ,bool ] ,[2]}(fn v12:[int]0 => eqi(0,v12

),v11) in

7 let v20:[bool]1 = each{[int ,bool ] ,[1]}(fn v19:[int]0 => eqi(1,v19

),v18) in

8 let v24:[int]0 = reduce {[int ] ,[0]}(addi ,0,each{[bool ,int ] ,[1]}(

b2i ,v20)) in

9 i2d(v24)

The Futhark code is as follows:

1 fun real main() =

2 let t_v1 = drop1_int(1,map(fn int (int x) => (x + 1),iota (9)))

in

3 let t_v7 = rearrange ((1 ,0),reshape ((8 ,8),reshape1_int ((8 * (8 *

1)),reshape ((( size(0,t_v1) * 1)),t_v1)))) in

4 let t_v8 = reshape ((8 ,8),reshape1_int ((8 * (8 * 1)),reshape (((

size(0,t_v1) * 1)),t_v1))) in

5 let t_v11 = map(fn [int] ([int] x,[int] y) => map(resi ,zip(x,y)

),zip(t_v7 ,t_v8)) in

6 let t_v13 = map(fn [bool] ([int] x) => map(fn bool (int t_v12)

=> (0 == t_v12),x),t_v11) in

7 let t_v18 = rearrange ((0),map(fn int ([int] x) => reduce(+,0,x)

,map(fn [int] ([bool] x) => map(boolToInt ,x),rearrange ((1 ,0)

,t_v13)))) in

8 let t_v20 = map(fn bool (int t_v19) => (1 == t_v19),t_v18) in

9 let t_v24 = reduce(+,0,map(boolToInt ,t_v20)) in

10 toFloat(t_v24)

Notice that the definition of the library functions are omitted from this example to
save space. They are included above the main function in the file containing the code.
The entire Futhark file can be found in Appendix D.

This example illustrates that the parallel operators of TAIL (zipWith, each and
reduce) are compiled to parallel second order functions in Futhark (map and reduce).
We also see that library functions are used (drop1 int and reshape1 int) on the one-
dimensional case.

The implementation can also be seen in the file primes0.apl.

8.6 Results

As mentioned previously the results can be seen Table 1. In two benhamarks TAIL and
Futhark perform almost the same, in one Futhark is somewhat faster than TAIL and in
one we get a significant speed-up from Futhark. In the pi benchmark Futhark performs
much better than TAIL. This is due to the fact that the APLTAIL compiler ends up
fusing too much and duplicates work. It calculates x ∗ x n2 times instead of just n times
as expressed in the APL program. This is a limitation the authors are aware of and
describe in their publication [2].

9 Discussion

In this section we discuss the viability of the approach we have used, what we have
learned in the project and ideas for future work.

Our main goal has been to see if it is possible, effectively to compile TAIL programs,
into Futhark programs and thereby make use of the Futhark infrastructure for optimiza-
tion and the possibility for targeting parallel hardware.
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We have been able to compile TAIL to Futhark code using parallel constructs in
Futhark whenever we encountered parallel constructs in TAIL. Because of this we have
reason to believe that no parallelism has been eliminated during the compilation. Al-
though we have not verified the effect the compilation has on performance on parallel
hardware we have seen that compiling to Futhark can in some cases speed up the sequen-
tial execution of the code. We feel these sequentially executed benchmarks are relevant
because they are parallel in their structure and should therefore execute efficiently on
parallel hardware.

During this project we have gotten a greater understanding of data-parallelism and
some of the things that can influence the efficiency of the parallel code, such as memory
constrains in the case of general computing on the GPUs.

During this project we have learned the value of using a mathematical notation to
work from and to present and reason about in the form of our compilation scheme. With-
out our compilation scheme it is not clear how to present the work, either we would have
to argue based on the implementation which muddles the picture with implementation
details, or we would have to argue in prose which makes it difficult to precisely explain
the concepts without being very verbose. The notation is also a good tool for communi-
cating during the development of the ideas for compilation, because it is programming
language independent.

Also we have learned that the type systems means a lot when compiling between
languages. In our concrete example we had an issue with polymorphism. This made the
compilation a lot less simple since we had to make design decisions on how to handle
this in the best way and what the best way was. We decided to create library functions
for each basic type and create our compilation so that we only used library functions in
the one-dimensional case. Otherwise we could have made a function for each basic type
and array shape for a limited set of combinations. But this means we could not have
supported a significant portion of TAIL.

If we had to redo this project we would have focused more on the benchmarks from the
beginning as soon as we started implementing. This makes for a more goal oriented work-
flow instead of the check-list like work-flow we had. Maybe we would have implemented
fewer operators and instead focused on analyzing the code generated by the compilers
(APLTAIL and Futhark) and from that argue about the soundness of our conversion
rules.

As we began our project no parallel back-ends for either languages were available,
however towards the end of the project a parallel back-end for TAIL using Accelerate had
been published [2] and a parallel back-end for Futhark using OpenCL was in development.

It would be interesting to test the benchmarks with the parallel back-ends to compare
TAIL and Futhark on parallel hardware. Depending on the results it could be interesting
to look at the generated C code to see the cause of the differences in the runtime of the
benchmarks.

Finally, it could also be interesting to try out bigger and more comprehensive bench-
marks and compare the running times.

10 Conclusion

In this report we have described relevant part of the two languages TAIL and Futhark.
We have also presented a compilation between the two languages shown in an implemen-
tation independent mathematical notation as well as an implementation of this scheme
in Haskell and test of this implementation. Finally, we have compared the execution
time of selected benchmarks.

In this project we wanted to examine if it was possible, effectively to compile TAIL
programs, into Futhark programs and thereby make use of the Futhark infrastructure
for optimization and the possibility for targeting parallel hardware.

We have shown that it is possible to effectively compile TAIL to Futhark by express-
ing this compilation in a compilation scheme done in a mathematical notation that is
language independent and also implement this compilation scheme in Haskell. We have
used the Haskell implementation to test the correctness of the compilation scheme.
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We have argued that the parallelism in the code is preserved by ensuring that all
parallel operators in TAIL are mapped to parallel functions in Futhark. This parallelism
in the resulting code means that the Futhark infrastructure for optimization can be used
to optimize the code as well as the create a possibility for targeting parallel hardware.

We have shown that compiling the code with the Futhark compiler has the benefit of
optimizing the code as we have measured speed-ups from utilizing the Futhark compiler
in our benchmarks.
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A Parser source code

In this appendix is the source code for the APLACC parser [1] with the modifications
we added. We did not develop the code presented in this appendix but only made small
alterations to the existing code. A description of the alterations we did add can be
found in Section 7.1 and can also be seen in the commits in the github repository for our
project.

1 module APLAcc.TAIL.Parser (parseFile) where

2
3 import System.IO (Handle , hGetContents)

4 import Control.Monad (liftM , liftM2)

5 import Data.Char (isSpace)

6 import Data.Either (partitionEithers)

7 import Text.Parsec hiding (Empty)

8 import Text.Parsec.String

9 import Text.Parsec.Expr

10 import Text.Parsec.Pos

11 import qualified Text.Parsec.Token as Token

12
13 import APLAcc.TAIL.AST

14
15
16 parseFile :: Handle -> String -> IO Program

17 parseFile handle filename =

18 do str <- hGetContents handle

19 case parse program filename str of

20 Left e -> error $ show e

21 Right r -> return r

22
23
24 tailDef = Token.LanguageDef {

25 Token.commentStart = "(*"

26 , Token.commentEnd = "*)"

27 , Token.commentLine = ""

28 , Token.nestedComments = False

29 , Token.identStart = letter

30 , Token.identLetter = alphaNum <|> char ’_’

31 , Token.opStart = oneOf ""

32 , Token.opLetter = oneOf ""

33 , Token.reservedOpNames = []

34 , Token.reservedNames = [ "let", "in", "int", "

double", "fn", "inf" , "tt", "ff"]

35 , Token.caseSensitive = True

36 }

37
38 lexer = Token.makeTokenParser tailDef

39
40 identifier = Token.identifier lexer

41 reserved = Token.reserved lexer

42 reservedOp = Token.reservedOp lexer

43 stringlit = Token.stringLiteral lexer

44 charlit = Token.charLiteral lexer

45 parens = Token.parens lexer

46 brackets = Token.brackets lexer

47 angles = Token.angles lexer

48 braces = Token.braces lexer

49 integer = Token.integer lexer

50 semi = Token.semi lexer

51 comma = Token.comma lexer

52 colon = Token.colon lexer

53 symbol = Token.symbol lexer

54 whitespace = Token.whiteSpace lexer

55 decimal = Token.decimal lexer
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56 float = Token.float lexer

57 lexeme = Token.lexeme lexer

58
59 withPrefix :: Parser a -> Parser b -> (a -> b -> b) -> Parser b

60 withPrefix pre p f =

61 do x <- optionMaybe pre

62 y <- p

63 return $ case x of

64 Just x’ -> f x’ y

65 Nothing -> y

66
67 program :: Parser Program

68 program =

69 do whitespace

70 prog <- expr

71 eof

72 return prog

73
74 -----------------

75 -- Expression

76
77 expr :: Parser Exp

78 expr = opExpr

79 <|> arrayExpr

80 <|> letExpr

81 <|> fnExpr

82 <|> valueExpr

83 <?> "expression"

84
85 valueExpr :: Parser Exp

86 valueExpr = try (liftM D $ lexeme float)

87 <|> liftM I (lexeme decimal)

88 <|> try (reserved "inf" >> return Inf)

89 <|> (char ’-’ >> liftM Neg valueExpr)

90 <|> liftM C charlit

91 <|> liftM B (( reserved "tt" >> return True) <|> (

reserved "ff" >> return False))

92 <|> liftM Var identifier

93 <?> "number or identifier"

94
95 arrayExpr :: Parser Exp

96 arrayExpr = liftM Vc $ brackets (sepBy (opExpr <|> valueExpr)

comma)

97
98 letExpr :: Parser Exp

99 letExpr =

100 do reserved "let"

101 (ident , typ) <- typedIdent

102 symbol "="

103 e1 <- expr

104 reserved "in"

105 e2 <- expr

106 return $ Let ident typ e1 e2

107
108 instanceDecl :: Parser InstDecl

109 instanceDecl = braces $

110 do btyps <- brackets $ sepBy basicType comma

111 comma

112 ranks <- brackets $ sepBy (lexeme decimal) comma

113 return (btyps , ranks)

114
115 opExpr :: Parser Exp

116 opExpr =
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117 do ident <- try $ do { i <- identifier; lookAhead $ oneOf "({";

return i }

118 instDecl <- optionMaybe instanceDecl

119 args <- parens $ sepBy expr comma

120 return $ Op ident instDecl args

121
122 fnExpr :: Parser Exp

123 fnExpr =

124 do reserved "fn"

125 (ident , typ) <- typedIdent

126 symbol "=>"

127 e <- expr

128 return $ Fn ident typ e

129
130 typedIdent :: Parser (Ident , Type)

131 typedIdent =

132 do ident <- identifier

133 colon

134 typ <- typeExpr

135 return (ident , typ)

136
137 ------------------

138 -- Types

139
140 typeExpr :: Parser Type

141 typeExpr = arrayType <|> vectorType <?> "type"

142 --typeExpr = liftM (foldr1 FunT) $

143 -- sepBy1 (arrayType <|> vectorType <?> "type") (symbol "->")

144
145 arrayType :: Parser Type

146 arrayType = liftM2 ArrT (brackets basicType) rank

147
148 -- vectortype as replacement for shapeType

149 vectorType :: Parser Type

150 vectorType = liftM2 VecT (angles basicType) rank

151 <|> (try (symbol "SV") >> parens (do {t <- basicType ;

comma ; r <- rank ; return $ SV t r}))

152 <|> (try (symbol "S") >> parens (do {t <- basicType ;

comma ; r <- rank ; return $ S t r }))

153 <?> "vector type"

154
155 --shapeType :: Parser Type

156 --shapeType = shape "Sh" ShT

157 -- <|> shape "Si" SiT

158 -- <|> shape "Vi" ViT

159 -- <?> "shape type"

160 -- where shape name con = try (symbol name) >> liftM con (parens

rank)

161
162 rank :: Parser Rank

163 rank = liftM R (lexeme decimal)

164 -- <|> (liftM Rv identifier) Unsupported

165 <?> "rank"

166
167 basicType :: Parser BType

168 basicType = (reserved "int" >> return IntT)

169 <|> (reserved "double" >> return DoubleT)

170 <|> (reserved "bool" >> return BoolT)

171 <|> (reserved "char" >> return CharT)

172 <|> (char ’\’’ >> many1 alphaNum >>= return . Btyv)

173 <?> "basic type"

174
175 -------------------
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176 -- Debug functions

177
178 parseString :: Parser a -> String -> a

179 parseString parser str =

180 case parse parser "" str of

181 Left e -> error $ show e

182 Right r -> r
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B Compiler source code

This appendix contains the source code of the TAIL2Futhark compiler found in file
src/Tail2Futhark/Compile.hs.

1 module Tail2Futhark.Compile (compile) where

2
3 import APLAcc.TAIL.AST as T -- the TAIL AST

4 import Tail2Futhark.Futhark.AST as F -- the futhark AST

5 import Data.List

6 import Data.Maybe

7 import Data.Char

8 import Options (Options (..))

9
10 --------------------------

11 -- THE MAIN FUNCTION --

12 --------------------------

13
14 compile :: Options -> T.Program -> F.Program

15 compile opts e = includes ++ [(RealT , "main", signature ,

compileExp rootExp)]

16 where includes = (if includeLibs opts then builtins else [])

17 (signature , rootExp) = compileReads e

18
19 -------------------------

20 -- HELPER FUNCTIONS --

21 -------------------------

22
23 compileReads (T.Let id _ (T.Op "readIntVecFile" _ _) e2) = ((F.

ArrayT F.IntT , "t_" ++ id):sig ,e’)

24 where (sig ,e’) = compileReads e2

25 compileReads e = ([],e)

26
27 ----------------------------------------

28 -- AUX FUNCTIONS OF LIBRARY FUNCTIONS --

29 ----------------------------------------

30
31 absFloatExp :: F.Exp -> F.Exp

32 absFloatExp e = IfThenElse Inline (BinApp LessEq e (Constant (

Real 0))) (F.Neg e) e

33
34 absExp :: F.Exp -> F.Exp

35 absExp e = IfThenElse Inline (BinApp LessEq e (Constant (Int 0)))

(F.Neg e) e

36
37 maxExp :: F.Exp -> F.Exp -> F.Exp

38 maxExp e1 e2 = IfThenElse Inline (BinApp LessEq e1 e2) e2 e1

39
40 minExp e1 e2 = IfThenElse Inline (BinApp LessEq e1 e2) e1 e2

41
42 signdExp e = IfThenElse Indent (BinApp Less (Constant (Real 0)) e

) (Constant (Int 1)) elseBranch

43 where elseBranch = IfThenElse Indent (BinApp Eq (Constant (Real

0)) e) (Constant (Int 0)) (Constant (Int (-1)))

44
45 signiExp e = IfThenElse Indent (BinApp Less (Constant (Int 0)) e)

(Constant (Int 1)) elseBranch

46 where elseBranch = IfThenElse Indent (BinApp Eq (Constant (Int

0)) e) (Constant (Int 0)) (Constant (Int (-1)))

47
48 nandExp e1 e2 = F.FunCall "!" [BinApp F.LogicAnd e1 e2]

49
50 norExp e1 e2 = F.FunCall "!" [BinApp F.LogicOr e1 e2]

51
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52 resiExp :: F.Exp -> F.Exp -> F.Exp

53 resiExp y x = F.IfThenElse F.Indent (y ‘eq ‘ zero) x $ F.

IfThenElse F.Indent cond (x % y) (x % y ‘plus ‘ y)

54 where cond = ((x % y) ‘eq ‘ zero) ‘or ‘ ((x ‘gr ‘ zero) ‘and ‘ (y ‘

gr‘ zero)) ‘or ‘ ((x ‘less ‘ zero) ‘and ‘ (y ‘less ‘ zero))

55 infix 1 %; (%) = F.BinApp F.Mod

56 zero = Constant (Int 0)

57 plus = F.BinApp F.Plus

58 gr = F.BinApp F.Greater

59 less = F.BinApp F.Less

60 eq = F.BinApp F.Eq

61 or = F.BinApp F.LogicOr

62 and = F.BinApp F.LogicAnd

63
64 -- reshape1 --

65 -- create split part of reshape1 function --

66 mkSplit id1 id2 dims exp retExp = F.Let Inline (TouplePat [(Ident

id1),(Ident id2)]) (F.FunCall2 "split" [dims] exp) retExp

67 makeLets ((id,exp) : rest) e = F.Let Indent (Ident id) exp (

makeLets rest e)

68 makeLets [] e = e

69
70 reshape1Body :: F.Type -> F.Exp

71 reshape1Body tp = makeLets (zip ["roundUp","extend"] [length ,

reshapeCall ]) split

72 where split = mkSplit "v1" "_" (F.Var "l") (F.Var "extend") (F.

Var "v1")

73 length = (F.Var "l" ‘fplus ‘ (size ‘fminus ‘ Constant (Int

1)) ‘fdiv ‘ size)

74 reshapeCall = F.FunCall2 "reshape" [BinApp Mult size len]

(F.FunCall "replicate" [len ,F.Var "x"])

75 size = F.FunCall "size" [Constant (Int 0),F.Var "x"]

76 len = F.Var "roundUp"

77 fdiv = BinApp Div

78 fplus = BinApp Plus

79 fminus = BinApp Minus

80
81 -- drop --

82 -- make body for drop1 function --

83 dropBody :: F.Type -> F.Exp

84 dropBody tp = IfThenElse Indent (size ‘less ‘ absExp len) emptArr

elseBranch

85 where zero = Constant (Int 0)

86 less = BinApp LessEq

87 len = F.Var "l"

88 size = F.FunCall "size" [zero , F.Var "x"]

89 sum = BinApp Plus len size

90 emptArr = F.Empty tp

91 elseBranch = IfThenElse Indent (len ‘less ‘ zero)

negDrop posDrop

92 negDrop = mkSplit "v1" "_" sum (F.Var "x") (F.Var "v1")

93 posDrop = mkSplit "_" "v2" len (F.Var "x") (F.Var "v2")

94
95 -- take1 --

96 -- make body for take1 function --

97 takeBody :: F.Exp -> F.Exp

98 takeBody padElement = IfThenElse Indent (zero ‘less ‘ len) posTake

negTake

99 where less = BinApp LessEq

100 zero = Constant (Int 0)

101 sum = BinApp Plus len size

102 len = F.Var "l"

103 size = F.FunCall "size" [zero , F.Var "x"]

32



Compiling TAIL to Futhark Anna Sofie Kiehn, Henrik Urms

104 padRight = F.FunCall "concat" [F.Var "x", padding]

105 padLeft = F.FunCall "concat" [padding , F.Var "x"]

106 padding = F.FunCall "replicate" [( BinApp Minus len size

), padElement]

107 posTake = IfThenElse Indent (len ‘less ‘ size) (mkSplit

"v1" "_" (F.Var "l") (F.Var "x") (F.Var "v1"))

padRight

108 negTake = IfThenElse Indent (zero ‘less ‘ sum) (mkSplit

"_" "v2" sum (F.Var "x") (F.Var "v2")) padLeft

109
110
111 ------------------------------------------

112 -- AUX FUNCTIONS FOR SPECIFIC FUNCTIONS --

113 ------------------------------------------

114
115 -- AUX shape --

116 makeShape rank args

117 | [e] <- args = map (\x -> FunCall "size" [Constant (Int x),

compileExp e]) [0..rank -1]

118 | otherwise = error "shape takes one argument"

119
120 -- AUX transp --

121 makeTransp r e = makeTransp2 (map (Constant . Int) (reverse [0..r

-1])) e

122
123 -- AUX transp2 --

124 makeTransp2 dims exp = F.FunCall2 "rearrange" dims exp

125
126 ---------------------------

127 -- GENERAL AUX FUNCTIONS --

128 ---------------------------

129
130 -- make string representation of Futhark type --

131 showTp tp = case baseType tp of

132 F.IntT -> "int"

133 F.RealT -> "real"

134 F.BoolT -> "bool"

135 F.CharT -> "char"

136
137 -- make Futhark basic type from string representation --

138 readBType tp = case tp of

139 "int" -> F.IntT

140 "real" -> F.RealT

141 "bool" -> F.BoolT

142 "char" -> F.CharT

143
144 -- make Futhark type from string representation --

145 -- i.e., takes 2int and gives [[int]] --

146 getType :: [Char] -> Maybe F.Type

147 getType s

148 | suffix ‘elem ‘ ["int","real","bool","char"] = fmap (makeArrTp

(readBType suffix)) $ rank

149 | otherwise = Nothing

150 where (prefix ,suffix) = span isDigit s

151 rank | [] <- prefix = Nothing

152 | otherwise = Just (read prefix :: Integer)

153
154 -- make list of Futhark basic types --

155 btypes = map readBType ["int","real","bool","char"]

156
157 -- return zero expression of basic type --

158 zero :: F.Type -> F.Exp

159 zero F.IntT = Constant (Int 0)
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160 zero F.RealT = Constant (Real 0)

161 zero F.BoolT = Constant (Bool False)

162 zero F.CharT = Constant (Char ’ ’)

163 zero tp = error $ "take for type " ++ showTp tp ++ " not

supported"

164
165 -- make Futhark function expression from ident

166 makeKernel ident

167 | Just fun <- convertFun ident = F.Fun fun []

168 | Just op <- convertBinOp ident = F.Op op

169 | otherwise = error $ "not supported operation " ++ ident

170
171 -- make Futhark basic type from Tail basic type --

172 makeBTp T.IntT = F.IntT

173 makeBTp T.DoubleT = F.RealT

174 makeBTp T.BoolT = F.BoolT

175 makeBTp T.CharT = F.CharT

176
177 -- make Futhark array type from Futhark basic type --

178 mkType (tp,rank) = makeArrTp (makeBTp tp) rank

179
180 -- aux for mkType --

181 makeArrTp :: F.Type -> Integer -> F.Type

182 makeArrTp btp 0 = btp

183 makeArrTp btp n = F.ArrayT (makeArrTp btp (n-1))

184
185 -- make curried Futhark function that have 1 as basic element and

folds with times

186 multExp :: [F.Exp] -> F.Exp

187 multExp = foldr (BinApp Mult) (Constant (Int 1))

188
189 -- make Futhark kernel expression with type

190 compileKernel :: T.Exp -> F.Type -> Kernel

191 compileKernel (T.Var ident) rtp = makeKernel ident

192 compileKernel (T.Fn ident tp (T.Fn ident2 tp2 exp)) rtp = F.Fn

rtp [( compileTp tp ,"t_" ++ ident),(compileTp tp2 ,"t_" ++

ident2)] (compileExp exp)

193 compileKernel (T.Fn ident tp exp) rtp = F.Fn rtp [( compileTp tp ,"

t_" ++ ident)] (compileExp exp)

194
195 -- AUX for compileKernel --

196 compileTp (ArrT bt (R rank)) = makeArrTp (makeBTp bt) rank

197 compileTp (VecT bt (R rank)) = makeArrTp (makeBTp bt) 1

198 compileTp (SV bt (R rank)) = makeArrTp (makeBTp bt) 1

199 compileTp (S bt _) = makeBTp bt

200
201 -----------------------

202 -- LIBRARY FUNCTIONS --

203 -----------------------

204
205 -- list containing ompl of all library functions --

206 builtins :: [F.FunDecl]

207 builtins = [boolToInt ,negi ,negd ,absi ,absd ,mini ,mind ,signd ,signi ,

maxi ,maxd ,eqb ,xorb ,nandb ,norb ,neqi ,neqd ,resi]

208 ++ reshapeFuns

209 ++ takeFuns

210 ++ dropFuns

211
212 boolToInt :: FunDecl

213 boolToInt = (F.IntT , "boolToInt", [(F.BoolT , "x")], F.IfThenElse

Inline (F.Var "x") (Constant (Int 1)) (Constant (Int 0)))

214
215 negi :: FunDecl
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216 negi = (F.IntT , "negi", [(F.IntT ,"x")], F.Neg (F.Var "x"))

217
218 negd :: FunDecl

219 negd = (F.RealT , "negd", [(F.RealT ,"x")], F.Neg (F.Var "x"))

220
221 absi :: FunDecl

222 absi = (F.IntT , "absi", [(F.IntT ,"x")], absExp (F.Var "x"))

223
224 absd :: FunDecl

225 absd = (F.RealT , "absd", [(F.RealT ,"x")], absFloatExp (F.Var "x")

)

226
227 mini :: FunDecl

228 mini = (F.IntT , "mini", [(F.IntT , "x"), (F.IntT , "y")], minExp (F

.Var "x") (F.Var "y"))

229 mind = (F.RealT , "mind", [(F.RealT , "x"), (F.RealT , "y")], minExp

(F.Var "x") (F.Var "y"))

230
231 signd = (F.IntT , "signd", [(F.RealT , "x")], signdExp (F.Var "x"))

232
233 signi = (F.IntT , "signi", [(F.IntT , "x")], signiExp (F.Var "x"))

234
235 maxi :: FunDecl

236 maxi = (F.IntT , "maxi", [(F.IntT , "x"), (F.IntT , "y")], maxExp (F

.Var "x") (F.Var "y"))

237
238 maxd :: FunDecl

239 maxd = (F.RealT , "maxd", [(F.RealT , "x"), (F.RealT , "y")], maxExp

(F.Var "x") (F.Var "y"))

240
241 nandb :: FunDecl

242 nandb = (F.BoolT , "nandb", [(F.BoolT , "x"), (F.BoolT , "y")],

nandExp (F.Var "x") (F.Var "y"))

243
244 norb :: FunDecl

245 norb = (F.BoolT , "norb", [(F.BoolT , "x"), (F.BoolT , "y")], norExp

(F.Var "x") (F.Var "y"))

246
247 eqb = (F.BoolT , "eqb", [(F.BoolT , "x"), (F.BoolT , "y")],

boolEquals (F.Var "x") (F.Var "y"))

248 where boolEquals e1 e2 = BinApp F.LogicOr (norExp (F.Var "x") (

F.Var "y")) (BinApp F.LogicAnd (F.Var "x") (F.Var "y"))

249
250 xorb = (F.BoolT , "xorb", [(F.BoolT , "x"), (F.BoolT , "y")],

boolXor (F.Var "x") (F.Var "y"))

251 where boolXor e1 e2 = BinApp F.LogicAnd (nandExp (F.Var "x")(F.

Var "y")) (BinApp F.LogicOr (F.Var "x") (F.Var "y"))

252
253 neqi = (F.BoolT , "neqi", [(F.IntT , "x"), (F.IntT , "y")], notEq (F

.Var "x") (F.Var "y"))

254
255 neqd = (F.BoolT , "neqd", [(F.RealT , "x"), (F.RealT , "y")], notEq

(F.Var "x") (F.Var "y"))

256
257 notEq e1 e2 = FunCall "!" [BinApp F.Eq e1 e2]

258
259 resi = (F.IntT , "resi", [(F.IntT , "x") ,(F.IntT , "y")], resiExp (F

.Var "x") (F.Var "y"))

260
261 -- AUX: make FunDecl by combining signature and body (aux

function that create function body)

262 makeFun :: [F.Arg] -> F.Ident -> F.Exp -> F.Type -> FunDecl
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263 makeFun args name body tp = (ArrayT tp ,name ++ "_" ++ showTp tp,

args ,body)

264 stdArgs tp = [(F.IntT ,"l"),(ArrayT tp , "x")]

265
266 reshapeFun :: F.Type -> FunDecl

267 reshapeFun tp = makeFun (stdArgs tp) "reshape1" (reshape1Body tp)

tp

268 takeFun :: F.Type -> F.FunDecl

269 takeFun tp = makeFun (stdArgs tp) "take1" (takeBody (zero tp)) tp

270 dropFun :: F.Type -> F.FunDecl

271 dropFun tp = makeFun (stdArgs tp) "drop1" (dropBody tp) tp

272
273 reshapeFuns = map reshapeFun btypes

274 takeFuns = map takeFun btypes

275 dropFuns = map dropFun btypes

276
277 -----------------

278 -- EXPRESSIONS --

279 -----------------

280
281 -- general expressions --

282 compileExp :: T.Exp -> F.Exp

283 compileExp (T.Var ident) | ident == "pi" = Constant(Real

3.14159265359) | otherwise = F.Var ("t_" ++ ident)

284 compileExp (I int) = Constant (Int int)

285 compileExp (D double) = Constant (Real double)

286 compileExp (C char) = Constant (Char char)

287 compileExp (B bool) = Constant (Bool bool)

288 compileExp Inf = Constant (Real (read "Infinity"))

289 compileExp (T.Neg exp) = F.Neg (compileExp exp)

290 compileExp (T.Let id _ e1 e2) = F.Let Indent (Ident ("t_" ++ id))

(compileExp e1) (compileExp e2) -- Let

291 compileExp (T.Op ident instDecl args) = compileOpExp ident

instDecl args

292 compileExp (T.Fn _ _ _) = error "Fn not supported"

293 compileExp (Vc exps) = Array(map compileExp exps)

294
295 -- operators --

296 compileOpExp :: [Char] -> Maybe ([BType], [Integer ]) -> [T.Exp]

-> F.Exp

297 compileOpExp ident instDecl args = case ident of

298 "reduce" -> compileReduce instDecl args

299 "eachV" -> compileEachV instDecl args

300 "each" -> compileEach instDecl args

301 "firstV" -> compileFirstV instDecl args

302 "first" -> compileFirst instDecl args

303 "shapeV" -> F.Array $ makeShape 1 args

304 "shape" -> compileShape instDecl args

305 "reshape" -> compileReshape instDecl args

306 "take" -> compileTake instDecl args

307 "takeV" -> compileTakeV instDecl args

308 "zipWith" -> compileZipWith instDecl args

309 "cat" -> compileCat instDecl args

310 "reverse" -> compileReverse instDecl args

311 "reverseV" -> compileVReverseV instDecl args

312 "vreverse" -> compileVReverse instDecl args

313 "vreverseV" -> compileVReverseV instDecl args

314 "transp" -> compileTransp instDecl args

315 "transp2" -> compileTransp2 instDecl args

316 "drop" -> compileDrop instDecl args

317 "dropV" -> compileDropV instDecl args

318 "iota" -> compileIota instDecl args

319 "iotaV" -> compileIota instDecl args
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320 "vrotate" -> compileVRotate instDecl args

321 "rotate" -> compileRotate instDecl args

322 "vrotateV" -> compileVRotateV instDecl args

323 "rotateV" -> compileVRotateV instDecl args

324 "snoc" -> compileSnoc instDecl args

325 "snocV" -> compileSnocV instDecl args

326 "cons" -> compileCons instDecl args

327 "consV" -> compileConsV instDecl args

328 "b2iV" | [T.Var "tt"] <- args -> (Constant (Int 1)) | [T.Var "

ff"] <- args -> (Constant (Int 0)) -- | otherwise -> error "

only bool literals supported in b2iV"

329 _

330 | [e1,e2] <- args

331 , Just op <- convertBinOp ident

332 -> F.BinApp op (compileExp e1) (compileExp e2)

333 | Just fun <- convertFun ident

334 -> F.FunCall fun $ map compileExp args

335 | ident ‘elem ‘ idFuns

336 -> F.FunCall ident $ map compileExp args

337 | otherwise -> error $ ident ++ " not supported"

338
339 -- snocV --

340 compileSnocV :: Maybe InstDecl -> [T.Exp] -> F.Exp

341 compileSnocV (Just([tp],[r])) [a,e] = F.FunCall "concat" [

compileExp a, F.Array [compileExp e]]

342 compileSnocV Nothing _ = error "snocV needs instance declaration"

343 compileSnocV _ _ = error "snocV take two aguments"

344
345 -- snoc --

346 compileSnoc :: Maybe InstDecl -> [T.Exp] -> F.Exp

347 compileSnoc (Just([tp],[r])) [a,e] = makeTransp2 (map (Constant .

Int) (reverse [0..r])) (F.FunCall "concat" [arr ,exp])

348 where exp = F.Array [makeTransp r (compileExp e)]

349 arr = makeTransp (r+1) (compileExp a)

350
351 -- consV --

352 compileConsV :: Maybe InstDecl -> [T.Exp] -> F.Exp

353 compileConsV (Just([tp],[r])) [e,a] = F.FunCall "concat" [F.Array

[compileExp e], compileExp a]

354 compileConsV Nothing _ = error "consV needs instance declaration"

355 compileConsV _ _ = error "consV take two aguments"

356
357 -- cons --

358 compileCons :: Maybe InstDecl -> [T.Exp] -> F.Exp

359 compileCons (Just([tp],[r])) [e,a] = makeTransp2 (map (Constant .

Int) (reverse [0..r])) (F.FunCall "concat" [exp , arr])

360 where exp = F.Array [makeTransp r (compileExp e)]

361 arr = makeTransp (r+1) (compileExp a)

362
363 -- first --

364 compileFirst (Just(_,[r])) [a] = F.Let Inline (Ident "x") (

compileExp a) $ F.Index (F.Var "x") (replicate rInt (F.

Constant (F.Int 0)))

365 where rInt = fromInteger r :: Int

366 compileFirst Nothing _ = error "first needs instance declaration"

367 compileFirst _ _ = error "first take one argument"

368
369 -- iota --

370 compileIota _ [a] = Map (F.Fn F.IntT [(F.IntT , "x")] (F.BinApp

Plus (F.Var "x") (Constant (F.Int 1)))) (FunCall "iota" [

compileExp a])

371 compileIota _ _ = error "Iota take one argument"

372
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373 -- vreverse --

374 compileVReverse (Just([tp],[r])) [a] = makeVReverse tp r (

compileExp a)

375 compileReverse :: Maybe InstDecl -> [T.Exp] -> F.Exp

376 compileReverse (Just([tp],[r])) [a] = makeTransp r $ makeVReverse

tp r $ makeTransp r $ compileExp a

377 compileVReverseV (Just([tp],[l])) [a] = makeVReverse tp 1 (

compileExp a)

378
379 makeVReverse tp r a = F.Let Inline (Ident "a") a $ Map kernelExp

(FunCall "iota" [FunCall "size" [F.Constant (F.Int 0), a]])

380 where

381 kernelExp = F.Fn (mkType (tp ,r-1)) [(F.IntT ,"x")] (F.Index (F

.Var "a") [F.BinApp F.Minus minusIndex one])

382 sizeCall = F.FunCall "size" [zero , a]

383 minusIndex = F.BinApp F.Minus sizeCall (F.Var "x")

384 zero = F.Constant (F.Int 0)

385 one = F.Constant (F.Int 1)

386 mkType (tp,rank) = makeArrTp (makeBTp tp) rank

387
388 -- rotate --

389 compileVRotate (Just([tp],[r])) [i,a] = makeVRotate tp r i (

compileExp a)

390 compileVRotate Nothing _ = error "Need instance declaration for

vrotate"

391 compileVRotate _ _ = error "vrotate needs 2 arguments"

392
393 compileRotate (Just([tp],[r])) [i,a] = makeTransp r $ makeVRotate

tp r i $ makeTransp r $ compileExp a

394 compileRotate Nothing _ = error "Need instance declaration for

rotate"

395 compileRotate _ _ = error "rotate needs 2 arguments"

396
397 -- vrotateV --

398 compileVRotateV (Just([tp],[r])) [i,a] = makeVRotate tp 1 i (

compileExp a)

399 compileVRotateV Nothing _ = error "Need instance declaration for

vrotateV"

400 compileVRotateV _ _ = error "vrotateV needs 2 arguments"

401
402 -- vrotate --

403 makeVRotate tp r i a = F.Let Inline (Ident "a") a $ Map kernelExp

(FunCall "iota" [size])

404 where

405 kernelExp = F.Fn (mkType (tp , r-1)) [(F.IntT , "x")] (F.Index

(F.Var "a") [F.BinApp F.Mod sum size])

406 sum = F.BinApp F.Plus (F.Var "x") (compileExp i)

407 size = FunCall "size" [F.Constant (F.Int 0), a]

408
409 -- cat --

410 compileCat (Just([tp],[r])) [a1,a2] = makeCat tp r (compileExp a1

) (compileExp a2)

411 where

412 makeCat tp 1 a1 a2 = FunCall "concat" [a1, a2]

413 makeCat tp r a1 a2 = Map kernelExp (FunCall "zip" [a1, a2])

414 where

415 kernelExp = F.Fn (mkType (tp ,r-1)) [( mkType (tp ,r-1),"x")

, (mkType(tp,r-1),"y")] recursiveCall

416 recursiveCall = makeCat tp (r-1) (F.Var "x") (F.Var "y")

417 mkType (tp,rank) = makeArrTp (makeBTp tp) rank

418
419 -- takeV --

420 compileTakeV :: Maybe InstDecl -> [T.Exp] -> F.Exp
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421 compileTakeV (Just([tp],_)) [len ,exp] = F.FunCall fname [

compileExp len ,compileExp exp]

422 where fname = "take1_" ++ showTp (makeBTp tp)

423 compileTakeV Nothing _ = error "Need instance declaration for

takeV"

424 compileTakeV _ _ = error "TakeV needs 2 arguments"

425
426 -- dropV --

427 compileDropV :: Maybe InstDecl -> [T.Exp] -> F.Exp

428 compileDropV (Just([tp],_)) [len ,exp] = F.FunCall fname [

compileExp len ,compileExp exp]

429 where fname = "drop1_" ++ showTp (makeBTp tp)

430 compileDropV Nothing _ = error "Need instance declaration for

dropV"

431 compileDropV _ _ = error "DropV needs 2 arguments"

432
433 -- take --

434 compileTake :: Maybe InstDecl -> [T.Exp] -> F.Exp

435 compileTake (Just([tp],[r])) [len ,exp] = F.FunCall2 "reshape"

dims $ F.FunCall fname [sizeProd ,resh]

436 where dims = absExp (compileExp len) : tail shape

437 sizeProd = multExp $ compileExp len : tail shape

438 fname = "take1_" ++ showTp (makeBTp tp)

439 resh = F.FunCall2 "reshape" [multExp shape] (compileExp

exp)

440 shape = makeShape r [exp]

441 compileTake Nothing args = error "Need instance declaration for

take"

442 compileTake _ _ = error "Take needs 2 arguments"

443
444 -- drop --

445 compileDrop (Just([tp],[r])) [len ,exp] = F.FunCall2 "reshape"

dims $ F.FunCall fname [sizeProd ,resh]

446 where dims = maxExp (Constant (Int 0)) (F.BinApp F.Minus (F.

FunCall "size" [Constant (Int 0), compileExp exp]) (

absExp (compileExp len))) : tail shape

447 resh = F.FunCall2 "reshape" [multExp shape] (compileExp

exp)

448 sizeProd = multExp $ compileExp len : tail shape

449 fname = "drop1_" ++ showTp (makeBTp tp)

450 shape = makeShape r [exp]

451
452 -- reshape --

453 compileReshape (Just([tp],[r1,r2])) [dims ,array] = F.FunCall2 "

reshape" dimsList $ F.FunCall fname [dimProd , resh]

454 where dimsList | F.Array dimsList <- dimsExp = dimsList

455 | F.Var dimsVar <- dimsExp = map (\i -> F.

Index (F.Var dimsVar) [Constant (Int i)])

[0..r2 -1]

456 | otherwise = error "reshape needs literal or

variable as shape argument"

457 dimsExp = compileExp dims

458 fname = "reshape1_" ++ showTp (makeBTp tp)

459 dimProd = multExp dimsList

460 resh = F.FunCall2 "reshape" [shapeProd] (compileExp

array)

461 shapeProd = multExp (makeShape r1 [array])

462 compileReshape Nothing args = error "Need instance declaration

for reshape"

463 compileReshape _ _ = error "Reshape needs 2 arguments"

464
465 -- transp --
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466 compileTransp (Just(_,[r])) [exp] = makeTransp2 (map (Constant .

Int) (reverse [0..r-1])) (compileExp exp)

467 compileTransp Nothing args = error "Need instance declaration for

transp"

468 compileTransp _ _ = error "Transpose takes 1 argument"

469
470 -- transp2 --

471 compileTransp2 _ [Vc dims ,e] = makeTransp2 (map compileExp

dimsExps) (compileExp e)

472 where dimsExps = map (I . (\x -> x - 1) . getInt) dims

473 getInt (I i) = i

474 getInt _ = error "transp2 expects number literals in it

’s first argument"

475 compileTransp2 _ e = case e of [_,_] -> error "transp2 needs

litaral as first argument"

476 _ -> error "transp2 takes 2

arguments"

477
478 -- shape --

479 compileShape (Just(_,[len])) args = F.Array $ makeShape len args

480 compileShape Nothing args = error "Need instance declaration for

shape"

481
482 -- firstV --

483 compileFirstV _ args

484 | [e] <- args = F.Let Inline (Ident "x") (compileExp e) $ F.

Index (F.Var "x")[F.Constant (F.Int 0)]

485 | otherwise = error "firstV takes one argument"

486
487 -- eachV --

488 compileEachV :: Maybe InstDecl -> [T.Exp] -> F.Exp

489 compileEachV Nothing _ = error "Need instance declaration for

eachV"

490 compileEachV (Just ([intp ,outtp],[len])) [kernel ,array] = Map

kernelExp (compileExp array)

491 where kernelExp = compileKernel kernel (makeBTp outtp)

492
493 -- each --

494 compileEach :: Maybe InstDecl -> [T.Exp] -> F.Exp

495 compileEach (Just ([intp ,outtp],[rank])) [kernel ,array] =

makeEach intp outtp rank kernel (compileExp array)

496 where makeEach tp1 tp2 r kernel array

497 | r == 1 = Map (compileKernel kernel (makeBTp tp2))

array

498 | otherwise = Map (F.Fn (mkType (tp2 ,r-1)) [( mkType (

tp1 ,r-1),"x")] (makeEach tp1 tp2 (r-1) kernel (F.Var

"x"))) array

499 compileEach Nothing _ = error "Need instance declaration for each

"

500 compileEach _ _ = error "each takes two arguments"

501
502 -- zipWith --

503 compileZipWith :: Maybe InstDecl -> [T.Exp] -> F.Exp

504 compileZipWith (Just([tp1 ,tp2 ,rtp],[rk])) [kernel ,a1,a2] =

makeZipWith rk kernel (compileExp a1) (compileExp a2)

505 where

506 makeZipWith r kernel a1 a2

507 | r == 1 = Map (compileKernel kernel (makeBTp rtp)) (FunCall

"zip" [a1 ,a2])

508 | otherwise = Map (F.Fn (mkType (rtp ,r-1)) [( mkType(tp1 ,r-1),

"x"),(mkType(tp2 ,r-1),"y")] (makeZipWith (r-1) kernel (F.

Var "x") (F.Var "y"))) (FunCall "zip" [a1 , a2])
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509 --Map kernelExp $ F.FunCall "zip" [( compileExp a1),(

compileExp a2)] -- F.Map kernelExp $ F.FunCall "zip" [a1 ,

a2]

510 compileZipWith Nothing _ = error "Need instance declaration for

zipWith"

511 compileZipWith _ _ = error "zipWith takes 3 arguments"

512
513 -- reduce --

514 compileReduce :: Maybe InstDecl -> [T.Exp] -> F.Exp

515 compileReduce Nothing _ = error "Need instance declaration for

reduce"

516 compileReduce (Just ([tp],[rank]))[kernel ,id ,array] = makeReduce

tp rank kernelExp (compileExp id) (compileExp array)

517 where

518 mkType (tp,rank) = makeArrTp (makeBTp tp) rank

519 kernelExp = compileKernel kernel (makeBTp tp)

520 makeReduce :: BType -> Integer -> Kernel -> F.Exp -> F.Exp -> F

.Exp

521 makeReduce tp rank kernel idExp arrayExp

522 | rank == 0 = Reduce kernel idExp arrayExp

523 | otherwise = Map (F.Fn (mkType(tp ,rank -1)) [( mkType(tp ,rank)

,"x")] (makeReduce tp (rank -1) kernel idExp (F.Var "x")))

arrayExp

524 compileReduce _ _ = error "reduce needs 3 arguments"

525
526
527 -- operators that are 1:1 --

528 -- (library functions) --

529 idFuns = ["negi",

530 "negd",

531 "absi",

532 "absd",

533 "mini",

534 "mind",

535 "signd",

536 "signi",

537 "maxi",

538 "maxd",

539 "eqb",

540 "xorb",

541 "nandb",

542 "norb",

543 "neqi",

544 "neqd",

545 "resi"]

546
547 -- operators that are 1:1 with Futhark functions --

548 convertFun fun = case fun of

549 "i2d" -> Just "toFloat"

550 "catV" -> Just "concat"

551 "b2i" -> Just "boolToInt"

552 "b2iV" -> Just "boolToInt"

553 "ln" -> Just "log"

554 "expd" -> Just "exp"

555 "notb" -> Just "!"

556 "floor" -> Just "trunc"

557 _ | fun ‘elem ‘ idFuns -> Just fun

558 | otherwise -> Nothing

559
560
561 -- binary operators --

562 convertBinOp op = case op of

563 "addi" -> Just F.Plus
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564 "addd" -> Just F.Plus

565 "subi" -> Just F.Minus

566 "subd" -> Just F.Minus

567 "muli" -> Just F.Mult

568 "muld" -> Just F.Mult

569 "ltei" -> Just F.LessEq

570 "lted" -> Just F.LessEq

571 "eqi" -> Just F.Eq

572 "eqd" -> Just F.Eq

573 "gti" -> Just F.Greater

574 "gtd" -> Just F.Greater

575 "gtei" -> Just F.GreaterEq

576 "gted" -> Just F.GreaterEq

577 "andb" -> Just F.LogicAnd

578 "orb" -> Just F.LogicOr

579 "divi" -> Just F.Div

580 "divd" -> Just F.Div

581 "powd" -> Just F.Pow

582 "powi" -> Just F.Pow

583 "lti" -> Just F.Less

584 "ltd" -> Just F.Less

585 "andi" -> Just F.And

586 "andd" -> Just F.And

587 "ori" -> Just F.Or

588 "shli" -> Just F.Shl

589 "shri" -> Just F.Shr

590 _ -> Nothing
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C Pretty printer source code

This appendix contains the source code of the pretty printer used to print the Futhark
AST. The pretty printer are located on the following path in the project: src/Tail2Futhark/Futhark/Pretty.hs.

1 module Tail2Futhark.Futhark.Pretty (prettyPrint) where

2
3 import Text.PrettyPrint

4 import Tail2Futhark.Futhark.AST

5
6 prettyPrint :: Program -> String

7 prettyPrint = render . vcat . map ppFun

8
9 ppFun :: FunDecl -> Doc

10 ppFun (tp , ident , args , exp) =

11 text "fun"

12 <+> ppType tp

13 <+> text ident

14 <> (commaList . map ppArg) args

15 <+> equals $+$ nest 2 (ppExp exp)

16
17 commaList = parens . hcat . punctuate comma

18 commaExps = commaList . map ppExp

19 brackList = brackets . hcat . punctuate comma

20 brackExps = brackList . map ppExp

21
22 ppType :: Type -> Doc

23 ppType IntT = text "int"

24 ppType RealT = text "real"

25 ppType BoolT = text "bool"

26 ppType CharT = text "char"

27 ppType (ArrayT at) = brackets (ppType at)

28
29 ppExp (Var ident) = text ident

30 ppExp (Let Indent pat exp1 exp2) = text "let" <+> ppPat pat <+>

equals <+> ppExp exp1 <+> text "in" $+$ ppExp exp2

31 ppExp (Let Inline pat exp1 exp2) = text "let" <+> ppPat pat <+>

equals <+> ppExp exp1 <+> text "in" <+> ppExp exp2

32 ppExp (IfThenElse Indent e1 e2 e3) = text "if" <+> ppExp e1 $+$

text "then" <+> ppExp e2 $+$ text "else" <+> ppExp e3

33 ppExp (IfThenElse Inline e1 e2 e3) = text "if" <+> ppExp e1 <+>

text "then" <+> ppExp e2 <+> text "else" <+> ppExp e3

34 ppExp (Constant c) = ppConstant c

35 ppExp (Neg exp) = text "-" <> ppExp exp

36 ppExp (Index exp exps) = ppExp exp <> brackExps exps

37 ppExp (Array exps) = brackExps exps

38 ppExp (BinApp op e1 e2) = parens $ ppExp e1 <+> ppOp op <+> ppExp

e2

39 ppExp (FunCall ident exps) = text ident <> commaExps exps

40 ppExp (FunCall2 ident exps exp) = text ident <> parens (commaExps

exps <> comma <> ppExp exp)

41 --ppExp (Reshape exps exp) = text "reshape" <> parens (commaExps

exps <> comma <> ppExp exp)

42 ppExp (Empty tp) = text "empty" <> parens (ppType tp)

43 ppExp e = case e of

44 Map k e -> pp1 "map" k e

45 Filter k e -> pp1 "filter" k e

46 Scan k e1 e2 -> pp2 "scan" k e1 e2

47 Reduce k e1 e2 -> pp2 "reduce" k e1 e2

48 where pp1 id k e = text id <> parens (( ppKernel k) <> comma

<> ppExp e)

49 pp2 id k e1 e2 = text id <> parens (( ppKernel k) <> comma

<> ppExp e1 <> comma <> ppExp e2)

50
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51 ppKernel (Fn tp args exp) = text "fn" <+> ppType tp <+> (

commaList . map ppArg $ args) <+> text "=>" <+> ppExp exp

52 ppKernel (Fun ident []) = text ident

53 ppKernel (Fun ident exps) = text ident <+> (commaList . map ppExp

$ exps)

54 ppKernel (Op op) = ppOp op

55
56 ppOp op = text $ case op of

57 Plus -> "+"

58 Minus -> "-"

59 LessEq -> " <="

60 Mult -> "*"

61 Div -> "/"

62 Eq -> "=="

63 Mod -> "%"

64 Greater -> ">"

65 Less -> "<"

66 GreaterEq -> ">="

67 LogicAnd -> "&&"

68 LogicOr -> "||"

69 Pow -> "pow"

70 Or -> "|"

71 And -> "&"

72 Shl -> ">>"

73 Shr -> "<<"

74 --XOr -> "^"

75
76 ppConstant (Int int) = integer int

77 ppConstant (Real f) = double f

78 ppConstant (Char c) = quotes $ char c

79 ppConstant (Bool b) = text (if b then "True" else "False")

80 ppConstant (ArrayConstant arr) = braces . hcat . punctuate comma

. map ppConstant $ arr

81
82 -- Arguments --

83 ppArg (tp ,ident) = ppType tp <+> text ident

84
85 -- Pattern --

86 ppPat :: Pattern -> Doc

87 ppPat (Ident ident) = text ident

88 ppPat (TouplePat pat) = braces . hcat . punctuate comma . map

ppPat $ pat
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D Complete Futhark primes code

1 fun int boolToInt(bool x) =

2 if x then 1 else 0

3 fun int negi(int x) =

4 -x

5 fun real negd(real x) =

6 -x

7 fun int absi(int x) =

8 if (x <= 0) then -x else x

9 fun real absd(real x) =

10 if (x <= 0.0) then -x else x

11 fun int mini(int x,int y) =

12 if (x <= y) then x else y

13 fun real mind(real x,real y) =

14 if (x <= y) then x else y

15 fun int signd(real x) =

16 if (0.0 < x)

17 then 1

18 else if (0.0 == x)

19 then 0

20 else -1

21 fun int signi(int x) =

22 if (0 < x)

23 then 1

24 else if (0 == x)

25 then 0

26 else -1

27 fun int maxi(int x,int y) =

28 if (x <= y) then y else x

29 fun real maxd(real x,real y) =

30 if (x <= y) then y else x

31 fun bool eqb(bool x,bool y) =

32 (!((x || y)) || (x && y))

33 fun bool xorb(bool x,bool y) =

34 (!((x && y)) && (x || y))

35 fun bool nandb(bool x,bool y) =

36 !((x && y))

37 fun bool norb(bool x,bool y) =

38 !((x || y))

39 fun bool neqi(int x,int y) =

40 !((x == y))

41 fun bool neqd(real x,real y) =

42 !((x == y))

43 fun int resi(int x,int y) =

44 if (x == 0)

45 then y

46 else if ((((y % x) == 0) || ((y > 0) && (x > 0))) || ((y < 0) &&

(x < 0)))

47 then (y % x)

48 else (y % (x + x))

49 fun [int] reshape1_int(int l,[int] x) =

50 let roundUp = ((l + (size(0,x) - 1)) / size(0,x)) in

51 let extend = reshape ((( size(0,x) * roundUp)),replicate(roundUp ,

x)) in

52 let {v1 ,_} = split((l),extend) in v1

53 fun [real] reshape1_real(int l,[real] x) =

54 let roundUp = ((l + (size(0,x) - 1)) / size(0,x)) in

55 let extend = reshape ((( size(0,x) * roundUp)),replicate(roundUp ,

x)) in

56 let {v1 ,_} = split((l),extend) in v1

57 fun [bool] reshape1_bool(int l,[bool] x) =

58 let roundUp = ((l + (size(0,x) - 1)) / size(0,x)) in
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59 let extend = reshape ((( size(0,x) * roundUp)),replicate(roundUp ,

x)) in

60 let {v1 ,_} = split((l),extend) in v1

61 fun [char] reshape1_char(int l,[char] x) =

62 let roundUp = ((l + (size(0,x) - 1)) / size(0,x)) in

63 let extend = reshape ((( size(0,x) * roundUp)),replicate(roundUp ,

x)) in

64 let {v1 ,_} = split((l),extend) in v1

65 fun [int] take1_int(int l,[int] x) =

66 if (0 <= l)

67 then if (l <= size(0,x))

68 then let {v1 ,_} = split ((l),x) in v1

69 else concat(x,replicate ((l - size(0,x)) ,0))

70 else if (0 <= (l + size(0,x)))

71 then let {_,v2} = split (((l + size(0,x))),x) in v2

72 else concat(replicate ((l - size(0,x)) ,0),x)

73 fun [real] take1_real(int l,[real] x) =

74 if (0 <= l)

75 then if (l <= size(0,x))

76 then let {v1 ,_} = split ((l),x) in v1

77 else concat(x,replicate ((l - size(0,x)) ,0.0))

78 else if (0 <= (l + size(0,x)))

79 then let {_,v2} = split (((l + size(0,x))),x) in v2

80 else concat(replicate ((l - size(0,x)) ,0.0),x)

81 fun [bool] take1_bool(int l,[bool] x) =

82 if (0 <= l)

83 then if (l <= size(0,x))

84 then let {v1 ,_} = split ((l),x) in v1

85 else concat(x,replicate ((l - size(0,x)),False))

86 else if (0 <= (l + size(0,x)))

87 then let {_,v2} = split (((l + size(0,x))),x) in v2

88 else concat(replicate ((l - size(0,x)),False),x)

89 fun [char] take1_char(int l,[char] x) =

90 if (0 <= l)

91 then if (l <= size(0,x))

92 then let {v1 ,_} = split ((l),x) in v1

93 else concat(x,replicate ((l - size(0,x)),’ ’))

94 else if (0 <= (l + size(0,x)))

95 then let {_,v2} = split (((l + size(0,x))),x) in v2

96 else concat(replicate ((l - size(0,x)),’ ’),x)

97 fun [int] drop1_int(int l,[int] x) =

98 if (size(0,x) <= if (l <= 0) then -l else l)

99 then empty(int)

100 else if (l <= 0)

101 then let {v1,_} = split (((l + size(0,x))),x) in v1

102 else let {_,v2} = split ((l),x) in v2

103 fun [real] drop1_real(int l,[real] x) =

104 if (size(0,x) <= if (l <= 0) then -l else l)

105 then empty(real)

106 else if (l <= 0)

107 then let {v1,_} = split (((l + size(0,x))),x) in v1

108 else let {_,v2} = split ((l),x) in v2

109 fun [bool] drop1_bool(int l,[bool] x) =

110 if (size(0,x) <= if (l <= 0) then -l else l)

111 then empty(bool)

112 else if (l <= 0)

113 then let {v1,_} = split (((l + size(0,x))),x) in v1

114 else let {_,v2} = split ((l),x) in v2

115 fun [char] drop1_char(int l,[char] x) =

116 if (size(0,x) <= if (l <= 0) then -l else l)

117 then empty(char)

118 else if (l <= 0)

119 then let {v1,_} = split (((l + size(0,x))),x) in v1
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120 else let {_,v2} = split ((l),x) in v2

121 fun real main() =

122 let t_v1 = drop1_int(1,map(fn int (int x) => (x + 1),iota (9999)

)) in

123 let t_v7 = rearrange ((1 ,0),reshape ((9998 ,9998) ,reshape1_int

((9998 * (9998 * 1)),reshape ((( size(0,t_v1) * 1)),t_v1))))

in

124 let t_v8 = reshape ((9998 ,9998) ,reshape1_int ((9998 * (9998 * 1))

,reshape ((( size(0,t_v1) * 1)),t_v1))) in

125 let t_v11 = map(fn [int] ([int] x,[int] y) => map(resi ,zip(x,y)

),zip(t_v7 ,t_v8)) in

126 let t_v13 = map(fn [bool] ([int] x) => map(fn bool (int t_v12)

=> (0 == t_v12),x),t_v11) in

127 let t_v18 = rearrange ((0),map(fn int ([int] x) => reduce(+,0,x)

,map(fn [int] ([bool] x) => map(boolToInt ,x),rearrange ((1 ,0)

,t_v13)))) in

128 let t_v20 = map(fn bool (int t_v19) => (1 == t_v19),t_v18) in

129 let t_v24 = reduce(+,0,map(boolToInt ,t_v20)) in

130 let t_v25 = reshape ((2 ,2),reshape1_int ((2 * (2 * 1)),reshape (((

size (0,[2,3,4,5]) * 1)) ,[2,3,4,5]))) in

131 let t_v28 = map(fn int ([int] x) => reduce(*,1,x),t_v25) in

132 toFloat(reduce(+,0,t_v28))
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E Test results

The tests can be found in the test/basic tests/ directory in our project. The expected
result of the test can be found in the .ok version of the file. The results in the table
below is OK if the result of the compilation (found in the .out file) matches the expected
one or FAIL if it does not.

Function File name Describtion of test Result

reshape reshape.tail reshapes vector of int with padding OK
reshape reshape2.tail reshape vector into array of rank OK
vreverse rev2.tail reverse of matrix of ints OK
vreverseV rev.tail reverse of vector of ints OK
vrotate rotateRank2.tail rotate array of rank 3 of ints OK
vrotateV rotateRank1.tail rotate vektoof ints OK
transp transp2.tail transpose vector of ints OK
transp transp3.tail transpose array of rank 3 of ints OK
transp transpAPL.tail transpose matrix of ints OK
transp2 dyadic transp.tail transpose of matrix of ints OK
takeV take1.tail positive int on vector with enough elements OK
takeV take1neg.tail negative int on vector with enough elements OK
take take2.tail positive int on matrix with enough elements OK
dropV drop2.tail positive int on vector with enough elements OK
drop drop2Dim.tail drops row in array rank 2 with enough elements OK
drop drop2DimNeg.tail drops with a negative number on array of rank 2 OK
drop drop2DimtoMuch.tail drops more rows than there are in the array OK
drop drop3Dim.tail positive int in a 3 dim array OK
consV -
cons cons1.tail vector of ints on array of rank 2 of ints OK
snocV snocRank1.tail set scalar on vector OK
snoc snocRank2.tail set vector on matrix OK
firstV firstV2.tail first element of vektor with only one element OK
firstV firstV3.tail first element of vektor of ints OK
first first2.tail first on a matrix OK
zipWith zipwith.tail zip addi over two vectors OK
zipWith zipwith2.tail zip addi over two matrices OK
zipWith zipwith3.tail zip addi over two arrays of rank 3 of ints OK
catV -
cat cat.tail cat of arrays of rank 2 of ints OK
cat catV.tail cat of vectors of ints OK
cat concat.tail cat of arrays of rank 2 af ints OK
reshape reshape.tail reshape vector to matrix OK
reshape reshape2.tail reshape with extending the vector OK
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Function File name Describtion of test Result

negi negi.tail negtes ints OK
negd negd.tail negate double OK
ln blacksholes.tail - blacksholes evaluates to correct result
absi blacksholes.tail - blacksholes evaluates to correct result
expd blacksholes.tail - blacksholes evaluates to correct result
mini mini.tail min on 2 positive ints OK
signd signd.tail sign of double OK
notb not1.tail not on true OK
notb not0.tail not on false OK
maxi maxi.tail max on 2 positive ints OK
maxd maxd.tail max on 2 positive doubles OK
ori NOT TESTET
subi subi.tail substract positive ints OK
subd subd.tail substract positive doubles OK
muli muli.tail multiply 2 positive ints OK
muld muld.tail multiply 2 positive doubles OK
ltei ltei.tail 4 ≤ 3 OK
ltei lteiTrue.tail 4 ≤ 5 OK
lted lted.tail 2.3 ≥ 3.3 OK
eqi eqiTrue.tail 4 = 4 OK
eqi eqiFalse.tail 4 = 5 OK
eqd eqdFalse.tail 3.4 = 1.2 OK
gti gtiTrue.apl 5 > 4 OK
gtd gtdTrue.apl 3.4 > 1.2 OK
gtei gteiTrue.tail 3 ≥ 2 OK
gted gtedFalse.tail 3.0 ≥ 3.2 OK
andb andbTrue.tail (2 = 2) ∧ (3 = 3) OK
orb orFalse.tail (2 = 1) ∨ (3 = 2) OK
orb orTrue.tail (2 = 1) ∨ (2 = 2) OK
divi divi.tail (4 / 2) + 4 OK
divd divd.tail (4.0 / 2.0) + 4 OK
powd powd.tail FORKERT tester ints
powi powi.tail power on 2 positive ints OK
lti ltiTrue.tail 3 < 5 OK
ltd ltdTrue.tail 3.2 < 5.1 OK
andi -
xorb xorb.tail (3=3) 6= (4=1) OK
i2d i2d.tail integer to double OK
addi addi.tail addition of 2 positive ints OK
addd addd.tail 2.3 + 4.5 OK
iotaV iotaV.tail iota in positive integer OK
iota iotaV.tail iota in positive integer OK
eachV eachV.tail add int on vector of ints OK
each each.tail add int on matrix af ints OK
reduceV -
reduce reduceRank0.tail reduce on vektor of int OK
reduce reduce2.tail reduce on matrix of int OK
reduce reduce3.tail reduce on array of rank 3 OK
shapeV firstV2.tail shape of vector OK
shape take2.tail shape of matrix of ints OK
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