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Abstract
We present a domain specific language embedded in Haskell for
specifying stochastic processes, called SPL . It is designed with
the goal of matching the notation used in mathematical finance,
where the price of a financial contract is specified using stochastic
processes and distributions.

SPL is declarative in the sense that it is agnostic of the choice
of discretization and of the computational model. We provide an
implementation of SPL that performs Monte Carlo simulation
using GPGPU, and we present data indicating that this gives a
100x speedup compared to hand-written sequential C, and that the
speedup scales linearly with the number of available cores.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Programming
Languages]: Code generation; D.1.1 [Programming Techniques]:
Applicative (Functional) Programming; J.1 [Computer Applica-
tion]: Financial

Keywords Embedded Domain Specific Language, Haskell, OpenCL,
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1. Introduction
A financial contract is a set of conditions for the exchange of trad-
able assets between two parties - the holder and the counter-party.
Commonly used tradable assets are cash and stocks but financial
contracts themselves may also be traded. The condition that finan-
cial contracts are defined in terms of other tradable assets or mea-
surable numbers has led to the names derivative and underlying
where the financial contract is called derivative and the tradable
assets or numbers it depends on are called underlyings.

As an example consider the so called Asian option with floating
strike. The contract holder is here given the option to buy one
specific stock in, say, one year’s time from now, having to pay the
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average stock price between now and then, if choosing to exercise
the option. The actual profit gained from holding this contract
depends on how high the stock price will be in one year, compared
to its average price. The actual profit is therefore unknown as the
future stock price is unknown. But this should not keep anybody
from making a qualified guess, and this is exactly what happens
on the financial markets, where contracts like this are traded on a
very large scale1. So the question is therefore, what is this contract
expected to be worth to the holder?

In the remainder of this section we will look at how the domain
experts model such prices stochastically and how we can do the
same using our domain specific language SPL .

1.1 The way of the quants
In mathematical finance the uncertainties in the contract prices
are often modelled using stochastic processes and distributions. A
distribution can be seen as a value that is uncertain. It takes on
different values with various probabilities. An example of this is
the normal distribution, which may be any real number but is most
likely to be close to zero. A stochastic process may be viewed as a
function from time to a distribution. Like distributions can be used
to model a uncertain prices, stochastic processes can be used to
model the future prices of stocks or financial contracts.

The Brownian motion is a particular stochastic process that is
often used to capture the uncertainties of reality, when modeling
a stock or standard underlying. It can be defined iteratively as
follows, in terms of the standard distributionN :

W(0) = 0

W(t + ∆t) = W(t) +N
√

∆t
(1)

The notion above make uses of some overloading that allows
standard algebra to be performed directly on distribution. First the
zero on the right hand side of the base case is not a real number but
rather the distribution that is certain to be zero. The plus and the
juxtaposition multiplication on the right hand side of the second
line are overloaded to take distributions as operands and the value
of the square root is lifted to a distribution as well. If we think of
distributions as sets of pairs (x, p), where p is the probability for
the distribution to take the value x, we can define overloading of
the binary operators as

d1 ⊕ d2 = {(x⊕ y, pq) | (x, p) ∈ d1, (y, q) ∈ d2} (2)

With the brownian motion in hand we can model the price of a
stock as the so called standard underlying, parameterized over the
underlyings start price S, volatility v and the assumed continuous
risk free interest rate r.

1 Hull[7] estimates the market size for derivatives to be above 600 trillions
USD in June 2007.
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U(t) = Se(r−
1
2
v2)t+vW(t) (3)

Let’s return to the Asian option contract for a while. Models as
the one above can be used to reason about the expected future value
of the underlying stock at exercise time, but we also need to model
the strike price being the arithmetic average on the stock price from
now and one year forward. Once again the quantitative analysts
write this using standard mathematical notation overloaded to dis-
tributions.

avgC(t) =
1

t

∫ t

0

C(t)dt (4)

avgC(t) is the average of the process C from time 0 to time
t. This notation allows us to write down the future profit from
exercising the Asian option.

U(1)− avgU (1) (5)

But a rational holder will only exercise if the profit is positive,
so the future payoff is therefore

max(0, U(1)− avgU (1)) (6)

This distribution models the uncertain price of the future payoff,
but we are really interested in the current price. We therefore
discount the distribution back one year adding the factor e−tr ,
again assuming the continuous risk free interest rate r.

max(0, U(1)− avgU (1)) · e−1·r (7)

This expression models the price of the Asian option as a distri-
bution using techniques found in mathematical finance. But we still
haven’t calculated its expected value, which is the average value of
the distribution weighted by the probabilities. If the distribution is
seen as a set of pairs (xi, pi) where Σpi = 1, then its weighted
average is Σxipi, but as we are left with a continuous distribution,
this calculation is not straight forward.

Numerous methods exist to calculate or estimate this expected
value, but we haven’t found a single efficient method being able to
calculate expected values for nearly all the contract we could wish
to express. The Monte Carlo method is however a method that is
applicable for all the distributions that we can write using the nor-
mal distribution and the overloaded arithmetic we have just seen.
The method is simply to take the average over a number of ran-
dom samples from the distribution. This method is therefore only
an approximation and to improve the accuracy one must increase
the number of samples and thereby also the computational work-
load.

To take a random sample from the distribution modeling the
price of the Asian option as declared in expression 7, we need to un-
roll the iterative definition of the brownian motion in expression 1,
first deciding on a ∆t. Let us for the sake of this example choose
∆t = 1

2
. To avoid having to calculate the continuous average on

the stock processes, we replace it with a discrete estimate using the
∆t as the sample time interval.

b0 = W(0) = 0

b 1
2

= W( 1
2
) = b0 +N

√
1
2

b1 = W(1) = b 1
2

+N
√

1
2

u0 = Se(r−
v2

2
)0+vb0 = S

u 1
2

= Se
(r− v2

2
) 1
2
+vb 1

2

u1 = Se(r−
v2

2
)1+vb1

a = avgU (1) =
1

1

∫ 1

0

U(t)dt ≈ 1

3
(u0 + u 1

2
+ u1)

s = max(0, u1 − a) · e−1·r

We are now left with an expression s where the only distribution
is the normal distribution. The sampling technique is then to replace
all of these with a random sample fromN , thereby achieving a sim-
ple arithmetic expression on real numbers. It’s however important
that ut is sampled only once and that this sampled value is used
in both places where ut is referred to. Otherwise, we would price
the option as if the paid out stock price and the average strike price
was based on two similar, but unrelated, stocks. To complete the
simulation, we simply repeat this experiment, say, a million times,
and calculate the average of the experiments.

At this point any programmer should feel comfortable imple-
menting a pricer for Asian options as well as for many other con-
tracts, if just given their price distribution expressed with the fi-
nancial notation just seen. But how easy would it be to convince
a domain expert afterwards that your implementation was in fact
correct? How easy would it be to make changes to the contract be-
ing priced? These concerns calls for a DSL where one can specify
the distributions and stochastic processes apart from the more com-
plicated back-end code that finds expected values. And as we only
need to implement a back-end once for all expressible distributions,
we can afford the time to implement a efficient one running Monte
Carlo simulation using massively parallel hardware, thereby reme-
dying the fact that the Monte Carlo method is rather computation-
ally heavy.

1.2 The Asian option in SPL
SPL is a DSL deeply embedded in Haskell designed for specifying
stochastic processes and distributions. Processes and distributions
are basic types, and there are a number of constructs for working on
them. As we discussed in the previous section, when working with
stochastic values, it’s important to distinguish between working on
the same sample of the stochastic value or different independent
samples. For example, the Box–Muller [5] transform can produce
a normal distribution from two independant uniform distributions,
u1 and u2. To talk about specific samples from a distribution, we
use the monadic bind operator as in [3]:

normal :: Dist Real
normal = do

u1 <- uniform
u2 <- uniform
return (sqrt (-2 * log u1) * cos (2 * pi * u2))

A stochastic process may, as noted above, be viewed as a func-
tion from time to a distribution. Another intuition is to watch a
process as a distribution of traces, where a trace is a function from
time (a real number) to a non-stochastic value. We choose this in-
tuition in SPL , as this makes sampling from a classic distribution
and obtaining a trace from a process the same thing, both achieved
in SPL with the monadic bind. This gives reason for the following
type aliases in SPL :

type Trace a = Time -> a
type Process a = Dist (Trace a)

We can construct processes by iterating a function, taking the
value from the previous time step and producing a distribution of
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values for the current time step. Recall the iterative definition of
the Brownian motion in expression 1. In SPL this may be defined
using the iterate construct, which is somewhat analogous to that
of the Haskell standard library:

brownian :: Process Real
brownian = iterate 0 $ \w t dt -> do

n <- normal
return (w + n * sqrt dt)

In the above w is the previous value, t is the current time and dt
is ∆t. The relation to the definition ofW should be clear.

To continue on the Asian option example, let us create a pro-
cesses modelling the underlying stock corresponding to expres-
sion 3. Again the parameters are the initial stock price s, the con-
tinuous risk free interest rate r and the volatility v:

underlying :: Real -> Real -> Real -> Process Real
underlying s r v = do

w <- brownian
let u t = s * exp ((r - 0.5 * v^2) * t + v * w t)
return u

Note how similar the let is to the definition of U . The rest of the
code is about being specific about the parameters and the sampling,
and a little bit of monadic overhead.

Recall that the price of the Asian option is in part based on the
average of the underlying process. The scan construct allows such
aggregation over the trace of a process and is analogous to scanl in
Haskell. The following sums a trace and counts how many steps it
has taken, and then divides the sum by the count to get the running
average. Note that arithmetic is also available for traces of Real:

average :: Trace Real -> Trace Real
average p =

let v = scan p (0, 0) $ \a v ->
(first a + v, second a + 1) in

first v / second v

With the average and a process modelling the underlying stock
in hand, we can specify the Asian option price distribution equiva-
lent to expression 7:

asian :: Real -> Real -> Real -> Time -> Dist Real
asian s r v t = do

u <- underlying s r v
return (max 0 (u t - average u t) * exp (-t * r))

Note that we use u twice here. It’s thus important to make
sure that both references are referring to the same trace of the
underlying process, and indeed the monadic bind allows us to
specify this. Contrast the mathematical notation used to specify U ,
where you have to guess from the context that this is the intention.
Other than that, note how similar the right hand side of return is
to the mathmatical notation.

Figure 1 plots a trace of asian along with the components that
it’s based on. It shows one possible outcome, but keep in mind that
there are infinitely many to pick from.

To obtain the expected value of distributions specified in SPL
we have implemented a back-end that simulates this result using the
Monte Carlo method running on GPGPUs. The function compile
compiles a SPL distribution into OpenCL[9] kernels and loads
them so they are ready to be called. Besides from this side effect,
compile returns another function that runs these kernels.

Simulating the estimated price for the Asian option could look
as below, using 1 million simulations and a time step of one day’s
time. Note that we return both the expected value and the standard
deviation (in that order, separated by ±).

> expectedIO <- compile 1000000 (1/365)
(asian 0.8 0.4 0.05 1)

> expectedIO
0.08267 ± 0.1506
> expectedIO
0.08248 ± 0.1501

The reason for separating the compile and load phase from
the invocation is that compile does not only take a distribution,
it may also be called with a function that, given any number of
Real-valued arguments, returns a distribution. This allows us to
compile and load a kernel once and then invoke it several times
with different parameters.

> expectedIO <- compile (1/365) asian
> expectedIO 0.8 0.4 0.05 1.0
0.08201 ± 0.1487
> expectedIO 50 0.2 0.05 0.5
1.976 ± 2.832

2. SPL - A stochastic process language
SPL is a language for specifying distributions and stochastic pro-
cesses. Apart from the vocabulary of Dist, Process and Trace,
SPL also has the primitive types Real and Boolean, as well as
pairs. Additionally, there are types for talking about the length of
time intervals (Duration) and absolute times (Time) measured as
an offset from time zero:

type Duration = Real
type Time = Duration

By Real we do indeed mean the type embodying all real num-
bers x ∈ R. Since R is continuous, we say that Dist Real is a
distribution with continuous sample space. And since the Time is
also R, we say that Process a is an infinite stochastic process with
continuous time and sample space.

This is by necessity; all of the examples of stochastic processes
we have seen so far have had all of these properties. If say, we only
had discrete time or discrete sample space, we would have to pick
the discretization before we could specify those processes - and the
specification would then only be valid for that particular choice of
discretization.

For this reason, specification of processes and discretization and
choice of computational model are seperate concerns in SPL . The
latter decisions can be postponed until we want to get the expected
value.

Figure 2 gives an almost complete list of the SPL constructs,
most of which we have already seen used in the introduction.
We allow the usual Haskell notation for constructing pairs, which
internally uses the pair construct.

2.1 Embedding
SPL is deeply embedded in Haskell, meaning that SPL expressions
are actually generating abstract syntax trees, which may then be
translated to some other language, optimized and executed on an-
other platform. In a later section we shall see an example of this
using the OpenCL platform. To construct this AST we need all SPL
expressions to be reifyable and thus cannot allow ’raw’ type vari-
ables in the generated syntax tree.

data RealValue
type Real = Sample RealValue
type Boolean = Sample Bool

Haskell do not have a type for real numbers as they are not
supported, so we define a new type RealValue, and let it be empty
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Figure 1. Illustrates how the payoff process in the definition of asian r v s t is constructed from a trace of the brownian process. The
experiment was performed with the parameters r = 0.05, v = 0.4, s = 0.8 and t = 0, 1/365 . . . 1. The stock trace is a function of the
brownian trace starting at its initial price 0.8. The green average trace is the running average of the stock trace and the payoff is positive
whenever the average is below the stock trace. The payoff is zero otherwise due to the max 0. The discounting lowers the payoff trace but
only slightly as e−1·0.05 ≈ 0.95.

since we cannot use it from Haskell anyway. However, we can still
map it to a discretization of our choice later on.

The support for real numbers is possible as SPL is purely sym-
bolic and deeply embedded in Haskell. Sample a is our symbolic
expression tree for non-stochastic values of type a, and we may for
instance write:

irrational :: Real
irrational = sqrt 2 + pi

There’s no loss of precision, because we simply get the syntax
tree corresponding to the expression. It’s only when we choose a
computational model that we may loose precisions. The standard
algebraic notation is achieved by overloading the standard arith-
metic operators, ie:

instance Num Real where
fromInteger = Real . fromInteger
(+) = Binary Add
...

We do this for Num, Fractional, Floating, and a few new
type classes for providing comparison, boolean logic, pairs and an
if-statement called when. We lift most of these operators to traces.
For example, the instance for Num (Trace Real) looks like:

instance Num a => Num (Trace a) where
fromInteger i t = fromInteger i
(+) a b t = a t + b t

...

Once we have the syntax tree, we can manipulate it and translate
it to other syntax trees, such as that of OpenCL as we shall see later.

Sample a is shown in its full definition in figure 3. Fractional
numbers and bool values from Haskell may be lifted to SPL value
using the data constructors Real and Boolean. Unary and Binary
allow standard arithmetic, comparisons, boolean logic and pairs.
Scan aggregates over a trace taking an initial value and an aggre-
gation function. This allows operations such as average.

Distribution a is our symbolic representation for stochas-
tic values of type a corresponding to the exposed monad Dist a,
having data constructors similar to monadic operation with the ex-
ception that Bind restricts the first type parameter to be Symbolic.
This is required to ensure that the value can be reified.

We use restricted monads2 to enable ordinary monadic facilities
such as the do notation even though we have a constraint on our
bind. Thus Dist is simply Distribution wrapped in AsMonad
from Control.RMonad.AsMonad:

type Dist a = AsMonad Distribution a

3. Monte Carlo simulation on the GPU
While the syntax and types described so far is convenient for
programming in SPL , it isn’t obvious how to translate it to GPU
code that does Monte Carlo simulation.

2 Using the rmonad-0.7 package on Hackage.
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Dist a

instance Functor Dist where
fmap :: (a -> b) -> Dist a -> Dist b

instance Monad Dist where
return :: a -> Dist a
(>>=) :: Dist a -> (a -> Dist b) -> Dist b

uniform :: Dist Real
iterate :: a -> (a -> Time -> Duration -> Dist a) -> Dist (Time -> a)

Sample a

pair :: Sample a -> Sample b -> Sample (a, b)
first :: Sample (a, b) -> Sample a
second :: Sample (a, b) -> Sample b
abs,... :: Sample a -> Sample a
+,*,/,... :: Sample a -> Sample a -> Sample a
.==.,... :: Sample a -> Sample a -> Sample Bool
.&&.,... :: Sample a -> Sample a -> Sample Bool
when :: Sample Bool -> Sample a -> Sample a -> Sample a
scan :: Trace b -> a -> (Like a -> Like b -> a) -> Trace (Like a)

Figure 2. The built-in constructs of SPL

data Sample :: * -> * where
Real :: (Fractional a) => a -> Sample RealValue
Boolean :: Bool -> Sample Bool
Unary :: UnaryOperator a b -> Sample a -> Sample b
Binary :: BinaryOperator a b c -> Sample a -> Sample b -> Sample c
If :: Sample Bool -> Sample a -> Sample a -> Sample a
Scan :: Sample (Time -> b)

-> Sample a
-> (Sample a -> Time -> Duration -> Sample b -> Sample a)
-> Sample (Time -> a)

data Distribution :: * -> * where
Uniform :: Distribution (Sample RealValue)
Iterate :: a -> (a -> Time -> Duration -> Distribution a) -> Distribution (Time -> a)
Bind :: Symbolic a => Distribution a -> (a -> Distribution b) -> Distribution b
Return :: a -> Distribution a

Figure 3. The complete SPL abstract syntax tree. None of the data constructors are exported directly to the SPL user, the SPL module
provides alternative smart-constructors that should be more convenient to use.

In particular, we’d like to be able to take any Distribution Real
and perform pseudo-random sampling from it in order to approx-
imate the expected value. We target OpenCL which is a limited
C-like language that in turn targets GPUs. However, this language
has no concept of distributions, and as such we will have to trans-
late that concept into something else.

It also has no concept of functions, traces or time, so these
concepts will have to be mapped too. In the following we will
describe how we overcome all of these obstacles.

3.1 From monads to side effects
In order to get rid of the restricted monad and eliminate the concept
of distributions, we introduce an internal language. This langauge
is an extension of Sample consisting of several additional construc-
tors:

data Internal :: * -> * where
-- All the constructors of Sample a, and:

Trace :: (Time -> Sample a) -> Sample (Time -> a)
Lookup :: Sample (Time -> a) -> Time -> Sample a
Let :: Sample a -> (Sample a -> Sample b) -> Sample b
Variable :: Int -> Sample a
GenerateUniform :: Sample RealValue
IterateLoop

:: Sample a
-> (Sample a -> Time -> Duration -> Sample a)
-> Sample (Time -> a)

The constructs in here will be explained as they are needed. All of the
functions that are required to go from a Distribution to Internal are
provided by the type class Symbolic. Namely:

class Symbolic a where
type Result a
symbolic :: a -> Internal (Result a)
function :: (a -> b) -> Internal (Result a) -> b
distribution :: Distribution a -> Internal (Result a)
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The Result a embodies the inner type of the translated syntax tree.
The symbolic function translates fully applied values, function trans-
lates functions and distribution translates Distributions.

For Sample a, symbolic and function are simply identity functions
since Internal a is a superset of Sample a. For distributions, the uni-
form distribution becomes a value that when read has the side effect of gen-
erating a pseudo-random number from the distribution. For return and bind,
the functions are simply applied recursively, although the strict Let is in-
troduced in the case of Bind to ensure that the side effects, of the sampling
the distribution, happens only once.

instance Symbolic (Sample a) where
type Result (Sample a) = a
symbolic = id
function = id
distribution d = case d of

Uniform -> GenerateUniform
Return a -> symbolic a
Bind a f -> Let (distribution a) $

\a -> distribution (function f a)

The case for pairs is straightforward:

instance Symbolic (Sample a, Sample b) where
type Result (Sample a, Sample b) = (a, b)
symbolic (a, b) = Binary Pair (symbolic a) (symbolic b)
function f x = f (Unary First x, Unary Second x)
distribution = distribution . fmap symbolic

The case for traces is a bit more involved. Namely we have Trace
and Lookup converting to and from Sample (Trace a). The Iterate
construct is simply translated to the corresponding loop IterateLoop in
Internal.

instance Symbolic (Time -> Sample a) where
type Result (Time -> Sample a) = Time -> a
symbolic f = Trace f
function f x = f (Lookup x)
distribution d = case d of

Iterate z f -> IterateLoop (symbolic z) $
\a t dt -> distribution (function f a t dt)

Return a -> symbolic a
Bind a f -> Let (distribution a) $

\a -> distribution (function f a)

Thus we have eliminated Distribution a and are left with Internal a
that has no ”naked” type variables nor custom type constraints.

3.2 Removing higher order abstract syntax
We remove the functions from our syntax tree by converting to a typed De-
Bruijn indexed representation with a type safe homogenous list constructed
from iterated pairs as the environment. This is a type preserving translation
as described in [2] and is what the Variable is for.

3.3 Generating pseudo-random numbers
We use the MWC64X pseudo-random number generator for OpenCL de-
scribed in [11]. We implement split (analogous to the one in Haskell) by
randomizing the internal state of the PRNG:

struct generator_t split(struct generator_t * generator)
{

struct generator_t new_generator;
new_generator.state.x =

MWC64X_NextUint(&(generator->state));
new_generator.state.c =

MWC64X_NextUint(&(generator->state));
return new_generator;

}

3.4 Representing trace values
One way of representing traces is to compute the values at all discretized
time steps and store them in an array for later use. However, this would
require us to know the number of traces and the maximum lookup time

before runtime since OpenCL does not allow runtime allocation of memory.
It would also waste a lot of space on storing intermediate values that will
never be accessed again, and it’s probably safe to assume that accessing
arrays is slower than not accessing arrays, all else being equal.

We therefore choose to trade processer time for memory by recal-
culating the trace whenever we need it. When we encounter a Let on
an Internal (Trace a), we split the current pseudo-random number
generator into two and store the additional generator in the environment.
When encountering a Variable of type Internal (Trace a) we run
the code for computing the trace locally using the generator pointed by the
variable as the current generator.

3.5 Code generation for Lookups on traces
We translate both the Scan and IterateLoop constructs at each usage
spot by first initializing the accumulator variable to the initial value, and
then updating the accumulator variable according to the update function
inside a loop. The loop is an ordinary for loop that starts at time zero and
counts up to some time t by ∆t. Everything inside f in a Lookup f t that
isn’t below a deeper Lookup f’ t’ where t 6= t’ is updated in the same
single for loop where t = t. The initialization and updates are performed
corresponding to their position in postorder tree traversal, thus updating
dependees before dependers. This is essentially loop fusion.

3.6 Potentially over-aggressive inlining
While the rest of the translation to OpenCL is straightforward, note that we
do not attempt to recover sharing introduced by Haskell’s bindings. Conse-
quently these are inlined at all usage sites, which can lead to code explo-
sion3. The Haskell compiler GHC offers a mechanism to detect sharing of
values using the IO monad, and using this it would be possible to detect
shared functions and generate them as functions in the target language, as
in [6, 10]. However, we have left this optimisation for future work.

3.7 Execution and aggregation
For the variadic compile, we generate a kernel that takes the corresponding
extra parameters of type double. The code in the kernel performs a single
experiment, thus contributing one sample per thread to the complete Monte
Carlo simulation.

Local memory is used at the end of each experiment to store the in-
dividual result. Once all threads are finished in a OpenCL thread group,
we run another threaded program that aggregates the results, computing
the average (expected value) and the standard deviation, and then stores
these in global memory. These results are then aggregated by the host
once all groups are finished, yielding a single pair (expectedValue,
standardDeviation) as the final result.

Note that the final aggregation is the only time at which we use shared
memory. Everything else uses purely local variables, which are likely
mapped to registers. There is thus no potential for so-called bank con-
flicts or other memory related synchronization issues during the execution
of an experiment.

3.8 Properties of the translation
In order to take full advantage of the OpenCL device, there are certain
pitfalls that needs to be avoided, or some of the hardware threads will
spend their time waiting. Memory must be accessed using specific patterns,
or the access will be serialised due to so-called bank conflicts. Due to
the SIMD architecture, conditionally executed code such as loops and if-
statements will cause all the threads to wait for each other to execute the
instructions that they shouldn’t execute themselves. In order to make it easy
to reason about the performance of SPL programs, we therefore guarantee
the following properties of our translation:

• It does not introduce any additional conditional logic beyond that which
is present in the source SPL program, which is only the when construct.

• It does not produce any load, store or synchronisation operations, except
at the end of a simulation where the result is written to a buffer.

We achieve the second point by using local variables for all our storage.
This is straightforward since all our data structures are fixed-size. This
means that we can roughly reason about the performance an SPL program

3 Though we have not yet experienced this in practice.
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like this: every time you apply a trace to a new time, it creates a loop;
every time you use when it performs as if both branches were executed; and
everything else is constant time.

While this is a conservative approach (e,g,. when true b c never
spends resources on computing c), it’s also very straightforward to apply
- indeed, one could write a function that took an SPL program and com-
puted an asymptotic upper bound on the run-time according to the above
definition.

4. Benchmark
We present here two experiments that tests the scalability and performance
of the OpenCL back-end. The result of the first experiment indicates that
we do in fact obtain the linear speedup we had hoped for. The second
experiment shows that our OpenCL back-end runs 100 times faster than
our own hand written sequential C code, on the hardware used. More tests
and benchmarks are presented in [4].

The hardware used was a machine with one 2.67 GHz Intel Xeon X5550
CPU and one Tesla C2050 device. The machine is running Linux with
CUDA 1.0 as the OpenCL implementation and the NVidia drive version
275.21. We run the C code on the CPU and expect only one of the 16 cores
to be used. The OpenCL programs is only using the GPU.

It is common when testing whether a program scales, to investigate how
the number of used cores influence the execution time for a fixed amount
of work. In this scenario full scalability or utilisation is achieved when
doubling the amount of cores halves the execution time.

We do however not know how to tell OpenCL to only use a certain
amount of the cores on the device but we can exploit the fact that threads in
one work group all are scheduled on the same multiprocessor. The Tesla
C2050 card used in our benchmarks have 14 multiprocessors on board
which means that running a kernel with a work group count of 14 should
take no longer than having only 1, if full utilisation is meet. Running 15
work groups on the other hand would take twice as long as the last work
group would have to wait until the other 14 groups had been executed in
parallel. Fortunately, this is exactly the picture we see on in figure 4. It
is not surprising to achieve full scalability as Monte Carlo simulations is
embarrassingly parallel in nature.

The contract priced in the experiment is an Asian Call option with an
exercise time of 5. The simulation is carries out using a time step of 1/356
to simulate a step every day for five years, or 1825 points in time in total.
In OpenCL terms we have used a work group size of 512 and a group count
from 2 to 42, yielding from 1024 to 21504 simulations per data point.

Figure 5 shows a speedup plot compared against a handwritten sequen-
tial C implementation of Monte Carlo simulation specialised for the same
Asian option used above, just with a shorter exercise time of one years time.
As we can see in the graph, the generated OpenCL simulation running on
the GPU is about 100 times faster than the sequential C implementation.
A quick back-of-the-envelope comparing just processor speed says that we
could expect a speedup of about 448 · 1.15/2.67 ' 193 as the C2050 has
448 cores each running at 1.15 GHz - thus we are in the right ballpark.

5. Related Work
While stochastic processes are well suited to express the price of financial
contracts, they are perhaps not ideal for expressing the intention of financial
contracts. For example, it may be hard to automate trading based on the
stochastic processes, since choices like the option of doing a or b is lost in
the translation to the price max(a, b).

Peyton Jones, Eber, and Seward previously presented a language
for writing down financial contracts in a high level and compositional
manner[8], which focuses on the intention of the contracts. It uses a logical
or construct to express the choice between two actions, making applica-
tions such as automated trading possible.

The price for these contracts is given as a function that takes a contract
and a financial model and produces a stochastic process. SPL can express
the prices of a subset of this language, namely those contracts that do
not require nested forecasting4. Conversely, SPL supports some financial
contracts that are not supported by the contract language, namely path-
dependent financial contracts such as Asian options.

4 American and Bermudan options are examples of financial contract that
requires nested forecasting.

While we have benchmarks showing the absolute performance of the
GPGPU backend[4], we do not yet have any relative benchmarks comparing
our performance to alternative pricers for financial contracts. QuantLib [1]
is a state of the art pricer for a pre-defined set of financial contract types,
and it would be interesting to see a comparison to this library.

6. Conclusion
We have presented the language SPL designed to model distributions and
stochastic processes and shown how the price of an Asian option can
be expressed in SPL while comparing to how it is often done in the
field of mathematical finance. The syntax of SPL is closely related to the
mathematical notation, which is achieved by using overloaded arithmetic on
samples and traces and by allowing lookup on traces by standard function
application with the time as the argument. The main difference, in notation,
is that SPL have a clear distinction between samples and distributions and
do not allow arithmetic directly on distributions. We made the deviation
from the mathematical notation to avoid certain errors, like forgetting to
trace the underlying process before using it twice in an Asian option.

With SPL comes an OpenCL back-end that simulates the expected value
of distributions using Monte Carlo simulation. We have sketched how the
translations from SPL to OpenCL is performed.
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Figure 4. This graph shows the pricing times for an Asian call option valuated using 1024 to 21504 simulations. The number of simulations
are indexed by the work group count to show the correlation with the 14 multiprocessors on the Tesla C2050 device. The graph shows that
we may add simulations from additional work groups without increasing the executions time until the point where the work groups count
reach the next multiple of 14. Each pricing experiment have been performed 101 times.

(a) The wall-clock time for the sequential C program is shown shown with
the circle graph. Each data point is the median value of 13 simulations.
The triangle graph shows the time for compiling, loading and execution the
similar SPL program. Each data point is the median value of 101 simulations.

(b) Speedup compared to our sequential C implementation.

Figure 5. We compare the simulation time of the SPL OpenCL backend with sequential hand written C code performing the same Monte
Carlo simulation. The OpenCL back-end uses a Tesla C2050 device while the C code are executed on a Intel Xeon X5550, compiled with
gcc 4.4.6 with -O3. The simulation prices an Asian option with an exercise time of 1 and a time step of 1/365.
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