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Abstract
Subscripts using induction variables that cannot be ex-
pressed as a formula in terms of the enclosing-loop indices
appear in the low-level implementation of common pro-
gramming abstractions such as filter, or stack operations and
pose significant challenges to automatic parallelization. Be-
cause the complexity of such induction variables is often due
to their conditional evaluation across the iteration space of
loops we name them Conditional Induction Variables (CIV).

This paper presents a flow-sensitive technique that sum-
marizes both such CIV-based and affine subscripts to pro-
gram level, using the same representation. Our technique re-
quires no modifications of our dependence tests, which is
agnostic to the original shape of the subscripts, and is more
powerful than previously reported dependence tests that rely
on the pairwise disambiguation of read-write references.

We have implemented the CIV analysis in our paralleliz-
ing compiler and evaluated its impact on five Fortran bench-
marks. We have found that that there are many important
loops using CIV subscripts and that our analysis can lead to
their scalable parallelization. This in turn has led to the par-
allelization of the benchmark programs they appear in.

1. Introduction
An important step in the automatic parallelization of loops is
the analysis of induction variables and their transformation
into a form that allows their parallel evaluation. In the case of
“well behaved” induction variables, that take monotonic val-
ues with a constant stride, their generating sequential recur-
rence can be substituted with the evaluation of closed form
expression of the loop indices. This transformation enables
the parallel evaluation of the induction variables. When these
variables are used to form addresses of shared data struc-
tures, the memory references can be statically analyzed and
possibly parallelized. Thus we can conclude that the analy-
sis of induction-variables use is crucial to loop dependence
analysis [1, 7, 18] and their subsequent parallelization.

For example, the loop in Figure 1(a) increments by two
the value of k (produced by the previous iteration), and up-
dates the kth element of array a. The uniform incremen-
tation of k allows to substitute this recurrence on k with

k = k0 Ind. k = k0

DO i =1,N Var. DO i = 1, N

k = k+2 ⇒ a(k0+2*i)=..

a(k)=.. Sub. ENDDO

ENDDO k=k0+MAX(2N,0)

(a) (b)

DO i = 1, N

IF(cond(b(i)))THEN

civ = civ+1 ⇒?

a(civ) = ...

ENDIF ENDDO

(c)

Figure 1. Loops with affine and CIV array accesses.

its closed-form equivalent k0+2*i, which enables its in-
dependent evaluation by all iterations. More importantly,
the resulted code, shown in Figure 1(b), allows the com-
piler to verify that the set of points written by any dis-
tinct iterations do not overlap, a.k.a., output independence:
k0+2*i1 = k0+2*i2 ⇒ i1=i2. It follows that the loop in
Figure 1(b) can be safely parallelized.

A known difficulty in performing this analysis arises
when subscripts use scalars that do not form a uniform re-
currence, i.e., their stride (increment) is not constant across
iteration space of the analyzed loop. We name such vari-
ables conditional induction variables or CIV because they
are typically updated (only) on some of the possible control-
flow paths of an iteration. For example, the loops in Fig-
ures 1(a) and (c) are similar, except that in (c) both civ

and the array update are performed only when condition
cond(b(i)) holds. Although the recurrence computing civ
values can still be parallelized via a scan [2] (prefix sum)
precomputation, neither CIV nor the subscript can be sum-
marized as affine expressions of loop index i, and hence the
previous technique would fail.

This paper presents a novel induction-variable analysis
that allows both affine and CIV based subscripts to be sum-
marized at program level, using one common representation.

Current solutions [3, 8, 10, 23, 26] use a two-step ap-
proach: First, CIV scalars are recognized and their proper-
ties, such as monotonicity and the way they evolve inside
and across iterations, are inferred. Intuitively, in our exam-
ple, this corresponds to determining that the values of civ
are increasing within the loop with step at most 1. This pa-
per does not contribute to this stage, but exploits previously
developed techniques [23]. Second and more relevant, each
pair of read-write subscripts is disambiguated, by means of
specialized dependency tests that exploit the CIV’s proper-
ties. In our example, the cross-iteration monotonicity of the
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CIV values dictates that the CIV value, named civ2 after
being incremented in some iteration i2 is strictly greater
than the value, named civ1 of any previous iteration i1. It
follows by induction that the update of a(civ) cannot re-
sult in cross-iteration (output) dependencies, i.e., the system
civ2-civ1 ≥ 1 and civ2 =civ1 has no solution.

Other summarization techniques [9, 14, 16] aggregate ar-
ray references across control-flow constructs, e.g., branches,
loops, and model dependency testing as an equation on the
resulted abstract sets. In practice, they were found to scale
better than previously developed analysis based on pairwise
accesses [9], but they do not support CIVs.

This paper proposes an extension to summary-based anal-
ysis that allows CIV based subscripts to use the same rep-
resentation as the affine subscripts. This enables scalable
memory reference analysis without modification of the pre-
viously developed dependency tests. The gist of our tech-
nique is to aggregate symbolically the CIV references on ev-
ery control-flow path of the analyzed loop, in terms of the
CIV values at the entry and end of each iteration or loop.
The analysis succeeds if (i) the symbolic-summary results
are identical on all paths and (ii) they can be aggregated
across iterations in the interval domain.

We demonstrate the technique on the loop in Figure 1(c),
where we use civiµ and civib to denote the values of civ
at the entry and end of iteration i, respectively. On the
THEN path, i.e., cond(b(i)) holds, the write set of array
a is interval Wi =[civiµ+1,civ

i
b], i.e., point {civiµ+1},

because the incremented value of civ is live at the iteration
end. On the ELSE path, the write set of a is the empty set. For
uniformity of representation we express this empty set as an
interval with its lower bound greater than its upper bound.
In particular, the interval of the THEN path matches, because
civ is not updated and so civiµ+1>civ

i
b.

Aggregating Wk across the first i-1 iterations results in
∪i−1k=1Wk = [civ1µ+1,civ

i
µ], where we have used civ val-

ues’ monotonicity and the implicit invariant civk−1b ≡civkµ,
i.e., the civ value at an iteration end is equal to the civ value
at the entry of the next iteration. As a last step, program in-
variants are modeled as abstract-set equations that do not
depend on the original-subscript shape, i.e., CIV-based or
affine. In our example, the output independence equation:
(∪i−1k=1Wk)∩Wi=[civ

1
µ+1,civ

i
µ]∩ [civiµ+1,civib]=∅,∀i,

verifies that the write set of any iteration i does not overlap
the write set of all previous iterations, and, by induction, that
no distinct iterations write a common element of a.

Our technique is well integrated into the PARASOL
branch of the Polaris [4] Fortran compiler. We use hy-
brid analysis to verify dataset-sensitive invariants at runtime
by evaluating a sequence of sufficient-conditions of increas-
ing complexity. These conditions (predicates) are statically
synthesized from the summary equations that model the rel-
evant invariants Our existing hybrid analysis did not require
modifications but has benefited from our technique: First,

our analysis simplifies CIV-summary expressions enabling
successful verification of the relevant invariants. Second,
our analysis extracts the slice of the loop that computes the
CIV values and evaluates it in parallel before loop execution.
This allows: (i) runtime verification of CIV monotonicity
whenever this cannot be statically established, (ii) sufficient
conditions for safe parallelization to be expressed in terms
of the CIV values at loop’s entry, end, and anywhere in be-
tween, and (iii) safe parallelization in the simple case when
CIV are not used for indexing. The latter is not reported in
related work. In summary, main contributions are:

• A flow-sensitive analysis that extends program level sum-
marization to support CIV-based indices and leads to the
parallelization of previously unreported loops,
• A non-trivial code generation that separates the program

slice that performs the parallel-prefix-sum evaluation of
the CIV values from the main (parallel) computation in
which they are inserted.
• An evaluation of five difficult to parallelize benchmarks

with important CIV-subscripted loops, which measures
all runtime overheads and shows application level speed-
ups as high as 7.1× and on average 4.33× on 8 cores.

Speedups of two of this paper benchmarks shown were
also reported in [14]. They were obtained in part by using
the CIV technique that is presented here for the first time.

2. An Intuitive Demonstration
Figure 2(a) shows a simplified version of loop CORREC do401

from BDNA benchmark, as an example of non-trivial loop
that uses both CIV and affine-based subscripts. Variable civ
uses (gated) single-static-assignment (SSA) notation [25]:
For example, statement civ@2=γ(i.EQ.M,civ@1,civ@4)
has the semantics that variable civ@2 takes, depending on
the evaluation of i.EQ.M, either the value of civ@1 for the
first iteration of the loop that starts at M, or the value of civ@4
for all other iterations. For simplicity we omit the gates in
the figure and use only read and write reference sets (but our
implementation uses read-only, write-first, read-write sets).

Parallelizing loop CORREC do401 in Figure 2(a) requires
verifying two invariants: The first refers to disproving cross-
iteration true and anti dependencies. For such dependencies
to occur it is necessary that there exists a memory location
that is both read and written, and we plan to disprove this
by verifying that the overestimates of the read and write sets
(of subscripts) of X, aggregated at the outer-loop level, do
not overlap. The second invariant refers to disproving output
dependencies, which reduces to showing that the write-set
overestimates of any two iterations do not overlap.

Matters are simple for summarizing the affine read access
X(i): since i is the loop index ranging from M to N, the read
set across the loop is dRe = ∪Ni=M{i − 1} =[M-1,N-1],
where we have used the convention that array indices start
from 0 (rather than 1 as in the introductory example).
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civ@1 = Q

DO i = M, N, 1

civ@2=γ(civ@1,civ@4)
.. = X(i) ..

IF C(i) .GT. 0 THEN

DO j = 1, C(i), 1

IF(..)X(j+civ@2 )=..

IF(..)X(j+civ@2+ C(i))=..

IF(..)X(j+civ@2+2*C(i))=..

ENDDO

civ@3 = 3*C(i) + civ@2

ENDIF

civ@4=γ(civ@3,civ@2)
ENDDO

civ@5=γ(civ@4,civ@1)

(a)

VEG annotated with

CIV-based summaries

at Gated-SSA Path,

Iteration and

Loop Levels

(b)

Figure 2. (a) Loop CORREC do401 and (b) its Value Evolu-
tion Graph (VEG), (from BDNA, PERFECT-CLUB).

Computation of the write-set overestimate starts by sum-
marizing the inner loop: the if branches are conservatively
assumed as taken, and the three affine inner-loop updates
are summarized to interval [civ@2,civ@2+3*C(i)-1]

by expanding index j to its range [1,C(i)], e.g., access
X(j+civ@2) generates interval [civ@2,civ@2+C(i)-1].

Similar to the introductory example, outer-loop aggrega-
tion analyzes each path of an iteration: On the path on which
C(i).GT.0, we have civ@4=civ@3=civ@2+3*C(i), and
the path summary is rewritten as [civ@2,civ@4-1], i.e., in
terms of the civ variables that start and end an iteration. The
other path neither updates X nor increments civ, hence it can
use the same symbolic summary [civ@2,civ@4-1]= ∅,
where civ@2=civ@4>civ@4-1. Note that an empty interval
has its lower bound greater than its upper one. It follows that
the outer-loop iteration summary is Wi = [civ@2,civ@4-1].

Since civ is updated only when C(i) is positive, its val-
ues are monotonically increasing within the loop with the
lower and upper bounds being civ@1=Q and civ@5. It fol-
lows that the write-set overestimate of the outer loop is inter-
val dW e=d∪Ni=MWie=[Q,civ@5-1]. Flow independence
requires dW e∩dRe ≡ [M− 1, N− 1]∩ [Q, civ@5− 1] = ∅,
and a sufficient condition for this equation to hold is (easily)
extracted: Q≥N ∨ M>civ@5. Finally, output independence
is proven statically, similarly to the CIV loop of Figure 1.

We conclude this section with two high-level observa-
tions: First, our analysis summarizes CIV and affine sub-
scripts much in the same way, and enables a dependence
test that is agnostic to the kind of subscripts that were used.

These properties do not seem to hold for related approaches:
For example, techniques that disambiguate consecutively
written, single indexed subscripts [10, 23] cannot solve
CORREC do401 because the accesses do not follow such pat-
tern. Similarly, a technique [26] that disambiguates pairs
of accesses of shape {X(civ),X(civ+CT)} may prove the
output, but not the flow independence of CORREC do401.

Second, summary approximation has been key to success-
ful analysis. For example in the code in Figure 2(a), overes-
timating the write set of the inner loop by assuming that all
branches are taken allowed the CIV subscripts to be aggre-
gated as an interval. More importantly, the separation of the
read and write sets cannot be verified statically: it requires
runtime information. It follows that the accurate write-first
summary at the outer-loop level cannot be statically simpli-
fied to an interval, but its overestimate, consisting of only the
CIV term, can and is sufficient for proving parallelization.

Finally, even if an affine (or different-CIV) write access is
added to the code, the write overestimate is still computable
by separately aggregating each term and uniting the results.

3. Preliminary Concepts
Our analysis of CIV subscripts builds on four main tech-
niques: First, a baseline analysis summarizes array indices
into read-only RO, read-write RW and write-first WF abstract
sets, using a representation named unified set reference [22]
(USR). Second, loop independence is modeled as an equation
in the USR domain. Third, whenever this equation cannot be
verified statically, a predicate is extracted from it, and its
evaluation validates independence at runtime [14]. Fourth,
the value evolution graph [23] (VEG) is used to model the
flow of CIV values in a loop, and to query scalars’ ranges.
The remaining of the section establishes a uniform notation
and formulates the problem to be solved by CIV analysis.

USR ::= LMAD (strided intervals)
| USR ∪ USR (set union)
| USR ∩ USR (intersection)
| USR − USR (difference)
| Expbool # USR (gated USR)
| l ∪Ni=1 USR (full recurrence)
| l ∪i−1k=1 USR (partial recurrence)
| CallSite ./ USR (callsite translation)

Figure 3. Unified Set Reference (USR) Grammar.

USR Construction [22]. Summaries use the represen-
tation shown in Figure 3, and can be seen as a DAG in
which leaves correspond, for simplicity, to strided (multi-
dimensional) intervals, named linear memory access de-
scriptors [16] (LMAD) in the literature. USR’s internal nodes
represent operations whose results are not accurately repre-
sentable in the LMAD domain: (i) irreducible set operations,
such as union, intersection, subtraction (∪, ∩,−), or (ii) con-
trol flow: gates predicating summary existence (prefixed by
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SUMMARIZE(REGi, i = 1, N )

(WFi, ROi, RWi)← REGi

Ri = ROi ∪ RWi

WF =
⋃N

i=1
(WFi −

⋃i−1

k=1
Rk)

RO =
⋃N

i=1
ROi−⋃N

i=1
(WFi ∪ RWi)

RW = (
⋃N

i=1
Ri)− (WF ∪ RO)

RETURN (WF,RO,RW )

(a)

OUTPUT INDEPENDENCE EQ:

{∪N
i=1(WFi ∩ (∪i−1

k=1
WFk))} = ∅

FLOW/ANTI INDEPENDEP EQ:

{(∪N
i=1WFi) ∩ (∪N

i=1ROi)} ∪
{(∪N

i=1WFi) ∩ (∪N
i=1RWi)} ∪

{(∪N
i=1ROi) ∩ (∪N

i=1RWi)} ∪
{∪N

i=1(RWi ∩ (∪i−1
k=1

RWk))} = ∅

(b)

Figure 4. (a) Loop Memory Reference Summary and (b)
Loop Independence with Set Equations.

#) or total (l∪Ni=1) and partial (l∪i−1k=1) unions correspond-
ing to a loop l of index i=1,N. We note that while USRs are
complex and accurate, one can always under/over-estimate
an USR in the simpler strided-interval domain, albeit this
may prove very conservative, i.e., ∅, or [0,∞].

USRs are built during a bottom-up traversal of a control-
flow reducible program. In this pass, data-flow equations
dictate how summaries are initialized at statement level,
merged across branches, translated across call sites, com-
posed between consecutive regions, and aggregated across
loops. For example, the aggregation equation for a loop l of
index i=1,N is shown in Figure 4(a): The loop-aggregated
write-first set WF is obtained by (i) subtracting from the
write-first set of iteration i, i.e., WFi, the reads of any itera-
tion preceding i, and (ii) by uniting the per iteration sets.

Independence Equations. Figure 4(b) shows the USR
equations, of form S = ∅, that model loop independence.
The output independence equation states that if for any i,
the write-first set of iteration i does not overlap with the
write-first set of any iteration preceding i, then, by induc-
tion, no two iterations write the same location. Similarly, for
flow/anti independence it is checked (i) the disjointness of
the total unions of the per-iteration WF, RO, and RW set, and
(ii) that the RW sets of any two iterations do not overlap.

Synthesizing Independence Predicates [14, 15]. When
the independence equation is not statically satisfied, we use
a translation scheme F , from the USR language to a lan-
guage of predicates, named PDAG, to extract a sufficient-
independence condition:F : USR→ PDAG,F(S)⇒ S = ∅.
The result is then separated into a cascade of predicates that
are tested at runtime in the order of their complexities. If
output dependencies cannot be disproved then privatization
is necessary. If WFi is loop invariant then only the last iter-
ation writes to non-private storage (static last value).

Value-Evolution Graph [23] (VEG) is a DAG that repre-
sents the flow of values between gated-SSA [25] names of a
scalar variable. VEGs are constructed on demand at loop and
subroutine levels. For example Figure 2(a) and (b) shows our
running example and the VEG describing the evolution of
variable CIV in the outer loop: The entry node, e.g., merging
cross-iteration values, is named the µ node and is shown in

Figure 2(b) as a double ellipse. The recurrence, named the
back edge, is shown as a dotted line, and the back node is
drawn as a hexagon. Regular nodes, drawn as ellipses, cor-
respond to reduction-like statements. The VEG shows that
our loop uses a variable named civ that is incremented on
some paths with 3*C(i), and is unmodified on other paths.

Note that branch conditions are not explicit in the VEG,
but they are easily found from the gated-SSA definition of
γ-merged CIVs. Nodes corresponding to arbitrary assign-
ments, i.e., not a reduction, are named input nodes and are
drawn in rectangles. A conditional induction variable (CIV)
corresponds to a particular VEG, in which: (i) the µ node
is unique, dominates all other VEG nodes, i.e., is reachable
from within the VEG only through its unique back edge, (ii)
there are no input nodes, and (iii) the µ-node values are
provably monotonic. Our running example complies with
these rules: For example, evolution 3*C(i) in Figure 2(b) is
proven positive at the point of use, because path civ@2 →
civ@3 → civ@4 is guarded by condition C(i).GT.0,
which, while not shown, is part of the gated-SSA definition
of γ-node civ@4. If this is not possible statically, analysis
can optimistically assume monotonicity, and verify it at run-
time in the slice that pre-computes the CIV values.

Problem Statement. We denote by L a normalized loop
of index i ∈ {1..N} that exhibits subscripts using CIV
variables. We denote by Ui one of the write-first (WF), read-
write (RW) or read-only (RO) set-expression summaries of
some array X corresponding to iteration i of loop L, where
the USR’s leaves, i.e., LMADs, may use CIV variables. For
simplicity, we consider LMADs to be strided intervals, i.e.,
[l, u]s = {l, l + s, l + 2 ∗ s, .., u}. If s = 1, we omit writing
s; if the interval is a point p, we may write it {p}.

The goal is to compute symbolic under/over-estimates in
the interval domain, denoted by bAc/dAe, for U = ∪Ni=1Ui.
In the same way in which loop aggregation of an affine
subscript eliminates the loop index i from the result sum-
mary, we declare CIV-aggregation acrossL successful if bAc
(dAe) does not depend on any loop-variant symbols, e.g.,
any symbol in CIVµ’s VEG. For example, in Figure 2(a), the
affine subscript of X(i), expressed as {i-1}, is aggregated
across the outer loop as [M-1,N-1], which is independent
on i. Similarly, we would like to overestimate the write ac-
cesses across the loop as interval [civ@1,civ@5-1] which
does not depend on loop-variant symbols, such as civ@3.

In essence this would allow to treat uniformly and com-
positionally CIV-based and affine summaries: For example,
the compiler can now establish flow independence by com-
paring the read and write summaries, which have the same
representation, albeit the read and write sets correspond to
affine and CIV-based subscripts, respectively. The other ex-
ample refers to the difficult benchmark track, in which the
output of the CIV-summarized (inner) loop EXTEND do500

becomes the input to CIV-based summarization of the outer
loop EXTEND do400 (hence composable summarization).
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4. Monotonic CIV Summaries
Our analysis is implemented as an extension of baseline
summarization for the special cases of loop and iteration ag-
gregation (and call-site translation), because at these levels
the CIV-value properties, summarized by VEG, can be effec-
tively used. To compute the symbolic summary across all
paths, the analysis needs to combine the control-flow of the
summary, e.g., encoded in USR’s gates, with the control flow
of the CIV, available in VEG. The key idea here is to con-
servatively associate summary terms with VEG nodes and
to merge across all VEG paths. It follows that our analysis
computes under and overestimate summaries, but accuracy
is recovered when the under and overestimate are identical.

Over/under estimation also allows (separate) aggregation
of the affine and CIV-based subscripts, which are typically
still accurate enough to verify the desired invariant. As with
our running example, in practice, important loops use both
affine and CIV-based subscripts on the same array, hence
terms of both kinds may appear in the set expression of the
accurate summary, which cannot be simplified to an interval.

The remaining of this section is organized as follows:
Section 4.1 presents the basic flow-sensitive analysis tech-
nique for summarizing over and underestimates, and demon-
strates it on the running example depicted in Figure 2. Sec-
tion 4.2 shows several enhancements to the basic technique
that solve more difficult loops, such as EXTEND do400 from
benchmark track. Our analysis also extends (with some
modifications) to a stack-like access pattern in which the
CIV values are only piecewise monotonic; this is discussed
in Section 4.3. Finally, Section 4.4 details on the overall im-
plementation, and focuses on how to (pre)compute safely, in
parallel the CIVµ values associated to each iteration.

4.1 Basic Flow-Sensitive-Analysis Techinque
The algorithm implementing the basic analysis is depicted
in Figure 5 and has four main stages: First, under and over-
estimates of input USR Ui are computed under the form of a
union of gated-interval pairs. Second, the intervals that use
CIV variables are associated with nodes on the CIV’s VEG
graph. Third, each VEG path is summarized via an interval
expressed in terms of CIVµ and CIVb nodes.
Finally, path intervals are merged across all paths, according
to the under/over-estimate semantics, to yield the iteration-
level interval Ai. Total and partial-recurrence intervals, A
and Ai−1k=1, are computed by suitably substituting CIVµ and
CIVb in Ai with suitable (VEG) bounds, which is safe due to
the cross-iteration monotonicity of CIV values. The remain-
ing of this section details and demonstrates each algorithmic
stage on our running-example loop introduced in Figure 2.

1. Approximating an USR. For brevity, we do not
present the algorithm for over/under-estimating an USR via
a union of gated-interval g#L pairs, where L is an interval
and g is a condition predicatingL’s existence. We note that it
is always possible to build an interval under/overestimate, by

CIV-SUMMARIZATION ( Ui : USR )

// Output: (Ai, A, Ai−1
k=1) or Fails, i.e.,

// the under/over-estimate intervals of (Ui,∪Ni=1Ui, ∪i−1
k=1Ui).

1. OVER/UNDER-ESTIMATE Ui BY A UNION OF

GATED INTERVALS: ∪k(gk#Lk)← Ui

2. ASSOCIATE EACH Lk, TO A VEG NODE CIV@q,
WHICH IS THE CIV-IMMEDIATE (POST) DOMINATOR OF

THE PROGRAM POINT WHERE Lk WAS SUMMARIZED

3. For Each VEG PATH, SYMBOLICALLY UNITE (EXACTLY)
THE Lk’S ON THAT PATH INTO ONE INTERVAL Lpath .

If Lpath CANNOT BE WRITTEN IN TERMS OF ONLY

CIVµ AND CIVb LOOP-VARIANT SYMBOLS Then Fail.

If IN UNDERESTIMATE CASE THEN CHECK THAT THE

VEG-path CONDITION IMPLIES gk. Else Lk 6∈ path.

4. If ALL pathS HAVE IDENTICAL Lpath
Then Ai = Lpath , AND COMPUTE A AND Ai−1

k=1 BY

SUBSTITUTING CIVµ AND CIVb WITH THEIR BOUNDS.
Else Fail.

Figure 5. CIV-Based-Summarization Pseudocode.

recursively pattern matching the USR’s shape [15]. We have
enhanced this algorithm to also gather gate information, and
we have not encountered any significant problems.

With the loop in Figure 2(a), the write-first underestimate
bWFic of array X is the empty set, because X is conditionally
updated in the inner loop, and the gated overestimate is
dWFie = (C(i).GT.0)#[civ@2, civ@2+ 3 ∗ C(i)− 1],
because the CIV accesses occur inside the inner loop, which
belongs to the THEN target of statement IF(C(i).GT.0).

2. Associating Summaries with VEG Nodes. Our analy-
sis uses the VEG to approximate the control-flow of the loop,
because (i) VEG describes the evolution of the CIVs used in
subscripts, and (ii) it also retains the key control-flow infor-
mation necessary for summarization.

As such, we associate each gated-interval pair g#L con-
taining a CIV with a node in the CIV’s VEG1. This cor-
responds to identifying the CIV node (in VEG) that most-
accurately describes the program point PPL where interval L
was summarized: We compute both the immediate CIV-node
dominator and post-dominator of PPL, denoted by CIVd and
CIVpd, respectively, and chose CIVpd as the associated node
if CIVd dominates CIVpd, and CIVd otherwise. This ensures
that the associated CIV is the “closest” node that belongs to
any path passing through PPL (the reverse does not hold).
For our running example, the dWFie overestimate of X,

1 In principle, we may have “regular” gated-interval pairs, and also different
pairs may correspond to CIVs from different VEGs. These are treated inde-
pendently and the result is the union of partial results. Analysis fails if one
interval exhibits two CIVs belonging to different VEGs.
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namely [civ@2,civ@2+3*C(i)-1], is projected to node
civ@3, as shown in the annotated VEG in Figure 2(b).

For underestimate computation it is not enough to asso-
ciate an interval L to a CIV node in the manner presented
before, because it is not guaranteed that any path that passes
through the CIV node would also pass through PPL. At this
point we use the gate g associated with L, which subsumes
all the conditions guarding the accesses summarized byL: In
the computation of an underestimate, a gated-interval g#L
is considered part of a VEG path iff the condition of the VEG
path, i.e., the conjunction of all the γ-node gates on that path,
implies g, i.e., the existence condition of L. This guarantees
that the summary belongs to any control-flow path that in-
cludes the considered VEG path2.

3. VEG-Path Summarization. To compute the result on
one path, all intervals are rewritten in terms of only the CIVµ
node, by using the symbolic formulas of the path’s evolution.
Then, all intervals belonging to the VEG path are united
(unioned). If this succeeds, i.e., the result is one interval,
then the resulting-interval upper bound is rewritten in terms
of the back node, CIVb. This is possible because each path
has a known evolution from CIVµ to CIVb. If the result is free
of loop-variant symbols other than CIVµ and CIVb, such as
3*C(i), then path-level analysis succeeds, otherwise it fails.

For example, the path civ@2 → civ@3 → civ@4
of the VEG in Figure 2(b), exhibits loop-variant evolution
3*C(i), and results in interval [civ@2,civ@2+3*C(i)-1].
However, rewriting the upper bound in terms of the back
CIV node, results in [civ@2, civ@4− 1], i.e., we have per-
formed substitution civ@2←civ@4-3*C(i) derived from
that path’s evolution. It follows that aggregation succeeds.

The other VEG path exhibits empty summaries and 0 evo-
lution, i.e., civ@2=civ@4. It follows that [civ@2,civ@4-1]
≡ ∅ describes it correctly as well, i.e., an interval in which
the upper bound is smaller than the lower bound is empty.
It follows that all paths share the same per-iteration result,
in which the only loop-variant terms are the µ and back CIV
nodes, and analysis succeeds.

4. Merge Across All Paths. The last stage of the analysis
is to compute the merge-over-all-paths result (interval). In
our implementation the merge succeeds only when all path
results are identical, which holds on both examples, e.g.,
dWFie = [civ@2, civ@4− 1]. In the general case, one
can compute the intersection/union over all paths as the
under/overestimate result, respectively. For simplicity, in the
following, we assume that CIV values are monotonically
increasing, and that the result’s upper bound increases with
the iteration number, i.e., positive stride.

We compute the loop result as if we aggregate an affine
access across a loop whose lower and upper bounds are equal
to the value of the CIV at the loop entry and exit, respectively.
In our case this corresponds to replacing civ@2 and civ@4

2 Establishing this invariant strictly from the CFG is more conservative, e.g.,
our gates are translated/simplified across call sites, hence more accurate.

(a)

(b)

Figure 6. (a) ROi USR & (b) civ’s VEG for EXTEND do500.

with civ@1 and civ@5 (the CIV values at the loop entry and
exit), which results in [civ@1, civ@5-1]. If the sign of the
CIV factor in the affine-CIV expression is positive, then CIV’s
monotonicity ensures that the overestimate is correct.

For the underestimate, correctness requires checking that
the per-iteration result Ai is contiguous (or overlapping)
between any two consecutive iterations. IfAi =[lbi,ubi]s,
this corresponds to checking that ubi−1+s = lbi, i.e., the
upper bound of iteration i-1 plus the stride equals (≤) the
lower bound of iteration i. The check uses the invariant
that the CIV value at the end of an iteration, i.e., the back
node, equals the CIV value at the entry of the next iteration,
i.e., the µ node. If bWFic would be [civ@2,civ@4-1]1,
this would correspond to replacing civ@4 with civ@2 in
the upper bound and checking civ@2-1+1=civ@2, which
verifies statically. Note that if the per-iteration result is a
point, then the stride is not set yet, and in this case the stride
is set to the value that verifies the invariant, i.e., lbi-ubi−1.

Similarly, to compute the partial-loop-aggregation result,
i.e., ∪i−1k=1, we replace the CIV µ with the CIV node at the
entry of the loop, and the back node with the CIV µ node of
iteration i, which results in interval [civ@1,civ@2-1].

Finally, if the over and underestimate results are identical
then the result is exact. The computed summaries allow now
to prove the flow and output independence of the running
example, as we have already seen in Section 2.

4.2 Enhancements to the Basic Technique
This section presents several refinements of the basic anal-
ysis, that allow to parallelize several difficult loops, e.g.,
track. One such loop is EXTEND do400 whose body con-
sists of inner loop EXTEND do500. Since even the simpli-
fied code is too complex for paper presentation, Figure 6(b)
presents the VEG of the inner loop, which sheds significantly
more insights than the code would do.

1. External Variables Allowed in VEG. Sometimes two
different variables are semantically the same CIV, for exam-
ple in the sequence nxt=civ;. . .nxt=nxt+1;. . .civ=nxt,
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USR FREAD(R : USR,WFp : LMAD)

// Output:R filtered-out ofWFp terms.

CaseR of:

LMAD L: IF F(L−WFp) THEN ∅ ELSE L

g#A: g#FREAD(A,WFp)

A ∪ B: FREAD(A,WFp) ∪ FREAD(B,WFp)

A ∩ B: FREAD(A,WFp) ∩ FREAD(B,WFp)

A− B: FREAD(A,bBc ∪WFp)

LOOP OR CALLSITE :

IF(F (dRe −WFp) THEN ∅ ELSER

Figure 7. Read-Set Filtering Algorithm.

shown in the VEG graph of Figure 6(b). It follows that we al-
low (external) variables such as nxt@3 to belong to the VEG
graph of civ because (i) they semantically contribute to the
flow of civ values and (ii) the extended VEG still complies
with the definition of a CIV variable (see Section 3), and be-
cause (iii) subscripts may contain both variables.

The analysis treats nxt@3 as any other member of the
civ family of variables, except that summaries cannot be
associated with external nodes, because the latter do not
necessarily encapsulate the correct control flow, i.e., the γ
nodes of variable nxt are not part of civ’s VEG graph.

2. Filtering The Read Set. The RO (USR) summary cor-
responding to iteration i of loop EXTEND do500 is shown in
Figure 6(a), where ∪, − and # internal nodes correspond to
set union, subtraction and gates, respectively. One can ob-
serve that ROi is already nontrivial, and using it as input to
outer-level summarization would result in complex set ex-
pressions, which would be ill-suited for computing indepen-
dence. We use instead a filtering technique based on the ob-
servation that the contribution of ROi to the loop-aggregated
RO set cannot possibly belong to ∪i−1k=1WFk. The same prop-
erty holds for the read-write set.

Figure 7 shows the recursively-defined operator FREAD

that filters out from the ROi (RWi) set, the terms that are
included into an interval underestimate of b∪i−1k=1WFkc,
denoted WF p. The result summary replaces ROi in Fig-
ure 4(a)’s equations. The algorithm pattern-matches the
shape of the read-only summary: If the current node is
an interval L then we extract a sufficient predicate for
L − WF p = ∅ by using the USR-to-predicate translation
F mentioned in Section 3. If the predicate is statically true

then L is filtered out, otherwise L (or L−WF p) is kept.
Similarly, if the current node, named R, is a loop or

callsite node, then we check using F whether an interval
overestimate ofR is included inWF p; if so thenR is filtered
out, otherwise it is kept. IfR is a gate or union or intersection
node, then each term is filtered and the results are composed
back. IfR is a subtraction nodeA−B thenA is filtered with
the union of WF p and an interval underestimate of B.

Filtering the read-only set depicted in Figure 6(a) with the
computed b∪i−1k=1WFkc =[civ@1,civ@2-1] results in the
simple RO′i = {i− 1}, where the problematic subtraction
node, denoted by (**) in Figure, was simplified3 to ∅.

3. Output-Dependence Pattern. When a CIV subscript
is written on a 0-evolution path, then cross-iteration depen-
dencies are likely to occur because the next writing iter-
ation is likely to overwrite the same subscripts. We will
now present a technique to remove at compile time such
dependencies. To make the presentation clearer we demon-
strate it on the loop EXTEND do400, which contains the loop
EXTEND do500, whose VEG is shown in Figure 6. Assume
the loop has per-iteration and partial-recurrence WF sets:

dWFie=[civ@1,civ@8 ], d∪i−1k=1WFke=[civ,civ@1],
bWFic=[civ@1,civ@8-1], b∪i−1k=1WFkc=[civ,civ@1-1]
where civ@1 and civ@8 are the µ and back nodes of the
VEG associated to loop EXTEND do400 and variable civ.
One can observe that output-dependencies may exist, since
the output-independence equation of Figure 4(b) is not sat-
isfied: dWFie ∩ d∪i−1k=1WFke ≡ {civ@1} 6= ∅.

Still, dependencies exhibit a well-structured pattern that
our implementation exploits. The key observations are:

• Indices belonging to bWFjc underestimate do not result
in cross dependencies: bWFic ∩ ∪i−1k=1 bWFkc = ∅.
• All remaining indices, are overwritten by the next CIV-

increasing iteration named j: dWFie−bWFic ⊆ bWFjc.
In our case we have dWFie − bWFic={civ@8}, and
rewriting civ@8i of iteration i as civ@1j , i.e., the µ node
of the next increasing iteration j, leads to the satisfied
equation {civ@1j} ⊆ bWFjc=[civ@1j,civ@8j-1].
• Last iteration increases the CIV value; this holds for
EXTEND do400 because CIV is updated in an inner loop.

If all properties hold, then the output dependence is re-
moved by privatizing the array (updates) and by copying out,
at iteration’s end, the indices belonging to the bWFic under-
estimate, i.e., [civ@1,civ@8-1]. The last iteration copies
in and out the overestimate (or updates directly), and because
it increases CIV, it is guaranteed to overwrite the uncom-
mitted part of previous (non-increasing) iterations. The last
property is verified during the CIV-value (pre)computation.
The first two are derived statically for the current loop, but
in general, they may also use runtime verification.

4.3 Privatizing Stack-Like Accesses
Stack like reference pattern is an important operation on
arrays, and represent a non-monotonic evolution of the top
of the stack CIV index. We will model such a reference

3 The algorithm has used the VEG-derived properties civ@1<jts≤civ@2

and M≤civ@1, where civ@1 is the CIV value just before entering the
loop, and M is the loop upper bound. Since civ-values are monotonically
increasing, it also follows: i ≤ M ≤ civ@1 ≤ civ@2 < nxt@3.
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DO i = 1, N, 1

civ = 1

X(civ) =...

WHILE ( civ.GT.0 )

civ@2=γ(civ,civ@5)
q = X(civ@2)

civ@3 = civ@2 - 1

IF (q.LE.5) THEN

res = res +..q..

ELSE

DO j = 1, 8, 1

IF (civ.LT.SIZE)

civ = civ + 1

X(civ)=...

ENDIF ENDDO

civ@9=γ(civ@3,..)
ENDIF

civ@5=γ(civ@3,civ@9)
ENDWHILE ENDDO

(a) Loop ACCEL do10.

(b) Original & Spliced VEGs.

Figure 8. a) Stack-like access in benchmark tree and (b)
the VEG graphs of the while loop.

pattern as a sequence of monotonic evolutions, and reduce
the problem to the one discussed in previous sections.

For example, the code in Figure 8(a) is a simplified ver-
sion of loop ACCEL do10 from tree benchmark. Each iter-
ation of the outer loop maintains its own stack, denoted X,
that is used in the while loop to compute a result res: The
while loop is exited when the stack is empty, and each it-
eration pops one element and, later on, pushes up-to-eight
new elements from/to the stack. The goal is to prove that the
stack X is privatizable in the context of the outer loop.

The plan is to devise an analysis capable of verifying
that the aggregated read and write-first sets at the while-
loop level start from a cut-off point determined by the first
iteration and expand monotonically, but in opposite direc-
tions, such that they do not overlap. In our case, the read set
should be dRe=dROe∪dRWe=[0,civ-1] and the write-first
set should be dWFe=[civ,SS], where SS denotes the stack
size and civ=1 is the value before entering the while loop.

One can now check whether the read set of the while

loop is included in the WF set of the region just before the
while loop. In our case this reduces to checking {0} ⊆
{0} because X(1) is written before the while loop. If this
inequality holds then the read set of each iteration of the
outer loop is the empty set, and X can be safely privatized.

The original VEG of the while loop, depicted on the left
side of Figure 8(b), exhibits a non-monotonic CIVµ evolu-
tion, i.e., it can be anywhere between minus one and seven.
The intuition is to use an inductive summarization for the
read and WF sets: The base case corresponds to analyzing
the first iteration to determine a split point, denoted SP,
from which, without loss of generality, the write-first set
increases in the upper-bound direction, i.e., WF=[SP,. . .],

and the read set increases in the lower-bound direction, i.e.,
R=[. . .,SP-1], where we have assumed for simplicity the
stride to be 1. (The other case is treated in a similar fashion.)

With our example, WFk =(q.GT.5)#[civ@2,civ@9-1]
is associated with VEG node civ@9, and Rk ={civ@2-1},
as before, with civ@3, where k denotes an arbitrary iteration
of the while loop. The split point is SP=civ=1, since, for
the first iteration, civ@2 has the value at while’s entry.

The second step is to attempt a semantics-preserving VEG
transformation such that (i) each CIV-decreasing/increasing
path holds only intervals belonging to the read/WF set, re-
spectively, and (ii) a 0-path holds only empty intervals.

The semantics to be preserved is that the aggregated-
read/WF summaries of any valid execution of the original
VEG should be preserved by (at least) one valid execution of
the transformed VEG. The approach is to search for a path
where, for example, the read set occurs before a WF set.
One can then splice a convenient node CIVsp between the
two, and introduce a 0-evolution path from CIVsp to the back
node, if none already exist, and a 0-evolution path from CIVµ
to the spliced node CIVclsp. The original path is translated
with the original path up to CIVsp, then directly to the back
node, followed by the 0-evolution path to CIVclsp, and the rest
of the original path. The process is repeated to a fix-point.

For example, the right side of Figure 8(b) shows the re-
sult of splitting node civ@3 of the original VEG: a new 0-
evolution edge now connects civ@2 and civ’@3. In addi-
tion, the WF set has been adjusted to the new CIVµ value, but
has also been conservatively extended with the result of the
read-set of the previous (transformed) iteration, resulting in
the same WFk interval as in the original VEG.

Finally, the third step is to aggregate the WF and read sets
only on the monotonically increasing and decreasing (in-
cluding 0) paths, respectively. If the read and WF results are
exact, i.e., the under and overestimate are identical, and have
shapes [. . .,SP-1] and [SP,. . .], respectively, then one can
prove that the result of this piecewise monotonic aggregation
matches the result of the original-while aggregation: a read-
set overestimate is [0,SP-1], and privatization was proven.

4.4 The CIV Slice
The independence results discussed in previous sections
have referred so far to disambiguating array accesses that
exhibit CIV subscripts, but not to the computation of the CIV
values. When the CIV variable is not privatisable in the con-
text of the target loop, e.g., in Figure 2(a), the CIV is the
source of cross-iteration flow dependencies: it is always up-
dated in reduction-like statements, e.g., civ=civ+3*C(i),
but it is read in arbitrary statements, e.g., in a subscript.

While related approaches [10, 23] avoid this, we al-
ways pre-compute in parallel, prior to loop execution, the
CIVµ values at the beginning of each (chunk of) itera-
tion(s). Reasons are threefold: First, in most cases the run-
time overhead is small. Second, the CIV values may dic-
tate whether the loop is independent or not: For example,
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the flow-independence predicate of the loop in Figure 2(a),
N ≤ Q ∨ civ@5 < M, depends on civ@5, and resolving stat-
ically the output dependencies of EXTEND do400, depends,
as shown in Section 4.2, on establishing whether the last it-
eration has increased the CIV value. Third, CIV values may
flow in the computation of data (rather than only subscripts),
e.g., the recurrent formula of the Sobol random number gen-
erator, used in benchmark Pricing of Section 5.

CIVµ values are (pre)computed by extracting the loop-
slice that contains the transitive closure of all statements
that are necessary to compute the CIV variable (we use
the control-dependency graph). We privatize all arrays and
scalars, including CIV, that are not read-only inside the slice,
where each iteration copies-in the indices of its ROi ∪RWi

set. Finally, an iteration-header statement is inserted to ini-
tialize CIV to the value just before the loop (Q), and similarly,
the end-of-iteration value minus Q is saved into array CIVS.

Figure 9(a) shows the CIV slice of the loop in Figure 2(a),
where scalars i and civ were privatized. The slice computes
the per-iteration CIV increments and records them in CIVS.
Then SCAN computes in parallel the prefix sum of the CIVS

values, which are used each by one iteration of the paral-
lelized loop. Correctness requirements are twofold:

First, all symbols that appear in the slice have been al-
ready proven to not introduce cross-iteration dependencies
in the original loop; otherwise the computation of the slice
might violate the semantics of the sequential execution.

Second, CIV variables may appear in the slice only in
reduction-like statements, such as civ=civ+1. If this holds
than the final CIV value would correspond to an (additive)
reduction, and hence, the intermediate CIVµ values are safely
computed via the parallel prefix sum of the values in CIVS.

If the latter does not hold, then we have a cycle between
CIV-value computation and their use. We address such a case
via a fixed-point implementation, which (i) optimistically
computes the CIV values as before, and then (ii) logically re-
executes the slice on the computed-CIV values and checks
(in parallel) whether the resulted value matches the input-
value of the next iteration. If the check succeeds across all
iterations, one can prove correctness by induction: The first
iteration is always correct. If the value at the end of the first
iteration coincides with the input of the second, then the
second iteration is correct, etc.

Finally, CIVµ input values are plugged in the parallel ex-
ecution of the original loop: The arrays that were proven
flow and output independent are shared, i.e., not privatized.
For cases such as EXTEND do400, that exhibit the special
pattern of output dependencies, we adopt a strategy simi-
lar to the one used for CIV computation: arrays such as X

are privatized, their read-set ROi ∪ RWi is copied in, and
the per-iteration WF underestimate is copied-out at the itera-
tion’s end. Our technique is well integrated in the underlying
compiler framework: predicates derived from equations on
memory-reference sets are used in the computation of CIV
summaries, and vice-versa.

5. Experimental Evaluation
While we have analyzed [14] more than two thousand loops
from about thirty benchmarks (SPEC, PERFECTCLUB and
more recent ones [12]), this section reports only five bench-
marks in which our CIV analysis was crucial for efficient
benchmark-level parallelization: we consider only CIV loops
that have a significant global coverage and belong to the
most beneficial schedule of parallelized loops. However, the
number of loops exhibiting CIV subscripts is much larger,
and we believe it is significant that 17% (5 out of 30) of the
analyzed benchmarks contain essential CIV loops.

Figure 9(b) characterizes several representative loops,
named in the third column, and their corresponding bench-
marks, named in the first column. The reported parallel run-
time were measured on P=8 cores.

The second column shows (i) the parallel and sequential
runtime, TP/S , measured in seconds, (ii) the percentage, SC,
of the sequential runtime that has been parallelized, and (iii)
the overhead of the associated runtime tests, if any, which is
represented as percentage of the total-parallel runtime. With
our benchmarks, the only runtime test that introduces non-
negligible overhead is the (pre)computation of CIV values,
denoted CIVCOMP, and presented in Section 4.4.

The third column shows the names of the most impor-
tant loops, the fourth shows their sequential coverage, LSC,
and the fifth shows each loop’s parallel and sequential run-
time, TLP/S , in seconds. We note that benchmarks bdna and
nasa7 have poor scalability, e.g., very small performance
gain from four to eight-core execution, because they exhibit
small (historical) datasets: low-granularity important loops
that limits the profitability of parallelization. In addition, (i)
loop GMTTST do120 is parallel but has loop-count three, and
(ii) loop RESTAR do15, which covers 9.3% of the sequential
runtime, uses IO operations, and was run sequentially.

The sixth column shows how the loop was classified
parallel: FI O(1) means that a predicate of runtime com-
plexity O(1) has validated loop’s flow independence at run-
time. CIVAGG indicates that CIV-based summarization was in-
strumental in proving independence statically, and CIVCOMP

means that, in addition to CIVAGG, the CIVµ values were pre-
computed at runtime, i.e., CIV was not privatizable. ST-PAR
indicates static parallelization of a “regular” loop.

Our Test Suite consists of benchmarks bdna and track

from PERFECT-CLUB suite: (i) ACTFOR do240 is a CIV loop
that uses a vector in which elements are inserted at the
end, and both the CIV and the vector array can be pri-
vatized, (ii) loop FPTRAK do300 from track is similar
to EXTEND do400, and loop CORREC do401 is not shown
because its sequential coverage is under 1%. Benchmark
nasa7 is part of SPEC2000 suite, and its loop EMIT do5 is
similar to ACTFOR do240 except that output and flow inde-
pendence is proven with runtime predicates, and it also re-
quires precomputation of CIV values. Benchmark tree [5]
is an implementation of the Barnes-Hut algorithm. Its main

221



//slice for computing partial civ values
DOALL i = M, N, 1 $PRIVATIZED(civ,i)

civ = Q

IF ( C(i) .GT. 0 ) civ = civ + 3*C(i)

CIVS(i-M+1) = civ - Q

ENDDOALL

//SCAN(op+, e, n, X) ≡{e,e+X(1),..,e+X(1)+..+X(n)}
SCAN(op +, Q, N-M+1, CIVS)

//civ values are plugged in the loop
DOALL i = M, N, 1 $PRIVATIZED(civ,i)

civ = CIVS(i-M+1)

... rest of the loop code
ENDDOALL

(a)

Properties of Benchmarks Exhibiting Important Loops That Use CIVs
BENCH PROPERTIES DO LOOP LSC% TL

P/S (s) TYPE

BDNA TP/S=.19/.65 s ACTFOR 500 47.8 .05/.31 ST-PAR
P=8 SC=87%,OV=0% ACTFOR 240 35.6 .04/.23 CIVAGG

TP/S=1.14/3.1 s GMTTST 120 17.4 .27/.54 FI O(1)
NASA7 SC=98%,OV=0% EMIT 5 13.6 .09/.42 CIVCOMP

P=8 OI O(N)
BTRTST 120 10.1 .05/.31 FI O(1)

TRACK TP/S=6.6/16.8 s FPTRAK 300 52.8 3.6/8.9 CIVCOMP

P=8 SC=97%,OV=45% EXTEND 400 43.9 2.3/7.4 CIVCOMP

TREE TP/S=12.8/59 s ACCEL 10 91.2 7.6/54 CIVAGG

P=8 SC=91%,OV=0%
PRICE I TP/S=.29/2.0 s PRICE I 10 99 .29/2.0 CIVAGG

P=8 SC=99%,OV=0%
PRICE R TP/S=.17/.98 s PRICE R 10 99 .17/.98 CIVCOMP

P=8 SC=99%,OV=6.4%

(b)

Figure 9. (a) Parallel Computation of CIVµ Values. (b) Characterization of Important CIV Loops.

(a)

(c)

(b)

(d)

Figure 10. Benchmark and Loop-Level Normalized (Total) Parallel Runtime. Sequential Runtime is 1.

loop, ACCEL do10, exhibits the stack-access pattern of Fig-
ure 8(a), and accounts for 91% of the sequential runtime.
The remaining 9% corresponds to IO operations and cannot
be parallelized. Finally, price i/r is a (simplified) ker-
nel of a real-world application that computes the price of a
financial contract [12]: The difference between the two ver-
sions is that (i) price i uses an independent Sobol-random-
number-generator algorithm, i.e., computing the ith random
number requires only the value of i, and exhibits a CIV pat-
tern similar with ACTFOR do240, while (ii) price r uses a

faster, recurrent formula that computes the ith random num-
ber based on the previous (i − 1)th one. This means that in
price r the CIV is not used for indexing but directly in the
computation of Sobol numbers, i.e., a parallel prefix scan
with exclusive-or operator xor. Parallelization of price r

consists of (pre)computing in parallel these CIVµ values,
in the manner of Section 4.4. Because our implementation
does not support xor, we have manually turned the xor into
addition before compilation and then back to xor after com-
pilation.
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Experimental Methodology. Our source-to-source com-
piler receives as input a sequential Fortran77 program and
automatically analysis loop-level parallelism and produces
OpenMP code. The sequential and parallel code were com-
piled with gfortran, option -O3, and were run on a 16-core
AMD Opteron(TM) 6274 system with 128GB memory.

Results. Figure 10(a) and (b) show the normalized-
parallel runtime for each entire benchmark and CIV loop, re-
spectively, where the CIV-computation overhead is included
in each bar. Figure 9(b) has shown that the CIV-computation
slice (i) represents a small fraction 6% of the execution of
the pric r benchmark, but (ii) it accounts for 45% of the
parallel execution time for track. The latter case is not sur-
prising since the slice contains almost all statements of the
original loop, i.e., EXTEND do400 and FPTRACK do300, and
both the loop and the slice are executed in parallel. Overall,
for track we obtain a speedup of (only) 2.5x on eight cores.

The less-than-optimal runtime for bdna, nasa7, and
tree was already explained, i.e., significant time spent in
IO, small data sets. However, their loops show better results,
e.g., ACCEL do10 shows a 7.1x speedup on eight cores.

We have also tried to run scalability tests on a dif-
ferent architecture; an eight dual-core POWER 5+@1.9GHz

with 32GB memory. The obtained results, depicted in Fig-
ure 10(d) show significantly-improved scalability up to six-
teen cores for the total runtime. The CIV-computation over-
heads, also depicted, scale equally well.

In summary, on eight processors we report an average
benchmark-level speedup of 4.33×, and an average CIV-
loop speedup of 5.12×. The highest observed speedup, cor-
responding to price i, is 12.5x on sixteen cores.

6. Related Work
Classical loop analysis examines each pair of read/write
accesses, and models dependencies into linear systems of
(in)equations that are solved statically via Gaussian-like
elimination [1, 7]. Such analysis can drive powerful code
transformations to optimize parallelism [17], albeit in the
narrow(er) domain in which subscripts, loop bounds, if

conditions are affine expressions of loop indices. At the
opposite end of the spectrum are entirely-dynamic tech-
niques [13, 20], which parallelize aggressively, but at the
cost of significant runtime overhead.

Several static techniques have been proposed to handle
irregular subscripts that have the shape of closed-form for-
mulas in the loop indices. For example, The Range Test [3]
uses symbolic ranges to disambiguate a class of quadratic
and exponential subscripts by exploiting the monotonicity
of the read-write pair of subscripts. A class of indirect-array
subscripts is solved with an idiom-recognition method [10],
where interprocedural analysis verifies the (assumed) mono-
tonicity of the values stored in the index array. Furthermore,
Presburger arithmetic was extended to support uninterpreted

functions [19], and the irreducible-result formula is executed
at runtime to disambiguate a class of irregular accesses.

A different type of approach, found more effective in
solving larger loops, is to encode loop independence into
one equation on abstract sets, for each array. The abstract
set models the memory references of the corresponding
array and is computed via interprocedural summarization
of accesses [9, 11, 15, 16]. While each of these methods
covers some irregular accesses, none of them handles CIV-
subscripted loops, such as the ones analyzed in this paper.

A related body of work presents (i) symbolic-algebra sys-
tems that, for example, compute upper and lower bounds of
nonlinear expressions [6], and (ii) techniques to character-
izes scalar-value monotonicity within a loop [23, 24].

This solves only half of the problem, which corresponds
to establishing the monotonic properties of CIVs. This pa-
per addresses the second challenge: how to build array sum-
maries by using the CIV-related invariants, where the im-
mediate application is verifying loop independence. Related
solutions analyze special cases of accesses: For example, a
pair of accesses of form {X(CIV),X(CIV+d)}, where d is a
constant, can be disambiguated by reasoning in terms of the
(range of the) cross-iteration evolution of the correspond-
ing CIV [26]. However, this does not address the case when
a subscripts is affine and the other uses CIVs, i.e., it might
prove output, but not flow independence for the loop in Fig-
ure 2(a), and it will not solve TRACK.

Enhancing the idiom-recognition support [10] allows to
relate better the CIV properties with the dependency test:
For example, when the written CIV subscript matches the
pattern of a consecutively-written single-index (CW-SI) ar-
ray, it is often possible to apply privatization, e.g., loop
ACTFOR do240 in bdna and the stack access in Figure 8(a).
However, loops such as the one in Figure 2(a), or TRACK,
are unanalyzable because the subscripts are neither single
indexed, nor consecutively written.

In comparison, over/under-estimate summarization al-
lows us, intuitively, to reduce the problem to a known idiom,
albeit the code does not fall, strictly speaking, within that
idiom. Furthermore, other than VEG, our analysis does not
rely on pattern matching, but discovers non-trivial invariants
that enable the CIV-agnostic test either (i) to prove loop in-
dependence, or (ii) to be tuned in a manner that resolves a
specific pattern of dependencies, e.g., TRACK.

Finally, the value-evolution graph has been applied in
the context of auto-parallelization [23]. The difference is
that there, subscripts are separated early into CIV-based and
affine and they do not mix: they are summarized under dif-
ferent representations, and disambiguated via specialized de-
pendency tests. Analysis builds only accurate summaries,
which may restrict the effectiveness of dependency tests.
More specifically, there are not reported: (i) symbolic, non-
constant CIV evolutions, e.g., Figure 2(b), (ii) the complex
output-dependency pattern of TRACK, (iii) extraction of run-
time predicates for CIV-dependence tests, (iv) prefix-sum
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precomputation of CIV values, in the cases when they are
used as data, rather than for indexing, (v) privatization of
stack-like accesses, (vi) runtime and scalability results.

7. Conclusions
This paper has presented an analysis that summarizes both
affine and CIV-based subscripts under the same represen-
tation. The result summaries are CIV agnostic and can be
used for various purposes, e.g., dependence analysis or ar-
ray SSA [21]. Our analysis seems less conservative than re-
lated approaches in that the algebra of under/over-estimates
can exploit reference patterns that are similar, but do not fit
exactly known programming idioms, such as push-back op-
erations on vectors. We have reported an automatic solution
that is well integrated in our compiler that combines static
and dynamic techniques to aggressively parallelize loops.
We have demonstrated the viability of the approach by eval-
uating it on five real-world applications.
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