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Abstract
Compilation techniques for nested-parallel applications that

can adapt to hardware and dataset characteristics are vital

for unlocking the power of modern hardware. This paper

proposes such a technique, which builds on flattening and is

applied in the context of a functional data-parallel language.

Our solution uses the degree of utilized parallelism as the

driver for generating a multitude of code versions, which

together cover all possible mappings of the application’s reg-

ular nested parallelism to the levels of parallelism supported

by the hardware. These code versions are then combined

into one program by guarding them with predicates, whose

threshold values are automatically tuned to hardware and

dataset characteristics. Our unsupervised method—of stati-

cally clustering datasets to code versions—is different from

autotuning work that typically searches for the combina-

tion of code transformations producing a single version, best

suited for a specific dataset or on average for all datasets.

We demonstrate—by fully integrating our technique in

the repertoire of a compiler for the Futhark programming

language—significant performance gains on two GPUs for

three real-world applications, from the financial domain, and

for six Rodinia benchmarks.

CCS Concepts • Computing methodologies → Paral-
lel programming languages; • Software and its engi-
neering→ Source code generation; Software performance;

Keywords functional language, parallel, compilers, GPGPU.
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1 Introduction
Computer performance increases are typically accomplished

by increasing capacity for parallelism, which leads to hetero-

geneous designs that support multiple levels of parallelism

and a memory hierarchy that removes the illusion of uniform

random-access memory. GPUs are a popular example of this

trend. However, programming in low-level GPU-specific lan-

guages, such as OpenCL or CUDA, is a daunting task that

requires specialized compiler and hardware knowledge and

often results in non-modular code that aims at utilising the

hardware’s multi-level parallel units and associated memory

hierarchy, such as a GPU’s grid of multi-processors, each

consisting of a number of parallel computing cores.

A vast amount of work aims at compiling high-level and

hardware-agnostic code into efficient low-level code for par-

allel architectures, thereby shifting the burden from the pro-

grammer to a combination of language, compiler, and auto-

tuning infrastructure. For example, various domain-specific

languages have been proposed to accelerate the execution

of image-processing pipelines [45], iterative stencils [56],

data analytics [58], deep-learning [7, 19] and mesh compu-

tations [39, 55], graph processing [33, 44], and accelerated

host-language constructs [13, 17, 34, 52], but they tend not

to support nested parallelism.

Code transformations for improving the amount of nested

parallelism that is mapped to hardware have been devised

in both imperative and functional contexts, but they cover

efficiently only one class of workloads from many possible.

For example, the tree-of-bands construction [12, 59] priori-

tizes locality optimization over utilizing nested parallelism,

while full flattening [11] takes the reverse direction. A re-

vised version of full flattening, named “moderate flatten-

ing” [32], uses a statically-chosen heuristic to utilize only

some of the top-most levels of application parallelism—thus

preserving opportunities for further locality optimizations.

These approaches still do not judiciously exploit nested par-

allelism because they depend crucially on the static heuristic

to choose good parallelization boundaries, which are often

dataset sensitive. Similarly, autotuning strategies compute (i)

the optimal combination of compiler flags that, on average,

yields the best performance across various datasets [16, 24],

or (ii) the best schedule of re-write rules that produces an

optimal program for one specific (class of) dataset [45, 51]. In
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short, all related work follows a “one-size fits all” approach

that produces one program, potentially parameterized over

tile sizes (or similar measures), but which is unlikely to cover

well all workloads.

Instead, this paper proposes a compiler-driven analysis

that systematically clusters the datasets by a manageable

number of piecewise near-optimal code versions, which are

discriminated at runtime by statically generated predicates,

whose threshold values are autotuned to hardware character-

istics. Our principal assumption is that a suitable driver for

such clustering is related to the degree of nested parallelism

that is utilized and to the way in which it is mapped to the

levels of parallelism supported by the hardware.

The main contribution of this paper is a generic flatten-

ing technique, organized as a top-down compilation pass

over a simple data-parallel language that supports a regular

notion of nested parallelism. The pass introduces different

guarded code versions at each point where it encounters

a map operator that is to be mapped at level l of hardware
parallelism:

(1) map the discovered application parallelism onto hard-

ware level l and sequentialize the inner parallelism,

(2) map the discovered application parallelism on hard-

ware level l and recursively map the remaining inner

parallelism at hardware level l − 1, and

(3) recursively continue flattening at hardware level l .

This procedure generates semantically equivalent code ver-

sions for all possible utilizations of top level application

parallelism and for all possible mappings to different levels

of hardware parallelism. The first two choices are guarded by

predicates that compare the amount of parallelism utilized

by the corresponding code version with a constant derived

by offline training. While the number of generated code ver-

sions is exponential in the depth of the parallel nest, we

argue that this code expansion is manageable in practice in

most cases, as demonstrated by our results. In particular, the

language design guarantees that the depth of parallel nesting

is determined statically (which is not true for languages that

permit recursion), and thus the amount of code explosion

is easily estimated by a human programmer inspecting the

shape of the program, rather than depending on more subtle

quantities.

The proposed compiler-driven autotuning design allows

the combination of various code versions into one program,

whose behavior can adapt not only to the particularities of

different classes of datasets, but also to the dynamic behavior

of the sizes of intermediate arrays (levels of parallelism)

during one execution of the program. In comparison, related

approaches suffer a disconnect between the compiler and the

autotuning process, are unable to relate a program to a class

of datasets favored by the applied optimisations, and, further

on, are unable to combine effectively differently optimised

code versions into one program. We claim the following

principal contributions:

• A generic flattening algorithm called incremental flat-
tening that combines semantically equivalent code ver-

sions covering (i) all possible utilizations of the applica-

tion’s top-level (nested) parallelism, and (ii) all possible

mappings to the hardware’s levels of parallelism (Sec-

tion 3).

• A specialized training technique that enables quick

and efficient clustering of datasets to code versions.

Both the incremental flattening techniques and the

training/autotuning techniques are fully integrated in

the repertoire of a freely available compiler (Section 4).

• A detailed empirical evaluation on two GPU platforms

of three real-world financial applications and six Ro-

dinia benchmarks, demonstrating significant perfor-

mance gains at the expense of a manageable (as high

as four times) code-size expansion (Section 5).

Incremental flattening is presented on a simple language

supporting regularly nested parallelism by means of the

well-known Bird-Meertens operators (map, reduce, scan,
etc) [10]. Most data-parallel languages and libraries build on

the same formalism. Thus, while our empirical evaluation

has been done by extending the compiler for a concrete pro-

gramming language, Futhark, we believe that our proposed

technique is applicable to a wider range of languages.

2 Preliminaries and Motivating Example
The (simplified) source language of the transformation, whose

syntax is shown in Figure 1, is a purely-functional first-order

expression language, equipped with a sequential semantics,

but augmented with second-order parallel array combinators

(SOACs), such as map, reduce, and scan (prefix sum).

We assume a denumerable infinite set of variables, ranged
over by x ,y, and z, and we used to range over integers,p over
variables or integers, and b over boolean values (true and
false). We shall write q to denote a sequence of objects of

some kind, and we shall let the context in which the notation

is used govern whether the sequence separator is a comma (,)
or simply white space. Binary operators (bop) include the tra-
ditional operations on integers and general 0-order operators

(op) include a number of operations on multi-dimensional ar-

rays. The expression replicatep x creates an array by repli-

cating the element x p times, and rearrange (d1, · · · ,dn) x
is a generalization of transpose in that it rearranges the di-

mensions of the array argument, based on a statically known

permutation defined by the integer sequence d1, · · · ,dn (e.g.,

transpose ≡ rearrange (1, 0)).
Functions that are passed as arguments to SOACs can be

expressed using λ-notation or by partially applying operators
(or other SOACs). The loop construct has the semantics of a

call to a tail-recursive function; it executes a fixed number of

iterations (known before the loop is executed) such that the
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bop ::= + | - | * | / | < | · · ·

op ::= transpose | rearrange (d, · · · ,d) | replicate
soac ::= map | reduce | scan | redomap | scanomap
e ::= x | d | b | (e, · · · , e) | e[e] | e bop e | op e · · · e

| loop x1 · · · xn = e for y < e do e
| let x1 · · · xn = e in e | if e then e else e
| soac f e · · · e

f ::= λx1 · · · xn → e | soac f e · · · e | e bop | bop e

Figure 1. The syntax of the source language.

loop parameters x1 · · · xn are initialized with an expression

for the first iteration, and are bound to the result of the

previous iteration for the remaining iterations.

We assume A-normal form: let bindings can be seen as

a block of statements followed by a sequence of result vari-

ables, and the loop initializers are variables or constants;

sometimes we diverge from this notation for readability.

For completeness, we present below the type and seman-

tics of well-known SOACs, where we use [a1, . . . ,an] to
denote an array literal, and [n]α to denote the type of an

array of length n with elements of type α .

map : (α → β) → Πn.[n]α → [n]β
map f [a1, . . . ,an] = [f a1, . . . , f an]

reduce : (α → α → α) → α → Πn.[n]α → α
reduce ⊕ 0⊕ [a1, . . . ,an] = 0⊕ ⊕ a1 ⊕ . . . ⊕ an

scan : (α → α → α) → α → Πn.[n]α → [n]α
scan ⊕ 0⊕ [a1, . . . ,an] = [0⊕ ⊕ a1, . . . , 0⊕ ⊕ . . . ⊕ an]

However, the language assumes a tuple-of-arrays repre-
sentation, which allows SOACs to receive and produce an ar-

bitrary number of array parameters and results, as illustrated

in the example below, where the map construct operates over
and produces two arrays, which are then reduced:

let zs1 zs2 = map (λx y → (2 ∗ x , 3 + y)) xs ys
in reduce (λx1 x2 y1 y2 → (x1 + y1,x2 ∗ y2)) 0 1 zs1 zs2

Finally, we define redomap/scanomap as the composition

of a reduce/scan with a map according to the equations:

redomap ⊙ f d xs ≡ reduce ⊙ d (map f xs)

scanomap ⊙ f d xs ≡ scan ⊙ d (map f xs)

2.1 The Target Language
The target language is similar to the source language, but

with the key difference that SOACs (e.g., map, reduce, . . .) are
now understood to execute sequentially. Instead, three new

constructs are introduced (segmap, segred, and segscan),
which express (and guarantee) parallel execution (modulo

the number of processing units available). These new con-

structs are annotated with a so-called execution level, a static
natural number, ranged over by l , which indicates at what

level, of the underlying parallel architecture, the construct

is executed. Target expressions (e) and mapnest contexts (Σ)
take the following forms:

e ::= ...

| segmapl Σ e | segredl Σ f d e | segscanl Σ f d e
Σ ::= • | Σ, ⟨x ∈ y⟩

The domain of the mapnest context Σ = Σ′, ⟨x ∈ y⟩, writ-
ten Dom(Σ), is defined inductively as the set {x} ∪Dom(Σ′),

with Dom(•) = ∅ as the base case. The parallel constructs of

the target language (i.e., segmap, segred, and segscan) cor-
respond to perfect parallel nests in which, semantically, the in-

nermost parallel construct is a map, redomap, and scanomap,
respectively, and the rest are maps. More precisely, if Σ =
⟨xp ∈ yp⟩, . . . , ⟨x1 ∈ y1⟩ for some p ≥ 1, we have:

segmapl Σ e ≡ map (λxp → map (λxp−1 → . . .
map (λx1 → e) y1 . . . ) yp−1) yp

segredl Σ ⊙ d e ≡ map (λxp → map (λxp−1 → . . .

redomap ⊙ (λx1 → e) d y1 . . . ) yp−1) yp

segscanl Σ ⊙ d e ≡ map (λxp → map (λxp−1 → . . .

scanomap ⊙ (λx1 → e) d y1 . . . ) yp−1) yp

In essence, the context attached to the parallel constructs

records for each nest level the formal parameters of the

lambda function and the corresponding arrays from which

they take values, while the expression e is the body of the

innermost mapped function. For example, assuming a two-

dimensional array (matrix) xss = [[1,2],[3,4]], then
segmap1 ⟨xs ∈ xss⟩ ⟨x ∈ xs⟩ (x + 1) adds one to all ele-

ments of xss resulting in array [[2,3],[4,5]]. Similarly,

segscan1 ⟨xs ∈ xss⟩ ⟨x ∈ xs⟩ (+) 0 (x), computes the prefix

sums of each row of xss, resulting in [[1,3],[3,7]].
The main implicit constraint of the target language is that

a parallel construct at level 0 can contain only sequential

code in its associated “body” expression e , and a parallel

construct at level l ≥ 1 can directly contain only parallel

constructs at level l − 1 and sequential code (but cannot

directly contain parallel constructs at level l or l − 2).

2.2 Motivation: Matrix Multiplication
Multiplying matrices xss and yss can be written as:

map (λxs → map (λys → redomap (+) (*) 0 xs ys)

(transpose yss)) xss

Depending on the sizes of the matrices, there are at least

three code versions that may result in best performance:

(1) If the size of the two outer-levels of parallelism is too

small to utilize well the hardware, then the innermost

redomap should also be executed in parallel. For exam-

ple, in the target language, the fully flattened version

at hardware level 1 is expressed as:

segred1 ⟨xs ∈ xss⟩ ⟨ys ∈ transpose yss⟩
⟨x y ∈ xs ys⟩ (+) 0 (x * y)

(2) Otherwise, only the two outer map operations should be

parallelized and the redomap should be sequentialized.
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This would result in the target-language code:

segmap1 ⟨xs ∈ xss⟩ ⟨ys ∈ transpose yss⟩
(redomap (+) (*) 0 xs ys)

which enables block tiling for optimizing locality.

(3) If the outer two maps provide parallelism in excess of

what the hardware can utilize, then another chunk of

parallelism can be sequentialized to further optimize

locality by combining register and block tiling.

Figure 2 shows the runtime results on an NVIDIA K40

GPU, for multiplying two matrices of sizes 2
n × 2

m
and

2
m × 2

n
, respectively, where n = 0 . . . 10,m = k − 2 · n, and

k = 20 or k = 25; this setup ensures constant workload 2
k

in all cases.

The green lines show the result of moderate flattening—an

instance of “one size fits all” compiler analysis, which uses

version (2) plus block tiling (register tiling is not supported).

The black line shows the untuned results of the incremen-

tal flattening technique, and the red line shows the results

after tuning, for which the datasets for k = 20 were used as

training set, and the computed threshold parameters were

applied to the k = 25 datasets. Notice that the tuned program

accurately gets the best of the two worlds, and it uses code

version (1) for n < 5 and code version (2) for n ≥ 5. (The com-

pilation used default tile/group-size values; detailed results

are available in supplemental material, also for AMD.
1
)

Finally, the gray line shows the results of the cuBLAS li-

brary, which likely usesmultiple versions of (hand optimized)

code, special hardware instructions, a richer optimization

repertoire (e.g., register tiling), and superior tuning (tile and

block sizes). Still, on k = 20 datasets, incremental flattening

is competitive until n = 8. On k = 25 datasets, cuBLAS wins

at a large margin for n = 4 . . . 6, and is 2 − 3× faster on

n = 7 . . . 10, likely due to register tiling.

This paper does not claim contributions to the compi-

lation of matrix multiplication, but uses it as motivation:

Figure 2 shows that a widely used, highly-optimized, and

architecture-specific implementation (cuBLAS) of the most

used algorithm has suboptimal performance on a class of

(degenerate) datasets (n < 3). It is not uncommon for even

highly optimised standard implementations of primitives to

perform suboptimally on degenerate or exotic input [50]. In

practice, even expert programmers lacks either the expertise

or, more likely, simply the manpower necessary to cover

comprehensively all datasets of interest with differently-

optimized code versions. In more complex cases, such con-

siderations also cross abstraction boundaries (we show an

example in Section 5.2), and addressing them by manual

code transformation can thus break modularity. This prob-

lem opens the door to language and compiler technology to

1
Results on a Vega 64 AMD GPU, which use the Parboil’s register-tiled

matrix multiplication as baseline, paint a similar picture, with the exception

that the tuned incremental flattening outperforms the baseline forn ≤ 7, the

baseline becomes competitive at n = 8 and is up to 2× faster for n = 9, 10.

play a prominent role in such a setting; further evidence is

presented in Section 5.

3 Incremental Flattening Formalization
This section presents a number of rules that transform a

nested-parallel program (in the source language of Section 2)

into multi-versioned code (in the target language of Sec-

tion 2.1) that dynamically picks an appropriate version based

on the setting of tuning parameters. Section 3.1 discusses the

rules of moderate flattening, which were taken from the liter-

ature [32] and are not a contribution of this paper. Section 3.2

presents the incremental flattening transformation, which

is organized as a generic extension built on top of moderate

flattening, and is the core contribution of this paper.

The core inference rules of incremental (and partially for

moderate) flattening are formalized in Figure 3. The rules

allow inferences of the form Σ ⊢l e ⇒ e ′, which are read “in

a mapnest context Σ, the source expression e can be trans-

lated, at hardware level l , into the target expression e ′.” In
an inference rule, the part below the line specifies the trans-

lation (the conclusion), and the part above the line contains

the premises necessary for the translation to fire.

3.1 Moderate Flattening Inference Rules
Rules G4-G7 in Figure 3 belong to moderate flattening, which

always executes at hardware level l (because no rule changes
l ). Rule G4 interchanges an outer reduce inside an inner map,
which corresponds to the intuition that summing up the

columns of an n ×m matrix can be achieved by transposing

the matrix and summing up the elements on each row:

reduce (map ( + )) (replicatem 0) matrix ≡

map (reduce ( + ) 0) (transpose matrix)
Rule G5 generalizes the observation that transposing each

element of an input array can be rewritten as a permutation

of the dimensions of the input array:

map (transpose) arr3d ≡ rearrange [0, 2, 1] arr3d
Rule G6 refers to distributing a map nest across the two

subexpressions of a let expression (i.e., map fission). The in-

tuition is given by the equivalence below, which is extended

in Rule G6 to operate on entire map nests:

map (λ x → let y = e1 in e2) xs ≡

let ys = map (λ x → e1) xs in map (λ x y → e2) xs ys
In terms of dependence analysis, this rule corresponds to

the observation that it is always safe to distribute a parallel

loop across its instructions. In practice, it is not profitable

to completely distribute the map nest, so the rule assumes

that let floating and tupling will group scalar expressions

together and will partition the let expression in contexts

where a recurrence occurs (e.g., contexts including a con-

struct such as reduce, transpose, or loop) to enable further
exploitation of inner parallelism.

Finally, Rule G7 interchanges a map nest inside a loop. In
terms of dependence analysis, the key observation is that it
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cuBLAS

k = 25
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4000µs
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10000µs
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incremental (auto-tuned)

cuBLAS

Figure 2.Matrix multiplication runtime on NVIDIA K40. Auto-tuned program uses version (1) for n < 5; then version (2).

is always safe to interchange a parallel loop inwards. The

rule generalizes the easy-to-see equivalence:

map (λ x0 → loop x = x0 for i < n do (f x)) xs0 ≡

loop xs = xs0 for i < n do (map f xs)
The rule covers all possible invariant (q, z) and variant (x , y)
variables to the outer map, and requires that the loop count

is invariant. The intent of this rule is to enhance the degree

of utilized parallelism by merging the parallelism that exists

outside and inside the loop; as such the rule is applied only

when the body of the loop contains parallel constructs.

These rules, in addition to changing the schedule of in-

structions, also performs array expansion (G6 and G7), and

provide hints for changing the array layout (G4 and G5).

A significant shortcoming of moderate flattening is that it

is formulated in terms of a nondeterministic choice of where

actually to stop flattening, that is, where to manifest the

mapnest context Σ over e . This problem does not show in

Figure 3 as Rules G1-G3 belong to incremental flattening.

In practice, this nondeterminism suggests that the algo-

rithm needs to be augmented with a static (compiler) heuris-

tic that fixes the behavior; for example, an inner redomap
will be sequentialized, while a reduce perfectly nested in a

map nest will be parallelized, and so on. The ability not to

fully apply flattening is essential for performance, as it per-

mits further optimisation of locality (e.g., by block tiling) and

thread communication (e.g., by sequentializing the SOACs

of logarithmic depth such as reduce, scan). However, the
static heuristic can be highly inaccurate in many cases of

practical interest—because the parallel sizes are typically

statically unknown (dataset specific)—and as such it may

lead to severe underutilization of hardware parallelism.

3.2 Incremental Flattening Inference Rules
This section presents the core contribution of this paper, a

(generic) extension applied on top of moderate flattening,

which solves the nondeterministic specification of the lat-

ter in a simple way, by generating all possible mappings of

(top-level) application parallelism to all possible hardware

levels. The resulting semantically-equivalent code versions

are combined into a single program by guarding them with

predicates that compare the amount of parallelism utilized

by each with a threshold value, which is later autotuned.

Figure 3 presents the rules of the incremental flattening

transformation. Rules G0, G1, and G2 are the base cases of

a recursive algorithm. Rule G0 implements the identity in

the case when the map-nest context is empty and no other

rule can be applied—we recall that the parallel constructs of

the source language have sequential execution in the target

language. Rule G1 says that if we are already at level 0 un-

der a non-empty context and no other rule applies then we

manifest the map nest on top of the current expression.

Rule G2 treats the case in which the mapped expression

does not contain any inner parallelism. Since there are no

opportunities for further flattening, the existing parallelism

is manifested by means of a segmap construct.
Rule G3 is the core of the transformation; whenever a map

that contains nested recurrences is discovered, three code

versions are produced. One, named etop, manifests the con-

text plus the current map at the current hardware level and

sequentializes the body of the current map. Another one,

named emiddle, manifests the map nest and the context at the

current level of hardware, but it recursively attempts to uti-

lize the inner parallelism of the current map at a decremented

hardware level. Finally, the last code version, namely eflat is
obtained by continuing flattening at the current hardware

level. In the figure, Par(Σ) and Par(e) correspond to expres-

sions that symbolically represent the (maximal) degree of

parallelism available in a context and in a target expression,

respectively, and ttop and tintra are (free) variables that can
be considered program arguments, and their near-optimal

values are found by autotuning. The remaining rules (G4-

G7) are the same as in the moderate flattening case, which

demonstrates the generic nature of our extension.

Furthermore, Figure 4 shows two additional rules that, we

speculate, were not included in the repertoire of moderate

flattening because they were not profitable in the so called

“common” case, but we found practical uses for them under

the more protective umbrella of incremental flattening.

Rule G8 exploits inner parallelism inside a branch, by in-

terchanging the context’s map nest inside the then and else
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Uses hardware parallelism levels: l , l − 1, . . . , 0 Σ ⊢l e ⇒ e ′

no other rule applies

• ⊢l e ⇒ e
(G0)

Σ , ∅ no other rule applies

Σ ⊢0 e ⇒ segmap0 Σ e
(G1)

e has no inner SOACs Σ′ = Σ, ⟨x ∈ xs⟩

Σ ⊢l map (λx → e) xs ⇒ segmapl Σ′ e
(G2)

e has inner SOACs ttop, tintra fresh Σ′ = Σ, ⟨x ∈ xs⟩
Σ′ ⊢l+1 e ⇒ eflat etop = segmapl+1 Σ′ e

• ⊢l e ⇒ eintra emiddle = segmapl+1 Σ′ eintra

Σ ⊢l+1 map (λx → e) xs ⇒
if Par(Σ′) ≥ ttop then etop
else if Par(emiddle) ≥ tintra

then emiddle else eflat
(G3)

z = z1, . . . , zp д = reduce (λ y → e) d
Σ ⊢l map (д) (transpose z1) . . . (transpose zp ) ⇒ e ′

Σ ⊢l reduce (map (λ y → e)) (replicate k d) z ⇒ e ′

(G4)

Σ ⊢l rearrange (0, 1 + k1, . . . , 1 + kn) y ⇒ e

Σ, ⟨x ∈ y⟩ ⊢l rearrange (k1, . . . ,kn) x ⇒ e
(G5)

size of each array in a0 invariant to Σ
Σ = ⟨xp ∈ yp⟩, . . . , ⟨x1 ∈ y1⟩ Σ ⊢l e1 ⇒ e ′

1

ap , . . . ,a1 fresh names Σ′ ⊢l e2 ⇒ e ′
2

Σ′ = ⟨xp ap−1 ∈ yp ap⟩, . . . , ⟨x1 a0 ∈ y1 a1⟩

Σ ⊢l let a0 = e1 in e2 ⇒ let ap = e ′
1
in e ′

2

(G6)

f contains exploitable (regular) parallelism

Σ′ = Σ, ⟨x y ∈ xs ys⟩ zs ′,ys ′ fresh names

m = outer size of each of xs and ys

zr ≡ replicatem zi {n,q, z} ∩ {x ,y} = ∅

Σ ⊢l loop zs ′ ys ′ = zr ys for i < n
do map (f i q) xs ys ys ′ zs ′ ⇒ e

Σ′ ⊢l loop z ′ y ′ = z y for i < n do f i q x y y ′ z ′ ⇒ e
(G7)

Figure 3. Rules for the incremental flattening extension.

branches of an if expression (it assumes that Rule G6 also

defines an if expression as a split point for map distribution).
The rule is valid as long as the boolean variable zc , denoting
the condition, is invariant to the map nest, that is, when

{zc } ∩ Dom(Σ) = ∅. Further, if the rule would directly pro-

cess recursively ei (i.e., Σ ⊢l ei ⇒ e ′i ), for i ∈ {1, 2}, it will
miss the opportunity to exploit the whole inner parallelism

of ei at hardware level l − 1. This is addressed by taking out

More Incremental Flattening Rules Σ ⊢l e ⇒ e ′

Σ = Σ′, ⟨x ∈ y⟩ Σ′ ⊢l map (λx → e1) y ⇒ e ′
1

{zc } ∩ Dom(Σ) = ∅ Σ′ ⊢l map (λx → e2) y ⇒ e ′
2

Σ ⊢l if zc then e1 else e2 ⇒ if zc then e ′1 else e
′
2

(G8)

y,x , ttop fresh names Σ′ = Σ, ⟨x ∈ xs⟩
etop = segredl Σ′ ⊕ v (f x)

Σ ⊢l let y = map f xs in reduce ⊕ v y ⇒ erec

Σ ⊢l redomap ⊕ f (v) xs ⇒

if Par(Σ′) ≥ ttop then etop else erec
(G9)

Figure 4.More aggressive incremental-flattening rules.

the innermost map from the context (⟨x ∈ y⟩) and deriving

the mapped expression (Σ′ ⊢l map (λx → ei ) y ⇒ e ′i ) so that
Rule G3 will immediately try all three choices. Rule G6 can

be made more aggressive with a similar refinement.

We recall that moderate flatteningwould sequentialize any

inner redomaps (e.g., to enable block tiling). Rule G9 shows

the new treatment that (i) generates a code version etop,
which manifests existent parallelism by a segred construct,

and then it (ii) decomposes the redomap into a map and a

reduce that are recursively processed to exploit inner levels

of parallelism. (A not-shown rule is that a redomap exhibiting
no inner parallelism is directly manifested by a segred).
Finally, we remark that while our implementation of the

presented rules targets GPU hardware (see next section), we

believe they at least set a solid foundation for approaching

other types of heterogeneous hardware, such as multicores

with SIMD support. Notice also that, even for GPU hardware,

the presented approach is far from optimally solving the “one

size fits all” problem, for example because our solution con-

siders only one important driver for multi-versioned code

generation (the degree of utilized parallelism) from many

(e.g., locality, thread divergence, load balancing). However,

our approach still covers indirectly some cases of locality

optimization, because for example block tiling in scratchpad

memory typically sacrifices (sequentializes) inner level(s) of

parallelism, and the combination with register tiling sacri-

fices yet another chunk of outer parallelism, which is sequen-

tialized and moved into the innermost context.

Typing rules for the source and target languages and a

type-preservation theorem for incremental flattening are

available in the supplemental material.

4 Implementation and Autotuning
Full Futhark supports arrays of tuples, polymorphism, higher-

order functions [35], and higher-order modules [21], but a se-

ries of conventional defunctionalisation and monomorphisa-

tion transformations produces first-order programs of a form

58



Incremental Flattening for Nested Data Parallelism PPoPP ’19, February 16–20, 2019, Washington, DC, USA

very similar to the one presented in Section 2. In particular,

all functions are inlined, arrays-of-tuples are transformed to

tuples-of-arrays, and aggressive fusion [30, 31] is performed

prior to flattening [32]. Futhark also supports more SOACs

(e.g., filter and scatter), array operations (e.g., reshaping

and slicing), and in-place updates, but these operations are

omitted here as they do not interact essentially with flat-

tening. The modularity and abstraction features of Futhark

allow for programmers to reason at a high level about the

performance and the composition of a program [29], while,

at the same time, Futhark can be used as a high-performance

target language for domain-specific languages [3, 27].

4.1 GPU Code Generation
In a nutshell, a GPU program is organized into a grid of

equally-sized workgroups,2 each of which executes an equal

number of parallel threads. The number of logical threads

spawned is thus the number of workgroups times the work-

group size. We model the GPU as having two levels of paral-

lelism: one at grid level (l = 1) and one at workgroup level

(l = 0). This distinction does not mean that a program con-

taining only level-1 parallel constructs uses less parallelism

than a semantically-equivalent one that contains a nest of

level-1 and level-0 constructs. For example, consider the fol-

lowing fully-flattened expression at level 1:

loop xss = xss0 for i < n do
segmap1 ⟨xs ∈ xss⟩ ⟨x ∈ xs⟩ (x + 1)

This expression utilizes all parallelism, but stores the input ar-

ray xss and the result array in global memory, which makes

it significantly slower than the equivalent expression:

segmap1 ⟨xs0 ∈ xss0⟩ (loop xs=xs0 for i < n
segmap0 ⟨x ∈ xs⟩ (x + 1) )

What is exploited at level 0 is in fact locality of reference,

because the threads in a workgroup can be synchronized

(by barriers) and they can collectively use fast local memory,

rather than global memory, which is at least one order of

magnitude slower. All intermediate arrays produced by par-

allel operations at hardware level 0 are allocated in fast local

memory. Unfortunately, local memory capacity is sharply

limited, typically on the order of 32 to 64KiB depending on

the GPU. Execution fails if a workgroup requires more lo-

cal memory than available. Our implementation does not

currently address this issue, but there are two obvious ways

to handle it. One option is to add a clause to Rule G3 such

that we only select emiddle if its local memory requirements

are less than what is supported by the hardware. A second

option is to dynamically fall back to storing intermediate

arrays in global memory. This can be implemented by gen-

erating a “fallback kernel” that substitutes global memory

for local memory in the final OpenCL code. Thus it has the

advantage that memory pressure does not directly impact

2
We use OpenCL rather than CUDA terminology. OpenCL’s workgroup and

local memory corresponds to CUDA’s thread block and shared memory.

P₁ ≥ n₁ P₂ ≥ n₂F

V1

 T

P₃ ≥ n₃F

V2

 T

V3

 T

V4
F

Figure 5. Sample branching tree produced by incremental

flattening. For space reasons, the size of this this tree has

been pruned, and it does not correspond directly to any

program shown in the paper.

which parallelization structure we end up selecting, but it is

not clear whether there is a good reason to parallelise at level

1 if intermediate results have to be stored in global memory.

4.2 Autotuning
Code generated with incremental flattening picks between

different code versions based on symbolic threshold param-
eters. These must be assigned a concrete value when the

program is run. By default, all thresholds are assigned the

value 2
15
, as a rough estimate of how much parallelism is

needed to saturate a GPU. However, this is likely suboptimal.

Because an exhaustive test of all possible parameter set-

tings is not viable, we have implemented a simple stochastic

autotuner via the OpenTuner framework [4]. We define one

tunable LogIntegerParameter for every threshold param-

eter. This parameter class presents a log scaled view of the

parameter to the search technique, such that halving and

doubling the parameter appears as changes of equal mag-

nitude. For some setting of threshold parameter values, we

then run the program on a series of user-provided datasets,

and apply a cost function to the observed program runtimes.

Our goal is to find the parameter settings that minimise the

cost function. For this paper, our cost function simply sums

the runtimes for all datasets, which favours improvements

on large datasets. However, our autotuner does not depend

on any specific cost function, and a different measure could

easily be employed, or even provided by the user. In practice,

a weighted sum would be a good choice, as it permits the

user to indicate which workloads are the most important.

Unfortunately, the search space for an incrementally flat-

tened program is highly repetitive: Different parameter set-

tings may result in the same dynamic behavior for a dataset.

For example, consider the branching tree on Figure 5. It

shows a hypothetical Futhark program that has been flat-

tened to four different versions, each guarded by a predi-

cate comparing a threshold parameter pi to some dataset-

dependent sizeni . Suppose that for some dataset, (n1,n2,n3) =
(10, 20, 30). The parameter assignment (p1,p2,p3) = (5, 15, 25),
results in version V1, but so does assignments with p1 = 6!

It would be a waste if the autotuner reran the program just

to repeat a path that has been tried before. Unfortunately,

there is no way to express such constraints directly with
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OpenTuner. Instead, we pass OpenTuner a cost function that

knows the structure of the branching tree for the program

(which is provided by the Futhark compiler), and if Open-

Tuner attempts a parameter assignment that would result

in a path through the tree that has been attempted before,

the function returns the previously observed runtime imme-

diately, which allows OpenTuner to resolve such duplicate

parameter assignments very quickly.

While our autotuner provides good results quickly for

many programs, it is ultimately still stochastic, and for large

and complicated programs we have observed that it may

still take a very long time for it to discover the optimal

parameter settings—or possibly time out before finding them

at all. This is because the attempted parameter settings are

essentially random. An improvement would be to use the

structure of the branching tree to avoid redundant parameter

settings entirely, but such irregular search spaces are difficult

to encode in OpenTuner, and a fully exhaustive search might

still be too slow on large programs.

5 Experimental Validation
The experimental validation is divided into two parts. In the

first part (Section 5.2) we analyze in detail the LocVolCalib

benchmark (from the FinPar suite [2]), which provides good

insights into how incremental flattening works.

In the second part (Section 5.3), we perform bulk validation

on eight benchmarks, two computational kernels used in

real-world pricing of financial options (code provided by the

company LexiFi) and other six benchmarks from Rodinia.

The benchmarks were chosen to highlight the benefits of

incremental over moderate flattening; on other benchmarks

(not shown) their performance is very similar. This section

uses the following abbreviations: MF and IF for moderate

and incremental flattening and AIF for autotuned IF.

5.1 Experimental Setup
We run all benchmarks on two different Linux systems, one

with an NVIDIA K40 GPU, on CUDA 8.0, and one with an

AMD Vega 64 GPU, on AMDGPU-PRO 18.20. We perform

auto-tuning separately on the two systems. As we shall see,

parameters that are optimal for one, are not necessarily opti-

mal for the other. The K40 supports OpenCL group sizes up

to 1024, while Vega 64 supports group sizes up to 256. We let

the autotuner run for 20 minutes per benchmark, albeit most

of them require less than 1 minute to find optimal thresholds.

The datsets used for tuning are different than the ones used

for testing; their choice was based on application specific

knowledge. To simplify the tuning phase, we perform no

tuning of tile and workgroup sizes, which use default values

(256 threads per group). Based on manual experimentation,

tuning these sizes results in performance improvements of at

most around 10%. On average, IF takes 4× longer to compile

and generates 3× larger binaries than MF.

We measure total application runtime, minus the time

taken for (i) loading program input onto the GPU, (ii) read-

ing final results back from the GPU, and (iii) OpenCL con-

text creation and kernel build time. Excluding these fixed

overheads emphasizes the performance differences between

implementations. Any other host-device or device-device

communication/copying/memory allocation is measured.

Runtimes were averaged across 10 runs, the maximal ob-

served standard deviationwas 3%, and the results of Futhark’s

moderate flattening as presented in [32] are used as baseline.

5.2 The LocVolCalib Benchmark
LocVolCalib is derived from real-world stochastic volatil-

ity calibration [2]. The code structure, shown in Figure 6a,

consists of an outer map of degree numS, containing a se-

quential loop of numT iterations, the body of which con-

tains two maps of the function tridag over the arrays xss
(size [numX][numY]) and yss (size [numY][numX]). The tridag
function is a composition of three scans (see Figure 6b). To-
gether, numT, numS, numX, and numY characterize the work-

load, with the latter three contributing to parallel work. The

three datasets are:

small (numS = 16, numT = 256, numX = 32, numY = 256),

medium (numS = 128, numT = 64, numX = 256, numY = 32),

and large (numS = 256, numT = 64, numX = 256, numY = 256).

On most hardware we have tried, for small and medium, the

parallelism inside tridag must be exploited, while for large,
tridag may be sequentialised.

The structure of the generated code and the three versions

that get exercised by datasets are shown in Figure 6c. They

were obtained as follows: First, the third choice in Rule G3

makes the outermost map part of the context and applies flat-
tening recursively (the other two choices are not interesting

for the current datasets). Second, Rule G7 interchanges the

map context inside the loop. Third, Rule G4 performs the

distribution of the outer map (part of the context) across

the two inner maps. At this point, a new map is encountered,

that is, the one producing xss’. The first, second, and third

choices of Rule G3 produce the three code versions: (1) on the

branch numS*numX > t1 it parallelizes the two outer maps
at hardware level 1 and it sequentializes tridag, (2) on the

branch numS*numX*numY > t2 it also parallelizes the three

scans inside tridag in scratchpad memory at workgroup

level 0, and (3) on the else branch, it utilizes all parallelism

at hardware level 1 under the form of three segmented scans.
In principle version (2) requires two global-memory accesses

per data element for executing all three scans, and is thus

more efficient than version (3) that requires at least two (and

typically three) global-memory accesses per data element

for each of the three scans.

Results are shown in Figure 7. The last two bars corre-

spond to two (efficient) hand-written OpenCL implementa-

tions [2]: the first, named FinPar-Out, is similar to version

1, and the second, named FinPar-All, is similar to version 2.
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map (λ xss0 yss0 →

loop xss , yss = xss0 , yss0

for t < numT do

let xss ' = map tridag xss

let yss ' = map tridag yss

in (xss ', yss '))

(xsss0: [numS][numX][numY]f32)

(ysss0: [numS][numY][numX]f32)

(a) Simplified structure of LocVolCalib.

tridag as = let bs = scan ⊕ d⊕ as

let cs = scan ⊗ d⊗ bs

in scan ⊙ d⊙ cs

(b) Parallel formulation of tridag.

if numS > t0 then ... else

loop xsss ,ysss = xsss0 , ysss0

for t < numT do

let xsss ' =

if numS*numX > t1 then

-- Version 1 utilizes numS*numX

-- parallelism at hwd level l=1

segmap1 ⟨xss ∈ xsss⟩⟨xs ∈ xss⟩ (tridag xs)

else if numS*numX*numY > t2 then

-- Version 2:

-- numS*numX parallelism at l=1

-- and numY parallelism at l=0

segmap1 ⟨xss ∈ xsss⟩ ⟨xs ∈ xss⟩

(let bs = segscan0 ⟨x ∈ xs⟩ ⊕ d⊕ x

let cs = segscan0 ⟨b ∈ bs⟩ ⊗ d⊗ b

in segscan0 ⟨c ∈ cs⟩ ⊙ d⊙ c)

else -- Version 3: numS*numX*numY

-- parallelism at hwd level l=1

let bsss=segscan1 ⟨xss ∈ xsss⟩⟨xs ∈ xss⟩

⟨x ∈ xs⟩ ⊕ d⊕ (x)

let csss=segscan1 ⟨bss ∈ bsss⟩⟨bs ∈ bss⟩

⟨b ∈ bs⟩ ⊗ d⊗ (b)

in segscan1 ⟨css ∈ csss⟩⟨cs ∈ css⟩

⟨c ∈ cs⟩ ⊙ d⊙ (c)

let ysss ' =... --code similar to xsss '

in (xsss ', ysss ')

(c) The three generated versions that get executed in practice.

Figure 6. Parallel structure of the LocVolCalib program, and

how incremental flattening exploits its parallelism.

The large dataset demonstrates the performance portability

problem: FinPar-Out wins on K40 but loses on Vega 64; this

is because the Vega 64 is in relative terms more memory

bound (than K40), favoring local-memory utilization.

MF always generates version 3 of the code (segmented

scans executed in global memory). AIF choses version 2 on

Vega 64, and a combination of code versions on K40: For both

the small andmedium datasets, AIF uses Versions 1 and 2 for

the tridags of innermost size 32 and 256, respectively, and

small (baseline: 238ms)

1.0 1.0

1.7

0.5

1.1

medium (baseline: 342ms)

1.0

1.4
1.7

1.1
1.3

large (baseline: 5087ms)

1.0

2.0 2.0

3.5

2.2

MF

IF

AIF

FinPar (outer parallelism)

FinPar (all parallelism)

small (baseline: 110ms)

1.0 1.0

3.3

0.3

4.0

medium (baseline: 132ms)

1.0 1.3

3.8

0.7

4.0

large (baseline: 1862ms)

1.0 0.7

4.8

1.7

5.4

MF

IF

AIF

FinPar (outer parallelism)

FinPar (all parallelism)

Figure 7. Speedup for LocVolCalib on NVIDIA K40 (top) and

AMD Vega64 (bottom); Moderate flattening is the baseline.

Table 1. Datasets used in Figure 8.

Benchmark D1 D2
Heston 1062 quotes 10000 quotes

OptionPricing 1048576 MC, 5 dates 500 MC, 367 dates

Backprop 2
14

neurons 2
20

neurons

LavaMD 10
3
boxes, 50 per box 3

3
boxes, 50 per box

NW 2048 edge length 1024 edge length

NN 1 × 855280 points 4096 × 128 points

SRAD 1 × 502 × 458 image 1024 16 × 16 images

Pathfinder 1 × 100 × 10
5
points 391 × 100 × 256 points

for the large dataset it uses version 1. Figure 7 shows that (i)

AIF significantly outperforms MF in all cases, (ii) on Vega

64, AIF is slightly slower than FinPar-All in all cases, due

to suboptimal memory reuse, and (iii) on K40, AIF is faster

than FinPar on the small and medium datasets—because it

combines versions 1 and 2—but is outperformed by FinPar-

Out on the large dataset. The slowdown is mainly due to

the fact that FinPar-Out uses an algorithmically-different

sequential version of tridag, which performs significantly

less work (in number of global-memory accesses). Writing

this specialized version in Futhark is possible and gets within

93% of the FinPar-Out performance, but it looses the ability

to generate from one specification, multiple parallel versions.

From a software-engineering perspective, FinPar’s imple-

mentations (∼ 1500 lines each) are very difficult to maintain

since they have little resemblance to the algorithmic (nested-

parallel) specification, which on the other hand is faithfully

reproduced by the Futhark source program (∼ 200 lines).

5.3 Bulk Validation
This section shows the utility of incremental flattening on

a wider range of benchmarks. Each benchmark uses two

datasets (D1/D2 in Table 1) chosen to exhibit different distri-

butions of parallelism. When available, we report speedup

of a reference implementation written in OpenCL C. The

speedups, using MF as baseline, are shown in Figure 8.
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Figure 8. Futhark speedup of incremental versus moderate flattening on NVIDIA K40 (top row) and AMD Vega64 (bottom

row). Speedup of hand-written FinPar/Rodinia versions also shown where possible. Higher is better. Average runtime for

moderate flattening is shown for each dataset. Summaries of datasets are shown in Table 1.

The first two benchmarks are used in real-world financial

applications.
3
OptionPricing [2, 40] exhibits several layers of

nested parallelism, where D1 is best executed, using only the

outermost parallelism, and D2 requires utilization of inner

layers as well. The reference implementation utilizes only

the outer parallelism, which explains the slowdown on D2.

Heston is a calibration routine for the Hybrid Stochastic

Local Volatility / Hull-White model. The original implemen-

tation is in sequential OCaml and a hand-written OpenCL

implementation is not available. Heston contains three lay-

ers of parallelism, an outer map, which contains a redomap,
which contains a reduce operator. MF exploits only the outer

map—the static heuristics sequentializes redomaps—which
results in poor performance. IF exploits all parallelism, which

is optimal on Vega 64, but is suboptimal on K40. AIF gives

the best results, by sequentializing and parallelizing the in-

nermost reduce on K40 and Vega 64, respectively.

The other six benchmarks are from Rodinia [15], of which

Backprop, LavaMD, and NW already contain nested paral-

lelism. In Backprop, for MF, we have explicitly prevented

a fusion between an inner map and reduce, which other-

wise would have resulted in poor performance (redomaps
are sequentialized). AIF wins because of fusion; Rodinia’s

slowdown is due to a reduce being executed on the CPU.

In LavaMD, both Rodinia and MF exploit only two outer

levels of parallelism, and they tile in local memory an inner

redomap contained in a sequential loop, which is optimal on

D1. On D2, AIF wins because it also parallelizes the inner

redomap (at workgroup level) in local memory.

In NW, Rodinia’s implementation processes in parallel

waves of blocks on lines parallel to the matrix’s diagonal,

where a block is parallelized at workgroup level in local

memory. AIF does the same; the ∼ 2× slowdown is due to the

matrix update not executing in place (diagonal slices are not

3
Code provided by LexiFi, https://www.lexifi.com/

expressible in Futhark). MF has poor performance because

it flattens aggressively without utilizing local memory.

The Futhark ports of the remaining three Rodinia bench-

marks (NN, SRAD, Pathfinder) have been extended with an

extra layer of parallelism by adding a map on top; essen-

tially performing multiple batches of the original benchmark

in parallel. We have not modified the original Rodinia pro-

grams, so we can only report Rodinia performance for the D1

datasets, for which the factor of outer parallelism added is 1.

Speedup on the D2 datasets is due to exploiting more paral-

lelism, especially at intra-workgroup level. Rodinia’s poor

performance on NN and Pathfinder are due to an important

reduce being executed on CPU (NN), and due to pyramidal

tiling (Pathfinder) that does not seem to pay off on the tested

hardware. The supplemental material gives more insight

related to the parallel structure of the benchmarks.

It would have been interesting to compare against a com-

piler making use of full flattening, but unfortunately no such

compiler targeting GPUs is currently available. As an approx-

imation, we modified the heuristics used by MF to always

fully exploit parallelism. For these benchmarks, the resulting

programs are typically slower within a factor 2 of untuned

incremental flattening, but for e.g. OptionPricing the runtime

is more than an order of magnitude higher, because a large

amount of redundant nested parallelism is being exploited.

6 Related Work
Full flattening of irregular nested parallelism was intro-

duced in the seminal work on NESL [11]—also implemented

on GPU hardware [9]—but performed poorly in practice

due to high memory usage and communication costs caused

by excessive parallelization. Later efforts have focused on

addressing these issues by restricting flattening in various

ways, for example by flattening only the data and leaving the

nested-parallel structure intact [8], by applying flattening at
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the granularity of the largest sequential subexpression [36],

by aggressive fusion of segmented operations enabled by

shape analysis [28, 48], or by mechanisms for streaming ir-

regular arrays [18, 37] that optimize memory footprint. In

comparison, incremental flattening is the first to enable re-

stricted utilization of parallelization in the common case,

while still permitting full parallelization if necessary.

Polyhedral compilation [43] has been proven effective in

optimizing affine programs. For example, the tree-of-bands

algorithm [12, 59] optimizes both the degree of parallelism

and locality of references, but locality takes precedence when

they conflict. Furthermore, algorithmic lower bounds for

locality can be modeled analytically at the level of misses in a

set associative cache hierarchy [6]. Since the affine domain is

too restrictive in practice, several techniques were devised to

integrate explicit annotations of parallelism with polyhedral

transformations of otherwise unanalyzable patterns [5, 14,

47].

Autotuning has been motivated by the performance-

portability problem in the context of changing hardware.

One class of solutions [24] has been to apply machine learn-

ing, relying on supervised off-line training, to infer the best

configuration of compiler flags that results in the average-

best performance across various datasets and hardware; en-

couraging results have been reported for multi-core [16]

and many-core architectures [5], which, in some cases, are

shown, for example, to outperforming cuBLAS.

Other approaches promote a compiler design reliant on

autotuning. For example, Halide [45] applies a stochastic

method to find the best fusion schedule of image-processing

pipelines, corresponding to various combinations of tiling,

sliding window and work replication transformations. Simi-

larly, Lift [25, 51] and SPIRAL [23], exploits the rich rewrite

rules of functional languages to generate a multitude of

equivalent programs, from which autotuning selects the op-

timal one for a given dataset.

In comparison, this paper proposes an unsupervisedmethod

in which the incremental application of flattening, statically

clusters the datasets to corresponding code versions based on

the amount of utilized parallelism. This permits recombinng

all versions into one program that covers all datasets.

Optimising task-basednested parallelism requires tech-

niques that control the granularity at which parallelism is

exploited in order to avoid unnecessary overhead. Notably,

Heartbeat scheduling [1] uses a provably efficient sched-

uling algorithm and does not require tuning. Perhaps the

closest related work [57] to ours proposes a combination of

(i) a compiler transformation that generates a set of (multi-

versioned) task implementations of increasing granularity by

means of recursive task unrolling, and (ii) a runtime heuristic

for automatically choosing the best suited implementation.

However, such techniques essentially rely on the hardware

efficiently supporting dynamic exploitation of parallelism,

which makes them unsuitable for GPUs.

Multi-versioned code generation has been used in other

contexts, for example automatic parallelization of non-affine

loops (Fortran77 or C) onmulti-cores, where inter-procedural

analysis is used to summarize statically memory references

under a set-abstraction representation and to model loop in-

dependence as an equation on such sets [26, 49]. To improve

accuracy, summaries were paired with predicates [38] that

specify the conditions under which summaries are known to

be empty. A more aggressive variant has been to use logical

inference rules [41, 42] to translate the loop independence

equation to a general predicate encapsulating arbitrary pro-

gram slices. Tominimize the runtime overhead, this predicate

was factorized into a set of sufficient conditions that were

tested at runtime in the order of their complexity.

This paper combines static and dynamic analyses in a sim-

ilar manner, but here multi-versioning refers to parallel code

optimized differently in the presence of nested parallelism,

while the predicates are trivial and subject to autotuning.

7 Conclusions and Future Work
We have presented incremental flattening, a generic exten-

sion to the flattening algorithm for regular nested data par-

allelism, that is able to turn inner parallelism in excess into

efficient sequential code when profitable, while still having

the ability to exploit all available parallelism when dataset

and execution hardware requires it.

We have shown a refinement of standard autotuningwhich

is capable of quickly selecting good thresholds for the pred-

icates that discriminate these code versions, and we have

validated our approach on ten problems where performance

is sensitive to the dataset characteristics and hardware.

A natural direction for future work is to support irregular

nested parallelism. In such cases, it is likely that other per-

formance parameters become increasingly important, such

as thread divergence and load imbalance. We speculate that

a solution may draw inspiration from the inspector-executor

techniques used for optimising locality/communication by

reordering both the data and the iteration space [20, 46, 53,

54]. For example inspectors can compute a measure of such

properties, which can be integrated in the predicates that

guard code versioning. The rationale would be that flattening

improves both divergence and load balancing at the expense

of locality, andmaking them part of the predicates allows this

trade-off to be tuned across various datasets and hardware.
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A Artifact Appendix
A.1 Abstract
This artifact contains scripts and programs for reproducing

the central experimental figures of the paper (Figures 2, 7

and 8), which show how Futhark programs perform com-

pared to hand-written GPU programs, using different com-

pilation techniques.

This artifact requires access to a computer with a modern

GPU (a laptop will likely not cut it) with OpenCL and op-

tionally CUDA already set up and working. Apart from that,

the software requirements are fairly standard. A Dockerfile

is provided that will work on Linux systems with NVIDIA

GPUs, assuming NVIDIAs docker runtime has been installed.

This is typically not problematic.

The artifact is structured around a Makefile with targets

for the figures and supporting data. The enclosed README.md

contains further details and hints about execution and trou-

bleshooting. The artifact is also publicly available at https:
//github.com/diku-dk/futhark-ppopp19.

A.2 Artifact check-list (meta-information)
• Program: Rodinia and FinPar; automatically downloaded

and patched by scripts.

• Compilation: Requires gcc (or compatible) able to compile

OpenCL programs; optionally also nvcc.
• Run-time environment: Requires Linux (some parts may

work on macOS). Docker image may require root access (un-

clear; we are not Docker experts). A UTF-8 enabled locale is

required (e.g. set environment variable LC_ALL=en_US.UTF-8).
• Hardware: We require a recent-ish NVIDIA or AMD GPU,

ideally with 4GiB or more memory (README describes how

to run the less memory-intensive parts on smaller GPUs).

Some of our dependencies may require an x86 CPU.

• Execution: Full execution takes from one to three hours

depending on system speed.

• Metrics: Wemeasure wall-clock runtimes, and the enclosed

plotting scripts measure speedup compared to a computed

baseline.

• Output: We produce speedup graphs in PDF format, and

raw measurement data in a simple JSON format.

• Experiments: A Dockerfile is provided for use on NVIDIA

systems, which has also been made available on Docker

Hub for ease of use. Ideally, running the experiments and

generating the graphs is just make.
• Howmuch disk space required (approximately)?: The
artifact itself is small, but running it will take more than

10GiB, but less than 20GiB.

• Publicly available?: Yes, at https://github.com/diku-dk/
futhark-ppopp19.

• Code/data licenses (if publicly available)?: ISC (non-

copyleft free license).

• Archived?: At ACM Digital Library; DOI: 10.1145/3300173.
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A.3 Description
A.3.1 How delivered
The artifact is available (with further documentation and details)

from the ACM Digital Library with DOI 10.1145/3300173, and at

https://github.com/diku-dk/futhark-ppopp19. It is also available

on Docker Hub under the name futhark/ppopp19.

A.3.2 Hardware dependencies
A somewhat modern GPU with at least 4GiB of memory. A sig-

nificant subset of the experiments can be run with just 2GiB of

memory.

A.3.3 Software dependencies
OpenCL to communicate with the GPU, and optionally also CUDA.

A.3.4 Data sets
Included in artifact (or downloaded automatically as needed).

A.4 Installation
Using Docker (recommended for x86-64) On a Linux machine

with an NVIDIA GPU, the CUDA framework, and NVIDIA’s docker

runtime
4
, run the following command to enter a Docker instance

with the artifact and its various requirements pre-installed:

docker run -it --runtime=nvidia \
--storage-opt size=20G futhark/ppopp19

This may require root permissions, depending on the local

system. The artifact also contains a packaged Docker image file,

futhark-ppopp19.docker. This image is self-contained, in that

it contains pre-downloaded versions of all resources that are oth-

erwise downloaded from the Internet (datasets and benchmark

reference implementations), so its contents can be useful for ma-

chines that are offline, or if the required resources disappear from

the Internet in the future.

Installing Manually Unpack the artifact archive or clone the

Git repository, taking care to also include the submodules that

contain the Futhark compiler and the FinPar benchmark suite:

git clone --recursive \
https://github.com/diku-dk/futhark-ppopp19.git

To install the software dependencies on a Debian/Ubuntu system,

run the following commands (possibly as root):

apt install binutils build-essential nvidia-cuda-toolkit \
sqlite3 libsqlite3-dev libtinfo-dev python-pip git curl \
wget bc libffi-dev libgmp-dev zlib1g-dev texlive \
texlive-latex-extra texlive-fonts-recommended \
dvipng locales

pip install opentuner matplotlib

curl -sSL https://get.haskellstack.org/ | sh

In case of ambiguities, the Dockerfile also serves as a list of

commands necessary to install the required packages.

A.5 Evaluation and expected result
• make matmul-runtimes-large.pdf and

make matmul-runtimes-small.pdf should construct two

4https://github.com/NVIDIA/nvidia-docker#quickstart

graphs similar to the ones making up Figure 2 in the paper.

They may differ quantifiably depending on the system, but

the curves should have the same rough shape.

• make LocVolCalib-runtimes.pdf should construct a graph
similar to the ones in Figure 7.

• make bulk-impact-speedup.pdf should construct a graph
similar to the ones in Figure 8.

We have noticed that some benchmarks (particularly srad and
LocVolCalib) may not reliably reach the near-optional thresholds

when auto-tuned. If necessary, the maximum time used for auto-

tuning can be increased from the default of thirty minutes in the

config.mk file, and e.g. srad rerun with:

rm results/srad-incremental-tuned.json
make results/srad-incremental-tuned.json

This flaw is a combination of the inherently stochastic nature

of autotuning, and a still somewhat brittle attempt on our part to

reduce autotuning durations on average.

A.6 Experiment customization
Adding a new Futhark implementation of a benchmark simply re-

quires adding a .fut program to the benchmarks directory, with a

specially formatted header indicating which workloads to use. Con-

sult the existing programs or the Futhark User’s Guide
5
for more

information. Adding a new dataset requires modifying the header

for one of the existing .fut files. By convention, the program

benchmarks/foo.fut has its datasets in benchmarks/foo-data.
After a program benchmarks/foo.fut is added, it can be bench-

marked by running

make results/foo-moderate.json \
results/foo-incremental.json \
results/foo-incremental-tuned.json

Adding a new reference implementation of a benchmark (e.g.

one from Rodinia) is done in an ad-hoc fashion. In particular, Ro-

dinia implementations must be manually modified with instru-

mentation to perform measurements. The main plotting script

(tools/bulk-impact-plot.py) is relatively easy to extend with

new benchmarks and datasets (albeit with exactly two datasets per

benchmark) by modifying the programs variable.

A.7 Notes
While Futhark code tends to be fairly robust in foreign environ-

ments, we cannot guarantee the same for the reference benchmark

implementations (FinPar and Rodinia) we use. The README.md in
the Git repository contains information on how to run only the

Futhark implementations, if necessary.

A.8 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20180713.html
• http://cTuning.org/ae/reviewing-20180713.html
• https://www.acm.org/publications/policies/artifact-review-badging

5
https://futhark.readthedocs.io
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