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Abstract

Futhark is a purely functional data-parallel array language

that offers a machine-neutral programming model and an

optimising compiler that generates OpenCL code for GPUs.

This paper presents the design and implementation of three

key features of Futhark that seek a suitable middle ground

with imperative approaches. First, in order to express effi-

cient code inside the parallel constructs, we introduce a sim-

ple type system for in-place updates that ensures referential

transparency and supports equational reasoning. Second, we

furnish Futhark with parallel operators capable of express-

ing efficient strength-reduced code, along with their fusion

rules. Third, we present a flattening transformation aimed at

enhancing the degree of parallelism that (i) builds on loop

interchange and distribution but uses higher-order reason-

ing rather than array-dependence analysis, and (ii) still al-

lows further locality-of-reference optimisations. Finally, an

evaluation on 16 benchmarks demonstrates the impact of the

language and compiler features and shows application-level

performance competitive with hand-written GPU code.

CCS Concepts •Computing methodologies → Parallel

programming languages; •Software and its engineer-

ing→ Source code generation; Software performance

Keywords functional language, parallel, compilers, GPGPU.

1. Introduction

Massively parallel graphics processing units (GPUs) are to-

day commonplace. While GPUs provide high peak perfor-

mance, they are difficult to program, and require under-

standing of hardware details to obtain good performance.

A rich body of language and compiler solutions aim at en-

hancing programmer productivity by transparently mapping

hardware-independent programs to GPUs.

On one side, we find sophisticated analyses [16, 27, 41,

42, 55, 56], centered on dependency analysis of affine loop

nests in low-level imperative languages such as C and For-

tran. These analyses often find themselves “fighting the lan-

guage”, not only due to the lack of high-level invariants (e.g.,

filter and scan patterns are difficult to recognize and op-

timize), but also because aliasing, non-affine indexing, and

complex control flow may restrict applicability.

On the other side, there are a number of embedded

(morally functional) data-parallel languages [2, 15, 35, 48,

51, 52] that express parallelism explicitly by means of

bulk operators, which allow the compiler to reason at a

higher level about restructuring the program. The down-

side is that some of these languages do not support in-

place updates or explicit indexing inside parallel opera-

tors [15, 48, 52], and none of them systematically utilizes

(imperfectly) nested parallelism. A notable exception to the

latter is NESL [7, 11], which flattens all nested parallelism

under asymptotic work-depth guarantees. However, such an

aggressive flattening approach is often inefficient in prac-

tice, because the transformation prevents further locality-

of-reference optimizations and efficient sequentialization of

excess parallelism.

This paper presents Futhark [28–32], a simple but expres-

sive purely-functional parallel array language with guaran-

teed race-free semantics.The language and compiler design

seeks a common ground that combines the advantages of

functional and imperative features.

First, we present a type system extension that supports

in-place modification of arrays, without compromising lan-

guage purity (i.e., the parallel semantics of operators is still

guaranteed). The extension builds on uniqueness types [4, 5]

and is formalized, including alias analysis, by inference rules

in Section 3. The contribution is not in linear-type theory

(more powerful systems [24, 54] exist), but rather in design-

ing a simple system that does not overcomplicate analysis.

To our knowledge, it is the first of its kind used in a high-

performance purely functional language. The motivation for

in-place updates is twofold, namely (i) to express dependent
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code inside parallel constructs, and (ii) to sequentialize effi-

ciently the excess parallelism (see example in Section 2.4).

Second, we furnish Futhark with a set of streaming op-

erators that allow the user to express strength-reduction in-

variants generically (i.e., without compromising the avail-

able parallelism), and also ease code generation. These con-

structs and their fusion rules are presented in Section 4.

Third, Section 5 presents a transformation that rearranges

the available parallelism into perfect nests of parallel opera-

tors that optimise the degree of parallelism that can be stat-

ically (and efficiently) exploited. In comparison to impera-

tive approaches, we also build on loop distribution and inter-

change [36], but we lift the reasoning to rely on the higher-

order operator semantics rather than on low-level index anal-

ysis. This approach enables (more) aggressive rewrite rules

that transform not only the schedule (i.e., the iteration space)

but also the storage. In comparison to NESL [11], we support

in-place updates, more operators, and an algorithm that can

flatten only some of the top-level parallelism, i.e., it stops be-

fore introducing irregular arrays and before destroying the

program structure needed for spatial and temporal locality

optimizations. We demonstrate the latter by implementing

memory coalescing and simple block tiling.

Finally, we present an evaluation of Futhark-generated

OpenCL code on 16 benchmarks ported from Rodinia [17],

Accelerate [39], Parboil [50], and FinPar [1], that demon-

strates performance competitive to reference implementa-

tions on AMD and NVIDIA GPUs: speedup ranges from

about 0.6× (slower) on FinPar’s LocVolCalib benchmark

to 16× (faster) on Rodinia’s NN benchmark. On the 12
benchmarks that come with a low-level CUDA/OpenCL im-

plementation, the geometric mean of Futhark’s speedup is

1.81×. We attribute the positive speedup to the tediousness

of writing low-level GPU code, for example, the reference

implementation leaving unoptimised (i) the spatial/temporal

locality of reference (Myocyte/MRI-Q), or (ii) some (nested)

reduce operators (e.g., NN, Backprop, K-means, SRAD).

Futhark is slower on 4 out of 12 benchmarks with a geomet-

ric mean of 0.79×, which we believe is a better estimation

of where Futhark stands in relation to hand-optimised GPU

code. In summary, the main contributions of this paper are:

• The introduction of a simple type system (based on

uniqueness types [4, 5]) supporting race-free in-place

updates in a purely-functional, data-parallel language.

An intuitive demonstration on a code example was given

in [28] but the typing rules were not presented there.

• The fusion rewrite rules for streaming SOACs, which

capture and express efficient strength-reduced code. A

simplified version of the streaming SOACs was intro-

duced as a functional notation in [1], and non-overlapping

aspects of the fusion engine were presented in [28, 32].

• The flattening algorithm that exploits partial top-level

parallelism, and allows further locality optimisations.

• An experimental validation on 16 benchmarks that demon-

strates (i) application-level performance competitive with

hand-written OpenCL code, and (ii) significant impact

of in-place updates, fusion, coalescing and block tiling.

The research artifacts are publicly available at https:

//github.com/HIPERFIT/futhark-pldi17

2. Preliminaries: Calculus and Language

The theoretical foundation of Futhark are the list homo-

morphisms of Bird and Meertens [9], realised in the form

of purely functional parallel second-order array combina-

tors (SOACs). Their rich equational theory for semantics-

preserving transformations are employed in Futhark for

fusion, streaming, and flattening of parallelism. We first

discuss this theory in Section 2.1, then we introduce the

concrete syntax of Futhark’s core language in Section 2.2,

then we show the compiler pipeline in Section 2.3, and we

demonstrate the use of in-place updates and streaming oper-

ators on a code example in Section 2.4.

2.1 Array Combinator Calculus

We first describe the basic SOACs and later introduce

streaming combinators. The basic SOACs include (i) map,

which constructs an array by applying its function argument

to each element of the input array, (ii) reduce, which applies

a binary-associative operator ⊕ to all elements of the input,

and (iii) scan, which computes all prefix sums of the input

array elements. Their types and semantics are shown below:

map : (α→ β) → Πn.[n]α → [n]β
map f [a1, . . . , an] = [f a1, . . . , f an]

reduce : (α→ α→ α) → α → Πn.[n]α→ α
reduce ⊕ 0⊕ [a1, . . . , an] = 0⊕ ⊕ a1 ⊕ . . .⊕ an

scan : (α→ α→ α) → α → Πn.[n]α → [n]α
scan ⊕ 0⊕ [a1, . . . , an] = [a1, . . . , a1 ⊕ . . .⊕ an]

Here [a1, . . . , an] denotes an array literal, [n]τ denotes the

type of arrays with n elements of type τ , and 0⊕ denotes

the neutral element of the binary associative operator ⊕.

The Πn notation indicates where the size n becomes fixed;

it indicates, for instance, that we can partially apply map
to a function and apply the resulting function to arrays of

different sizes.

Tuples and tuple types are denoted by comma-separated

values or types, enclosed in parentheses. We treat the zip/unzip-

isomorphic types [n](τ1, . . . , τk) ∼= [n]τ1, . . . , [n]τk as

interchangeable in any context. Similarly, we treat the

curry/uncurry-isomorphic types [m]([n]τ) ∼= [m × n]τ as

interchangeable. This isomorphic treatment is justified be-

cause both streaming and indexed access to either type can

be efficiently implemented without explicitly applying the

isomorphism and materializing (storing) the result first.

The SOAC semantics enables powerful rewrite rules. For

example, mapping an array by a function f followed by
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mapping the result with a function g gives the same result

as mapping the original array with the composition of f and

g:

(map f) ◦ (map g) ≡ map (f ◦ g)

Applied from left-to-right and from right-to-left this rule

corresponds to producer-consumer (vertical) fusion and fis-

sion, respectively. Horizontal fusion/fission refers to the

case when the two maps are independent (i.e., not in any

producer-consumer relation), as in the equation below:

(map f x,map g y) ≡ map (λ(a, b).(f a, g b)) (x, y)

The rest of this section shows how map and reduce are

special cases of a more general bulk-parallel operator named

fold, which (i) can represent (fused) compositions of map
and reduce (and filter) operators and, as such, (ii) can itself

be decomposed into a map-reduce composition. Similarly,

we introduce the parallel operator sFold, which generalizes

Futhark’s streaming operators.

Notation. We denote array concatenation by # and the

empty array by ǫ; inj(a) is the single-element array contain-

ing a. A partitioning of an array v is a sequence of arrays

v1, . . . , vk such that v1# . . .#vk = v. Given binary opera-

tions f and g, their product f ∗ g is defined by component-

wise application, i.e., (f, g)(x) = (f x, g x).

Parallel Operator fold. Many arrays operations are monoid

homomorphisms, which conceptually allows for splitting

an array into two parts, applying the operation recursively,

and combining the results using an associative operation ⊕.

Every monoid homomorphism is uniquely determined by

(⊕, 0⊕) and a function g for mapping singleton arrays. The

combinator fold thus expresses all such homomorphisms:

fold : (α→ α, α)→ (β → α)→ Πn.([n]β → α)
fold (⊕, 0⊕) g [b1, . . . , bn] = 0⊕ ⊕ (g b1)⊕ . . .⊕ (g bn)

The fold combinator can decompose previously seen SOACs:

map g = fold (#, ǫ) (inj ◦ g)
reduce (⊕, 0⊕) = fold (⊕, 0⊕) id

and fold can itself be decomposed by the equation

fold (⊕, 0⊕) g = reduce (⊕, 0⊕) ◦map g.

Parallel Operator sFold. A key aspect of Futhark is to

partition implementations of fold, which partitions a vector

into chunks before applying the operation on the chunks

individually and eventually combining them:

sFold : (α→ α)→ (Πm.([m]β → α))→ Πn.[n]β → α
sFold (⊕) f (v1# . . .#vk) = (f ǫ)⊕ (f v1)⊕ . . .⊕ (f vk)

Because a vector can have multiple partitions, sFold is

well-defined—it gives the same result for all partitions—if

and only if f is itself a fold with ⊕ as combining opera-

tor. Futhark assumes such properties to hold; they are not

checked at run-time, but a programmer responsibility. The

streaming combinators permit Futhark to choose freely any

suitable partition of the input vector. Futhark uses special-

ized versions of sFold:

stream_map f = sFold (#) f
stream_red (⊕) f = sFold ((⊕) ∗ (#)) f

Fusion and fission transformations are based on the uni-

versal properties of fold; for example, horizontal (parallel)

fusion is expressed by the “banana split theorem” [40], read

as a transformation from right to left:

fold ((⊕, 0⊕) ∗ (⊗, 0⊗)) (f, g)
= (fold (⊕, 0⊕) f, fold (⊗, 0⊗) g)

The map-map rule map (g ◦f) = map g ◦ map f is the

functorial property of arrays; it is used for fusion from right

to left and eventually, as a fission rule, from left to right as

part of flattening nested parallelism (see Section 5). The flat-

tening rule map(mapf) ∼= map f eliminates nested parallel

maps by mapping the argument function over the product

index space (an isomorphism modulo the curry/uncurry iso-

morphism). Finally, sequential (de)composition of the dis-

cussed SOACs can be similarly reasoned in terms of more

general iterative operators (known as foldl and sfoldl).

2.2 Futhark Core Language

Futhark is a monomorphic, statically typed, strictly evalu-

ated, purely functional language. The paper uses a subset of

Futhark’s core language (i.e., compiler IR), whose abstract

syntax is shown in Figure 1. This is a simplified subset of

the full Futhark source language. Throughout the paper we

write z(n) = z0, · · · , z(n−1) to range over sequences of n
objects of some kind (and write z when the size does not

matter).1

In contrast to the source language, the SOACs of the core

language may take as input and result in several arrays.2

Consider the following example containing nested paral-

lelism:

fun main (matrix : [n][m]f32): ([n][m]f32, [n]f32) =
map (λrow : ([m]f32, f32) →

let row’ = map (λx : f32 → x+1.0) row
let s = reduce (+) 0 row
in (row’,s))

matrix

1 This notation is used to shorten bits of program syntax, for instance for

the parameters of a function or the array indices. We may also treat such

sequences as sets for the purpose of subsetting and set inclusion.
2 The compiler transforms arrays-of-tuples to tuples-of-arrays [12] at an

early compilation stage. It follows that the compiler IR supports tuples

only as fully expanded patterns; for example map can be seen as implicitly

zipping/unzipping its input/result.
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t0 ::= t | [v]t0 (Constant/array type)

t ::= t0 | (t,t) (Tuple type)

dt ::= t | *t (Nonunique/Unique type)

k ::= x | [v1, . . . , vn] (Value)

p ::= v | (v : t) (Binding name, type optional)

l ::= λp(n):dt -> e (Anonymous Function)

fun ::= fun v p:dt = e (Named function)

prog ::= ǫ | fun prog (Program)

e ::= k | v (Constant/Variable)

| (v1,...,vn) (Tuple)

| v1 ⊙ v2 (Apply binary operator)

| if v1 then e2 else e3
| v[v1, . . . , vn] (Array indexing)

| v v1 ... vn (Function call)

| let (p1, . . . , pn) = e1 in e2 (Let binding)

| v with [v1, . . . , vn] ← v (In-place update)

| loop (pv) for v < v do e (Loop)

| iota v ([0,. . .,v − 1])

| replicate n v ([v, . . . , v] of size n)

| rearrange (k) v (Rearrange dimensions)

| map l v1 . . . vn
| reduce l (v1, . . . , vn) v′1 . . . v′n
| scan l (v1, . . . , vn) v′1 . . . v′n
| stream_seq l (v1, . . . , vn) v′1 . . . v′m
| stream_seq l v′1 . . . v′m
| stream_red l1 l2 (v1, . . . , vn) v′1 . . . v′m

Figure 1: Core Futhark syntax.

The main function receives a matrix of 32-bit floating point

numbers and results in a tuple of (i) a matrix obtained by

adding 1.0 to each element of the input matrix, and (ii) a

vector obtained by summing up each row of the input matrix.

Every written array type is parametrised with exact shape

information, such as in [n][m]f32, which denotes a two-

dimensional n × m array of 32-bit floats. When used as a

parameter type, n and m are bound to the size of the array

value. In a return type, the shape information serves as a

dynamically checked postcondition. Precise shape informa-

tion is computed for each bound variable and for each func-

tion by a slicing technique based on [30], which also sup-

ports existential types for the values whose shapes cannot

be computed in advance. In this paper, all sizes are expliclt,

and if a function returns an array, then its dimensions must

be expressible in terms of the formal parameters. All arrays

must be regular, meaning that, all rows of an array must have

the same shape. For example, the array [[4],[1,0]] is illegal;

when static verification fails—for example because we can-

not determine in general whether all iterations of a map pro-

duce a value of the same shape—dynamic checks (much like

bounds checks) are automatically inserted inside the map,

but they can often be sliced/hoisted out of the map itself and

checked in advance [29].

Futhark supports for (and while) loops, which have se-

quential semantics and are morally equivalent to a simple

-- y is free in loop expression
loop (x = a) for i < n do

g i y x
-- Loop above is equivalent to:
f y 0 n a

-- Assuming x and y have types
-- t and ty, then f is defined as:
fun f (y:ty) (i:int) (n:int) (x:t) :t

= if i >= n then x
else f y (i+1) n (g i y x)

Figure 2: Loop as recursive function.
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subexpressions

Hoisting

Figure 3: Compiler architecture.

form of tail-recursive function, as illustrated in Figure 2. An

array update x with i ← v, produces an array identical to x,

except that position i contains v.3 One may use let x[i] = v
as syntactic sugar for let x = x with i ← v.

In function declarations, the return and parameter types

may have an optional uniqueness attribute, which is used

for typing in-place updates as detailed in Section 3.

We will occasionally add type annotations to the param-

eters of anonymous functions to aid readability, and use a

more compact notation for anonymous functions; writing

e.g. map (+1) (iota 9) instead of let n = 9 in let a =
iota n in let one = 1 in map (λi → i + one) a

2.3 The Compiler Pipeline

Figure 3 shows the compiler pipeline. On the desugared pro-

gram, we apply common optimizations to remove simple

inefficiencies. Fusion, kernel extraction (flattening), and ac-

cess pattern optimisations (for obtaining good locality of ref-

erence) are discussed in the remainder of the paper. Memory

allocations are aggressively hoisted/expanded out of loops

and parallel operators prior to code generation.

2.4 Example: K-means Clustering

This section demonstrates several Futhark features, includ-

ing in-place updates and the stream_red SOAC, and shows

how they are used to implement efficiently Rodinia’s [17]

K-means clustering of n d-dimensional points, for arbitrary

k, n, d > 0. This example refers to the computation of clus-

ter sizes. Assuming n ≫ k, the sequential implementation

shown in Figure 4a does O(n) work: the loop-variant ar-

ray counts is initialized to a k-element array of zeros, and

each iteration of the loop increments the element at position

membership[i] by one.

3 While we restrict ourselves to single-element updates here, our approach

readily generalises to bulk updates where an entire range of an array is

updated simultaneously.
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let counts = loop (counts = replicate k 0) for i < n do
let cluster = membership[i]
in counts with [cluster] ← counts[cluster] + 1

(a) Sequential calculation of counts.

let increments =
map(λ(cluster: int): [k]int →

let incr = replicate k 0 in let incr[cluster] = 1 in incr)
membership

let counts =
reduce (λ(x: [k]int) (y: [k]int): [k]int → map (+) x y)

(replicate k 0) increments

(b) Parallel calculation of counts.

let counts = stream_red (map(+))
(λ(acc: ∗[k]int) (chunk: [chunksize]int): [k]int →

let res = loop (acc) for i < chunksize do
let cluster = chunk[i]
in acc with [cluster] ← acc[cluster]+1

in res)
(replicate k 0) membership

(c) Efficiently-sequentialized parallel calculation of counts.

Figure 4: Counting cluster sizes in Rodinia’s K-means.

A possible parallel implementation is shown in Figure 4b.

Each element of membership, denoted cluster is mapped

with a function that produces a k-size array, which has a

one at position cluster and zeros elsewhere. The result of the

mapping is an array of “increments” of type [n][k]int, which

is reduced with the vectorized addition operator map(+),
and a k-size zero vector as the neutral element. This solution

is fully parallel, but not work efficient, as it does O(n · k)
work. Unless the hardware can exploit all n · k degrees of

parallelism, the work overhead is prohibitive.

We need a language construct that can exposes enough

parallelism to take full advantage of the machine, but that

will run efficient sequential code within each thread. The

stream_red SOAC provides just such functionality. As

shown in Figure 4c, stream_red is given an associative re-

duction function (map(+)), together with a function for pro-

cessing a chunk of the array. Intuitively, stream_red’s par-

titions the input array membership into an arbitrary number

of chunks, for example equal to the degree of hardware par-

allelism. Chunks are processed in parallel with each other,

and the per-chunk results are reduced again with vectorized

addition (map(+)). Semantically, acc is initialized to a new

k-size array of zeros for each chunk, and, as such, its in-place

update is guaranteed not to generate data races.

3. In-Place Updates

In a pure language, an array update takes time proportional

to the array size. However, if the original array is known

not to be used after the update point, an implementation can

avoid the array copying and perform the update in-place.

Effectively, the update will then only take time proportional

to the size of the updated element.

In this section, we present a type system extension that

(i) guarantees that the cost of an in-place update is propor-

tional to the element size and (ii) preserves referential trans-

parency. For example, the loop in Figure 4a guarantees O(n)
rather than O(nk) work. Moreover, in Figure 4c, the array

chunk could be (declared unique and) updated in place if de-

sired, because the streaming of membership guarantees dis-

joint chunks, which ensures that no data races are possible.

For simplicity of exposition, we limit loops to have only one

variant variable. Similarly, functions return a single value.

3.1 Uniqueness Type Semantics

In-place updates are supported in Futhark through a type-
system feature called uniqueness types, which is similar to,
but simpler than the one of Clean [4, 5], where the primary
motivation is modeling IO. Our use is reminiscent of the
ownership types of Rust [33]. Alongside a relatively simple
(conservative) aliasing analysis in the type checker, this ap-
proach is sufficient to determine at compile time whether an
in-place modification is safe, and signal an error otherwise.
We introduce uniqueness types through the example below,
which shows a function declaration:

fun modify (n: int) (a: ∗[n]int) (i: int) (x: [n]int): ∗[n]int =
a with [i] ← (a[i] + x[i])

A call modify n a i x returns a, but where a[i] has been

increased by x[i]. In the parameter declaration a: ∗[n]int, the

asterisk (∗) means that modify has been given “ownership”

of the array a. The caller of modify will never reference ar-

ray a after the call. As a consequence, modify can change

the element at index i in place, without first copying the ar-

ray. Further, the result of modify is also unique—the ∗ in the

return type declares that the function will not share elements

with any of the non-unique parameters (it might share ele-

ments with a but not with x). Finally, the call modify n a i x
is valid if neither a nor any variable that aliases a is used on

any execution path following the call to modify.

We say that an array is consumed when it is the source

of an in-place update or is passed as a unique parameter to a

function call; for instance, a is consumed in the expression

a with [i] ← x. Past the consumption point, neither a nor

its aliases may be used again. From an implementation per-

spective, this contract allows type checking to rely on simple

intra-procedural analysis, both in the callee and in the caller,

as described in the following sections.

3.2 Alias Analysis

We perform alias analysis on a program that we assume to be

otherwise type-correct. Our presentation uses an inference

rule-based approach in which the central judgment takes the

form Σ ⊢ e ⇒ 〈σ1, . . . , σn〉, which asserts that, within the

context Σ, the expression e produces n values, where value

number i has the alias set σi. An alias set is a subset of

the variable names in scope, and indicates which variables

an array value (or variable) may share elements with. The

context Σ maps variables in scope to their aliasing sets.
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Σ ⊢ e⇒ 〈σ1, . . . , σn〉

Σ ⊢ v ⇒ 〈{v} ∪ Σ(v)〉
(ALIAS-VAR)

Σ ⊢ k ⇒ 〈∅〉
(ALIAS-CONST)

Σ ⊢ map(l,v(n))⇒ 〈∅
(n)
〉

(ALIAS-MAP)

Σ ⊢ e2 ⇒ 〈s21, . . . , s
2
n〉 Σ ⊢ e3 ⇒ 〈s31, . . . , s

3
n〉

Σ ⊢ if v1 then e2 else e3 ⇒ 〈s21 ∪ s31, . . . , s
2
n ∪ s3n〉

(ALIAS-IF)

Σ ⊢ e1 ⇒ 〈σ(n)〉

Σ, pi 7→ σi ⊢ e2 ⇒ 〈σ′
(n)
〉

Σ ⊢ let (p(n)) =e1 ine2 ⇒ 〈σ′
(n)
〉 \ {p(n)}

(ALIAS-LETPAT)

v is of rank n

Σ ⊢ v[v(n)]⇒ 〈∅〉
(ALIAS-INDEXARRAY)

v is of rank > n

Σ ⊢ v[v(n)]⇒ 〈{v} ∪ Σ(v)〉
(ALIAS-SLICEARRAY)

Σ ⊢ v1 ⇒ 〈σ〉
Σ, v1 7→ σ ⊢ e3 ⇒ 〈σ′〉

Σ ⊢ loop (p1 =v1)
for p2 < v2 do e3

⇒ 〈σ′ \ {p1〉}
(ALIAS-DOLOOP)

Σ ⊢ va with [v(n)] ←vv ⇒ 〈Σ(va)〉
(ALIAS-UPDATE)

lookupfun(vf ) = 〈tr, dt1, . . . , dtn〉
Σ ⊢ vi ⇒ 〈σi〉

σ =
⋃

dti is not of form *t σi

Σ ⊢ vf v1 . . . vn ⇒ 〈σ〉
(ALIAS-APPLY-NONUNIQUE)

lookupfun(vf ) = 〈*tr, dt1, . . . , dtn〉

Σ ⊢ vf v1 . . . vn ⇒ 〈∅〉
(ALIAS-APPLY-UNIQUE)

〈C1,O1〉 ≫ 〈C2,O2〉 : 〈C3,O3〉

(O2 ∪ C2) ∩ C1 = ∅

〈C1,O1〉 ≫ 〈C2,O2〉 : 〈C1 ∪ C2,O1 ∪ O2〉
(OCCURENCE-SEQ)

Figure 5: Aliasing rules.

The aliasing rules are listed in Figure 5, although for

space reasons, some are left out. The ALIAS-VAR-rule de-

fines the aliases of a variable expression to be the alias set of

the variable joined by the name of the variable itself - this is

because v /∈ Σ(v), as can be seen by ALIAS-LETPAT. Alias

sets for values produced by SOACs such as map are empty.

We can imagine the arrays produced as fresh, although the

compiler is of course free to reuse existing memory if it can

do so safely. The ALIAS-INDEXARRAY rule tells us that

a scalar read from an array does not alias its origin array,

but ALIAS-SLICEARRAY dictates that an array slice does,

which fits the implementation intuition.

The most interesting aliasing rules are the ones for func-

tion calls (ALIAS-APPLY-*). Since our alias analysis is

intra-procedural, we are forced to be conservative. There are

two rules, corresponding to functions returning unique and

non-unique arrays, respectively. When the result is unique

the alias set is empty, otherwise the result conservatively

aliases all non-unique parameters.

3.3 In-Place Update Checking

In our implementation, alias computation and in-place up-

date checking is performed at the same time, but is split here

for expository purposes. Let aliases(v) the alias set of the

variable v. We denote by O the set of the variables observed

(used) in expression e, and by C the set of variables con-

sumed through function calls and in-place updates. Together,

the pair 〈C,O〉 is called an occurrence trace.

Figure 5 defines a sequencing judgment between two oc-

currence traces, which takes the form 〈C1,O1〉 ≫ 〈C2,O2〉 :
〈C3,O3〉 and which can be derived if and only if it is ac-

ceptable for 〈C1,O1〉 to happen first, then 〈C2,O2〉, giv-

ing the combined occurrence trace 〈C3,O3〉. The formula-

tion as a judgment is because sequencing is sometimes not

derivable—for example in the case where an array is used

after it has been consumed. The judgment is defined by a

single inference rule, which states that two occurrence traces

can be sequentialized if and only if no array consumed in the

left-hand trace is used in the right-hand trace.

Some of the inference rules for checking if an expression

e is functionally safe with respect to in-place updates are

shown in Figure 6, where the central judgment is e ⊲〈C,O〉.
The rule for in-place update va with [v(n)] ← vv gives

rise to an occurrence trace indicating that we have observed

vv and consumed va. Indices v(n) are ignored as they are

necessarily scalar variables and cannot be consumed.

Another case is checking the safety of a map expression.

We do not wish to permit the function of a map to consume

any array bound outside of it, as that would imply the array

is consumed once for every iteration of the map. However,

the function may consume its parameters, which should be

seen as the map expression as a whole consuming the corre-

sponding input array. This restriction also preserves the par-

allel semantics of map, because different rows of a matrix

can be safely updated in parallel. An example can be seen

on Figure 7, which shows an in-place update nested inside an

array. To express this restriction, we define an auxiliary judg-

ment P ⊢ 〈C1,O1〉△〈C2,O2〉. Here, P is a mapping from

parameter names to alias sets. Any variable v in O1 that has

a mapping in P is replaced with P[v] to produce O2. If no

such mapping exists, v is simply included in O2. Similarly,

any variable v in C1 that has a mapping in P is replaced with

the variables in the set P[v] (taking the union of all such re-

placements), producing C2. However, if v does not have such

a mapping, the judgment is not derivable. The precise infer-

ence rules are shown at the bottom of Figure 6. Do-loops and

function declarations can be checked for safety in a similar

way; a function is safe with respect to in-place updates if its
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e ⊲ 〈C,O〉

v ⊲ 〈∅, aliases(v)〉
(SAFE-VAR)

k ⊲ 〈∅, ∅〉
(SAFE-CONST)

e1 ⊲ 〈C1,O1〉 e2 ⊲ 〈C2,O2〉
〈C1,O1〉 ≫ 〈C2,O2〉 : 〈C3,O3〉

let (v1, . . . , vn) =e1 in e2 ⊲ 〈C3,O3〉〉
(SAFE-LETPAT)

v1 ⊲ 〈C1,O1〉 e2 ⊲ 〈C2,O2〉 e3 ⊲ 〈C3,O3〉
〈C1,O1〉 ≫ 〈C2,O2〉 : 〈C′2,O

′

2〉
〈C1,O1〉 ≫ 〈C3,O3〉 : 〈C′3,O

′

3〉

if v1 then e2 else e3 ⊲ 〈C′2 ∪ C
′

3,O
′

2 ∪ O
′

3〉
(SAFE-IF)

va with [v(n)] ←vv ⊲ 〈aliases(va), aliases(vn)〉
(SAFE-UPDATE)

eb ⊲ 〈C,O〉

pi 7→ aliases(vi)
(n)
⊢ 〈C,O〉△〈C′,O′〉

map (λp(n):t
(m)
→eb)v

(n)
⊲ 〈C′,O′〉

(SAFE-MAP)

P ⊢ 〈C1,O1〉△〈C2,O2〉

P ⊢ 〈∅, ∅〉△〈∅, ∅〉
(OBSERVE-BASECASE)

v ∈ P P ⊢ 〈∅,O〉△〈∅,O′〉

P ⊢ 〈∅, {v} ∪ O〉△〈∅,P[v] ∪ O′〉
(OBSERVE-PARAM)

¬(v ∈ P) P ⊢ 〈∅,O〉△〈∅,O′〉

P ⊢ 〈∅, {v} ∪ O〉△〈∅, {v} ∪ O′〉
(OBSERVE-NONPARAM)

v ∈ P P ⊢ 〈C,O〉△〈C′,O′〉

P ⊢ 〈{v} ∪ C,O〉△〈P[v] ∪ C′,O′〉
(OBSERVE-NONPARAM)

Figure 6: Checking uniqueness and parameter consumption.

-- This one is OK and considered to consume ’as’.
let bs = map (λ(a) → a with [0] ← 2) as
let d = iota m
-- This one is NOT safe, since d is not a formal parameter.
let cs = map (λ(i) → d with [i] ← 2) (iota n)

Figure 7: Examples of maps with in-place updates.

body consumes only those of the function’s parameters that

are unique.

4. Streaming SOACs and Their Fusion Rules

Futhark’s fusion engine builds previously published work [28,

32]. Semantically, producer-consumer fusion is realized

greedily, at all nesting levels, during a bottom-up traver-

sal of the dependency graph, in which SOACs are fused by

T2 graph reductions (i.e., a SOAC is fused if it is the source

of only one dependency edge and the target is a compatible

SOAC). If producer-consumer fusion is not possible, then

horizontal fusion is attempted within the same block of let

Notation: n,m, p, q, r integers, a, b, c arrays, f function, α, β, γ types, ⊕

associative binop, #̄ vectorized array concatenation, [n]α
(q)

expands to

[n]α1, . . . , [n]αq , and we informally use a[i]
(q)
≡ a1[i], . . . , aq[i] as

tuple value.

map : Πn.(α(p) → β
(q)

)→ [n]α
(p)
→ [n]β

(q)

reduce : Πn.(α→ α→ α)→ α→ [n]α→ α

scan : Πn.(α→ α→ α)→ α→ [n]α→ [n]α

stream_map : Πn.(Πm.[m]β
(q)
→ [m]γ

(r)
)→ [n]β

(q)
→ [n]γ

(r)

stream_map f b
(q)
≡ c1

(r)#̄ . . . #̄cs
(r)

where ci
(r) = f(bi

(q)
)

for any s-partitioning of b
(q)

= b1
(q)

#̄ . . . #̄bs
(q)

stream_red : Πn.(α(p) → α(p) → α(p))→

(Πm.α(p) → [m]β
(q)
→ (α(p), [m]γ

(r)
))→

α(p) → [n]β
(q)
→ (α(p), [n]γ

(r)
)

stream_red ⊕ f (e(p)) b
(q)
≡ (e(p) ⊕ a1

(p) ⊕ . . .⊕ as
(p), c(r))

where (ai, ci) = f e bi and c = c1 #̄ . . . #̄cs,

for any s-partitioning of b
(q)

= b1
(q)

#̄ . . . #̄bs
(q)

stream_seq : Πn.(Πm.α(p) → [m]β
(q)
→ (α(p), [m]γ

(r)
)→

α(p) → [n]β
(q)
→ (α(p), [n]γ

(r)
)

stream_seq f (a0(p)) b
(q)
≡ (as(p), c1(r)#̄ . . . #̄cs

(r))

where (ai
(p), ci

(r)) = f ai−1
(p)bi

(q)

for any s-partitioning of b
(q)

= b1
(q)

#̄ . . . #̄bs
(q)

Figure 8: Types and semantics of several SOACs.

expressions. The technique centers on the redomap SOAC

(generalised tostream_red in this paper), which allows

repeated composition of map, reduce, and in some cases

filter operators.

4.1 Types and Rationale of Streaming SOACs

Figure 8 presents the types and semantics of the stream-

ing SOACs. The stream_map SOAC receives an arbitrary

number q of input arrays b
(q)

of the same outermost size n
and produces an arbitrary number of arrays necessarily of

outer size n, by (i) applying its function argument to an ar-

bitrary partitioning of the input (but all bi are partitioned in

the same way) and (ii) concatenating the results. The seman-

tics is that chunks can be processed in parallel, but it is the

user who ensures the strong invariant that any partitioning

leads to the same result. The stream_red SOAC extends

stream_map by allowing each chunk to produce an ad-

ditional result, which is then reduced in parallel across the

chunks by an associative operator.4

4 The operators passed into reduce, scan, and stream_red are user de-

fined and are assumed to be associative, but the user may specify commu-
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F1 : map f b =⇒ stream_map (λ(bc) → map f bc) b

F2 : map f b =⇒ stream_seq (λ(a,bc) → (0, map f bc)) (0) b

F3 : reduce ⊕ e b =⇒

stream_red ⊕ (λ(a,bc) → a ⊕ reduce ⊕ e bc) (e) b

F4 : reduce ⊕ e b =⇒

stream_seq (λ(a,bc) → (a) ⊕ reduce ⊕ e bc) (e) b

F5 : scan ⊕ e b =⇒ stream_seq(λ(a,bc) →

let xc = scan ⊕ e bc
let yc = map (a ⊕) xc

in (last(yc), yc)) (e) b

F6 :

let (r1, x,y) =
stream_red ⊕ f (e1) a

let (r2,z) =

stream_red ⊙ g (e2) x b

=⇒

let (r1, r2, x, y, z) = stream_red

(λ(c1, d1, c2, d2) →

(c1 ⊕ c2, d1 ⊙ d2))

(λ(e1, e2, ac, bc) →
let (r1,xc,yc) = f e1 ac

let (r2,zc) = g e2 xc bc
in (r1, r2, xc, yc, zc))

(e1, e2) a b

F7 :
let (r1, x,y) =

stream_seq f (e1) b

let (r2,z) =

stream_seq g (e2) x d

=⇒

let (r1, r2, x, y, z) = stream_seq

(λ(a1, a2, bc, dc) →

let (r1,xc,yc) = f a1 bc

let (r2,zc) = g a2 xc dc
in (r1, r2, xc, yc, zc))

(e1, e2) b d

Figure 9: Fusion rules for streaming SOACs.

The rationale for supporting parallel streams in Futhark is

to allow a generic encoding of strength-reduction invariants.

In essence, the streaming SOACs express all available par-

allelism, together with an alternative for efficient sequential-

ization of the excess parallelism. The optimal chunk size is

thus the maximal one that still fully occupies hardware. For

example, Sobol pseudo-random numbers can be computed

by a slower but map-parallel formula, or by a cheaper (re-

currence) one, but which requires scan parallelism [1]. This

property can be expressed elegantly with stream_map.

Each chunk starts by applying the independent formula once,

then sequentially applying the cheaper formula. K-means

from Section 2.4 is another example.

The stream_seq SOAC processes chunks sequentially:

the result of processing chunk i becomes the accumulator

for processing chunk i + 1. Note that stream_seq permits

recovery of all inner parallelism by maximizing chunk size

such that stream_seq f a ≡ f a, while chunk size equal to

1 typically leads to efficient sequentialization and asymptot-

ically reduced per-thread memory footprint.

4.2 Fusion Rules of Streaming Operators

Figure 9 presents several of the rewrite rules, which assume

that fusion is legal between the two SOACs. Rules F1–F5

tativity as well. Figure 8 also shows the types of map, reduce, and scan;

their semantics was introduced in Section 2. Other SOACs are supported

(filter, scatter), but they are not in the scope of this paper.

show that map, reduce, and scan can be straightforwardly

converted to parallel and sequential streams. In particular,

the scan’s translation (only) to stream_seq states that if

the reduction of all elements up until the current chunk is

known to be the accumulator a, then the current-chunk result

can be computed by independently scanning the input chunk

and adding to each of its elements the contribution of the

previous chunks a. The last element of the result becomes

the accumulator for the next iteration.

Rules F6 and F7 show how to compose two uses of

stream_red and stream_seq under producer-consumer

fusion (x 6= ∅) or horizontal fusion (x = ∅), respectively.

The calls of function arguments are serialized inside the new

function and the input and result accumulator and arrays

are merged. In the case of stream_red, the associative

operators are also tupled to reduce component-wise each of

the corresponding results. We remark that, in practice, the

input arrays/arguments and results of the fused operator that

are not used are removed.

Composition between streama_red and stream_map
is not shown since it is a subcase of the F6 composition.

Finally, to fuse a map or reduce (or scan) with a paral-

lel/sequential stream, one transforms it first to that type of

stream and then fuses it by the rules F6 and F7. Notice that

fusion between parallel and sequential streams is disallowed

because it would result in a sequential stream, which may

lose the strength-reduction invariant encoded by the user.

We conclude with two remarks. First, in-place updates

are not a burden on the fusion engine; the only significant

restriction is not to move a source SOAC past a consumption

point of one of its input array, for example, in cases such as

let x=map(f,a) in let a[0]=0 in map(g,x).
Second, the current fusion engine is based on rewrite

rules and not on array index analysis. If an array is indexed

explicitly in a target SOAC, then its producer SOAC will

not be fused with the target. This is not a severe limitation

because good programming style in Futhark is to use paral-

lel SOACs with implicit indexing whenever possible. This

is helped by the delayed-semantics of reshaping transforma-

tions such as transposition. If implicit indexing is not possi-

ble then fusion without duplicating computation is unlikely.

In such cases the user can use explicit indexing by applying

SOACs over iota. Loops should be used as last resort since

they have sequential semantics.

4.3 Example of Fusion

Figure 10a shows a simplified example from the Option-

Pricing benchmark [1]. The stream_map SOAC is used

to apply an independent but computationally expensive for-

mula on the first element of the chunk f ind(iss[0]), and

to process the rest of the chunk sequentially with a scan-

based cheaper formula. Figure 10b shows the partial result

after fusing the stream_red and reduce on the outermost

level. One can observe that there seems to be a tension be-
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fun main(n: int): int =
let Y = stream_map (λ(iss: [m]int): [m]int →

let a = find (iss[0])
let t = map (g a) iss
let y = scan ⊙ 0 t
in y)

(iota n)
let b = reduce (+) 0 Y
in b

(a) Program before fusion.

fun main(n: int): (int,int) =
stream_red (+) (λ(e1: int) (iss: [m]int): int →

let a = find(iss[0])
let t = map (g a) iss
let y = scan (⊙) 0 t
let b = reduce (+) e1 y
in b)

(0) (iota n)

(b) Program after fusion at outer level.

fun main(n: int): (int,int) =
stream_red (+) (λ(e1: int) (iss: [m]int): int →

let a = find(iss[0]) in
let (tmp, b) =

stream_seq (λay (is: [q]int): (int,int) →
let t = map (g a) is
let y’= scan ⊙ 0 t
let y = map (ay⊙) y’
let b = reduce (+) e1 y
in (y[q-1], ab+b))

e1 iss
in b)

(0) (iota n)

(c) Program after all-level fusion.

Figure 10: Demonstrating streaming-operator fusion.

tween efficient sequentialization that would require chunk-

size maximization and the per-thread memory footprint. The

latter refers to the use of scan, which cannot be fused in a

parallel construct with the reduce following it, hence each

thread would use memory proportional to the chunk size

m. Figure 10c shows the result after the map, scan, and

reduce inside stream_red’s function have been fused in a

stream_seq, by the application of rules F2, F4, F5, and

F7. The tension has been solved. Indifferent to the outer

chunk m, if stream_seq is efficiently sequentialized by

choosing its chunk size q = 1 (and replacing it with a loop)

then the thread footprint is O(1). That is, all arrays used in

stream_seq have size one and can be replaced by scalars

held in registers.

5. Flattening and Locality Of Reference

This section presents a transformation that aims to enhance

the degree of statically-exploitable parallelism by reorganiz-

ing the (imperfectly) nested parallelism into perfect-SOAC

nests, in which the outer levels correspond to map operators

(which are trivial to map to GPUs), and the innermost one

is an arbitrary SOAC or scalar code.5 The resulting perfect

nests are then translated to a different IR, resembling GPU

kernels; this last step is outside the scope of the paper.

In a purely functional setting, Blelloch’s transforma-

tion [11] flattens (bottom-up) all available parallelism, while

asymptotically preserving the depth and work of the original

nested-parallel program. The approach is however arguably

inefficient in some cases [7], for example because it does not

account for locality of reference.

Our algorithm, presented in Section 5.1, builds on map-

loop interchange and map distribution,6 and attempts to ex-

ploit some of the efficient top-level parallelism, for example

by (i) not seeking the parallelism inside if branches, which

would require expensive filter operations, and by (ii) ter-

minating distribution when it would introduce irregular ar-

rays, which would obscure access patterns and prevent fur-

ther spatial- and temporal-locality optimizations.

To demonstrate the viability of performing further op-

timisation on the output of our flattening algorithm, Sec-

tion 5.2 reports (i) optimization of non-coalesced accesses

by transposing the inner, non-parallel array dimensions out-

wards, and (ii) simple block tiling in fast on-chip memory7,

which is driven by recognizing streamed arrays that are in-

variant to one of the parallel dimensions of the SOAC nest.

5.1 Flattening Example and Rules

Figures 11a and 11b demonstrate the application of our al-

gorithm on a contrived but illustrative example that demon-

strates many of the flattening rules exploited in the genera-

tion of efficient code for the various benchmark programs.

The original program consists of an outer map that en-

closes (i) another map operator implemented as a sequence

of maps, reduces, and scans and (ii) a loop containing a

map whose implementation is given by a reduce and some

scalar computation. As written, only one level of parallelism

(e.g., the outermost) can be statically mapped on GPGPU

hardware. Our algorithm distributes the outer map across

the enclosed map and loop bindings, performs a map-loop
interchange, and continues distribution. The result consists

of four perfect nests: a map-map and map-map-map nest

at the outer level, and a map-map-reduce (segmented re-

duction) and map-map nest contained inside the loop. In

the first map-map nest, the scan and reduce are sequential-

ized because further distribution would generate an irregular

array, as the size p of cs is variant to the second map.

Figure 12 lists the rules that form the basis of the flat-

tening algorithm. We shall use Σ to denote map nest con-

texts, which are sequences of map contexts, written M x y,

5 For example, a map-nest ending in a scan corresponds to a “segmented”

scan [10], which is implemented as a scan with a modified (associative)

operator. Likewise with a nested reduction. Such cases are handled by the

compiler, but the details related to these are outside the scope of this paper.
6 It is always safe to interchange inwards or to distribute a parallel loop [36].
7 Called shared memory in OpenCL and local memory in CUDA.
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let (asss, bss) =
map

(λps: ([m][m]int,[m]int) →
let ass =
map (λp: [m]int →

let cs =
scan (+) 0 (iota p)

let r = reduce (+) 0 cs
let as = map (+r) ps
in as)

ps
let bs =
loop (ws=ps) for i < n do

let ws’ =
map (λas w: int →

let d = reduce (+) 0 as
let e = d + w
let w’ = 2 ∗ e
in w’)

ass ws
in ws’

in (ass, bs))
pss -- pss : [m][m]int

(a) Program before distribution.

let rss =
map (λps: [m]int →

map (λp: int →
let cs = scan (+) 0 (iota p)
let r = reduce (+) 0 cs in r)

ps) pss
let asss =
map (λps rs: [m]int →

map (λint (r) →
map (+r) ps)

fs) pss rss
let bss =
loop (wss=pss) for i < n do

let dss =
map(λass: [m]int →

map(λas: int →
reduce (+) 0 as

, ass), asss) in
map (λws, ds: [m]int →

map (λw d: int →
let e = d + w in
let w’ = 2 ∗ e in w’)

ws ds) wss dss

(b) Program after distribution.

Figure 11: Extracting kernels from a complicated nesting.

where x denotes the bound variables of the map operator

over the arrays held in y. The flattening rules, which take

the form Σ ⊢ e ⇒ e′, specify how a source expression

e may be translated into an equivalent target expression e′

in the given map nest context Σ. Several rules may be ap-

plied in each situation. The particular algorithm used by

Futhark bases its decisions on crude heuristics related to the

structure of the map nest context and the inner expression.

Presently, nested stream_reds are sequentialised, while

nested maps, scans, and reduces are parallelised. These

rules were mainly chosen to exercise the code generator, but

sequentialising stream_red is the right thing to do for most

of the data sets we use in Section 6.

For transforming the program, the flattening algorithm is

applied (in the empty map nest context) on each map nest

in the program. Rule G1 (together with rule G3) allows for

manifestation of the map nest context Σ over e. Whereas

rule G1 can be applied for any e, the algorithm makes use of

this rule only when no other rules apply. Given a map nest

context Σ and an instance of a map SOAC, rule G2 captures

the map SOAC in the map nest context. This rule is the only

rule that extends the map nest context.

Rule G4 allows for map fission (map (f ◦ g)⇒ map f ◦
map g), in the sense that the map nest context can be ma-

terialized first over e1 and then over e2 with appropriate

additional context to allow for access to the now array-

materialized values that were previously referenced through

the let-bound variables a0. The rule can be applied only if

the intermediate arrays formed by the transformation are

ensured to be regular, which is enforced by a side condi-

tion in the rule. To avoid unnecessary excessive flattening on

Σ ⊢ map (λ x → e) y ⇒ e′

Σ,M x y ⊢ e⇒ e′
(G1)

Σ,M x y ⊢ e⇒ e′

Σ ⊢ map (λ x → e) y ⇒ e′
(G2)

∅ ⊢ e⇒ e
(G3)

Σ = M xp yp, . . . ,M x1 y1
Σ′ = M (xp, ap−1) (yp, ap), . . . ,M (x1, a0) (y1, a1

q1)
ap, . . . , a1 fresh names

size of each array in a0 invariant to Σ
Σ ⊢ e1 ⇒ e′1 Σ′ ⊢ e2 ⇒ e′2

Σ ⊢ let a0 = e1 in e2 ⇒ let ap = e′1 in e′2
(G4)

g = reduce (λ y2∗p → e) np

Σ ⊢ map (g) (transpose z0) . . . (transpose zp−1)⇒ e′

f = map (λ y2∗p → e)

Σ ⊢ reduce (f) (replicate k n
p
) zp ⇒ e′

(G5)

Σ ⊢ rearrange (0, 1 + k0, . . . , 1 + kn−1) y ⇒ e

Σ,M x y ⊢ rearrange k
n
x⇒ e

(G6)

Σ′ = Σ,M (x, y) (xs, ys) ({n} ∪ q) ∩ (x, y) = ∅
m = outer size of each of xs and ys

f contains exploitable (regular) inner parallelism

Σ ⊢ loop (zs′ = replicate m zi, ys′ = ys)
for i < n do map(f i q) xs ys ys′ zs′ ⇒ e

Σ′ ⊢ loop (z′ = z, y′ = y) =
for i < n do f i q x y y′ z ⇒ e

(G7)

Figure 12: Flattening rules.

scalar computations, the let-expressions are rearranged us-

ing a combination of let-floating [43] and tupling for group-

ing together scalar code in a single let-construct. In essence,

inner SOACs are natural splitting points for fission. For ex-

ample, let b = x+1 in let a = b+2 in replicate n a
is split as let a=e1 in e2, where e2 is replicate n a and e1
is let b = x+1 in b+2.

Rule G5 allows for reduce-map interchange where it

is assumed that the source neutral reduction element is a

replicated value. The original pattern appears in K-means

(see Figure 4c) as a reduction with a vectorized operator,

which is inefficient if executed as such. The interchange

results in a segmented-reduce operator (applied on equally-

sized segments), at the expense of transposing the input

array(s). This rule demonstrates a transformation of both

schedule and (if the transposition is manifested) data of the

program being optimized.

Rule G6 allows for distributing a rearrange construct

by rearranging the outer array (input to the map nest) with
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an expanded permutation. The semantics of rearrange p a
is that it returns a with its dimensions reordered by a

statically-given permutation p. For instance, the expression

rearrange (2,1,0) a reverses the dimensions of the three-

dimensional array a. For convenience, transpose a is syn-

tactic sugar for rearrange(1,0,...) a, which swaps the two

outermost dimensions. Similar rules can be added to handle

other expressions that have a particularly efficient formula-

tion when distributed on their own, such as concatenation

(not covered in this paper).

Finally, rule G7 implements a map-loop interchange.

The simple intuition is that

map (λx → loop (x’=x) for i < n do (f x’)) xs
is equivalent to

loop (xs’=xs) for i < n do (map f xs’)
because they both produce [fn(xs[0]), . . . ,fn(xs[m-1])].
The rule is sufficiently general to deal with all variations

of variant and invariant variables in the loop body. The side

condition in the rule ensures that z ⊆ q are free variables and

thus invariant to Σ. The rule is applied only if the body of

the loop contains inner parallelism, such as maps, otherwise

its application is not beneficial (e.g., it would change the

Mandelbrot benchmark from Section 6 to have a memory-

rather than a compute-bound behavior). However, rule G7 is

essential for efficient execution of the LocVolCalib bench-

mark, because a loop separates the outer map from four inner

maps.

We conclude by remarking that some of the choices made

in the flattening rewrite rules about how much parallelism

to exploit and how much to sequentialize efficiently are ar-

bitrary, because there is no size that fits all. For example,

we currently sequentialize a stream_red if it is inside a

map nest, but the algorithm can easily be made more ag-

gressive. A more general solution would be to generate all

possible code versions, and to discriminate between them at

runtime based on static predicates that test whether the ex-

ploited parallelism is enough to fully utilize hardware. Work

is in progress in this direction.

5.2 Optimizing Locality of Reference

Ensuring coalesced accesses to global memory is critical for

GPU performance. Several of the benchmarks discussed in

Section 6, such as FinPar’s LocVolCalib, Accelerate’s N-

body, and Rodinia’s CFD, K-means, Myocyte, and LavaMD,

exhibit kernels in which one or several innermost dimen-

sions of the mapped arrays are processed sequentially inside

the kernel. In the context of our flattening algorithm, this

typically corresponds to the case where rule G1 has been

applied with e being a SOAC. This nested SOAC is trans-

formed to a stream_seq using the rules of Figure 9; remov-

ing parallelism, but retaining access pattern information.

A naive translation of a nested stream_seq would lead

to consecutive threads accessing global memory with a stride

equal to the size of the inner (non-parallel) array dimensions,

which may generate one-order-of-magnitude slowdowns.

The Futhark compiler solves this by, intuitively, transposing

the non-parallel dimensions of the array innermost, and the

same for the result and all temporary arrays created inside

the kernel.8 This approach is guaranteed to resolve coalesc-

ing if the sequential-dimension indices are invariant to the

parallel array dimensions. For example, consider this ex-

pression: map (λxs → reduce (+) 0 xs) xss.
Assuming the inner reduction is implemented sequentially,

the expression is optimized by changing the representation

of xss to be column major (the default is row major), via

transposition in memory, as follows:

let xss’ = as_column_major xss
in map (λxs → reduce (+) 0 xs) xss’

The type of xss’ is the same as that of xss. The ap-

proach generalizes to higher rank arrays by using a variant of

rearrange that only changes the representation, not the type.

The representation of an array is recorded as a symbolic

composition of affine transformations, which needs to be ex-

amined to determine in what way the source array should be

transposed to achieve coalesced accesses.

The compiler also performs simple block tiling of parallel

dimensions, which is driven by recognizing arrays that are

used as input to stream_seq constructs and are invariant to

one of the parallel dimensions. For example, the code

map (λp → stream_seq (λa (ps’: [q]int) →
g a ps’) ps) ps

exhibits such an optimization opportunity for the streamed

array ps, and is transformed into:

map (λp → stream_seq (λa (ps’: [q]int) →
let ps’’ = local ps’
in g a ps’’) (0) ps) ps

where ps’’ is a fast memory9 array created by collective

copying (local), and used instead of ps’ in g. The size q
is determined (at runtime) such that the array ps’’ will fit

in the fast memory. This example essentially illustrates the

structure of the N-body benchmark discussed in Section 6.

Futhark also supports two-dimensional tiling where two

streamed arrays are invariant to different parallel dimensions

(e.g., as in matrix-matrix multiplication). LavaMD exhibits

an interesting tiling pattern that we support, in which the

to-be-tiled array is the result of an indirect index, such as

map(λi → map (λj →
j + stream_seq g (0) (xs[f i])) js) is

but two levels deep in the kernel code.

8 The common case corresponds to directly mapped arrays, but we also per-

form simple index analysis to support common explicitly-indexed accesses.
9 Called local memory in OpenCL, and shared memory in CUDA.
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6. Evaluation on Sixteen Benchmarks

We have manually translated programs from the Rodinia [17],

FinPar [1], Parboil [50], and Accelerate [15] benchmark

suites to Futhark.10 The three former consist of hand-

written OpenCL programs, while Accelerate is an estab-

lished Haskell DSL for GPU computation. The translation

of Accelerate programs is straightforward; for Rodinia and

FinPar, parallel loops were translated to bulk-parallel opera-

tors such as map and reduce, while preserving the original

code structure as much as possible. We have focused on the

shorter Rodinia benchmarks, while FinPar contains more

challenging programs. We invoke the Futhark compiler with

no benchmark-specific flags — no tuning is done, and the

exact same code is executed on both of our test systems.

The compiler inserts instrumentation that records total run-

time minus the time taken for (i) loading program input onto

the GPU, (ii) reading final results back from the GPU, and

(iii) OpenCL context creation and kernel build time. (Ex-

cluding these overheads emphasizes the performance dif-

ferences.) Any other host-device communication/copying

is measured. Rodinia benchmarks have been modified to

time similarly, while Accelerate and FinPar already did so.

When in doubt, we have erred in favor of non-Futhark im-

plementations. We use Accelerate version 0.15.1, with the

CUDA backend. Runtimes were measured through the built-

in --benchmark command line option.

Figure 13 and Table 1 show the speedups and the runtimes

averaged on ten runs. Two systems were used, namely an

NVIDIA GeForce GTX 780 Ti with CUDA 8.0 (blue) and

an AMD FirePro W8100 (orange). Only benchmarks with

OpenCL implementations were executed on the latter.

6.1 Discussion of Benchmark Results

As the Futhark compiler generates OpenCL, all Rodinia

benchmarks are the OpenCL versions, except where noted.

The used datasets are presented in Table 2.

Most of our slowdown is related to generic issues of un-

necessary copying and missing micro-optimization that are

common to compilers for high-level languages; exceptions

noted below. The speedup on Backprop seems related to a

reduction that Rodinia has left sequential. Running time of

the training phase is roughly equal in Rodinia and Futhark

(∼ 10 ms). Rodinia’s implementation of HotSpot uses time

tiling [26], which seems to pay off on the NVIDIA GPU, but

not on AMD. Futhark’s slowdown is due to double buffer-

ing via copy rather than pointer switching, accounting for

30% of runtime. Our speedup on K-means is due to Ro-

10 We have selected the MRI-Q benchmark from Parboil mainly to demon-

strate tiling. We have selected the four (out of 15 available) Accelerate ex-

amples that were best suited as self-contained benchmarks. We have se-

lected two out of three FinPar benchmarks, because the third one contains

limited (irregular) parallelism. Finally, we have selected the 9 (out of the

21 available) Rodinia benchmarks that (i) looked most friendly from a data-

parallel perspective, and (ii) were expressible in terms of a nested composi-

tion of map, reduce, scan, stream_seq, stream_red, stream_map.

NVIDIA GTX780 AMD W8100

Benchmark Ref. Futhark Ref. Futhark

Backprop 46.9 20.7 41.5 12.9

CFD 1878.2 2235.9 3610.0 4177.5

HotSpot 35.9 45.3 260.4 72.6

K-means 1597.7 572.2 1216.1 1534.9

LavaMD 5.1 6.7 9.0 7.1

Myocyte 2733.6 555.4 — 2979.8

NN 178.9 11.0 193.2 37.6

Pathfinder 18.4 7.4 18.2 6.5

SRAD 19.9 16.1 195.1 34.8

LocVolCalib 1211.1 1293.2 3117.0 5015.8

OptionPricing 136.0 106.8 429.5 360.8

MRI-Q 20.2 15.5 17.9 14.3

Crystal 41.0 8.4 — 8.4

Fluid 268.7 100.4 — 221.8

Mandelbrot 30.8 8.1 — 14.8

N-body 613.2 89.5 — 269.8

Table 1: Average benchmark runtimes in milliseconds.

Benchmark Dataset

Backprop Input layer size equal to 220

CFD fvcorr.domn.193K

HotSpot 1024× 1024; 360 iterations

K-means kdd_cup

LavaMD boxes1d=10

Myocyte workload=65536, xmax=3

NN Default Rodinia dataset duplicated 20 times

Pathfinder Array of size 105

SRAD 502× 458; 100 iterations

LocVolCalib large dataset

OptionPricing large dataset

MRI-Q large dataset

Crystal Size 2000, degree 50
Fluid 3000× 3000; 20 iterations

Mandelbrot 4000× 4000; 255 limit

N-body N = 105

Table 2: Benchmark dataset configurations.

dinia not parallelizing computation of the new cluster cen-

ters, which is a segmented reduction. Myocyte’s dataset has

been expanded because its degree of parallelism was one

(workload=1), but we have done so in the CUDA version.

We attribute our speedup to automatic coalescing optimiza-

tions, which is tedious to do by hand on such large programs.

NN speedup is due to Rodinia leaving 100 reduce op-

erations for finding the nearest neighbors sequential on the

CPU. Possibly because the reduce operator is atypical; it

computes both the minimal value and the corresponding in-

dex. Speedup is less impressive on the AMD GPU, due to

higher kernel launch overhead—this benchmark is domi-

nated by frequent launches of short kernels.

For Pathfinder, Rodinia uses time tiling, which, unlike

HotSpot, does not seem to pay off on the tested hardware.

The four benchmarks Crystal, Fluid, Mandelbrot, and N-

body are from Accelerate. The N-body simulation comprises
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Figure 13: Relative speedup compared to reference implementations (some bars are truncated for space reasons).

a width-N map where each element performs a fold over

each of the N bodies.

OptionPricing from FinPar is essentially a map-reduce-

composition. The benchmark primarily measures how well

the Futhark compiler sequentialises excess parallelism in-

side the complex map function. LocVolCalib from FinPar

is an outer map containing a sequential for-loop, which it-

self contains several more maps. Exploiting all parallelism

requires the compiler to interchange the outer map and the

sequential loop. The slowdown on the AMD GPU is due

to transpositions, inserted to fix coalescing, being relatively

slower than on the NVIDIA GPU.

6.1.1 Impact of Optimisations

Impact was measured by turning individual optimisations off

and re-running benchmarks on the NVIDIA GPU. We report

only where the impact is non-neglible.

Fusion has an impact on K-means (×1.42), LavaMD

(×4.55), Myocyte (×1.66), SRAD (×1.21), Crystal (×10.1),

and LocVolCalib (×9.4). Without fusion, OptionPricing, N-

body, and MRI-Q fail due to increased storage requirements.

In the absence of in-place updates, we would have to im-

plement K-means as on Figure 4b—the resulting program is

slower by ×8.3. Likewise, LocVolCalib would have to im-

plement its central tridag procedure via a less efficient scan-

map composition, causing a×1.7 slowdown. OptionPricing

uses an inherently sequential Brownian Bridge computation

that is not expressible without in-place updates.

The coalescing transformation has an impact on K-

means (×9.26), Myocyte (×4.2), OptionPricing (×8.79),

and LocVolCalib (×8.4). Loop tiling has an impact on

LavaMD (×1.35), MRI-Q (×1.33), and N-body (×2.29).

7. Related Work

Futhark builds on previous work in type systems and par-

allel compilation techniques. More elaborate and powerful

uniqueness [4, 5], linear [24] and affine [54] type systems

than Futhark’s exist. To our knowledge, these techniques

have not previously been used for performance-oriented cost

guarantees in a parallel language. Delite [51] and Lime [2]

are impure languages that use effect systems to ensure

that side effects cannot inhibit safe parallelisation, although

Delite does permit a potentially unsafe parallel foreach. Pre-

vious work [37] presents a data structure for functional ar-

rays with asymptotically-efficient in-place updates and par-

allel semantics, but without requiring a type system exten-

sion. The cost guarantees assume a task-parallel (fork/join)

rather than a data-parallel setting. The implementation re-

quires underlying mutable arrays, and is based on run-time

structures to handle the change-logs of interior arrays (po-

tentially involving allocation), which is not straightforward

to compile to efficient GPU code. In comparison, uniqueness

types are checked statically, and the code generated for an

in-place update is a simple memory write.

There is a rich body of literature on embedded array

languages and libraries targetting GPUs. Imperative solu-

tions include Copperhead [14], Accelerator [53], and deep-

learning DSLs, such as Theano [6] and Torch [20].

Purely functional languages include Accelerate [39], Ob-

sidian [18], and NOVA [19]. More recent work [48] shows

that stochastic combinations of rewrite rules opens the door

to autotuning. These languages support neither arbitrary

nested parallelism, nor explicit indexing and efficient se-

quential code inside their parallel constructs. Work has been

done on designing purely functional representations for

OpenCL kernels [49], which could in principle be targeted

by our flattening algorithm. The Futhark compiler presently

uses a similar (but simpler) representation, the details of

which are outside the scope of this paper.

A number of dataflow languages aim at efficient GPU

compilation. StreamIt supports a number of static optimiza-

tions on various hardware, for example, GPU optimiza-

tions [34] include memory-layout selection (shared/global

memory), resolving shared-memory bank conflicts, increas-

ing the granularity of parallelism by vertical fusion, and

untilizing unused registers by software prefetching and loop

unrolling, while multicore optimizations [25] are aimed at

finding the right mix of task, data and pipeline parallelism.
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Halide [46] uses a stochastic approach for finding optimal

schedules for fusing stencils by a combination of tiling, slid-

ing window and work replication. This is complementary to

Futhark, which does not optimise stencils, nor uses autotun-

ning techniques, but could benefit from both. In comparison,

Futhark supports arbitrary nested parallelism and flattening

transformation, together with streaming SOACs that generi-

cally encode strength-reduction invariants.

Delite uses rewrite rules to optimize locality in NUMA

settings [13] and proposes techniques [38] for handling sim-

ple cases of nested parallelism on GPUs by mapping inner

parallelism to CUDA block and warp level. We use transpo-

sition to handle coalescing, and, to our knowledge, no other

compiler matches our AST-structural approach to kernel ex-

traction, except for those that employ full flattening, such

as NESL [7, 12], which often introduces inefficiencies and

does not support in-place updates. Data-only flattening [8]

shows how to convert from nested to flat representation of

data, without affecting program structure. This would be a

required step in extending Futhark to exploit irregular paral-

lelism. In comparison, Futhark flattens some of the top-level

parallelism control, while preserving the inner structure and

opportunities for locality-of-reference optimizations.

Imperative GPU compilation techniques rely on low-level

index analysis ranging from pattern-matching heuristics [22,

56] to general modeling of affine transformations by poly-

hedral analysis [44, 55]. Since such analyses often fight

the language, solutions rely on user annotations to improve

accuracy. For example, OpenMP annotations can be used

to enable transformations of otherwise unanalyzable pat-

terns [16], while PENCIL [3] provides a restricted C99-like

low-level language that allows the (expert) user to express

the parallelism of loops and provide additional informa-

tion about memory access patterns and dependencies. X10

demonstrates an elegant integration of GPUs into a PGAS

language [21], but does not by itself provide an abstraction

over hardware-specific limitations and performance charac-

teristics. The programmer is responsible for ensuring coa-

lesced memory access, taking advantage of the memory hi-

erarchy, and so forth.

In comparison, Futhark relies on higher-order reasoning

and also transforms data (transposition,AoS-SoA), not only

(affine) schedules as most imperative work does. For exam-

ple, in an imperative setting, it is difficult to recognize scan
and filter implemented as loops [42], or to encode strength-

reduction invariants and achieve the fusion result of Fig-

ure 10c.

Our flattening transformation resembles the tree-of-bands

construction [55] in that it semantically builds on inter-

change and distribution, but we use higher-order rules. For

example, imperative approaches would implement a reduc-

tion with a vectorized operator via a histogram-like compu-

tation [47], which is efficient only when the histogram size is

small. In comparison, rule G5 in Figure 12 transforms a re-

duction with a vectorized operator to a (regular) segmented

reduction, which always has an efficient implementation.

In comparison to Futhark, imperative analyses [55, 56]

are superior at performing all kinds of tiling, for exam-

ple hexagonal time tilling [26] and achieving memory co-

alescing by semantically transposing arrays on the fly (via

tiling). However, non affine accesses may still restrict appli-

cability: for example indirect-array accesses would prevent

them from optimising memory coalescing for the Option-

Pricing benchmark, where Futhark’s simpler, transposition-

based approach succeeds.

Finally, we note that Futhark is not intended as a general-

purpose language, but rather it is aimed at (i) expressing

computational kernels, which can then be linked with appli-

cations written in mainstream languages, and, at (ii) being

used as a code-generation target for high-level DSLs. Such a

usage was demonstrated by an experiment [23, 31] in which

a subset of APL was compiled to Futhark, executed on GPU,

and used from Python for visualization purposes.

8. Conclusions

We have presented a fully automatic optimizing compiler for

Futhark, a pure functional array language. We have demon-

strated (i) how to support in-place updates in Futhark’s type

system, (ii) how second-order array combinators can express

symbolically both all available parallelism and efficient se-

quentialization alternatives, and (iii) how to fuse the program

aggressively and then how to decompose it yet again into

kernels in a manner that can improve the amount of efficient

(common-case) parallelism.

We have validated our approach on 16 benchmark pro-

grams, with performance compared to reference implemen-

tations ranging from ×0.6 slowdown to ×16 speedup, with

competitive performance on average. Our results show that

while the ease of high-level structural transformation permit-

ted by a functional language is powerful, attention must still

be paid to low-level issues such as memory access patterns.
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