
Streaming Nested Data Parallelism on Multicores ∗

Frederik M. Madsen Andrzej Filinski

Department of Computer Science (DIKU)
University of Copenhagen, Denmark

{fmma,andrzej}@di.ku.dk

Abstract

The paradigm of nested data parallelism (NDP) allows a variety
of semi-regular computation tasks to be mapped onto SIMD-style
hardware, including GPUs and vector units. However, some care
is needed to keep down space consumption in situations where
the available parallelism may vastly exceed the available compu-
tation resources. To allow for an accurate space-cost model in such
cases, we have previously proposed the Streaming NESL language,
a refinement of NESL with a high-level notion of streamable se-
quences.

In this paper, we report on experience with a prototype im-
plementation of Streaming NESL on a 2-level parallel platform,
namely a multicore system in which we also aggressively utilize
vector instructions on each core. We show that for several exam-
ples of simple, but not trivially parallelizable, text-processing tasks,
we obtain single-core performance on par with off-the-shelf GNU
Coreutils code, and near-linear speedups for multiple cores.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—parallel programming; D.3.2
[Programming Languages]: Language Classifications—applicative
(functional) languages, dataflow languages; D.3.4 [Programming
Languages]: Processors—compilers, interpreters

General Terms Languages, Performance

Keywords Nested data parallelism, streaming, dataflow

1. Introduction

Many common data processing tasks are highly repetitive, yet not
easily parallelizable by traditional techniques. Such tasks are often
characterized by nested loops in which the number of inner itera-
tions is data dependent and non-uniform. This irregularity presents
an obstacle to simple parallelization approaches, such as OpenMP
annotations for multicore execution, or effective use of SIMD in-
structions, since any static classification of individual loops as se-
quential or parallelizable is likely to lead to substantially subop-

∗ This research has been partially supported by the Danish Strategic Re-
search Council, Program Committee for Strategic Growth Technologies,
for the research center HIPERFIT: Functional High Performance Comput-
ing for Financial Information Technology (hiperfit.dk) under contract
number 10-092299.

timal performance for particular data patterns. In particular, if the
parallelization granularity is a poor fit for the data, performance
may suffer considerably from poor load balancing and/or excessive
synchronization and bookkeeping overheads.

An often useful alternative approach to parallelization in such
cases is the paradigm of flattening nested data parallelism, pio-
neered by the NESL language (Blelloch 1992). As in other divide-
and-conquer parallelization strategies, the idea is to partition the
problem instance into a number of independent subproblems, such
that the solutions to the subproblems can be combined into a solu-
tion of the whole, and such that each subproblem of non-trivial size
can itself be effectively parallelized – either by already being natu-
rally data parallel, or by a logarithmic-depth recursive subdivision.

Crucially, however, in the flattening approach, there is no im-
plied requirement that the subproblems be of uniform, or even
roughly similar sizes, nor that the subproblem boundaries are
aligned with processor allocations – either as several subproblems
per processor, or as several processors per subproblem. Instead, all
the available work (which, possibly after further subdivisions, we
may assume to be of uniform nature), is evenly divided among all
processors, ensuring that none go idle.

As noted by Blelloch (Blelloch 1991), the class of problems
amenable to such an approach is remarkably large. In particular,
suppose the task can be effectively expressed in terms of nested
combinations of independent element-wise operations (maps), in-
cluding random-access CREW load/store operations (gather/scat-
ter), and efficiently parallelizable combining operations in the form
of reduces (associative folds) and scans (prefix sums). Then the
whole computation can be flattened into a sequence of global
per-element operations and segmented scans, where a segmented
scan also takes a vector of segment-boundary flags, and resets
the summation at each boundary. Somewhat surprisingly, the tree-
structured parallel algorithms for scans can be refined to take seg-
ment flags into account with very little extra cost. And crucially, the
resulting algorithm exhibits no control or communication-pattern
dependence on the segment flags, so that it is still highly amenable
to SIMD style execution; and its performance remains largely uni-
form and predictable from a high-level work/step cost model.

A fundamental drawback, however, is that this approach a priori
requires the whole problem (including in its intermediate stages)
to fit in memory at once, which is particularly problematic if the
available parallelism far exceeds the computational resources. For
example, the direct data-parallel rendering of

∑n

i=1 f(i), where f
is some simple function, nominally first computes a vector of all the
n values of f(i) in parallel, and addition-reduces it (typically in a
tree-like fashion) afterwards. Even when this is feasible (possibly
through paging to secondary storage), it incurs a considerable over-
head due to poor cache utilization and extra memory traffic. More
fundamentally, it goes against the programmer’s intuition that such
a summation should not require more than O(p) memory, where p
is the number of processors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

FHPC’16, September 22, 2016, Nara, Japan
ACM. 978-1-4503-4433-3/16/09...$15.00
http://dx.doi.org/10.1145/2975991.2975998

44

A natural refinement, therefore, consists of not materializing
vector values in their entirety, but sequentially in O(p)-sized
chunks, in a streaming fashion. Like for processor allocations,
chunk and segment boundaries are in general not aligned. Maps,
reduces, and scans (including segmented ones) are all naturally
streamable, and even random-access scatter/gather operations do
not inherently require more space than the length of the longest
vector in a sequential implementation.

Depending on the platform, a chunk would typically contain
104–106 elements: large enough that scheduling and synchro-
nization overhead becomes relatively insignificant, but still small
enough to fit into cache or other fast memory, so that multiple se-
quential passes over a single chunk of data are not substantially
slower than a single, fused pass.

While the semantics of original NESL language does not pre-
clude a streaming SIMD implementation (Palmer et al. 1995a), or
even a MIMD-oriented approach (Blelloch and Greiner 1996), the
language is not particularly well suited for such an implementation
strategy. The reason is that the cost model makes no formal distinc-
tion between operations that are streamable, and ones that require
random access to vector elements, and thus the programmer may
be encouraged to use idioms (such as accessing the last element of
a vector as v[#v − 1]) that needlessly force full materialization.

Therefore, in order to investigate the potential for streaming ex-
ecution, we have previously (Madsen and Filinski 2013) proposed a
refinement of NESL, tentatively called Streaming NESL (SNESL),
that makes streamability apparent in the programming and cost
models. The main difference to NESL is that the language syn-
tax and type systems makes a clear distinction between sequences,
which are conceptually always traversed in order (including by re-
duces and scans), and vectors that afford random access and multi-
ple traversals, but must be materialized, with a corresponding space
cost.

In the above-mentioned previous work, we presented very pre-
liminary timings on GPUs for hand-transformed code. While the
numbers were not inherently discouraging, it became clear that the
CUDA API is not well suited as a backend for SNESL, since ker-
nel launches are relatively expensive, requiring chunks to be big in
order to achieve good performance, which means that each chunk
can no longer fit in on-chip cache. Even more problematically, as
of CUDA 7.5, “shared” (on-chip, per-thread-block) memory does
not persist across kernel invocations, leading to considerable extra
memory traffic. While it might be possible to utilize the hardware
more efficiently through a lower-level interface, this is would re-
quire substantial further development.

NESL without streaming on GPUs has been explored by
(Bergstrom and Reppy 2012). Previously (Madsen et al. 2015),
we implemented streaming execution on GPUs, albeit for a differ-
ent language: Accelerate with a streaming extension similar to the
one we propose for NESL. Accelerate only supports limited nest-
ing of data parallelism in the form of regular multi-dimensional
arrays. Streaming Accelerate performs on par with ordinary Ac-
celerate, but it relies heavily on the regularity of the language and
aggressive fusion.

In this paper, we consider the prospect of streaming on multi-
core CPUs while exploiting SIMD instructions. We show that, for
several representative tasks, even on a single core, the SNESL exe-
cution time is comparable to that of a sequential C program, while
performance on multiple cores handily exceeds the sequential code.

2. Streaming NESL Language and Compiler

In the following, we sketch the source language and the main
phases in the compilation process. More details about SNESL and
its execution model can can be found in (Madsen and Filinski
2013).

Name Type Examples

+, chr, ... (δ1, ..., δk)→ δ0 2 + 3 = 5, chr(65) = 'A'
sel (? :) (bool, δ, δ)→ δ sel(2 ≤ 2, 3, 4) = 3
length (#) [τ]→ int length([2, 3, 5, 7]) = 4
elt (!) ([τ], int)→ τ [2, 3, 5, 7] ! 2 = 5
iota (&) int→{int} &4 = {0,1,2,3}
++ ({σ}, {σ})→{σ} {2, 3}++ {5} = {2, 3, 5}
concat {{σ}}→ {σ} concat({{2, 3}, {}, {5}}

= {2, 3, 5}
part ({σ}, {bool})

→{{σ}}
part({2, 3, 5}, {f, f, t, t, f, t})
= {{2, 3}, {}, {5}}

sep {(σ, bool)}
→ {{σ}}

sep((2, f), (3, t), (4, f))
= {{2, 3}, {4}}

zip ({σ1}, {σ2})
→{(σ1, σ2)}

zip({2, 3}, {4, 5})
= {(2, 4), (3, 5)}

the {σ}→ σ the({3}) = 3
seq [τ]→{τ} seq([2, 3, 5]) = {2, 3, 5}
tab {τ}→ [τ] tab({2, 3, 5}) = [2, 3, 5]
reduce⊙ {δ}→ δ

where ⊙::(δ,δ)→δ

reduce+({2, 3, 5, 7}) = 17

scan⊙ {δ}→ {δ}
where ⊙::(δ,δ)→δ

scan+(2, 3, 5, 7)
= {0, 2, 5, 10}

Figure 1. Selected builtin functions

2.1 Front-End Language (SNESL)

SNESL appears as a fairly traditional, statically typed functional
language with a few specialized types and operations. Its central
concepts are laid down in the type structure (presented in Haskell-
style notation):

δ ::= int | real | bool | char primitive types
τ ::= δ | (τ1, , .., τk) | [τ] concrete types
σ ::= τ | (σ1, ..., σk) | {σ} general types

(Here, and in the following, k ≥ 0.) Values of concrete types
(including vectors [τ]) are fully materialized, while those of general
types (including sequences {σ}) need not be. While it is possible
to have a sequence of integer vectors, the opposite is not possible.

Apart from insignificant syntactic conveniences (e.g., infix op-
erators), the syntax of expressions is as follows:

e ::= x | n | n.n | true | false | 'c' | "c1...ck" | (e1, ..., ek)
| [e1, ..., ek] | {e1, ..., ek} | let p = e1 in e2 | f(e1, ..., ek)
| if e0 then e1 else e2 | {e0 : p1 in e1; ...; pk in ek | e

′
0}

p ::= | x | (p1, ..., pk)

The syntax is made useful by a collection of built-in functions
f , with the main ones listed in Figure 1. Their meanings should
hopefully be clear from name, type, and example. We also allow a
program to include a number of global function definitions,

fun f(p1, ...pk) = e

Function definitions are cumulative (later functions may call
earlier-defined ones), but not recursive. (Supporting recursion is
a planned extension, as discussed in the Conclusion.)

The semantics and typing rules for all language constructs are
what one would expect, with the possible exception of sequence
comprehensions, in which the bindings are zip-like, not sequential
like in Haskell; for example,

{x+ y : x in {2, 3, 5}; y in {9, 4, 1} | x < y}

evaluates to {11, 7}. The boolean guard e′0 may be omitted when
constantly true.

More unusually, the intensional semantics of sequence com-
prehensions could be summarized as “strict but lazy”. Just as in

45

NESL, sequences are always fully evaluated, whether their values
are needed or not. However, in SNESL this evaluation may happen
incrementally, with the sequence being produced and consumed in
chunks. As the chunking is completely transparent to the program-
mer, we impose an exactly-once semantics in order to maintain a
deterministic and predictable value and cost model: with a purely
demand-driven, Haskell-stream-like semantics of sequences, we
would simply discard a failing or very expensive computation in
a part of the sequence that was never requested. But since each in-
dividual chunk is always fully evaluated for uniformity, the observ-
able behavior in such cases would ultimately depend on the chunk
size.

In support of this exactly-once semantics, the typing rule for
comprehensions also stipulates that any free variables in e0 and e′0
that are not bound by p1, ..., pk (i.e., that represent values constant
throughout the computation) must be of concrete type, and hence
already fully evaluated. For example,

let s = {10 ∗ x : x in&3} in {s++ {y} : y in {40, 50}}

is considered ill-typed, because it would require s to either be
memoized in its entirety or recomputed. The latter behavior can be
achieved simply by syntactically unfolding the let (we may offer
some explicit notation for that). If the former semantics is desired,
we must instead explicitly materialize the sequence into a concrete
value, and then re-stream it every time it’s needed:

let v = tab({10∗x : x in&3}) in {seq(v)++{y} : y in{40, 50}}

Note, however, that if a comprehension contains no bindings,
only a guard, there are no restrictions on the free variables:

let s = {10 ∗ x : x in&3} in {s | y > 0}

will evaluate to either {{0,10,20}} or {}, depending on y, but in
either case, no recomputation of s is necessary.

The type system does not guard against all errors. For exam-
ple, like in NESL, a zip-like comprehension with sequences of un-
equal length will explicitly fail at runtime. (A Haskell-like, longest-
common-prefix semantics might be more useful if sequences could
potentially be infinite, but that is not possible here.) More subtly,
if the sequences to be zipped cannot be produced at the same rate,
the computation may deadlock. To guard statically against this, we
would need a more refined type system, e.g., with clocks; for now,
this is left as future work. In practice, though, in most cases where
sequences are manifestly of the same length, they will also be de-
rived from the same source, and can hence also be produced syn-
chronously.

Built-in functions with multiple stream-typed arguments may
also have synchronization constraints, more involved than for zip
For example, s++ {reduce+(s)} is OK, but {reduce(s)}++ s is
not. Intuitively, computations that could in principle be expressed
in constant space using loops in a sequential language will normally
be unproblematic, but others might not be.

2.2 Core SNESL

As the first proper step in the compilation process, programs are
desugared into a subset of the language that we call Core SNESL.
Key transformations include:

• Type inference and monomorphization (i.e., selection of spe-
cific type instances of polymorphic functions).

• Unfolding of programmer-provided function definitions.

• Desugaring of conditionals into guarded comprehensions:

if e0 then e1 else e2 ≡ let b = e0 in the({e1|b}++{e2|not(b)}

(If both branches are already simple values, sel can be used
instead.)

• Desuagaring of parallel bindings:

{e : x1 in e1;x2 in e2} ≡ {e : (x1, x2) in zip(e1, e2)}

• Decomposition of comprehensions containing both bindings
and guards:

{e0 : x in e1 | e
′

0} ≡ concat({{e0 | e
′

0} : x in e1})

• Desugaring of patterns into explicit projections.

There is a reference interpreter for Core SNESL, including a
cost semantics covering both time aspects (work, step) and space
usage (parallel, sequential). However, the main implementation
strategy is compilation, using flattening, into a lower-level inter-
mediate language.

2.3 Streaming VCODE (SVCODE)

To emphasize the analogy to the NESL compiler, we adapt its name
for the flat-sequence language. However, our SVCODE bears little
syntactic resemblance to VCODE, mainly because the former is
currently just a flat list of instructions of the form

si := pi(si1 , ..., sik)

where all i1, ...ik are less than i, representing previously defined
primitive-value streams. On the other hand, VCODE is explicitly
stack-structured, to support recursive functions.

It is possible to execute SVCODE in an essentially VCODE-
like, non-streaming fashion, by simply performing the instructions
in sequence, fully materializing the results (and possibly garbage-
collecting those that will not be subsequently used, which can be
done by simple reference-counting). The intended implementation
model, however, is data-flow execution, described in the next sec-
tion.

The key to the flattening transform from Core SNESL to SV-
CODE is the treatment of nested sequences. Like in NESL, we
represent a nested sequence, such as {{2, 3}, {}, {5}}, as a sepa-
rate stream of the underlying data values, 〈2, 3, 5〉, and a segment-
descriptor stream. The latter, however, is based on boundary flags,
rather than on segment lengths, i.e., 〈f, f, t, t, f, t〉, rather than
〈2, 0, 1〉. In fact, the builtin part function conceptually just glues
the data and descriptor streams together, while concat discards the
descriptor stream.

We are thus effectively representing segment lengths in unary,
which in practice does not impose a significant space overhead,
while allowing us to express various stream transformations in con-
stant space, without needing to know the current segment length.
On the other hand, for a sequence of vectors, such as {[2, 3], [], [5]},
the vector lengths are represented compactly as a stream of non-
negative integers, making length a constant-time operation as ex-
pected. Thus, the main task of the seq and tab functions actually
becomes to convert between the two forms of segment descriptors,
rather than the data values.

3. DPFlow: A Multicore Interpreter for SVCODE

The key piece that separates this paper from our previous paper
(Madsen and Filinski 2013) is a fully implemented multicore inter-
preter for SVCODE. We call this interpreter DPFlow; a contraction
of data parallelism and dataflow. In essence, DPFlow is a low-level
dataflow-based virtual machine, that executes SVCODE instruc-
tions using chunked streams and highly optimized data-parallel ker-
nels written in C.

The kernels exploit both threaded execution and vector instruc-
tions, which we realize using pthreads and the automatic vectoriza-
tion found in gcc 5.3. Crucially, the kernels are not generated per
program, but are pre-compiled only once. This allows very fine-

46

tuned optimization of each kernel, since we do not have to incorpo-
rate that into a code generator. For instance, we know exactly what
kernels are automatically vectorized. When this is not the case, we
may opt to vectorize the kernels by hand using Intel’s SSE intrin-
sics (see Section 3.4).

3.1 Execution

DPFlow starts by setting up a network of stream transducers in
memory based on a given SVCODE program. Each definition
becomes one transducer. A transducer holds a fixed-sized buffer
where the bytes of the output stream are stored, and a local state.
The local state contains accumulators, an end-of-stream flag, a
write cursor and multiple read cursors; one for every input stream.
After the initial phase, the transducers are fired repeatedly by the
scheduler until all transducers have reached end-of-stream. Firing
a transducer is the act of calling the corresponding kernel and up-
dating all involved cursors.

A cursor is a relative offset in a buffer. A read cursor allows a
reader to consume only part of the current bytes in the buffer and
remember that. This is important to support different data rates. For
example, the map char to int transducer reads a stream of char-
acters and converts them to a stream of (32-bit) integers. Since four
bytes are output for every input byte, the transducer can consume at
most a quarter of the chunk size bytes at a time. If the input buffer
holds more than that, the transducer must perform a partial con-
sumption of the input buffer. An example network and execution is
illustrated in Figure 2.

In more detail, a transducer fires by first computing the num-
ber of available elements from the input buffers and the number of
elements that there are room for in the output buffer. If the output
buffer is uninitialized, it requests an empty buffer from the nursery.
The transducer then calls a kernel function that performs the actual
computation. The kernels functions are simple function on arrays.
When the kernel is done, the transducer advances the read cursors
and the write cursor, and updates the end-of-stream indicator. El-
ements that are located before the smallest read cursor of a buffer
will never be used again. When a read cursor is advanced, a buffer
may therefore become completely used, in which case that buffer is
returned to the nursery, as is the case in step Fire C(2) of Figure 2.

3.2 Nursery

By using a nursery, we are able to reuse memory that is already
in cache. Without a nursery, each transducer would have its own
pre-allocated buffer, and all the buffers may not be able to fit in the
cache at the same time. This means that each transducer may have
to bring its input buffers into cache each time it fires, resulting in
bad cache utilization.

With a nursery on the other hand, in the ideal scenario, the
network consists of a long string of unary map transducers that
fully consumes their input in each step. Here, only two buffers are
needed: A read buffer and a write buffer. After each transducer
is executed, the read buffer becomes the new write buffer and
vice versa. In practice however, transducers of greater arity require
more than one read buffer, and buffers are not fully consumed
due to different data rates. In our experiments, the number of
buffers required is approximately one third of the total number of
transducers in the network.

3.3 Scheduling

An important part of executing a network is finding out what trans-
ducer to execute next. Scheduling is important for performance,
because we want to minimize the number of active buffers and
maximize the work in the kernels. We want to avoid executing a
transducer with almost empty input buffers, as that would magnify

Fire C (2):

A B C

3

5

7

SVCODE:

A := read file(“in file”)
B := map neq const(A, 0)
C := pack(A, B)

Initial:

A B C

Fire A:

A

3

5

0

7

B C

Fire B:

A

3

5

0

7

B

t

t

f

t

C

Fire C (1):

A

3

5

0

7

B

t

t

f

t

C

3

5

7

Figure 2. An illustration of a stream transducer network that re-
moves all null characters (0) from a file named “in file”. The figure
shows three stream transducers firing one at a time and the con-
tents of their buffers (which are limited to a chunk size of 4). Write
cursors are illustrated with solid arrows, and read cursors are illus-
trated with dashed arrows. Fire A: The reader transducer fills its
buffer with bytes from the input file and moves its write cursor to
the end of the buffer. Fire B: Each byte is compared to 0 in the
transducer for map neq const. The read and the write cursors are
moved. Fire C (1): The pack transducer filters the bytes from the
read transducer using the booleans from the map transducer. Fire
C (2): Since all read cursors on the buffers for A and B are at the
end, the buffers are emptied by resetting the cursors and are hereby
ready for the next chunk of data.

the overhead of scheduling, and violate the high-level work/step
cost model.

As an example, in Figure 2, notice that there are two strate-
gies for further execution: Either fire the consumer(s) of (C) even
though its buffer is less than full, or repeat the steps in the figure in
an attempt to fill the buffer completely. The latter strategy requires
more buffers to be active at the same time, reducing the effective-
ness of the nursery, while the former strategy causes the consumers
to fire with less-than-full input buffers. In this example, the buffer
is almost full, but it could as well have been almost empty. There
is definitely opportunity for future work investigating the cost and
benefit of different strategies. In this paper however, we focus on
the simplest possible scheduling strategy called loop scheduling.

Loop scheduling executes the transducers in succession from
the first to the last, starting over unless the network has reached
completion. The transducers fire regardless of the fullness of the
buffers. Consequently, a transducer may fire on almost empty in-
put, which is sub-optimal in theory. In particular, we break the
step part of the work/step cost model. However, in practice, loop
scheduling performs well. This is due to a number of reasons. First,
its simplicity makes the scheduling overhead small. Second, when
executing with a chunk size much greater than the available paral-
lel resources (as we do), a step in the cost model is actually many
steps in the execution. Therefore, a non-full step likely saturates all

47

available resources, and since we do obey the work part of the cost
model, we achieve good performance anyway. Third, loop schedul-
ing exhibits good nursery usage. Since consumers are usually lo-
cated close to producers, and since we consume buffers as soon as
possible, buffers are returned to the nursery and recycled relatively
quickly, resulting in fewer total number of buffer allocations and,
in turn, better cache utilization. We have not encountered any ex-
amples where loop scheduling performs significantly worse than a
hard-coded, supposedly optimal, schedule.

3.4 SIMD Vectorization

Most kernels consist of a simple for-loop doing a single operation.
One would therefore expect a high-quality C compiler to generate
vectorized instructions for the pre-compiled kernel. Maps and re-
ductions are indeed generally automatically vectorized, but this is
not the case for scans and scan-like operations, such as packing.
We have checked with the latest version (as of the time of writing)
of gcc (5.3), clang (3.8) and icc (16.0), and none of them vectorize
a simple scan with addition. We therefore hand-vectorize scan and
segmented-scan kernels using Intel’s SSE intrinsics.

Based on the Kogge-Stone scan circuit (Kogge and Stone 1973),
we have been able to boost the performance of float-add scan by
a factor of 3. For the segmented version we have boosted the
performance by a factor between 1.3 and 2.5 depending of the
average length of the segments and whether or not they are regular.

An advantage of DPFlow, as opposed to writing a program in a
traditional language like C, is that the programmer does not have
to worry about whether or not the vectorizer succeeds. Adding a
single scan-like dependency in a loop in C, will most likely cause
the vectorization of the entire loop to fail. In effect, every operation
in the loop becomes slow, not just the scanned operation. On top
of that, if the compiler performs loop fusion, it may introduce
scan-like dependency in an otherwise vectorizable loop, causing
the vectorizer to fail in a non-obvious way.

3.5 Multi-Threading

One could hope that making DPFlow multi-threaded would require
little more than placing OpenMP pragmas on top of each kernel
loop. The reality is not so simple, however. It turns out that kernels
are called very frequently and do not contain enough work, so the
overhead of creating and joining threads in each kernel, as OpenMP
does, becomes too expensive. We cannot simply increase the chunk
size to accommodate the overhead, since that overflows the cache.
Instead, we start a pool of worker threads at the beginning, and
keep them alive for the entire duration of the execution. The worker
threads busy-wait until the main thread passes work to them by
using low-level synchronization primitives. When calling a kernel
function, the main thread first places the kernel arguments in a
globally accessible array. It then signals the worker threads to call
the same kernel function. Each thread runs the kernel on part of
the index space, and signals the main thread, again using low-level
synchronization, when they are done.

Multi-threaded scan and other scan-like kernels work in two
passes. In the first pass, each thread performs a reduction on its
part of the input array. The reduced results are then passed to the
main thread, which scans them to compute a start accumulator for
each thread. The second pass uses the hand-vectorized scan kernels.
Each thread performs a scan using the given start accumulator.

One could expect a doubling of single-threaded execution time,
because we effectively multiple the work by 2 by doing 2 passes.
However, experiments show that the additional work is negligible.
Partly because the first pass is a reduction which is relatively cheap
as it does not require a memory write operation, and partly because
it ensures that the relevant (to each thread) part of the input array
is in cache for the second pass. Furthermore, the reduction pass is

automatically vectorized by the C compiler and is generally more
efficient then the scan pass.

4. Experiments

Text processing algorithms often contain sequential dependencies
and irregular groupings (lines, words, etc.). This makes them dif-
ficult to parallelize in languages with explicit task parallelism, and
difficult to express in data parallel languages without support for
nested data parallelism. We evaluate four text-processing bench-
marks that showcase SNESL’s ability to express irregular nested
data parallelism with scalable performance.

The benchmarks are selected from common Linux command
line tools: word count, max line length, line reverse, and cut. We
also revisit two basic benchmarks from our previous paper: logsum
and logsumsum. Logsum sums the logarithms of i where i ranges
from 1 to n, which a way to compute log(n!). Logsumsum com-
putes the grand sum of multiple logsums.

To deal with file I/O, we introduce two functions in SNESL,
read file and write file, that allows the programmer to work with
files as sequences of characters. In order to avoid large overhead
in measurements during the benchmarks, we use a RAM-based
filesystem (tmpfs).

For the experiments, we use a 2.50 GHz Intel Xeon E5-
2670 v2 with 10 cores, 256 KB L2 cache and 25 MB shared L3
cache. We perform the text processing benchmarks on a 3.5 GB
file: the ASCII encoding of Pride and Prejudice by Jane Austen
concatenated 5000 times, downloaded from Project Gutenberg
(https://www.gutenberg.org/files/1342/1342.txt). Line reverse is
from the standard package util-linux, version 2.27, and the other
text utilities are from GNU Coreutils, version 8.25.

4.1 Logsum

We define logsum as logsum(N) =
∑N

i=1 log i, computed in
double precision. We compare ourselves to a straight-forward C
implementation using a loop and an accumulator. We also test the
program with OpenMP annotations on the loop.

In SNESL, logsum can be expressed as follows:

fun logsum(N) =
sum({log(real(i+1)) : i in &N})

(sum is an alias for reduce plus.) The benchmark numbers for
N = 108 are given in Figure 3. They show that SNESL per-
forms on par with C and OpenMP. Furthermore, the performance
scales with the number of threads, matching the execution time of
OpenMP.

From the graph, we also see that the choice of chunk size does
not matter as long as it is between 100 KB and 10 MB. Below
100 KB, the overhead of scheduling and managing buffers and
cursor becomes too significant. Above 10 MB we start to exceed
the L3 cache. All in all, these results are very promising. It remains
to be seen how we fare on more complicated examples.

4.2 Logsumsum

Logsumsum computes the grand sum of multiple logsums. For
some function f : N→ N, we define

logsumsumf (M) =
M∑

N=1

f(N)∑

i=1

log(i)

This example is admittedly a bit contrived, but it serves as a sim-
ple example that highlights the challenges of irregular nested data
parallelism. For the sake of simplicity, we ignore the possibility of
memoization if f is non-injective, and we do not compute larger
logsums from smaller, already computed, logsums.

48

Benchmark Speedup Chunk size Milliseconds

c 1.00 N/A 2646
omp-1 0.99 N/A 2658
omp-2 1.90 N/A 1393
omp-4 3.76 N/A 701
omp-6 5.30 N/A 498
omp-8 6.70 N/A 394

omp-10 8.43 N/A 313
snesl-1 1.00 65536 2640
snesl-2 1.92 4194304 1379
snesl-4 3.62 4194304 750
snesl-6 5.23 4194304 510
snesl-8 7.00 4194304 383
snesl-10 8.70 4194304 308

Figure 3. Logsum execution times and speedups.

Logsumsum is difficult to parallelize without flattening as the
best parallelization strategy depends on f . If the image of f con-
tains very large numbers, computing the logsum for those num-
bers will dominate the performance, and parallelization of the in-
ner summation would be sufficient. If, on the other hand, f only
produces small numbers, parallelizing the inner summation would
expose very little parallelism. Here, it would be better to paral-
lelize the outer summation, and let each thread compute M/p
small logsums. However, the distribution of work may become
skewed if the loop is parallelized naively. For example, the func-
tion f(x) = 10x/M yields small skewed numbers.

We express logsumsum in SNESL as:

fun logsumsum(M) =
sum({ logsum (10 * (N+1) / M) : N in &M})

The result of logsumsum for M = 2×107 are given in Figure 4.
As we see, SNESL performs approximately 20% slower than C
using a single thread, and the performance scales decently. We
were unable to obtain any speedup by placing OpenMP pragmas
on either the inner loop, the outer loop or both. In light of this, the
20% performance drop seems a small price to pay.

4.3 Word Count

Word counting is a bit trickier than simply counting whitespace
characters. Words, as defined by “wc -w”, may be separated by
more than one whitespace characters, and a word only counts
towards the total word count if it contains at least one “printable”
character. The numeric value of the whitespace characters are 9 to

Benchmark Speedup Chunk size Milliseconds

c 1.21 N/A 2461
snesl-1 1.00 1310720 2974
snesl-2 1.90 1310720 1562
snesl-4 3.40 1310720 874
snesl-6 4.73 1310720 628
snesl-8 6.09 1310720 488

snesl-10 7.33 1310720 405

Figure 4. Logsumsum execution times and speedups

Benchmark Speedup Chunk size Milliseconds

wc -w 0.65 N/A 19760
snesl-1 1.00 163840 12770
snesl-2 2.06 163840 6214
snesl-4 3.54 327680 3607
snesl-6 4.73 655360 2700
snesl-8 5.84 655360 2188

snesl-10 6.74 1310720 1894

Figure 5. Word count speedups

13 and 32, and the printable characters are 32 to 126. The following
is a SNESL program that produces exactly the same result as “wc
-w” in the POSIX locale, even on binary files:

-- Whitespace?
fun ws(c) = c == ’ ’ || c >= ’\t’ && c <= ’\r’

-- Printable character?
fun pc(c) = c <= ’~’ && c > ’ ’

-- Is word printable?
fun pw(w) = reduce -or({pc(c): c in w})

fun wc(file) =
let cs = read_file(file)
in sum({ int(pw(w))

: w in sep ({(c, ws(c)): c in cs})})

The results are given in Figure 5. Surprisingly, we out-perform
“wc -w”. Even on a single thread, we out-perform the Linux tool
by more than 50%. On top of that, we scale well with the number
of threads, even though the problem is irregular.

49

Benchmark Speedup Chunk size Milliseconds

wc -L 0.74 N/A 19760
snesl-1 1.00 655360 14420
snesl-2 1.86 1310720 7764
snesl-4 3.17 1310720 4554
snesl-6 4.31 1310720 3343
snesl-8 5.24 1310720 2750
snesl-10 6.04 1310720 2385

Figure 6. Max line length speedups

4.4 Max Line Length

The problem of finding the maximum length of the lines in a file
resembles word count. The challenge here, is that tab characters
expand to count for 1–8 characters in the Linux tool we compare
against (“wc -L”). To mimic this behavior, we separate each line
by tabulation characters in SNESL and then compute the length of
each “tab word” and round up to the nearest multiple of 8. Care
must be taken to treat the last tab word in each line differently as it
should not be expanded.

Rounding up can be done using bitwise operations:

fun round_to_8(n) = (n | 7) + 1

The tricky part is to treat the last tab word differently. We do this by
using the builtin tail flags operation, which gives us a boolean
for each word, that we can use to distinguish the last tab word. The
following function computes the length of a line in SNESL:

fun line_len(l) =
let ws = sep ({(c, c == ’\t’) : c in l})
in

sum({ let n = #w - 1
in (is_last ? n : round_to_8(n))

: w in ws;
is_last in tail_flags(ws)

})

We are now ready to compute the maximum line length of a file:

fun lines(cs) =
sep ({(c, c == ’\n’) : c in cs})

fun max_ll(file) =
let cs = read_file(file)
in maximum ({ line_len(l) : l in lines(cs)})

The results are given in Figure 6. Once again, we are faster than
the Linux tool in single-threaded performance, and we scale well
with the number of threads.

4.5 Line Reverse

Reversing each line in a file is accomplished using the Linux tool
“rev”. The equivalent program in SNESL is interesting, because
it is impossible to express without using vectors. Reversing a line
requires unbounded buffering, which we express in SNESL as a
sequence of vectors.

We first define a function to reverse a line (a sequence of charac-
ters). The function assumes that the line ends in a newline character.
That character is kept in the end as we do not want to move newline
characters to the beginning of each line.

fun rev_line(w) =
let v = tab(w);

n = #v-1
in {v!(i == n ? i : n-1-i) : i in &n}

Benchmark Speedup Chunk size Milliseconds

rev 1.88 N/A 21942
snesl-1 1.00 327680 40864
snesl-2 1.86 655360 22694
snesl-4 3.02 655360 13534
snesl-6 4.01 1310720 10188
snesl-8 4.90 1310720 8343

snesl-10 5.61 1310720 7286

Figure 7. Line reverse speedups

We then reverse each line, like so:

fun rev(file_in , file_out) =
let cs = read_file(file_in);

res = {rev_line(l) : l in lines(cs)}
in write_file(file_out , concat(res))

The results are given in Figure 7. Here, our single-threaded
performance is not particularly impressive, being nearly half as
fast as “rev”. However, once we increase the number of threads,
we easily out-perform the Linux tool, which does not have multi-
threaded support.

4.6 Cut

The cut benchmark explores filtering. Here, we select the ith col-
umn of a space delimited file (i.e., cut -d" " -fi). Cut is inter-
esting because it requires random-access on a vector of words, i.e. a
vector of vector of characters. Cut still works even when a line does
not have enough columns. In this case, there are two possible out-
comes. If there is only one column (i.e. the line contains no space
characters), then the whole line is returned. Otherwise, the empty
string is returned. The benchmark therefore also explores true con-
ditionals where we do not evaluate the false branch (as opposed to
sel (? :)), which may cause out of bounds error in this case.

We first define two functions for converting lines to tabulated
rows and indexing fields of a row:

fun row(l) =
tab({ tab(f)

: f in sep ({(x, x == ’ ’) : x in l})})

fun index_field(r, ix) =
let n = #r;

i = n == 1 ? 0 : ix
in if i < n

then r ! i
else " "

Then, we bring the functions together to define “cut” in SNESL:

fun cut(in , out , ix) =
let cs = read_file(in);

res =
{ let f = index_field(row(l), ix)

in { (c == ’ ’ ? ’\n’ : c)
: c in seq(f)}

: l in lines(cs)
}

in write_file(out , concat(res))

The results with i = 2 can be seen in Figure 8. The performance
of SNESL is, again, not as impressive as our previous experiments.
We only beat the Linux tool if we use 4 threads or more. A part
of the reason is conditionals with non-scalar type. The if-then-else
becomes more than 60 instructions in SVCODE that accounts for
approximately 20% of the execution time.

50

Benchmark Speedup Chunk size Milliseconds

cut -d” ” -f2 1.98 N/A 16192
snesl-1 1.00 655360 32120
snesl-2 1.78 655360 18012
snesl-4 2.92 655360 11003
snesl-6 3.79 655360 8480
snesl-8 4.42 655360 7262
snesl-10 4.95 655360 6491

Figure 8. Cut speedups

5. Conclusions and Future Work

We have shown that a chunked-dataflow execution model for
streaming nested data parallelism – despite a number of appar-
ent inefficiencies due to scheduling and data-transfer overheads –
actually gives single-core performance similar to sequential C code
on a selection of simple text-processing tasks. We attribute this par-
ity mainly to the much better utilization of SIMD instructions by
hand-written kernels, than what is achieved by current industrial-
strength compilers. Crucially, however, the dataflow code is also
directly suitable for further speedup by subdividing the per-chunk
work equally among multiple cores. Taking into account that paral-
lel algorithms for scans at least double the number of fundamental
operations performed, in addition to increased bookkeeping over-
heads, we observe speedups on moderate numbers of cores that are
probably close to what can be reasonably achieved.

Currently, two major aspects of the SNESL implementation re-
quire further work. First, as noted in Section 2.1, the current lan-
guage front-end does not support recursion, or even general iter-
ation. This is not as crippling a restriction as it may seem: since
many practical parallel algorithms only require a worst-case log-
arithmic recursion depth, it is actually feasible (and, with just a
little extra front-end support, quite practical) to statically unfold
the recursion to some maximal depth; for example, 30 levels of un-
folding of a binary-tree algorithm, such as a summation tree, would
allow for problem sizes up to 109, and 50 levels would probably be
sufficient for anything within the range of a desktop system. How-
ever, to also support algorithms like quicksort, where the recursion,
depth bound is only probabilistic, a general-purpose SNESL imple-
mentation should have support for dynamically adding nodes to the
dataflow graph, as and when additional depth is needed.

Another immediate area for future work is static checking of
schedulability, to outlaw inherently non-streamable computations
such as let m = reducemin(s) in {x − m : x in s} (where
we can only know m after having traversed all of s, and so can-
not use it to process s from the beginning). Intuitively, a SNESL
program should only be considered correct if it cannot deadlock
when executed with a chunk size of one element, corresponding to

a purely sequential program with coroutines. While simple suffi-
cient criteria for this property exist (or can be derived from clas-
sical work on synchronous dataflow), the abstraction of nested se-
quences brings some challenges in turning them into a composi-
tional (and programmer-comprehensible) analysis or type system.
However, we expect to establish formally that if a system does not
deadlock with a chunk size of one element, it will not deadlock for
any larger (not necessarily uniform throughout the network) size
either; thus, stress-testing the network with minimal buffer sizes
should still uncover most concurrency bugs.

Finally, there are still ample opportunities for performance tun-
ing. Though the compiler already performs a simple shape anal-
ysis before the flattening transformation, and a range of peep-
hole optimizations on the generated SVCODE, we expect that fur-
ther improvements such as selective transducer fusion (especially
map–map, which shouldn’t interfere significantly with vectoriza-
tion, analysis-guided specialized representations of data and/or de-
scriptor streams (e.g., run-length compression), and similar tweaks
would improve both single-core performance and scalability even
further.

References

F. M. Madsen, R. Clifton-Everest, M. M. T. Chakravarty, and G. Keller.
Functional Array Streams. In Fourth ACM SIGPLAN Workshop

on Functional High-performance Computing, FHPC’15, pages 23–34,
Vancouver, British Columbia, Sept. 2015.

F. M. Madsen and A. Filinski. Towards a Streaming Model for Nested
Data Parallelism. In Second ACM SIGPLAN Workshop on Functional

High-performance Computing, FHPC’13, pages 13–24, Boston, Mas-
sachusetts, Sept. 2013.

L. Bergstrom and J. H. Reppy. Nested data-parallelism on the GPU. In
International Conference on Functional Programming, ICFP’12, pages
247–258, Copenhagen, Denmark, Sept. 2012.

G. E. Blelloch. Prefix sums and their applications. In Synthesis of Parallel

Algorithms, Edited by John H. Reif, Morgan Kaufmann, 1991.

G. E. Blelloch. NESL: A nested data-parallel language. Technical Report
CMU-CS-92-103; updated version: CMU-CS-05-170, School of Com-
puter Science, Carnegie Mellon University, 1992.

G. E. Blelloch and J. Greiner. A provable time and space efficient imple-
mentation of NESL. In International Conference on Functional Pro-

gramming, ICFP’96, pages 213–225, Philadelphia, Pennsylvania, May
1996.

D. W. Palmer, J. F. Prins, S. Chatterjee, and R. E. Faith. Piecewise execution
of nested data-parallel programs. In Languages and Compilers for Par-

allel Computing, 8th International Workshop, LCPC’95, volume 1033
of Lecture Notes in Computer Science, Columbus, Ohio, Aug. 1995a.

P. M. Kogge,and H. S. Stone. A Parallel Algorithm for the Efficient Solution
of a General Class of Recurrence. In IEEE Transactions on Computers

Volume C-22 Issue 8, pages 786-793, Aug. 1973.

51

