
Streaming for Functional
Data-Parallel Languages

Frederik M. Madsen
University of Copenhagen

fmma@diku.dk

September, 2016

This thesis has been submitted to the
PhD School of The Faculty of Science,

University of Copenhagen

iii

Abstract

In this thesis, we investigate streaming as a general solution to the space
inefficiency commonly found in functional data-parallel programming lan-
guages. The data-parallel paradigm maps well to parallel SIMD-style hard-
ware. However, the traditional fully materializing execution strategy, and
the limited memory in these architectures, severely constrains the data sets
that can be processed. Moreover, the language-integrated cost semantics
for nested data parallelism pioneered by NESL depends on a parallelism-
flattening execution strategy that only exacerbates the problem. This is be-
cause flattening necessitates all sub-computations to materialize at the same
time. For example, naive n by n matrix multiplication requires n3 space in
NESL because the algorithm contains n3 independent scalar multiplications.
For large values of n, this is completely unacceptable.

We address the problem by extending two existing data-parallel lan-
guages: NESL and Accelerate. In the extensions we map bulk operations
to data-parallel streams that can evaluate fully sequential, fully parallel or
anything in between. By a dataflow, piecewise parallel execution strategy,
the runtime system can adjust to any target machine without any changes in
the specification. We expose streams as sequences in the frontend languages
to provide the programmer with high-level information and control over
streamable and non-streamable computations. In particular, we can extend
NESL’s intuitive and high-level work–depth model for time complexity with
similarly intuitive and high-level model for space complexity that guaran-
tees streamability.

Our implementations are backed by empirical evidence. For Stream-
ing Accelerate we demonstrate performance on par with Accelerate without
streams for a series of benchmark including the PageRank algorithm and
a MD5 dictionary attack algorithm. For Streaming NESL we show that for
several examples of simple, but not trivially parallelizable, text-processing
tasks, we obtain single-core performance on par with off-the-shelf GNU
Coreutils code, and near-linear speedups for multiple cores.

iv

Resumé

I denne afhandling undersøger vi streaming som en general løsning på den
plads-ineffektivitet, der er at finde blandt mange funktionelle data-parallelle
sprog. Det data-parallelle paradigme har en god oversættelse til SIMD-
hardware, men den traditionelle fuldt materialiserende kørselsstrategi, og
den begrænsede mængde hukommelse på disse arkitekturer, begrænser dog
de datasæt der kan arbejdes på. Den sprog-integrerede omkostningsmodel
for nested data-parallelisme, pioneret af NESL, afhænger af en parallelisme-
udglattende kørselsstrategi, der kun forværrer problemet. Dette er fordi
udglatning nødvendiggør at alle delberegninger er materialiseret på samme
tid. For eksempel kræver naiv n gange n matrix-multiplikation n3 plads i
NESL, fordi algoritmen indeholder n3 uafhængige skalar-multiplikationer.
For store værdier af n er dette helt uacceptabelt.

Vi adresserer problemet ved at udvide to eksisterende data-parallelle
sprog: NESL og Accelerate. I udvidelserne oversætter vi parallelle opera-
tioner til data-parallelle strømme der kan evalueres helt sekventielt, helt par-
allelt eller alt indimellem. Ved brug af en dataflow, stykvis parallel kørsels-
strategi, kan runtime-systemet tilpasse sig enhver målmaskine uden no-
gen ændring i specifikationen. We eksponerer strømme som sekvenser i
frontend-sproget for at give programmøren et højt niveau af information og
kontrol over strømbare og ikke-strømbare beregninger. Navnligt udvider
vi NESL’s intuitive og højniveau arbejde–skridt omkostningsmodel med en
ligeledes intuitiv og højniveau omkostningsmodel for plads der garanterer
strømbarhed.

Vores implementationer er opbakket af empirisk evidens. For Stream-
ing Accelerate demonstrerer vi ydelse på linje med Accelerate uden stream-
ing for en række benchmarks heriblandt PageRank-algoritmen og en MD5
opslagsangrebs-algoritme. For Streaming NESL viser vi for adskillige sim-
ple, men ikke trivielt paralleliserbare, tekst-processerings-opgaver, at vi op-
når ydelse på linje med GNU Coreutils værktøjer, og nær lineær speedup på
flere kerner.

Contents

Contents v

Preface ix

Acknowledgments xi

1 Introduction 1
1.1 Background and Motivation . 1

1.1.1 Time, Space and the Speed of Light 2
1.1.2 Parallelism . 3
1.1.3 Data Parallelism . 4
1.1.4 Nested Data Parallelism (NDP) 5
1.1.5 Flattening . 6
1.1.6 Ideal Cost Model . 11

1.2 Hypothesis and Method . 14
1.3 µNESL . 14

1.3.1 Virtual Segment Descriptors 22
1.4 Contributions . 24
1.5 Terminology . 25
1.6 Road Map . 26

2 Towards a Streaming Model for NDP 27
2.1 Introduction . 28
2.2 A Simple Language with Streamed Vectors 32

2.2.1 Syntax and Informal Semantics 32
2.2.2 Value Size Model ? . 37
2.2.3 Evaluation and Cost Model ? 39

2.3 Implementation Model . 43
2.3.1 Data Representation . 44
2.3.2 Translation . 45
2.3.3 Execution Model . 48

2.4 Empirical Validation . 50

v

vi CONTENTS

2.4.1 Log-sum . 52
2.4.2 Sum of Log-sums . 53
2.4.3 N-Body . 57
2.4.4 Discussion . 59

2.5 Preliminary Conclusions and Future Work 61

3 Functional Array Streams 63
3.1 Introduction . 63
3.2 Accelerate . 65

3.2.1 Fusion . 66
3.2.2 Handling Large Data Sets 67

3.3 Programming Model . 68
3.3.1 Examples . 68
3.3.2 Streams . 69
3.3.3 From Arrays to Sequences and Back 70
3.3.4 Lazy Lists to Sequences 73

3.4 Execution Model . 74
3.4.1 Translation . 77
3.4.2 Vectorization . 79
3.4.3 Scheduling . 83
3.4.4 Parallel Degree and Regularity Analysis 84

3.5 Evaluation . 86
3.5.1 Dot Product . 90
3.5.2 MaxSum . 91
3.5.3 MVM . 91
3.5.4 MD5 Hash . 92
3.5.5 PageRank . 92

3.6 Related Work . 93
3.7 Future Work . 93

4 Streaming NDP on Multicores 95
4.1 Introduction . 95
4.2 Streaming VCODE (SVCODE) 97
4.3 SNESL to SVCODE . 101

4.3.1 Optimization . 108
4.4 DPFlow: A Multicore Interpreter for SVCODE 111

4.4.1 Execution . 111
4.4.2 Nursery . 112
4.4.3 Scheduling . 114
4.4.4 SIMD Vectorization . 114
4.4.5 Multi-Threading . 122

4.5 Experiments . 123

CONTENTS vii

4.5.1 Logsum . 123
4.5.2 Logsumsum . 124
4.5.3 Word Count . 126
4.5.4 Max Line Length . 128
4.5.5 Line Reverse . 130
4.5.6 Cut . 131

4.6 Conclusions and Future Work 133

5 Toward a Formal Validation 135
5.1 Translation soundness . 135
5.2 Translation completeness . 138
5.3 Space Cost Model . 139

5.3.1 Operational Semantics for SVCODE 139
5.3.2 Space Cost Preservation 141

6 Conclusion 149
6.1 Related Work . 152
6.2 Further Work Summary . 152

Bibliography 155

Preface

This is my PhD dissertation, which I completed at the Computer Science
Department at the University of Copenhagen (DIKU) in September 2016
(expected) under the HIPERFIT research center. It is the culmination of my
work as PhD student under Andrzej Filinski.

The dissertation is structured around three papers, on all of which I am a
main author. The papers were published and presented at different install-
ments of the ACM SIGPLAN Workshop on Functional High-Performance
Computing (FHPC) in the years 2013, 2015 and 2016. The papers are pre-
sented each in a separate chapter, and in chronological order.

The first paper is presented as it was published with a couple of revi-
sions: The original space cost model was too pessimistic and has conse-
quently been updated. The second paper is presented as it was published.
The third paper has been heavily revised in order to better fit in the dis-
sertation. The introduction has been removed to avoid repetition, and the
description of the target language and its interpreter has been expanded to
give a more detailed description. Finally, we have added a section in the end
that reflects on the potential of a formal proof of validity of the cost model.

The bulk of the work has been carried out by myself at DIKU under su-
pervision of, and in collaboration with, Andrzej. This work includes Chap-
ter 2 and Chapter 4, and parts of the introduction that are adapted from my
Master’s Thesis [Mad13], which I completed during my PhD (my PhD was
an integrated 4+4 program).

Chapter 3 was developed during my change of scientific environment at
the University of New South Wales in Sydney (UNSW), in collaboration with
Rob Clifton-Everest under the supervision of Gabriele Keller and Manuel
Chakravarty.

ix

Acknowledgments

Andrzej Filinski is an incredibly intelligent, insightful and discerning man,
and I hold him in the highest regard. He has been a great help throughout
my time at DIKU, and I thank him most sincerely.

Thanks to my dear friends and colleagues at HIPERFIT. Thanks to Mar-
tin Elsman for employing me in the research center and for arranging many
enjoyable meetings and retreats. Thanks to Fritz Henglein for setting the
agenda while allowing me to focus on my own work. Thanks to Martin Dyb-
dal, Troels Henriksen and Cosmin Oancea who also work on data-parallel
languages and whom have been a great source of discussions and inspira-
tion.

A warm thank you to all the people I got to know in Sydney during my
stay at UNSW. You gave me a great time both professionally and personally.
Thanks to Amos Robinson, Michael Schröder, Abdallah Saffidine, George
Roldugin, Li Lee and Timo von Holtz. Special thanks to Robert Clifton-
Everest for working with me on Streaming Accelerate. Thanks to Manuel
Chakravarty and Gabriele Keller for hosting me and making me feel wel-
come.

An infinite stream of thanks to my beloved Nikoline. Thanks for the sur-
prise party, thanks for accompanying me to Sydney and thanks for enduring
my devotion to my work.

Frederik M. Madsen, Copenhagen 2016

xi

Chapter 1

Introduction

1.1 Background and Motivation

Making computations run fast is perhaps the single biggest agenda in con-
temporary computer science. Today’s successful scientific papers often demon-
strate impressive improvements in the execution time for some problem in
some context. Multiple areas of research are working towards this common
goal: Algorithms, programming languages, systems and architectures. This
dissertation studies the problem from a programming language perspective.

Programming languages abstract the underlying hardware – the ma-
chine. They create a formal language in which programmers and algorithms
researchers can talk to each other and to the machine. If the language is
sufficiently abstract (high level) the same language may be used for many
different machines, including, hopefully, the machines of tomorrow.

This is an attractive property for many reasons. For instance, programs
written in a high-level language are less platform-dependent, and therefore
also more future proof. Furthermore, a good abstraction hides many low-
level details of the machine from the programmer, allowing the programmer
to focus on the essence of the problem. Together, these qualities may dras-
tically increase the value of the enormous amount of man hours spend on
programming every day, world wide.

However, it is absolutely crucial that the high-level programs execute ef-
ficiently on the target machine(s). Execution time and power consumption
are both important considerations when considering the quality of a piece
of software. For many application, response time is critical, and power con-
sumption adversely affects the environment and one’s electricity bill. Energy
consumption is proportional to execution time, and consequently, lowering
the execution time should be the foremost concern.

1

2 CHAPTER 1. INTRODUCTION

1.1.1 Time, Space and the Speed of Light

Computers are not exempt from the laws of physics, but we like to think they
are. Even though physics tells us that information cannot travel faster than
the speed of light, many machine models in computer science erroneously
assumes that it can. The random-access machine model assumes that a
piece of information can be retrieved from an arbitrarily large storage space
in constant time, which is clearly a violation of the principles of physics.

In reality, the time it takes to access a cell must be proportional to the
physical distance between the cell and the observer – here, the computa-
tional unit. In an n-sized collection, the time for random access therefore
cannot be any faster than O(3

√
n). This assumes that the storage occupies

all three dimensions of space. In practice, storage is primarily arranged in
two-dimensional grids (or small number of layers of two-dimensional grids),
which gives an even worse bound of O(

√
n).

A realistic value of n is given by the address space of modern 64-bit
systems, which allows up to 264 locations. Constant-time random-access can
be justified in a machine model by considering this number to be a constant.
However, the hidden constant factors are not insignificant. Most models that
do account for the size of the storage, charge O(log n) for random-access.
This is still overly optimistic if one considers the concrete factors at n = 264:

Random-access: = 1

Log-access: log2(2
64) = 64

Theoretical limit:
3
√

264 ≈ 2, 600, 000

Theoretical limit (2D):
√

264 ≈ 4, 300, 000, 000

Over the years, we have witnessed a general increase in the amount of
data being processed and the sheer scale of computations. This makes the
problem increasingly more pronounced, and the model becomes increas-
ingly inaccurate. Reality shows that locality matters, and caching mecha-
nisms have proven to be a serious necessity. Accessing information not in
cache is almost always orders of magnitude slower than accessing in-cache
information.

Caches are by no means a silver bullet. They only work when the same
piece of information is retrieved multiple times in a short period of time.
Whether or not they create the illusion of true random-access, therefore de-
pends on the nature and the right formulation of the problem. Caches are
implemented by hardware designers, and are usually completely transpar-
ent to the programmer. If the programmer wishes to tweak the program to
get better cache behavior, it usually has to be done at a very low level of

1.1. BACKGROUND AND MOTIVATION 3

abstraction; the programmer must know the details of the cache hierarchy
of the machine.

In this dissertation, we attack the problem from a programming lan-
guage standpoint. A part of our hypothesis is, that by confining random-
access to only where it is absolutely needed, at the language level, streaming,
as a programming language paradigm, can aid programmers design, imple-
ment and reason about random-access-friendly algorithms at a high level of
abstraction, without even knowing what a cache is.

However, by simply abolishing random-access everywhere, we end up
with a terribly restricted language. Even though many problems can be
expressed without the use of random-access, other problems inherently re-
quire the ability to perform the indexing operation. The challenge is there-
fore to design an abstraction for streams that clearly encapsulates the extend
of which a computation requires random-access within a context of streams
and manifest data.

Furthermore, we want a language that affords high-level reasoning about
time and space, and that can be implemented efficiently on any given ma-
chine, especially including, since we care about performance, parallel ma-
chines.

1.1.2 Parallelism

After the breakdown of Moore’s law, one of the key factors in modern hard-
ware performance is parallelism. Since a single core hardly gets any faster,
modern machines are made faster by employing many parallel cores. As
long as the problem to be solved can be hopefully broken down into more
pieces, more cores can work on the problem at the same time. Almost all
problems exhibit parallelism in one way or another.

Parallel machines come in many flavors, and are generally programmed
in wildly different ways. Exploiting the full potential parallelism of a given
parallel machine requires careful attention to the low-level details. If a pro-
gramming language is too abstract, it becomes very difficult to exploit the
parallelism fully, not only from the perspective of the programmer, but also
from the perspective of the compiler that has to infer these low-level details.
Thus, there is a trade-off between abstraction and performance.

A high-level language can never perform as well as a low-level language,
but we try to get as close as possible; close enough that the benefits of
abstraction out-weights the loss in performance. One of the main hurdles,
and the focus of this dissertation, is the advent and the added complexity of
parallelism.

4 CHAPTER 1. INTRODUCTION

1.1.3 Data Parallelism

Data parallelism is one approach to dealing with parallelism from a lan-
guage point-of-view. Here, parallelism is expressed as parallel operations
on sequences of values. The operations on sequences are specified uni-
formly, and the language then translates to parallel operations on the target
machine however it sees fit. Thus, the programmer can expect the values
of a sequence to be computed simultaneously if the machine has enough
parallel resources.

Data parallelism is very natural and high-level way of thinking about
parallelism. There are other ways of thinking about parallelism, for instance
task parallelism. Here, parallelism must be explicitly stated by the program-
mer in the form of tasks to run, potentially on different physical processors.
Although more natural for some applications (including applications in sys-
tems, communication and concurrency), this approach is a lot more explicit,
and therefore a lot less abstract, than the data-parallel approach. Moreover,
it precludes homogeneously parallel machines, that are unable to exploit
parallelism in completely unrelated tasks. In data parallelism, task are in-
herently related, since operation are specified uniformly.

It is important to stress, that data-parallel programming languages al-
most always express work that can be done in parallel, not work that must
be done in parallel. This is because the available parallel resources, the number
of available processing units, can vary greatly from back-end to back-end,
and it is usually easy for the compiler to “chunk up” parallel steps that are
too parallel into several steps, whereas it would be tedious, if not impossible,
for the programmer to do so manually for each imaginable back-end. The
amount of work in a single step can therefore be used as a measure of poten-
tial parallel degree of a program, and once a program is executed on a specific
back-end, we can measure the actual parallel degree of the program, which
should be the same as the minimum of the available parallel resources and
potential parallel degree.

Chunks and the act of chunking is a central principle in this thesis. More
formally, a chunk is defined as a positive number of contiguous elements
of a linear data structure. The number of elements is referred to as the
chunk size. The smallest chunk size is 1 while the greatest chunk size is the
whole data structure. “Chunking up” means to take a linear data structure
and divide all the elements into non-overlapping chunks. More often than
not, these chunks will be similar in size, and when a common upper bound
is placed on the chunk sizes, we refer to this upper bound as the chunk
size, implicitly referring to the common maximum size of each individual
chunk. The convention of referring to the chunk size extends to multiple
data structures that shares the same global chunk size.

1.1. BACKGROUND AND MOTIVATION 5

Data parallelism in a programming language can be achieved simply by
having a library of parallel algorithms that operate on sequences. A common
way to introduce more expressive data parallelism, is to introduce a new
construct that essentially is a parallel foreach loop, or a parallel sequence
comprehension:

{e0 : x in e1},

where x may be free en e0. We call this parallel comprehension an apply-to-
each. The semantics is, first to evaluate e1 to a sequence of values [v1, ..., vl].
Then, the body expression e0 is evaluated l times, once for each vi substi-
tuted for x, the result of which forms the resulting sequence of the whole
expression. In functional languages, this construction is commonly referred
to as a map of λx.e0 over e1.

A key point is, that each evaluation of the body must be independent in
order to claim that they can be executed in parallel or out of order without
unexpected results, and it is therefore necessary that the body expression
has no side-effects, that can effect the parallel evaluations. This makes func-
tional programming very attractive for this kind of data parallelism.

1.1.4 Nested Data Parallelism (NDP)

Some data-parallel programming languages allows data-parallel constructs
to be nested. Those languages are referred to as nested data-parallel lan-
guages. The unrestricted apply-to-each construct affords nested data-parallelism
in the form of nested maps and maps of other data-parallel operations. An
example of a nested data-parallel expression is:

{{e0 : x in e1} : y in e2}

Conversely, a flat data-parallel programming language is a programming
language that can express data parallelism, but does not allow nesting. This
is usually imposed as restrictions in the type system, or by simply not having
an apply-to-each construct in the language.

Nestedness is an inherent property of a data-parallel language with the
parallel apply-to-each construct. Consequently, nested data-parallel lan-
guages are generally more expressive than flat parallel languages, and many
common parallel algorithms are indeed more concise and/or more poten-
tially parallel, when written in a nested data-parallel language [Ble96]. At
the source level, nested data parallelism is clearly more desirable than flat
data parallelism, but at the compiler level the story is the opposite.

As mentioned in the previous section, it is usually up to the compiler
to perform chunking as necessary in a data-parallel language. Chunking is
trivial if the data-parallel operation is flat since it is just a matter of doing

6 CHAPTER 1. INTRODUCTION

some work in one step, and then proceed to do the rest. In the case of
nested data parallelism the process of chunking becomes less obvious as
each sub-computation may have a different potential parallel degree. A
common approach for nested data parallelism languages is to flatten nested
data parallelism expressions into equivalent flat data-parallel expressions
first, and then compile it or interpret it using a simple flat data-parallel
compiler or interpreter.

1.1.5 Flattening

Flattening was first proposed by Guy Blelloch and realized in the program-
ming language NESL [BS90, Ble90b, Ble95], and has later been studied and
refined by others such as Jan Prins and Daniel Palmer with the language
Proteus [PP93, RPI95, PPW95], and Gabriele Keller, Simon Peyton Jones and
Manuel Chakravarty with the language Data Parallel Haskell [KS96, PJ08,
CLJ+07].

The main idea of flattening is to lift every primitive operation in the
language. In the lifted version, the input and output type are lifted to se-
quences. E.g if we have an addition primitive with the type

+ : (Int, Int)→ Int,

then lifted addition has the type (where square brackets the sequence type):

L(+) : [(Int, Int)]→ [Int] .

Furthermore, it is common to convert sequences of tuples into tuples of
sequences. In that case, lifted addition has the type:

L(+) : ([Int] , [Int])→ [Int] .

In this representation, barring length checking, zipping (and unzipping) be-
comes free, which is very convenient when dealing with lifted contexts con-
taining many conceptually zipped vectors.

Lifting can be extended to expressions. In a standard type system, for
any well-typed expression e with type τ in type context Γ (written as Γ ` e :
τ), the lifting of e has type:

[Γ] ` L(e) : [τ]

where the length of the context (which is a sequence of contexts) is supposed
to be the same as the length of the result.

If we apply the sequence-of-tuples to tuple-of-sequences transformation
on the context Γ = [x1 7→ τ1, ..., xk 7→ τk], the lifting of e has the type:

[x1 7→ [τ1], ..., xk 7→ [τk]] ` L(e) : [τ]

1.1. BACKGROUND AND MOTIVATION 7

which gives a single context (rather than a sequence of contexts) that can
be used in a standard type system. Furthermore, lifting variables and let-
bindings becomes trivial and can be implemented simply as:

L(x) = x

L(let x = e0 in e1) = let x = L(e0) in L(e1)

At the basis, primitive operation application is then lifted by using the lifted
version of the operation:

L(p(x)) = L(p)(x)

However, constants become a bit more complicated. For Γ ` n : Int where
n ranges over constant integers, we need the lifted version [Γ] ` L(n) : [Int]

to evaluate to a sequence of n’s where the length of the sequence is the same
as the length of the context (which is a sequence of contexts). In order to do
so, the language must support the primitive (or something equivalent):

distributeτ :: (τ, Int)→ [τ]

If apply-to-each and the iota operation is available, distribute can be imple-
mented as

distribute(x, n) = {x : _ in &n}.

Here & is the iota operation (the name is borrowed from APL). It takes
a non-negative integer n as input and produces the sequence [0..n − 1] as
output.

In the tuple-of-sequences representation, we do not always have the
length argument at hand. In particular, the context might be empty, and
so, we cannot provide a lifting for constants in that case:

L(n) = distribute(n, ?)

If the context is non-empty, i.e. if there exists an x in the (lifted) domain, we
can define

L(n) = distribute(n, #x)

where
#τ :: [τ]→ Int

is the length operation, which must be provided as a primitive also. One so-
lution is to let lifting be indexed by an expression that evaluates the needed
length. Another solution is to ensure that the context is always non-empty
by let-binding a dummy control value at the top level, e.g.:

let ctrl = () in e

8 CHAPTER 1. INTRODUCTION

We will use the latter approach.
As we shall see in a moment, it is not necessary to define lifting of apply-

to-each. The ultimate goal of lifting is to eliminate nested data parallelism.
Lifting allows us to eliminate apply-to-each constructs, thus eliminating
nested data parallelism. The required transformation is called flattening.
We denote it here by F (−). It operates on typed expressions, and it pre-
serves the types. If Γ ` e : τ, then Γ ` F (e) : τ and F (e) is guaranteed to be
free of apply-to-each constructs.

It works by transforming apply-to-each constructs to let-bindings. The
body expression is lifted to operate on the entire sequence at once instead of
on each element. This lifting requires the surrounding context (the variables
in the context other than x) to be distributed over the length of x. In a context
where the domain (without x) is x1, ..., xk, the flattening of the apply-to-each
construct is:

F ({e0 : x in e1}) = let x = F (e1)

x1 = distribute(x1, #x)
...
xk = distribute(xk, #x)

in L(F (e0))

Note that let-bindings here are not recursive, and x1 = distribute(x1, #x)
defines a new value for x1 that hides the old value. This is the central case
in the flattening transformation. In all other cases, F (−) is simply applied
to the sub-expressions. By flattening e0 before lifting it, we eliminate apply-
to-each constructs before lifting and do therefore not have to consider lifting
apply-to-each.

As a simple example, consider flattening the expression {x+ 1 : x in &10}
in the empty context. Remember, &10 computes the sequence [0, 1, 2, ..., 9].
We will use a top-level control value to lift constants. In this case, the con-
stant 1 needs lifting. Thus, we want to calculate the following flattening:

F (let ctrl = () in {x + 1 : x in &10})

The first step is to flatten the let-binding which simply flattens the let-bound
expression and the body expression. Flattening the let-bound expression
does nothing as F (()) = (), so

F (let ctrl = () in {x + 1 : x in &10})
= let ctrl = () in F ({x + 1 : x in &10})

1.1. BACKGROUND AND MOTIVATION 9

We now arrive at the interesting case where we must flatten an apply-to-
each. Following the rule, we get:

let ctrl = () in F ({x + 1 : x in &10})
= let ctrl = () in let x = F (&10)

ctrl = distribute(ctrl, #x)
in L(F (x + 1))

We can then apply F (&10) = &10 and F (x + 1) = x + 1 (since these ex-
pression do not contain apply-to-each), and lift the body by L(x + 1) =

L(+)(x, distribute(1, #ctrl)) to get the final result:

F (let ctrl = () in {x + 1 : x in &10})
= let ctrl = () in let x = &10

ctrl = distribute(ctrl, #x)
in L(+)(x, distribute(1, #ctrl))

As can be seen, the control stream is re-defined as ctrl = distribute(ctrl, #x)
which means that the parallel degree is now the same as the length of x. The
new control stream is then used to distribute the constant 1. Further simple
program analysis allows us to eliminate the control stream entirely as the
whole expression reduces to:

let x = &10 in L(+)(x, distribute(1, #x)).

It is not always possible to eliminate the control stream. If the control stream
is consumed in multiple places, for example, it cannot be eliminated without
incurring duplication of work.

In the case of nested data parallelism, the operation in the inner-most
body will be lifted twice, as can be seen by the following example: In the
context [xss 7→ [[Real]]], we have:

F ({{sqrt(x) : x in xs} : xs in xss})
= let xs = xss in let x = xs in L(L(sqrt)(x))

Then, how do we proceed with L(L(sqrt)(x))? If we use the same rule for
lifting for lifted operation as we do for non-lifted operations, we would get
L(L(p)(x)) = L(L(p))(x). However, that would require us to have to de-
fine lifted versions of every operation up to an arbitrary high level of lifting.
In order to avoid that, the lifting transformation can treat lifting lifted opera-
tions differently from lifting non-lifted operations. Essentially, it is possible
to transform doubly-lifted operations into singly-lifted operations by con-
catenating the input, applying the singly-lifted operation and partitioning

10 CHAPTER 1. INTRODUCTION

the output according to the shape of the original input. For that we need
two additional and fairly standard primitive operations:

concatτ :: [[τ]]→ [τ]

partitionτ :: ([τ], [Int])→ [[τ]]

We can then describe the lifting of lifted operations as follows:

L(L(p)(x)) = partition(L(p)(concat(x)),L(#)(x))

Here, L(#) is the lifted version of # that computes the top-most structure
of a nested sequence. The following is one way to define (by example) the
three operations:

concat([[a, b], [], [c]]) = [a, b, c]

L(#)([[a, b], [], [c]]) = [2, 0, 1]

partition([a, b, c], [2, 0, 1]) = [[a, b], [], [c]]

The whole approach is made viable by a clever representation of nested se-
quences that allows these three operations to be cheap. A nested sequence is
represented by a flat data sequence with an accompanying segment descrip-
tor that holds the nesting structure of the nested sequence. As an example
the nested sequence:

v =
[
[1, 2, 3], [4], [], [5, 6]

]
,

will be represented by a flat data sequence:

d = [1, 2, 3, 4, 5, 6],

and a segment descriptor describing the length of each sub-sequence:

s0 = [3, 1, 0, 2].

This representation can be generalized to sequences of any nesting depth.
For example:

v =
[[]

,
[
[1, 2, 3], [4], [], [5, 6]

]
,
[
[7], [], [8, 9, 10]

]]
will be represented by

d = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

and

s0 = [3, 1, 0, 2, 1, 0, 3]

s1 = [0, 4, 3]

1.1. BACKGROUND AND MOTIVATION 11

Concatenation is then achieved by simply removing the top-most seg-
ment descriptor, and similarly partitioning by the shape of the original input
is achieved by attaching the top segment descriptor of the original input on
top of the result. A general property of the segment descriptors is that the
sum of the elements in a segment descriptor equals the length of the lower
segment descriptor (or data sequence). Depending on the backend, flatten-
ing is a necessary step in order to execute nested data-parallel programs.
Flattening also gives work balancing for map-like operations for free, since
we concatenate all sub-sequences in nested data parallelism expressions.
Reduction and scans can also be made work balanced by providing efficient
lifted versions of these operations. These essentially become segmented re-
duce and segmented scan, which have well-known efficient parallel imple-
mentations.

1.1.6 Ideal Cost Model

The usual way to reason about time in an abstract way is to consider the two
extreme cases: A sequential machine with one processor (available parallel
resources = 1), and a machine with an unbounded number of processors
(available parallel resources = ∞). The time complexity on a sequential ma-
chine is often called work and the time complexity on an unbounded parallel
machine is often called steps or depth. Steps is also a measure of the longest
chain of sequential dependencies in a program.

By assigning an idealized work and step complexity to the primitive
operations, the ideal work and step complexities of any expression can be
quantified in a natural language-based cost model alongside the value se-
mantics. This provides a simple compositional cost model, that is easily
understood by the programmer.

The reasons why this approach works, as Blelloch demonstrates using
Brent’s Lemma in [Ble90b], is that the asymptotic time complexity T on a
given machine with P processors can then be derived as a function of work
and steps:

T = O(work/P + steps)

I.e. the total work can be cleanly distributed over P processors with the ex-
ception of the longest sequential path. Unfortunately, this result assumes the
random-access model, which does not sufficiently penalize random-access.
Consequently, large vectors are not discouraged in the considered imple-
mentation models. On the contrary, bigger is better, as large vectors exhibit
a larger degree of potential parallelism. In practice, this causes a space cost
proportional to the degree of potential parallelism, when, in many cases, a
space cost proportional to the degree of realized parallelism is sufficient.

12 CHAPTER 1. INTRODUCTION

For example, n × n matrix multiplication contains n3 scalar multiplica-
tions that can all be computed in parallel. Whether it is a good idea to
compute them all in parallel or not depends on n and the available parallel
resources of the backend. Both are parameters that the programmer should
not be aware of when expressing the algorithm in a high level language.

For an even simpler example, consider the expression

sum([1..n]),

that simply sums the numbers from 1 to n. If we assign the following real-
istic costs to the basic operations:

Operation Work Steps
sum([v1, ..., vl]) l log l

[l1..l2] l2 − l1 1,

the cost model will charge sum([1..n]) with 2n work and 1 + log n steps.
This can be trivially realized by performing the two steps one at a time

and storing the intermediate result in memory in its full length. In other
words, the cost model suggests a fully eager semantics. For large values of
n, not only will this result in bad cache performance, we might run out of
space altogether.

An immediate fix, is to manually divide the computation at the expres-
sion level, and transform the expression into the equivalent expression (with
respect to the result):

sum([1..n/2]) + sum([n/2 + 1..n])

where the two operands to (+) are computed sequentially. That is, first
sum([1..n/2]) fully evaluates to a number, and only then will sum([n/2 +

1..n]) evaluate.
Even though work is still 2n, the steps is increased from 1 + log n to

2 + 2 log n
2 = 2 + 2(log n− 1) = 2 log n. Since 2 log n is almost always worse

than 1 + log n, the execution time is likely worse on machines that have
sufficient available parallel resources. On the other hand, a less parallel
machine might benefit from this transformation. We do not want to punish
the programmer for exposing too much parallelism. The actual space cost
should not depend on the potential degree of parallelism, but rather the
degree of realized parallelism. What is needed is a cost model for space,
that prohibits the implementation model from being fully eager – unless
there is enough available parallel resources.

There is no standard way to reason about space in a data-parallel pro-
gram; the subject is not covered as much as time complexity. Most exist-
ing data-parallel languages do not distinguish the space complexity on a

1.1. BACKGROUND AND MOTIVATION 13

sequential machine from the space complexity on a parallel machine1, i.e.
there is no space-related equivalent of work and steps giving a space com-
plexity cost model in the two extreme case of available parallel resources =
1 and available parallel resources = ∞. One of the assertions of this disserta-
tion is that we need to make this distinction between sequential and parallel
space, and one of the contributions is to provide a natural, language-based
cost model, that sufficiently quantifies the space complexity, and derives an
ideal space cost given a concrete machine.

Continuing with our simple example, our approach is to assign sequen-
tial and parallel space cost to the primitive operations:

Operation Work Steps Sequential space Parallel space
sum([v1, ..., vl]) l log l 1 1

[l1..l2] l2 − l1 1 1 l2 − l1,

and augmenting the semantics with a language-based cost model for space.
By doing so, in addition to having values for work and steps, our examples
has a sequential space of 2 and a parallel space of 1 + n.

Ideally, on a concrete machine with P processors, the evaluation of an
expression with sequential space S1 and parallel space S∞ must satisfy an
asymptotic space cost of

S = O(min(P · S1, S∞)).

Our example must then evaluate in O(min(P, n)) space. This means that
the implementation model is no longer allowed to manifest the entire range
before commencing the reduction. Keep in mind that it still has to obey the
time cost model which stipulates an asymptotic execution time in O(n/P).
The only way this can be realized, is if the execution model executes the
operations in chunks, and the size of each chunk is O(P). Instead of a fully
eager semantics, the execution model needs to dynamically perform the
transformation we did earlier, and instead of splitting the expression in two,
it may have to split the expression into multiple steps.

It is, however, not always possible to evaluate each step of a program in
sequential fixed-sized chunks. There are a number of situations in which
our simple approach breaks down. For instance, as mentioned earlier, we
cannot allow unrestricted indexing, as the chunk that contains the indexed
element may not be available at the time of the index operation. Another
problem arises if we attempt to use a sequence from the outer context in the

1There are some notable exception to this statement, Guy Blelloch et. al. has given
a provably space efficient scheduling for nested parallelism[BGM99], but their work only
applies to fine-grained control parallelism.

14 CHAPTER 1. INTRODUCTION

body of an apply-to-each. For example the expression

let xs = [1..1000] in {xs : _ in [1..100]}

requires traversing xs 100 times in the apply to each. We will explore the
problematic situations and how we can deal with them in this dissertation.

1.2 Hypothesis and Method

Data-parallel programming languages – in particular, nested data-parallel
programming languages – can become more space-efficient – without de-
grading performance – by using streaming semantics instead of being fully
eager. Execution times may even be faster due to better cache utilization.
Mainly due to random-access, the class of programs amendable for stream-
ing execution is not clearly marked out in most languages, and in order to
provide predictable performance and/or formal guarantees about perfor-
mance, the frontend language must be extended with a restricted syntax for
streamable expressions. It is possible to define such an extension such that:

1. It contains a large subset of the original language, and therefore allows
a large class of data-parallel problems to be expressed as streams.

2. It integrates well with the original language in the sense that streams
may be converted to manifest vectors and vice versa, and streams of
non-streamable computations are expressible.

3. Streams are data-parallel and have at least as good time performance
as their manifest counterparts in the original language.

4. It allows high-level platform-independent predictions and/or guaran-
tees about space performance, with excellent space performance for
streams compared to fully manifest data structures.

The hypothesis is tested by theorizing, implementation and experimen-
tation on different platforms, with most of the work devoted to implementa-
tion. We implement streaming extensions to two existing languages: NESL
and Accelerate. Streaming NESL targets multicores with vector units and
Streaming Accelerate targets GPUs. The two implementations are validated
by empirical experiments.

1.3 µNESL

The primary focus in this dissertation centers around the programming lan-
guage NESL [Ble95]. NESL is a first-order functional nested data-parallel

1.3. µNESL 15

language with ML-like syntax. The standard implementation model for
NESL is VCODE, which is a stack-based vector bytecode language. It suffers
from the space problem of fully eager evaluation outlined in the previous
sections.

NESL has a formal cost model for work and steps, which makes it suit-
able for testing our hypothesis. In this section we give a brief description of
µNESL, a language we have designed as a simplified version of NESL that
contains only the core functionality. This is the language we attempt to im-
prove by extending it with stream syntax and semantics, and a cost model
for space usage.

The values of µNESL are:

a ::= T | F | n (n∈Z) | r (r∈R) | · · ·
v ::= a | (v1, ..., vk) | [v1, ..., vl]

where [v1, ..., vl] is a sequence of values of length l. As part of our notation,
l and k both range over natural numbers: k are small, statically known num-
bers, such as the number of elements in a tuple, while l are potentially very
large runtime-dependent numbers, such as the length of a sequence.

The types are:

π ::= Bool | Int | Real | · · ·
τ ::= π | (τ1, ..., τk) | [τ]

The syntax of µNESL expressions is defined as:

e ::= x | a | (e1, ..., ek) | e.i | let x = e0 in e1

| φ(e) | {e0 : x in e1 using x1, ..., xk}
φ ::= ⊕ | mkseqk

τ | zipk
τ1,...,τk

| partitionτ | concatτ | & | #τ | !τ

| reduceR | scanR

⊕ ::= + | − | log | · · ·
R ::= + | ∗ | max | min

µNESL has let-bindings, products and nested data parallelism in the form
of the apply-to-each construct. For apply-to-each, we adapt the notation
throughout the remainder of the thesis of {e0 : x in e1 using x1, ..., xk}, where
x1 through xk lists the free variables (other than x in e0). Unlike ordinary let-
bindings, in the flattening execution strategy, these variables are distributed
over the sequence of e1 before e0 can evaluate, and they consequently require
special attention in an operational semantics and a precise cost model.

16 CHAPTER 1. INTRODUCTION

The builtin operations φ (see Figure 1.2) contains only the minimal set of
operations necessary to express all of NESL’s operations. The &-operation
reads as iota and &(n) computes the sequence [0, ..., n− 1]. The #-operation
is the length operation and the !-operation is indexing.

For ease of reading, we introduce a couple of syntactic short-hands:

[e1, ..., ek] ≡ mkseqk(e1, ..., ek)

e1 ++ e2 ≡ concat([e1, e2])

Conditionals are not primitive as they are expressible through the other
constructs of the language. As demonstrated in the following, we can repre-
sent a nullable value with an empty sequence for null and a unit sequence
for a non-null value, and we can then use apply-to-each to evaluate an ex-
pression conditionally:

if e1 then eτ
2 else eτ

3 ≡

let b = bool2int(e1) in
({e2 : _ in &b using FV(e2)}++ {e3 : _ in &(1− b) using FV(e3)}) !τ 0

Here, FV(e) refers to the free variables of e. Likewise, we can define guarded
apply-to-each constructs.

{e0 : x in e1 | e2 using x1, ..., xk} ≡

concat({{e0 : _ in &(bool2int(e2)) using x, x1, ..., xk} : x in e1 using x1, ...xk})

Here, the body expression e0 is only evaluated in the cases where e2 evalu-
ates to T. Notice that crucially, x is available to be used in e2.

The type system (Figure 1.1) and big-step semantics (Figure 1.4) are quite
standard, with the exception that the semantics incorporates a cost model
for work and steps. Primitive operations are given types and semantics
separately in Figures 1.2 and 1.3.

The cost model presented here, is similar to the one presented for the
original NESL. Note that the cost of distributing a using variable (one of
x1, ...xk in {e0 : x in e1 using x1, ..., xk}) is not accounted for immediately
in the cost of apply-to-each. Instead, it is accounted for by the fact that the
cost of variable lookup is non-zero. If the xi appears in the body e0, and is
reached in each of the l evaluations of e0, the sum of the costs of looking up
xi would end up being the same as the cost of distributing xi up front (which
would be l). In other cases, xi might not be reached in all the evaluation of
e0, it might not appear at all in e0, or it might even appear multiple times.
This makes it quite difficult to respect the cost model using a flattening
execution strategy where the distribution generally has to happen once and

1.3. µNESL 17

Γ ` e :: τ

Γ(x) = τ

Γ ` x :: τ Γ ` T :: Bool Γ ` n :: Int Γ ` r :: Real
· · ·

(
Γ ` ei :: τi

)k
i=1

Γ ` (e1, ..., ek) :: (τ1, ..., τk)

Γ ` e :: (τ1, ..., τk)

Γ ` e.i :: τi
(1≤i≤k)

Γ ` e0 :: τ0 Γ[x 7→ τ0] ` e1 :: τ1

Γ ` let x = e0 in e1 :: τ1

Γ ` e :: τ1 φ :: τ1→ τ2

Γ ` φ(e) :: τ2

Γ ` e0 :: [τ0] [x 7→ τ0, x1 7→ τ1, ..., xk 7→ τk] ` e :: τ

Γ ` {e : x in e0 using x1, ..., xk} :: [τ]

Figure 1.1: Typing rules for µNESL.

φ :: τ1→ τ2

+ :: (Int, Int)→ Int
...

mkseqk
τ :: (

k︷ ︸︸ ︷
τ, ..., τ)→ [τ] k≥0

zipk
τ1,...,τk

:: ([τ1], ..., [τk])→ [(τ1, ..., τk)] k≥1

partitionτ :: ([τ], [Int])→ [[τ]]

concatτ :: [[τ]]→ [τ]

& :: Int→ [Int]

#τ :: [τ]→ Int

!τ :: ([τ], Int)→ τ

reduceR :: [π]→ π R::(π,π)→π

scanR :: [π]→ [π] R::(π,π)→π

Figure 1.2: Primitive operations types.

18 CHAPTER 1. INTRODUCTION

Fφ(v0) = (v, W)

+(n0, n1) = (n0 + n1, 1)
...

mkseqk
τ(v1, ..., vk) = ([v1, ..., vk], Σk

i=1|vi|) k≥0

zipk
τ1,...,τk

([v1
1, ..., vl

1], ..., [v1
k , ..., vl

k]) = ([(v1
1, ..., v1

k), ..., (vl
1, ..., vl

k)],

Σl
i=1Σk

j=1|vi
j|) k≥1

partitionτ([v1, ..., vl], [n1, ..., nl′]) = ([

n1︷ ︸︸ ︷
[v1, ...], ...,

nl′︷ ︸︸ ︷
[..., vl]], Σl

i=1|vi|) Σl′
i=1ni=l

concatτ([[v1, ...], ..., [..., vl]]) = ([v1, ..., vl], Σl
i=1|vi|)

&(n) = ([0, ..., n− 1], n) 0≤n

#τ([v1, ..., vl]) = (l, 1)
!τ([v1, ..., vl], n) = (vn, |vn|) 0≤n<l

reduceR([v1, ..., vl]) = (JRKl
i=1vi, l)

scanR([v1, ..., vl]) = ([0, JRK1
i=1vi, ..., JRKl−1

i=1vi], l)

Figure 1.3: Primitive operations semantics. JRK is the reduction denotation
of the reduction operator R. E.g. summation for R = +.

prior to executing e1. In the next chapter, the adaptation of writing the
using-variables explicitly will become apparent, as we will adapt a slightly
different cost model that charges the cost of distribution up front in the
apply-to-each rule and charges zero for variable lookup. This makes it more
precise with respect to flattening.

All primitive operation are defined to take unit steps, which means we
abstract away the logarithmic depth that is often associated with a divide-
and-conquer parallel implementation of primitive operations. Instead, we
add a logarithmic term to the derived asymptotic time complexity. That is,
given an evaluation of ρ ` e ⇓ v $ (W, D), we can expect an asymptotic
actual running time on P processors in

O(W/P + D log P),

which has D log P instead of D. As derived by Blelloch [Ble90b] among
others, in the PRAM model, the logarithmic factor shows up anyway due
to the cost of allocating tasks to processors, so there is not much gained in
accounting for the logarithmic depth in the cost model, and abstracting it
away makes depth costing simpler.

1.3. µNESL 19

ρ ` e ⇓ v $ (W, D)

ρ(x) = v
ρ ` x ⇓ v $ (1, 1)

ρ ` a ⇓ a $ (1, 1)

(
ρ ` ei ⇓ vi $ (Wi, Di)

)k
i=1

ρ ` (e1, ..., ek) ⇓ (v1,, vk) $ (Σk
i=1Wi, Σk

i=1Di)

ρ ` e ⇓ (v1, ..., vk) $ (W, D)

ρ ` e.i ⇓ vi $ (W, D)

ρ ` e0 ⇓ v0 $ (W0, D0) ρ[x 7→ v0] ` e1 ⇓ v1 $ (W1, D1)

ρ ` let x = e0 in e1 ⇓ v1 $ (W0 + W1, D0 + D1)

ρ ` e0 ⇓ v0 $ (W0, D0) Fφ(v0) = (v, W)

ρ ` φ(e0) ⇓ v $ (W0 + W, D0 + 1)

ρ ` e0 ⇓ {v1, ..., vl} $ (W0, D0)
(
ρ[x 7→ vi] ` e ⇓ v′i $ (Wi, Di)

)l
i=1

ρ ` {e : x in x0 using x1, ..., xk} ⇓ {v′1, ..., v′l} $ (W0 + Σl
i=1Wi, D0 + maxl

i=1 Di)

Figure 1.4: Evaluation semantics with costs.

20 CHAPTER 1. INTRODUCTION

The work cost of operations are defined along side their semantics in
Figure 1.3. Work is often related to the size of the computed value. The size
of a value v is denoted by |v|, and is defined as:

|a| = 1

|(v1, ..., vk)| = Σk
i=1|vi|

|[v1, ..., vk]| = Σk
i=1|vi|

Unlike NESL, µNESL does not support recursion. If recursion is desired,
it must be manually unfolded. Parallel algorithms are almost always lim-
ited to a logarithmic depth recursion, so static unfolding is not as bad as it
may sound. The biggest problem is unfolding a recursion with a statically
unknown depth. In this case, the recursion must be unfolded a number of
times that represents the maximum possible recursion depth. A recursion
that splits an array of unknown length in two equal sizes can be unfolded
32 times and can then support arrays up to a length of 232.

Figure 1.5 lists a classical example of a program written in NESL (apart
from the recursive function definition and some type annotations, this is
actually a µNESL program). The program is a parallel implementation of
the quicksort algorithm that showcases the use of nested data parallelism in
a recursive divide-and-conquer strategy.

In the recursive case, the function qsort is called inside an apply-to-each
on the two recursive cases: On all the elements smaller than the pivot and
on all the elements greater than the pivot. In order to obey the cost model,
the evaluation must take advantage of parallelism across blocks in the call
tree on the same horizontal level in the figure. This is exactly what flattening
achieves.

The same program can be written in µNESL by unfolding the definition
of qsort a small number of times, with the deepest occurrence replaced by
some error-generating expression (e.g. a division by zero) in the hope that
this case will never be reached. Since the recursion depth is expected to be
logarithmic in the size of the input sequence, a modest number of unfolds
is almost always sufficient for all realistic input sizes. Importantly, since the
time cost model is defined in terms of the evaluation semantics, the time
cost of the statically unfolded program is no different from the dynamically
unfolded program. I.e. unvisited depths in the recursion do not count
towards the time cost.

The cost model is almost realized by fist compiling µNESL programs to
flat vector code. The compilation employs flattening as described previously
in Section 1.1.5. The vector code is then evaluated eagerly.

1.3. µNESL 21

function qsort(a) =

if (#a < 2)

then a

else

let

pivot = a ! (#a/2) in let

lesser = {e in a | e < pivot} in let

equal = {e in a | e == pivot} in let

greater = {e in a | e > pivot} in let

result = {qsort(v) : v in mkseq(lesser ,greater)}

in concat ([result ! 0, equal , result ! 1])

Figure 1.5: The quicksort algorithm implementation and call tree. The im-
plementation and illustration is from [Ble95]. Just using parallelism within
each block yields a parallel running time at least as great as the number
of blocks (O(n)). Just using parallelism from running the blocks in parallel
yields a parallel running time at least as great as the largest block (O(n)). By
using both forms of parallelism the parallel running time can be reduced to
the depth of the tree (expected O(lg n)).

22 CHAPTER 1. INTRODUCTION

The reason why the cost model is not fully realized, is that the cost model
essentially assumes MIMD execution, which vector code does not provide.
Consider the costing of apply-to-each in Figure 1.4. It stipulates that the
depth of the evaluation of an apply-to-each is the maximum depth of each
sub-evaluation. If the body expression contains conditionals, the compila-
tion will generate vector instructions for each branch that are executed in
separate steps and then combined in the end. In other words, the total num-
ber of steps is the sum of the steps in each branch and not the maximum.
Turning the max into a sum in the cost model for apply-to-each, would be
overly pessimistic as that would stipulate that there is no parallelism at all
in an apply-to-each, which is not the case. A general fix that allows proper
SIMD execution costing, would require keeping track of all execution paths.
Such a cost model quickly becomes complicated for larger programs, and is
consequently not suitable as an intuitive cost model for the programmer.

There is one redeeming point however. Like the if-then-else in the quick-
sort example (Figure 1.5), conditionals in parallel algorithms are often the
distinction between a base case and a recursive case. The base case is often
of constant depth. If at most one branch has non-constant depth, the prob-
lem goes away as maximum and summation becomes asymptotically the
same operation (i.e. O(x + k) = O(x) = O(max(x, k) for some constant k).
Such a program is called contained by Blelloch in [Ble95]. In this dissertation,
we keep in mind that the cost model only works for the flattening transfor-
mation in the case of contained programs. Characterizing the resource cost
of non-contained programs optimistically is outside the scope of the NESL
cost model and the cost model investigated here.

1.3.1 Virtual Segment Descriptors

Another issue with the cost model is the cost of distributing constants over
a comprehension. Variable lookup is assigned a work-cost and a step-cost of
1. This correctly accounts for the distribution of variables of primitive type.
For example, in the flattened version of

let c = 42 in {c + x : x in &(100) using c},

c is distributed over the 100 instances of x, which is necessary before the
lifted version of + can be performed. This action should take 1 step and 100
work, which the cost model accounts for through the costing rules of vari-
able lookup and apply-to-each. The problem arises when a non-primitive
value is distributed. For example, consider the expression

let c = &1000 in {c ! x : x in &(100) using c}.

1.3. µNESL 23

Here, similarly, c must be distributed over the 100 instances of x in order to
perform the lifted version of indexing. Using segment lengths as segments
descriptors for nested sequences as described in Section 1.1.5, the only way
to represent the distribution of c, would be to copy all 1000 elements a
hundred times. To see why, consider the representation of c:

([1000],

[0, ..., 999]).

This value distributed a thousand times (named c′) would then be repre-
sented by:

([100],

([

100︷ ︸︸ ︷
1000, ..., 1000],

[0, ..., 999, ..., 0, ..., 999])).

Here, the length of the data vector (the bottom-most vector) is 100 · 1000,
which is much greater than what can be computed using 100 units of work.
Clearly, either the cost model is significantly flawed, or the chosen represen-
tation of nested sequences is insufficient.

A solution is to use a different segment descriptor representation known
as virtual segment descriptors. This representation – and scattered segment
descriptors, which we shall see in a moment – was first presented by Ben
Lippmeier et al. [LCK+12]. Apart from segment lengths, virtual segment
descriptors also has an offset into the underlying segmented vector. In this
way, segments can overlap and the same segment can be repeated without
copying the underlying data. This allows us to represent c′ as:

([(0, 100)],

([

100︷ ︸︸ ︷
(0, 1000), ..., (0, 1000)],

[0, ..., 999]))

Here, all the segments draw from the same segment in the data vector (offset
0) and the length of the data vector is 1000. More importantly, there is no
work involved in computing it; it is identical to the data vector in c. The
only work required is computing the vector

[

100︷ ︸︸ ︷
(0, 1000), ..., (0, 1000)],

which can be done in 100 work assuming the size of an element in a segment
descriptor is 1 even though it is a pair. This assumption is no different than
assuming booleans and reals have the same size.

24 CHAPTER 1. INTRODUCTION

Virtual segment descriptors complicate some of the lifted operations on
nested sequences. In particular, the lifted sequence constructor (or append
if that was the primitive) becomes impossible to implement in the cost-
prescribed way. Lifted append takes two sequences of the same length
where the elements are sequences themselves and the same type. It then
merges the two sequences by appending the element of the two sequences
pointwise. In the virtual segment descriptor representation, this approach
translates to a situation where we have two values represented by (sd1, a)
and (sd2, b), and we must combine sd1 and sd2 by pointwise addition and
interleave the elements of a and b (which may themselves be trees of seg-
ment descriptors and data vectors).

We could implement the operation by appending a and b appending sd1

and sd2, and then adjust the segment offsets from sd2 by the length of a.
However, due to virtual segmentation, a and b may be much larger than
the values they represent, so this could be much more costly than the cost
model prescribes because the cost model only operates on the represented
high-level values. Low-level values that are much larger than the values they
represent arise in expressions like indexing sequences of sequences, where
we cannot afford to copy the whole indexed sequence but simply index the
segment descriptor and keep the data vector as it is.

Another approach could be to do a normalization step that converts vir-
tual segment description into an equivalent non-virtual length-based seg-
ment description. This approach fails because it can cause the distribu-
tion problem (which virtual segment descriptors were originally designed
to solve) to manifest [Mad12].

To achieve a full work-efficient representation, it is necessary to employ
a more elaborate segment descriptor representation known as scattered seg-
ment descriptors. Scattered segment descriptors are virtual segment de-
scriptors that furthermore allows the segments to be located in different
data vectors. In this dissertation, we leave scattered segment descriptors for
future work, and employ virtual segment descriptors and consider the se-
quence constructor to be more expensive than it ideally could be. We note
that the actual work cost semantics is non-trivial to define as it depends on
the representation and not on the high-level value.

1.4 Contributions

The main contributions of this dissertation are:

• The formal design of a high-level programming language for (nested)
data-parallel streaming:

1.5. TERMINOLOGY 25

– The formal distinction between streamed and manifest collec-
tions, and the classification of their relationship.

– A cost model for space usage (a cost model for time also exists,
but it is not a contribution of this dissertation).

– An implementation strategy:

* A low-level dataflow language based on stream chunking.

* A (presumably) cost-preserving translation from the high-
level language to the low-level language, which includes a
well-known flattening transformation adopted to streams.

• Two concrete implementations:

1. Streaming Accelerate, which implements regular streaming of
multi-dimensional arrays on GPUs.

2. Streaming NESL, which implements general streaming of nested
data parallelism on multicores with vector instructions.

• A number of experimental benchmarks.

1.5 Terminology

The terms sequences, arrays, vectors and streams all refer to an enumer-
ated collection of objects that allows repetitions. In all cases, the objects
of a collection must all belong to the same type. As a general rule, arrays
and vectors emphasize a spatial collection, streams emphasize a temporal
collection, and for sequences, it depends on the context.

Sequence Sequence is the high-level mathematical term. It is the term we
expose to the programmer in the front-end languages.

The word sequence is used to describe the primary collection type in
NESL, which is actually implemented as a spatial collection.

In Streaming NESL - the language developed in this thesis shortened to
SNESL - and Streaming Accelerate, sequences are characterized by being
elementwise fully streamable.

Array In Accelerate, array refers to the primary collection type: a spatial
finite multi-dimensional grid of primitive values (i.e. scalars). In the one-
dimensional case, an array is also referred to as a vector. n-dimensional
arrays, where n > 1, may be thought of as being nested arrays of n − 1
dimensions. However, the nesting is always regular, meaning that sub-arrays
must have the same length.

26 CHAPTER 1. INTRODUCTION

In other contexts, arrays refer to a fixed-sized contiguous region of mem-
ory (e.g. an array in C).

Vector In NESL terminology, vectors refers to the low-level implementa-
tion model where programs are compiled to VCODE (short for vector code).
As such, vectors are flat implementation-specific data structures, usually re-
alized as low-level arrays.

In SNESL terminology, both sequences and vectors are high-level con-
cepts. Whereas sequences are streamable, vectors are not. This means that
vectors supports random-access, but have worse space cost semantics.

Stream In this dissertation, streams are the low-level implementation-specific
data structure for sequences. They can be thought of as a buffer in memory
that holds some of the value of the stream. Over time, the buffer is incre-
mentally updated, so that in the end, all values will have been in the buffer.

Both sequences and vectors in SNESL are implemented with streams.
Sequences use bounded buffering, while vectors use unbounded (more pre-
cisely, runtime-bounded) buffering.

1.6 Road Map

Chapter 2: Towards a Streaming Model for Nested Data Parallelism [MF13]
Here, we introduce the syntax and semantics of SNESL, as well as the in-
dented implementation model based on chunked streaming. We also give
hand-written GPU timings. However, we do not pursue an actual GPU im-
plementation.

Chapter 3: Functional Array Streams [MCECK15] Here, we explore an
implementation of a streaming model on GPUs for the programming lan-
guage Accelerate; a data-parallel language, similar to NESL, but based on
regularly shaped multi-dimensional arrays instead of nested vectors. Con-
sequently, Accelerate does not offer true nested data parallelism.

Chapter 4: Streaming Nested Data Parallelism on Multicores This chap-
ter is a based on [MF16]. Here, we return to SNESL to give a full work-
ing implementation of streaming nested data parallelism. We implement a
backend based on multicores with vector instructions, and measure actual
performance numbers.

Chapter 2

Towards a Streaming Model for
Nested Data Parallelism

This chapter is based on [MF13].
Sections with non-trivial changes or additions are marked with a ?.

Abstract

The language-integrated cost semantics for nested data parallelism pioneered
by NESL provides an intuitive, high-level model for predicting performance
and scalability of parallel algorithms with reasonable accuracy. However,
this predictability, obtained through a uniform, parallelism-flattening exe-
cution strategy, comes at the price of potentially prohibitive space usage in
the common case of computations with an excess of available parallelism,
such as dense-matrix multiplication.

We present a simple nested data-parallel functional language and associ-
ated cost semantics that retains NESL’s intuitive work–depth model for time
complexity, but also allows highly parallel computations to be expressed in
a space-efficient way, in the sense that memory usage on a single (or a few)
processors is of the same order as for a sequential formulation of the algo-
rithm, and in general scales smoothly with the actually realized degree of
parallelism, not the potential parallelism.

The refined semantics is based on distinguishing formally between fully
materialized (i.e., explicitly allocated in memory all at once) vectors and po-
tentially ephemeral sequences of values, with the latter being bulk-processable
in a streaming fashion. This semantics is directly compatible with previ-
ously proposed piecewise execution models for nested data parallelism, but
allows the expected space usage to be reasoned about directly at the source-
language level.

27

28 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

The language definition and implementation are still very much work
in progress, but we do present some preliminary examples and timings,
suggesting that the streaming model has practical potential.

2.1 Introduction

A long-standing goal in high-performance computing has been to develop
a programming notation in which the inherent parallelism in regular data-
processing tasks can be naturally expressed (also by domain specialists, not
only trained computer scientists), and gainfully exploited on today’s and to-
morrows hardware. The functional paradigm has shown particular promise
in that respect, being close to mathematical notation, and focusing on what
is to be computed, rather than how. In particular, computations expressed
purely functionally are naturally deterministic.

However, a good programming notation should also enable the program-
mer to predict, with reasonable accuracy, what kind of performance to ex-
pect from a particular way of expressing a calculation. For sequential lan-
guages, even (eager) functional ones, it is usually fairly easy to deduce the
asymptotic time and space behavior of an algorithm, at least for the purpose
of choosing between different alternatives; indeed, elementary complexity
analysis is routinely taught in undergraduate classes. However, for parallel
computations, the programmer has often been at the mercy of the compiler:
sometimes an innocuous-looking change in the concrete expression of an
algorithm may have drastic performance implications (in either direction).

The NESL language [Ble92] was a breakthrough not only in offering a
concise, platform-independent notation for expressing complex, multi-level
parallel algorithms in functional style, but perhaps even more so for offering
an intuitive, language-integrated cost model to the programmer. The model
allows one to derive expected work and depth complexities of a high-level
parallel algorithm in a structural way, with effort comparable to that for a
purely sequential language.

The NESL compilation model is centered around a relatively simple and
predictable “flattening” translation to a uniform, low-level implementation
language based on segmented prefix sums (scans) of flat vectors [BCH+94].
This means that, from the derived high-level parallel costs assigned by the
model, one can immediately obtain a fairly reliable prediction of the ex-
pected concrete performance of the program, and especially how it will scale
with increasing number of processors.

However, a substantial weakness in the NESL model is that, while time
complexities of most algorithms are usually close to what would be intu-
itively expected, having flat vector operations as the only vehicle for express-

2.1. INTRODUCTION 29

ing parallelism means that many “embarrassingly parallel” computations
(say, matrix multiplication), when naturally expressed in the language, will
uniformly allocate space proportional to the available parallelism (for in-
stance, allowing for up to n3 independent scalar multiplications when mul-
tiplying two n-by-n matrices), even if the available computation resources
are nowhere near sufficient to exploit this parallelism. Consequently, pro-
grammers are often forced to explicitly sequentialize their code, to avoid
prohibitive – or at least embarrassing – space usage. In other words, the plain
NESL model effectively penalizes code that exposes “too much” parallelism.

For an even simpler example, consider the problem of computing Σn
i=1 log i (=

log n!), where n is on the order of 109. In NESL, this computation would be
naturally expressed as

logsum(n) = sum({log(f loat(i)) : i in [1 : n]}) ,

with work O(n), and depth O(1).1 Since the depth is negligible in com-
parison to the work, for all realistic numbers of processors p, we expect
the computation time to be O(n/p), which is as good as could be hoped
for. But conversely, the computation will conceptually allocate and traverse
O(n) space, even when p = 1.

Of course, the NESL cost model does not force the compiler to naively
allocate gigabytes of space for the above computation. For example, a 4-core
back-end is perfectly allowed to divide the range into 4 equal parts, let each
core compute the corresponding subrange sum, and then sequentially add
up the 4 final results. This still achieves very close to a 4-times speedup over
the sequential code, with negligible memory use. But relying on the com-
piler to be clever in such cases means that the programmer effectively has
no reliable mental model of how much memory a conceptually low-space
algorithm can be expected to use under any given circumstances. Worse,
the space usage may be subtly context dependent: maybe the obvious opti-
mization will be performed at the top level, but not inside another, already
parallel computation with varying subproblem sizes, such as

sum({logsum(n ∗ n) : n in [1 : 1E3]}) .

We aim to refine the NESL language cost model so that, in addition to
determining meaningful depth and work complexities, the space usage will
also reflect what is intuitively truly required for execution – without sacrific-
ing platform independence and the efficient, vector-based implementation

1In the NESL cost model, the logarithmic depth of the summation tree is accounted for
in the mapping to a PRAM model, not in the source-level depth. This way, many hidden
administrative tasks, such as data distribution, can also be given depth 1, simplifying the
calculations considerably. But even if sum were computed with an explicit parallel algorithm,
it would only have depth O(log n).

30 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

model. We do this by explicitly introducing the notion of streaming at the
language level.

Streaming A key feature of NESL and similar languages is that the linked-
list datatype commonly used to express bulk operations, such as maps or
folds in functional settings, is replaced by a type of immutable arrays with
constant-time access to arbitrary elements. This is done not so much to to
accommodate algorithms that do need truly random access to individual
elements (though those are important too), but mainly for two reasons:

1. To allow all processors to immediately get to work on pieces of large
problems. For example, adding two billion-element vectors elemen-
twise has no inherent inter-element dependencies; but if the vectors
were represented as linked lists that each had to be traversed, this
traversal would represent a major sequential bottleneck.

2. To ensure spatial locality and compactness, in particular to fully uti-
lize cache lines, and allow meaningful prefetching of data from main
memory. While (1) above could largely be achieved by some kind
of indexing superstructure (e.g., a balanced binary tree with pointers
to equal-length segments of the lists), gathering each processor’s as-
signed work from all over memory would still represent a significant
overhead.

However, full random-access vectors are actually overkill for many ap-
plications, such as vector addition. In principle, one could achieve most of
goals (1) and (2) by segmenting the vectors into individually allocated chunks
(of size anywhere from a few hundreds to a few millions elements), with the
additions within a pair of chunks performed in parallel, but with the chunks
themselves still processed sequentially. (Indeed, if the vectors are so large
that they do not fit into main memory at all, but must be read in from aux-
iliary storage, such a chunked implementation is what the programmer has
to code explicitly.)

Of course, an appropriate chunk size depends heavily on the platform,
and we do not want to force programmers to commit to any particular size
in the code: they should merely express the computational task in a way
that is conductive to streaming, and the compiler should take care of the
rest.

Returning to the sum-of-logsums example (and ignoring that some of the
computations could obviously be shared), if the chunk size is, for instance,
103, then the early chunks will cover the computations of logsum(n2) for
multiple n’s (1 through 13 plus most of 14 for the first one), while the late
chunks will each just cover part of logsum(n2) for a single n (the last n takes

2.1. INTRODUCTION 31

10 chunks). This would be considerably more awkward to express if one
were doing the problem partitioning manually.

Related work The space usage of flattening-based implementations of nested
data-parallel algorithms has long been recognized as a problem. In the
standard implementation of the NESL front end [BCH+94] (and appar-
ently inherited in both direct derivatives such as NESL-GPU [BR12], and
reimplementations such as CuNesl [ZM12]), the most immediately appar-
ent problem arises from the excessive distribution of large vectors across
parallel computations. It is ameliorated by an explicit parallel fetch, such
that {v[i] : i in a} can be considerably more efficiently expressed as v → a.
This performance anomaly is also relatively easy to fix by a refined flattening
translation, such as the one in Proteus [PPW95], or in recent versions of Data
Parallel Haskell [LCK+12]. However, neither of these approaches addresses
the more general problem of sequences always being fully represented in
memory at once.

In particular, Blelloch and Greiner’s space-efficient model implementa-
tion of NESL [BG96] takes a materializing semantics of sequences as the
sequential baseline, and establishes that a parallel implementation does not
need that much additional space to achieve speedups. (This is reasonable,
since the available NESL operations on sequences, such as random-access
indexing, in general force them to be materialized, in order to achieve the
work complexity predicted by the model.) However, it does not flatten nested
sequence constructions, keeping space usage reasonable in, e.g., the sum-of-
logsums problem or the naive n-body algorithm. The downside is that the
execution model requires more general task-level parallelism, not immedi-
ately realizable on a SIMD machine, or even on a vector-oriented GPU. It
also relies on a fairly sophisticated garbage collector, working efficiently at
low granularities. In contrast, we propose a language model that identifies
streamable computations already at the source level, assigning them much
lower sequential space costs. With this refinement, the uniform parallelism-
flattening approach can still be employed, with all computations and alloca-
tions/deallocations performable in bulk.

Subsequent work on space costs of parallel functional programs has also
tended to focus less on data parallelism, and more on general task paral-
lelism. In particular Spoonhower et al. [SBHG08], building on the work by
Blelloch and Greiner, extend the deterministic parallelism model and cost
semantics to futures, but further deemphasize SIMD-like execution mod-
els. Futures allow streaming computations (which fall outside the strictly
nested parallelism model) to be expressed, along with much more general
computation structures. In contrast, we use a rather modest generalization

32 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

of nested parallelism by modeling streams of unbounded length as concep-
tually existing all at once, but only being materialized a fragment at a time.

Finally, our back-end execution model is similar to piecewise execution of
flattened data-parallel programs [PPCF95], which also focuses on reducing
the space usage in a data-parallel setting. The main difference is that we
expose the streamability potential also in the source cost model. Our initial
timing experiments suggest that piecewise execution is still relevant as an
execution model on modern platforms (GPGPUs), perhaps even more so
than on the hardware of the mid-1990s.

2.2 A Simple Language with Streamed Vectors

In this section we present a minimalistic, expression-oriented core language
for expressing nested data-parallel computations (only). For the purpose of
defining the semantics, the language is slightly more explicit than one would
expect from a practically usable notation. Programs written in an end-user
language (such as NESL) would be desugared and elaborated into our nota-
tion, possibly with the default being the fully materializing elaboration, but
allowing the programmer to express others by suitable syntax extensions.

Throughout this section we will use the convention that the metavari-
able k, when used as a length, ranges over “small” natural numbers (typi-
cally related to static program sizes), while l ranges over “potentially large”
numbers (related to runtime data sizes).

2.2.1 Syntax and Informal Semantics

Types and values The language is first-order and explicitly typed, with a
grammar of types (in Haskell-style notation):

π ::= Bool | Int | Real | · · ·
τ ::= π | (τ1, ..., τk) | [τ]
σ ::= τ | (σ1, ..., σk) | {σ}

Here π represents some fixed collection of primitive types. τ is the gram-
mar of concrete types, the values of which are always fully materialized in
memory. In particular, vectors [τ] provide constant-time read access to arbi-
trary elements. (Vectors of vectors may be jagged; there is no requirement
that they represent proper matrices.)

More unconventionally, σ is the grammar of general, or streamable, types,
which adds sequence types {σ}. Unlike vectors, sequences do not have to be
fully represented in memory at the same time, and do not provide random
access to elements. However, just like vectors, they have a strict semantics,

2.2. A SIMPLE LANGUAGE WITH STREAMED VECTORS 33

and every sequence will always be fully computed (exactly once) in a pro-
gram execution; this is essential to allow chunked processing of sequences
while presenting a chunk-size indifferent cost model to the programmer.
Note that sequences may contain vectors, but not the other way around.

The intensional semantics of sequences could be summarized as “strict
but lazy”. Just as in NESL, sequences are always fully evaluated, whether
their values are needed or not. However, in SNESL this evaluation may
happen incrementally, with the sequence being produced and consumed in
chunks. As the chunking is completely transparent to the programmer, we
impose an exactly-once semantics in order to maintain a deterministic and
predictable value and cost model: with a purely demand-driven, Haskell-
stream-like semantics of sequences, we would simply discard a failing or
very expensive computation in a part of the sequence that was never re-
quested. But since each individual chunk is always fully evaluated for uni-
formity, the observable behavior in such cases would ultimately depend on
the chunk size.

The values are as follows:

a ::= T | F | n (n∈Z) | r (r∈R) | · · ·
v ::= a | (v1, ..., vk) | [v1, ..., vl] | {v1, ..., vl}

Here, a are the atomic values of the relevant primitive types. Values are
typed in the obvious way.

Expressions The expression language is syntactically very similar to a NESL
subset; the main difference is in the refined typing of the constructs and
built-in operations. The raw grammar is quite minimal, as follows:

e ::= x | a | (x1, ..., xk) | x.i | let x = e0 in e1 | φ(x)

| {e0 : x in x0 using x1, ..., xk} | {e0 | x0 using x1, ..., xk}
φ ::= (See Figure 2.2)

For simplicity, we require many subexpressions to be variables; more gen-
eral expressions can be brought into the required form by adding let-bindings.
(In larger examples we may assume that this let-insertion has been done au-
tomatically by a desugaring phase.)

The typing rules are given in Figure 2.1. They should be quite straight-
forward, except possibly the rules for comprehensions {· · · }. In particular,
in the explicit syntax, we require that all the auxiliary variables occurring
free in the comprehension body (and representing values constant across
all iterations) be explicitly listed. (Again, the list can be mechanically con-
structed by the desugarer, by simply enumerating the variables occurring
free in e; the order is not significant.)

34 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

Γ ` e :: σ

Γ(x) = σ

Γ ` x :: σ Γ ` T :: Bool Γ ` n :: Int Γ ` r :: Real
· · ·

(
Γ(xi) = σi

)k
i=1

Γ ` (x1, ..., xk) :: (σ1, ..., σk)

Γ(x) = (σ1, ..., σk)

Γ ` x.i :: σi
(1≤i≤k)

Γ ` e0 :: σ0 Γ[x 7→ σ0] ` e1 :: σ1

Γ ` let x = e0 in e1 :: σ1

Γ(x) = σ1 φ :: σ1→ σ2

Γ ` φ(x) :: σ2

Γ(x0) = {σ0}
(
Γ(xi) = τi

)k
i=1 [x 7→ σ0, x1 7→ τ1, ..., xk 7→ τk] ` e :: σ

Γ ` {e : x in x0 using x1, ..., xk} :: {σ} (k≥0)

Γ(x0) = Bool
(
Γ(xi) = σi

)k
i=1 [x1 7→ σ1, ..., xk 7→ σk] ` e :: σ

Γ ` {e | x0 using x1, ..., xk} :: {σ} (k≥0)

Figure 2.1: Typing rules

In the general form of comprehensions (with the “in” syntax), to pre-
serve the invariant that sequences are only traversed once, any auxiliary
variables must be of concrete type, i.e., materialized throughout the evalua-
tion of the comprehension. The restricted form (with the “|” syntax) could
be seen as abbreviating a general comprehension,

{e | x0 using ~x} “≡” {e : _ in iota(b2i(x0)) using ~x}

where b2i(F) = 0, b2i(T) = 1, and iota(n) = {0, ..., n− 1}. I.e. this constructs
evaluates to the empty sequence or a singleton sequence depending on the
boolean variable x0. Importantly, e is not evaluated in the case where x0 is
F. However, since e evaluates at most once, there are no restrictions on the
types of the auxiliary variables.

Complementing the base syntax are the primitive operations in Fig-
ure 2.2. (We will usually write binary operators infix in concrete exam-
ples.) Most of these should be self-explanatory, with the following notes.
The ellipses after “+” represents a collection of further basic arithmetic and
logical operations, all with types of the form (π1, ..., πk)→ π0. mkseqk con-
structs a length-k sequence; empty tests whether a sequence has zero length
(but without traversing it otherwise); and the returns the sole element of a
singleton sequence. ++ appends two sequences, and zipk tuples up corre-

2.2. A SIMPLE LANGUAGE WITH STREAMED VECTORS 35

φ :: σ1→ σ2

+ :: (Int, Int)→ Int
...

mkseqk
σ :: (

k︷ ︸︸ ︷
σ, ..., σ)→{σ} k≥0

emptyσ :: {σ}→ Bool

theσ :: {σ}→ σ

++σ :: ({σ}, {σ})→ σ

zipk
σ1,...,σk

:: ({σ1}, ..., {σk})→{(σ1, ..., σk)} k≥1

f lagpartσ :: ({σ}, {Bool})→{{σ}}
concatσ :: {{σ}}→ {σ}

iota :: Int→{Int}
tabτ :: {τ}→ [τ]

seqτ :: [τ]→{τ}
lengthτ :: [τ]→ Int

!τ :: ([τ], Int)→ τ

reduceR :: {Int}→ Int R∈{+,×,max,...}

scanR :: {Int}→ {Int} R∈{+,×,max,...}

Figure 2.2: Primitive operations

sponding elements of k equal-length sequences. f lagpart chops a sequence
into subsequences, e.g.,

f lagpart({3, 1, 4, 1, 5, 9}, {F, F, F, T, T, F, T, F, F, T}) =
{{3, 1, 4}, {}, {1}, {5, 9}} .

(The flag sequence must end in a T, and the number of F’s sequence must
match the number of elements in the data sequence.) Conversely, concat
appends all subsequenes into one.

Finally, tab tabulates and materializes a sequence into a vector, while seq
streams the elements of a vector as a sequence. length returns the length
of a vector; and element indexing, !, is zero-based. reduceR computes the
R-reduction of sequence elements (where R ranges over a fixed collection of
basic monoids R), while scanR computes the exclusive scan (all proper-prefix
reductions), e.g., scan+({3, 5, 4, 2}) = {0, 3, 8, 12}.

In the actual implementation, we make available a number of short-
hands. First, as already mentioned, the front-end automatically performs
let-insertions where general expressions are used instead of variables, and

36 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

computes the auxiliary-variable lists in comprehensions. It also infers the
type subscripts on primitive operations. Further, we allow pattern-matching
bindings on the left-hand side of = and in, so that, e.g.,

let (x, y) = e in e′ ≡
let p = e in let x = p.1 in let y = p.2 in e′ ,

where p is a fresh variable. Likewise, we allow comprehensions to traverse
several sequences of the same length simultaneously,

{e : x1 in e1; . . . ; xk in ek} ≡
{e : (x1, ..., xk) in zip(e1, ..., ek)} .

And we may combine general and predicated comprehensions:

{e : x in e0 | e1} ≡ concat({{e | e1} : x in e0}) ,

where, naturally, any variable occurring free in e or e1 must be of concrete
type. Moreover, we allow sequence and vector constructions as abbrevia-
tions:

{e1, ..., ek} ≡ mkseqk(e1, ..., ek)

[e1, ..., ek] ≡ tab({e1, ..., ek}) .

Finally, note that the base language does not include an explicit condi-
tional form. Instead, we can define it as:

if e0 then e1 else e2 ≡
let b = e0 in the({e1 | b}++ {e2 | ¬b}) ,

This decomposition mirrors the data-parallel NESL computation model for
conditionals occurring inside comprehensions: rather than alternating be-
tween evaluating e1 and e2 on a per-element basis, we first evaluate e1 for
the subsequence of elements where e0 evaluates to T, then e2 for those where
e0 evaluates to F, and finally merge the results.

Likewise, other useful functions can be efficiently (at least in an asymp-
totic sense) defined in terms of the given primitive ones. For example, we
can compute the length of a sequence:

slength :: {σ}→ Int

slength(s) = reduce+({1 : _ in s}) .

Some operations require a little more thought to express in a streamable
way. For example, to tag each element of a sequence with its serial number,
we cannot simply say,

number :: {σ}→ {(σ, Int)}
number(s) = zip(s, iota(slength(s))) ,

2.2. A SIMPLE LANGUAGE WITH STREAMED VECTORS 37

because that would require traversing s twice. Instead, we must say,

number(s) = zip(s, scan+({1 : _ in s})) .

(In fact, iota is nominally implemented in terms of a +-scan anyway, so
the above solution is arguably more direct than explicitly computing the
sequence length first.)

The language as presented does not provide for programmer-defined
functions, so the definitions above must be thought of as notational abbrevi-
ations. True functions, possibly recursive, add another layer of complication
– not so much in the high-level semantics, but more in the compilation and
low-level execution model. For now, we have concentrated on the function-
less fragment, since it already highlights most of the significant issues re-
lated to streaming.

Likewise, there is no notion of unbounded iteration (whether in the form
of tail recursion or more explicitly), and hence potential divergence; but
given the eager nature of the language, there should be no semantic problem
with introducing potential non-termination. However, just like in Haskell,
we are forced to – at least formally – identify all run-time errors (division
by zero, indexing out of bounds, etc.) with divergence; if we distinguish
between them, the language becomes formally nondeterministic: if it aborts
with an error in one run, another run might diverge, or abort with a differ-
ent error, depending on low-level scheduling decisions. We still guarantee,
however, that if a run terminates with a non-error answer, all other runs will
also terminate with that answer.

2.2.2 Value Size Model ?

The actual data representation is invisible to the programmer, and has no
influence on the value semantics. However, in order to provide a reasonable
model of the program’s execution and resulting space-usage behavior, we
do need to have a formal, asymptotically accurate, definition of the size of
any particular value. In the streaming setting, we characterize the size as a
pair of metrics, representing, respectively, the space required to process the
value sequentially and in parallel.

More specifically, for any value v, we define P‖v‖ as its parallel size,
and S‖v‖ as its sequential size, as follows:

P‖a‖ = 1

P‖(v1, ..., vk)‖ = Σk
i=1P‖vi‖

P‖[v1, ..., vl]‖ = 1 + Σl
i=1P‖vi‖

P‖{v1, ..., vl}‖ = 1 + Σl
i=1(1 + P‖vi‖)

38 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

S‖a‖ = (1, 0)

S‖(v1, ..., vk)‖ = (Σk
i=1Mi, Σk

i=1Ni)

where ∀i.S‖vi‖ = (Mi, Ni)

S‖[v1, ..., vl]‖ = (1 + maxl
i=1 Mi, Σk

i=1P‖vi‖)
where ∀i.S‖vi‖ = (Mi, _)

S‖{v1, ..., vl}‖ = (1 + maxl
i=1 Mi, maxl

i=1 Ni)

where ∀i.S‖vi‖ = (Mi, Ni)

The sequential size is divided in two natural numbers (M, N), where M
represents scalable space that scales with the chunk size and N represents
vectorial space; space that must manifest regardless of the chunk size. The
sequential size without this distinction is simply M + N. On P processors,
the actual size of v where P‖v‖ = L and S‖v‖ = (M, N) is supposed to be
O(min(P ·M + N, L)).

For simplicity, since we are mainly interested in asymptotic behavior, we
consider all atomic values to require the same amount of space, though there
wouldn’t be any problem with accounting more precisely for space usage,
so that, e.g., a Real would have a constantly larger size than a Bool.

For tuples, the arity k is statically known, and doesn’t need to be explic-
itly represented at runtime at all, so the size of a tuple is simply the sum of
sizes of the elements. In particular, empty tuples take truly zero space.

On the other hand, for vectors, the extra 1+ represents the need to store
the length of the vector somewhere, in addition to the element values. (This
cost may be non-negligible for a nested vector type like [[Int]], especially if
many of the inner vectors may be empty.) This cost mirrors the eventual
concrete representation, where a nested vector is represented as a separate
vector of subvector lengths and a vector of the underlying values.

The vectorial size of a vector is the sum of the parallel sizes of all its
elements. This means that all elements must be allowed to exist at once,
regardless of the number of processors available. The length of the vector is
recorded in the scalable size (the 1+ term), which indicates that the top-most
layer of vector lengths are streamed. If the vectors are small and the chunk
size is large, it is necessary to manifest more than one vector at a time. This
is reflected in the definition of the scalable size as the largest scalable size of
all the elements. Although we have already accounted for all the elements
in the vectorial size, we must also include a scalable term to account for
this case. In effect, the space an implementation is allowed to allocate for a
stream of vectors is the chunk size plus the length of the longest vector in
the stream. A slightly more restricted implementation is possible that only
allows the maximum of the chunk size and the longest vector to be allocated

2.2. A SIMPLE LANGUAGE WITH STREAMED VECTORS 39

(i.e. max instead of plus). However, that would require the chunk size to
appear as a parameter to the cost model.

Finally, for sequences, the conceptual representation model is that seg-
ment boundaries are represented as flags marking the end of each subse-
quence. The reason for this difference from vectors is that, when streaming
a sequence of subsequences, we do not know the length of each subsequence
until after it has been generated. Also, since we want a faithful representa-
tion of consecutive empty sequences, we effectively represent a value of type
{{π}} as if it were {π + ()}, i.e., every element is either a data element or a
subsequence terminator.

More fundamentally, sequences differ from vectors in that they are in
general not materialized in memory all at once; in fact, for purely sequential
execution, they are processed strictly one element at a time. Therefore, the
sequential size of a sequence value is simply the size of its largest element,
while the parallel size – where all elements are simultaneously available for
processing – is the sum of the element sizes, just like for vectors.

2.2.3 Evaluation and Cost Model ?

We will now consider a big-step semantics of the language and primitive
operations. As far as the computed result is concerned, one could simply
erase the distinction between vectors and sequences, and even identify them
both with simple ML-style lists. The parallel nature of the language, and
the role of streaming and random-access indexing, is only made apparent
through the cost semantics.

Since sequence values are not directly expressible as literals in the lan-
guage (syntactic sugar notwithstanding), precluding a simple substitution-
based semantics, we use a semantics in which open expressions are evalu-
ated with respect to an environment ρ, mapping variables to their values.
The form of the judgment is thus ρ ` e ⇓ v $ ω , where the cost metric ω is
built as follows.

A metric is a 5-tuple of natural numbers, ω = (W, D; M, N; L), where
the first two capture the standard work and depth cost of the computation.
The former represents the total number of atomic (constant-cost) operations
performed during the evaluation; it corresponds to the execution time on
a single processor, T1. The latter (also called the span, or step complexity)
represents the longest chain of sequential dependencies in the computation,
thus representing how fast the evaluation could proceed with an unlimited
number of processors, T∞. Note that we will always have W ≥ D, with the
inequality being strict precisely when parallel evaluation is possible.

Like in NESL, the components of a tuple constructor – though nominally
independent – are not considered to be evaluated in parallel (as far as the

40 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

cost model is concerned; an opportunistic compiler of course has the option
of doing so anyway). This reflects our focus on data parallelism, where se-
quences are the only source of speedups. In particular, in an expression like
f (x1) + f (x2), the two f -computations would not be considered indepen-
dent, but will be performed in sequence, and in particular with the depths
summed. (In fact, in our restricted language, the addition will have to be
explicitly let-sequenced anyway.)

If the programmer intends to actively exploit the parallelism in evaluat-
ing the summands independently, he can write instead,

let r = tab({ f (x) : x in {x1, x2}}) in r!0 + r!1 .

This would most likely only be appropriate in the context of a recursive def-
inition of f , so that the total available parallelism would increase drastically
at each level of recursion.

The last components of the cost, dubbed sequential and parallel space, rep-
resent the maximal space usage during the computation, respectively cor-
responding to a fully sequential execution (i.e., S1), and one exploiting the
maximal number of processors (S∞).

The parallel space, denoted by L, represents the space used in a fully
eager evaluation of streams. This corresponds to the traditional VCODE
implementation. Fully eager evaluation is necessary for step-efficiency in the
case where the available parallel resources exceeds the potential parallelism
in the expression.

Just like for the size model for values, the sequential space for compu-
tations is captured by two numbers denoted N and M. N represent the
total number of active streams. By active we mean non-empty. Non-empty
streams are not charged a space cost, and should therefore not be allocated
in an actual implementation. The reason why it is necessary to make this
distinction is that branches in the computation that are never visited, should
not count towards the space cost. This is particularly important in recursive
definitions where the branches deeper than deepest path in the dynamic call
tree are never visited. Although our language does not support recursion at
this point, we do want to create a good cost model for statically unfolded
recursion in the hope that the cost model will scale to dynamic unfolding.
In a statically unfolded recursion, it would be inefficient to charge a space
cost for each recursive step, when in practice, the evaluation might stop ear-
lier than that. Just like for values, N is dubbed the scalable space, and each
active stream are allowed to use up to the chunk size amount of space for
its buffer.

On top of that, M represents the vectorial space, and can be thought of as
the maximum size that all the unbounded buffers in the computation may

2.2. A SIMPLE LANGUAGE WITH STREAMED VECTORS 41

take. This is the amount of space that a computation may require besides the
scalable space. Crucially, this metric is invariant to the chunk size as we do
not want to charge P times the length of a very long vector. Not only would
that be overly pessimistic, it may even cause the sequential space to vastly
exceed the parallel space. Unbounded buffers arise in operations on vectors,
and the vectorial space of a computation is a metric that reports the sum of
the largest vectors in all its sub-computations. Sub-computations that do
not involve vectors, simply have a vectorial space of zero. In practice, it
is not necessarily the case that the longest vector of all sub-computation are
manifest at the same time, so our space cost model is an over-approximation.
However, since our model is not parameterized by the actual chunk size, it
would be impossible to give a more precise measure.

The evaluation rules are given in Figure 2.3. Note that variable accesses
are themselves considered free wrt. time (the cost is assigned to the com-
putations using the variable’s value). Tuple construction and component
selection costs are also considered negligible (since they don’t actually per-
form any extra data movement at runtime in our implementation model),
but literals do have unit cost.

More interestingly, in let-bindings, both work and depth costs of the
subexpression evaluations are summed, reflecting strict sequential evalua-
tion of e0 and e1. But for space usage, the parallel space used to evaluate the
let-expression is the maximum of two numbers: the space used to evaluate
e0, and the sum of the size of e0’s value and the space needed to evaluate
e1. This choice reflects that the lifetime of a variable is limited to the scope
of its let-binding. The reason for using summation in the sequential space
in let-bindings, is that in a dataflow execution model, operations must be
allowed to execute partially and then be suspended in order to allow other
operations to execute. For let-bindings, this means that values may still be
needed in future execution when executing parts outside the scope of the
variable. It may happen that e1 must take a step before e0 can continue,
even though some of the temporary values in e0 are not fully used. It would
therefore be incorrect to require all temporary storage to be deallocated in
e0 before we allow e1 to execute, which is precisely what the parallel space
stipulates.

Note that let-bindings, though commutative wrt. value and time costs
are not so wrt. space costs. That is, in an expression,

let x1 = e1 in let x2 = e2 in (x1, x2) ,

as long as x1 does not occur in e2 and vice versa, the order of the bindings
does not matter for the result value, or work and depth. However, if e1

returns a small result but uses much temporary space, while e2 requires little

42 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

ρ ` e ⇓ v $ (W, D; M, N; L)

ρ(x) = v
ρ ` x ⇓ v $ (0, 0; 0, 0; 0)

ρ ` a ⇓ a $ (1, 1; 1, 0; 1)

(
ρ(xi) = vi

)k
i=1

ρ ` (x1, ..., xk) ⇓ (v1,, vk) $ (0, 0; 0, 0; 0)

ρ(x) = (v1, ..., vk)

ρ ` x.i ⇓ vi $ (0, 0; 0, 0; 0)

ρ ` e0 ⇓ v0 $ (W0, D0; M0, N0; L0)
ρ[x 7→ v0] ` e1 ⇓ v1 $ (W1, D1; M1, N1; L1)

ρ ` let x = e0 in e1 ⇓ v1 $
(W0 + W1, D0 + D1; M0 + M1, N0 + N1; max(L0, L1 + P‖v0‖))

Fφ(ρ(x)) = (v, W)

ρ ` φ(x) ⇓ v $ (W, 1;S‖v‖;P‖v‖)

ρ(x0) = {v1, ..., vl}
(
ρ[x 7→ vi] ` e ⇓ v′i $ (Wi, Di; Mi, Ni; Li)

)l
i=1

ρ ` {e : x in x0 using xτ1
1 , ..., xτk

k } ⇓ {v′1, ..., v′l} $
((l + 1) · Σk

i=1|τi|+ Σl
i=1Wi, Σk

i=1|τi|+ maxl
i=1 Di;

1 + Σk
i=1|τi|+ maxl

i=1 Mi, maxl
i=1 Ni; l + l · Σk

i=1|τi|+ Σl
i=1Li)

ρ(x0) = F

ρ ` {e | x0 using xσ1
1 , ..., xk

σk} ⇓ {} $ (Σk
i=1|σi|, Σk

i=1|σi|; 1, 0; 1)

ρ(x0) = T ρ ` e ⇓ v $ (W, D; M, N; L)
ρ ` {e | x0 using xσ1

1 , ..., xk
σk} ⇓ {v}} $

(Σk
i=1|σi|+ W, Σk

i=1|σi|+ D; 1 + Σk
i=1|σi|+ M, N; 1 + Σk

i=1|τi|+ L)

Figure 2.3: Evaluation semantics with costs

2.3. IMPLEMENTATION MODEL 43

space beyond the large result it allocates, the above sequencing is preferable
to the one with the bindings of x1 and x2 swapped.

The value and cost of primitive operations φ are given by an auxiliary
function Fφ. The value returned should be immediate from the informal se-
mantics of the operations. As previously mentioned, we consider the depth
to always be 1, even for operations like reduce. The work can be taken to
be simply the (parallel) size of the result in all cases except for the and zip,
which perform no work; ! which has unit cost; and concat and reduce whose
work is proportional to the length of the input sequence.

Finally, for sequence comprehensions (general or restricted), work and
depth costs of the body computations are combined in the expected way, but
with the addition of explicit distribution or packing costs for the auxiliary
variables. (For notational simplicity, we have assumed that all such variables
have been annotated by their types in the using-clause.) Also, the space costs
exhibit a difference between the sequential and parallel cases analogous to
the one for value sizes. For the space costs, the per-element size of a type,
|σ|, is given by:

|a| = 1

|(σ1, ..., σk)| = Σk
i=1|σi|

|{σ}| = |σ|+ 1

|[τ]| = 1

Note that this is different from the sizes of values of that type: since se-
quences are never copied, and vectors in the implementation are copied as
pointers, their actual lengths don’t matter.

2.3 Implementation Model

Much like the source language refines NESL, the implementation model
is also an extension of NESL’s parallelism-flatting approach, in that the
two effectively coincide in the case of fully materialized vectors, but we
have a more space-efficient model for implementing sequences, including
sequences of vectors.

For sequences, our model is conceptually similar to that of piecewise ex-
ecution [PPCF95], in which long sequences are broken up into fixed-sized
chunks (which may cross segment boundaries). Each chunk is then pro-
cessed using all available computation units, and the chunks are processed
sequentially using a dataflow model.

The main difference in our model is that the chunking (but not the chunk
size!) is exposed at the source level in the type system and cost model, rather

44 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

than as an optimized implementation strategy, whose applicability in any
particular situation remains hidden to the programmer – except through
sometimes drastic effects on performance or memory use. In particular,
unlike transparent piecewise execution of NESL or Proteus programs, the
compiler will never silently recompute a sequence if it needs to be traversed
more than once; instead, the programmer must explicitly make the choice
between materialization and recomputation based on the overall asymptotic-
complexity requirements for time and space usage.

2.3.1 Data Representation

In a bit more detail, all values are represented as trees of low-level, flat
streams of primitive values. Writing SA for the set of finite streams of A-
elements, we interpret source-language types as follows:

[[Bool]] = SB

[[Int]] = SZ

[[Real]] = SR

[[(σ1, ..., σk)]] = [[σ1]]× · · · × [[σk]]

[[[τ]]] = [[τ]]× (SN× SN)

[[{σ}]] = [[σ]]× SB

Tuples are just cartesian products. For vectors, we augment the interpre-
tation of the base type with a generalized segment descriptor describing starts
and lengths of the vectors. In the canonical representation, the segments
are allocated contiguously, and so the starting positions are simply given as
the +-scan of the lengths. For example, writing streams between 〈· · · 〉, and
using / for the “is represented as” relation, we have:

[[3, 1, 4], [], [1], [5, 9]] /

((〈3, 1, 4, 1, 5, 9〉, (〈0, 3, 3, 4〉, 〈3, 0, 1, 2〉), (〈0〉, 〈4〉))

However, we also allow the subvectors to be permuted, allocated non-contiguously,
or share data – even across segment boundaries. For example, the above
nested vector could also be represented non-canonically as

((〈7, 5, 9, 3, 1, 4〉, (〈3, 0, 4, 1〉, 〈3, 0, 1, 2〉), (〈0〉, 〈4〉))

(Note that the length stream is always the same as in the canonical repre-
sentation.) More usefully, we can represent the vector of all prefixes or suf-
fixes of another vector in linear, rather than quadratic space. The only well-
formedness constraint is that each “slice” (determined by a corresponding
(start,length) pair) has to fit entirely within the base vector.

2.3. IMPLEMENTATION MODEL 45

This representation corresponds to Lippmeier et al.’s virtual segment de-
scriptors [LCK+12], introduced to avoid the performance anomaly in code
like {v!i : i in a} where the entire vector v is first distributed to all parallel
computations, each one of which selects only a single element. By instead
keeping track of segment starts and lengths separately (rather than uniquely
determining the former by a +-scan of the latter), we can avoid duplicating
the full data, but only the pointers. The price, of course, is the potential
for read–read memory contention, but that will normally be a second-order
effect compared to the performance impact on both time and space of proac-
tive massive duplication.

(We do not presently use scattered segment descriptors, where different
segments may also come from different base vectors, because the need for
copying in appends is significantly reduced in our setting: it is only needed
in the case where the concatenated sequence must ultimately be material-
ized.

For sequences, as previously mentioned, we represent subsequence bound-
aries as flags:

{{3, 1, 4}, {}, {1}, {5, 9}} /
((〈3, 1, 4, 1, 5, 9〉, 〈F, F, F, T, T, F, T, F, F, T〉), 〈F, F, F, F, T〉)

Here, the representation is actually unique. It can be seen as a unary coun-
terpart of the canonical vector representation (where the segment starts are
redundant).

The explicit flag representation is intended for interfacing between oper-
ations. When bulk-processing a chunk, as in a segmented scan, we can coa-
lesce consecutive T’s in the flag vector to a simple count; then the segment-
flag vector has exactly as many elements as the data vector, and so the cor-
responding elements of both can be accessed in constant time. For example,
the above sequence without the top-most segment descriptor can be repre-
sented in two forms:

General form: (〈3, 1, 4, 1, 5, 9〉, 〈F, F, F, T, T, F, T, F, F, T 〉)
Contracted form: (〈3, 1, 4, 1, 5, 9〉, 〈0, 0, 2, 1, 0, 1 〉)

The two forms are uniquely determined from each other, except in the case
where the segment descriptor has at least one leading T. It is therefore
also necessary to keep a separate count of the number of leading T’s in the
contracted form.

2.3.2 Translation

In the actual implementation, we translate a nested data-parallel source pro-
gram to a stream-manipulating target-language program in a low-level lan-

46 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

[[x]]ζ s = ζ x
[[a]]ζ s = rep s a

[[(x1, ..., xk)]]ζ s = (ζx1, ..., ζxk)

[[x.i]]ζ s = let (t1, ..., tk) = ζ x in ti

[[let x = e1 in e2]]ζ s = let t = [[e1]]ζ s in [[e2]]ζ[x 7→ t] s
[[φ(x)]]ζ s = [[F]]φ(ζ x) s

[[{e0 : x in x0 using xτ1
1 , ..., xτk

k }]]ζ s =

let (t, s′) = ζ x0 in
([[e0]][x 7→ t, (xi 7→ distτi (ζxi) s′)k

i=1] (usum s′), s′)

[[{e0 | x0 using xσ1
1 , ..., xσk

k }]]ζ s =

let s0 = ζ x0, s′ = b2u(s0) in
([[e0]][(xi 7→ packσi (ζxi) s0)k

i=1] (usum s′), s′)

Figure 2.4: Interpreter composed with translation.

guage (dataflow language for primitive streams). Here, for conciseness, we
present the essence of the translation by directly interpreting each source-
language term as the mathematical stream it denotes. The translation and
interpretation is given in Figure 2.4.

The semantics is compositional and type directed: For every Γ ` e :: σ,
we have [[e]] : [[Γ]]→ S1→ [[σ]], where ζ ∈ [[Γ]] is a run-time environment
mapping each variable x in dom(Γ) to a low-level stream tree in [[Γ(x)]].
The meaning of a closed top-level expression e is then given by [[e]] [] 〈∗〉.
In general, the stream of dummy input values represents the parallelism
degree of the computation, represented in unary because the length of a
sequence is in general not known a priori.

In the translation, the auxiliary function (rep : 1→ A→ SA) produces
a stream with every ∗ in s replaced by a in (rep s a). The function usum :
SB→ S1 counts, in unary, the F’s in a segment-boundary stream; formally,
we can define it by the equations:

usum 〈〉 = 〈〉
usum 〈F | s〉 = 〈∗ |usum s〉
usum 〈T | s〉 = usum s

(We write stream heads and tails between 〈· | ·〉.) For any concrete τ, the

2.3. IMPLEMENTATION MODEL 47

distribution function distτ : [[τ]]→ SB→ [[τ]] is given by:

distπ s0 s = pdist s0 s

dist(τ1,...,τk) (t1, ..., tk) s = (distτ1 t1 s, ..., distτk tk s)

dist[τ] (t0, ss, sl) s = (t0, pdist ss s, pdist sl s) ,

where pdist : SA→ SB→ SA is a segmented distribute for atomic values:

pdist 〈〉 〈〉 = 〈〉
pdist 〈a | s〉 〈F | s′〉 = 〈a | pdist 〈a | s〉 s′〉
pdist 〈a | s〉 〈T | s′〉 = pdist s s′ .

Note that each iteration consumes exactly one element of the flag stream, but
zero or one element of the data stream. (For actual execution, as described
in the next section, streams are processed chunkwise, and the element-wise
specification would be implemented efficiently in parallel using segmented
scans, like in NESL.)

The restricted comprehension is handled similarly. b2u : SB→ SB maps
truth values to segment flags:

b2u 〈〉 = 〈〉
b2u 〈F | f 〉 = 〈T |b2u f 〉
b2u 〈T | f 〉 = 〈F | 〈T |b2u f 〉〉

The function packσ : [[σ]]→ SB→ [[σ]] is defined analogously to distτ, in
terms of a primitive ppack : SA→ SB→ SA given by:

ppack 〈〉 〈〉 = 〈〉
ppack 〈a | as〉 〈F |bs〉 = ppack as bs

ppack 〈a | as〉 〈T |bs〉 = 〈a | ppack as bs〉 ,

but pack also has an additional clause for packing sequence types:

pack{σ}(t, s) b = (packσ t (pdist b s), upack s b) .

That is, we first distribute the pack flags b according to stream’s segment
flags, and use them to pack the underlying stream elements. upack : SB→
SB→ SB is like ppack but packs unary numbers (subsequences of the form
〈F, ..., F, T〉, rather than atomic values.

The other primitive functions in [[F]] are defined similarly, many in a
type-directed fashion. For instance, mkstrk

Int is ultimately defined in terms
of a k-way primitive merge:

pmerge 〈〉 · · · 〈〉 = 〈〉
pmerge 〈a1 | s1〉 · · · 〈ak | sk〉 = 〈a1 | · · · 〈ak | pmerge s1 · · · sk〉〉 .

48 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

2.3.3 Execution Model

The low-level streaming language is effectively a dag of stream definitions,
represented as a linear list of “instructions” such as

s1 := lit〈5〉; s2 := iota(s1); s3 := reduce_plus(s2) ,

similar in principle to the control-free fragment of VCODE [BCH+94] (though
we use named variables rather than a stack model). However, while it would
be correct (wrt. the value computed and work/depth complexity) to execute
such a sequence from top to bottom, it would entirely defeat the point of
streamability, and the space usage would always be on the order of the
“parallel space” from the cost model, even on a completely sequential ma-
chine.

Instead, we compute the stream definitions incrementally and chunk-
wise, in a dataflow fashion. We repeatedly “fire” the definitions to transform
some elements in the input stream(s) into elements of the output stream.
Each stream definition has an associated buffer, which represents a mov-
ing window on the underlying stream of values. For streams representing
vector-free values, the buffer is always of a fixed size, related to the number
of processors; but for streams of vectors, the buffer may expand dynamically
to contain at least each subvector at once. (The buffer never shrinks below
the chunk size, so that, for example, the buffer for a stream of length-2 vec-
tors would normally contain many such vectors at once.) Note that vectors
only represent data storage, not active computations; it is only when they
are explicitly turned into sequences (by seq) that they are either divided or
coalesced into chunks.

Each stream window can only move forwards; once it passes past a part
of the stream, those stream elements become inaccessible. To ensure that all
consumers of a stream have accessed the stream elements they need before
the window advances, the implementation maintains read-cursors for each
stream, keeping track of the progress of each reader, to make sure that all
of the consumer firings have happened before the next producer firing is
enabled.

In addition to the buffer, each stream may have a fixed-size accumulator,
which keeps tracks of the computation state across chunks. For example,
when computing the sum or +-scan of a stream, the accumulator represents
the sum of the elements so far, and is used to “seed” the computation of
the next chunk, rather than restarting from zero each time. (This is how
sums or scans of vectors larger than the maximal block size must be imple-
mented in CUDA anyway; the difference is that we allow the processing of
consecutive sum/scan chunks to be interleaved with chunks from unrelated
computations.)

2.3. IMPLEMENTATION MODEL 49

To keep the scheduling overhead small compared to the work performed
in each chunk, their size must generally be chosen somewhat larger than the
number of available processors. For example, on a fairly large GPU, a suit-
able chunk size seems to be 64k–256k elements; see next section for details.
Currently, for simplicity, the chunk size is fixed for all streams and through-
out the computation, but in principle, it could vary dynamically, depending
on memory pressure, or even adaptively based on on-going performance
measurements.

Streamability To actually be executable in a streaming fashion, source pro-
grams must respect the inherent temporal dependencies between subcompu-
tations. Most notably, no auxiliary variable in a general comprehension may
depend on a computation that requires a prior traversal of the sequence
currently being traversed. For example,

let s = {log(real(x + 1)) : x in iota(n)} in
let m = reduce+(s) in

reduce+({x× x + m : x in s using m})

cannot be executed in constant space (i.e., independent of n), without dupli-
cating the computation of s, because m is only known after all of s has been
traversed. On the other hand, the following, mathematically equivalent, ex-
pression is fine:

let s = {log(real(x + 1)) : x in iota(n)} in
let m = reduce+(s) in

reduce+({x× x : x in s}) + slength(s)×m

because all three traversals of s can be performed in the same pass. An
alternative approach would be to materialize s, and traverse the stored copy
twice:

let sv = tab({log(real(x + 1)) : x in iota(n)}) in
let m = sum(seq(sv)) in

reduce+({x× x + m : x in seq(sv) using m})
A related situation arises with ++ (or mkstr): while transducing s to

s ++ scan+(s) is obviously infeasible in constant space, s ++ {sum(s)} or
scan+(s)++ {sum(s)} are fine – but {sum(s)}++ s or {sum(s)}++ scan+(s)
are not.

In our current implementation, such illegal dependencies are only de-
tected at runtime, but they should be conservatively preventable already
at the source level by a suitable analysis and/or type system. Linear types
would correctly detect all illegal dependencies. However, such a type system
would be too conservative as many streamable expression are outlawed. For

50 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

example, let s = iota(n) in reducemin(s) + reducemax(s) is perfectly stream-
able (the two reduction can be performed synchronously), but the expres-
sion cannot be typed as s is consumed twice.

In most functional (or imperative) languages, a programmer who wants
to compute, say, both the sum of a number sequence and whether it contains
any zero elements, without unnecessarily materializing it, must explicitly
merge both reductions into a single foldl (or loop). Even though a lazy
language, like Haskell, could in principle compute both consumers of s in

... sum s ... not (all (/= 0) s) ...

in lockstep, garbage-collecting s incrementally, most likely it would memo-
ize all of s during the computation of sum, and only deallocate it again after
the all had been computed. In any case, the programmer would not be able
to count on the optimization.

It remains to be seen if working in a nominally eager language, but
with additional temporal constraints between variables (and getting an er-
ror instead of a silent space explosion when those constraints are violated),
is desirable in practice. We suspect that for performance-sensitive applica-
tions, it may be; otherwise, the obvious easy fix is for the compiler to insert
(possibly with a warning) seq/tab-pairs and/or duplicate computations, in
those places where it cannot guarantee streamability.

2.4 Empirical Validation

The practical applicability of our model is investigated through a number
of experiments over three semi-realistic parallel problems. The GPU used
for the benchmarks is an NVIDIA GeForce GTX 690 (2 GB memory, 1536
cores, 915 MHz), and the CPU is a dual AMD Opteron 6274 (2× 16 cores,
2200 MHz). Due to significant numerical sensitivity, all tests are performed
using double-precision floating points for real numbers when possible. The
problems we consider are:

• The sum of logarithms from the Introduction. From now on referred
to as log-sum.

• A total sum of several sum of logarithms, also presented in the Intro-
duction. From now on referred to as sum of log-sums.

• An N-body simulation, where the force interaction for all pairs of bod-
ies is computed, without using any special data structures.

2.4. EMPIRICAL VALIDATION 51

For all problems, we compare the running time on a number of imple-
mentations:

• A single-threaded C implementation running on the CPU serving as a
sanity check for the rest of the implementations.

• A hand-optimized CUDA implementation.

• An implementation in Accelerate [CKL+11] version 0.13.0.1, a GPU-
enabled language embedded in Haskell.

• An implementation in Single Assignment C (SaC) [Sch03] version 1.00_17229
using a multicore backend. SaC also supports a GPU target, but for
the experiments that we consider, the SaC compiler does not emit GPU
code. Namely, with-loops with reductions are not executed on the
GPU in the version of SaC we have tested.

• An implementation in NESL-GPU [BR12], both with and without ker-
nel fusion. NESL-GPU is NESL with a VCODE interpreter imple-
mented in CUDA as back-end. Real numbers are only implemented
with single-precision in the NESL-GPU backend, so the NESL bench-
marks suffer from numerical imprecision and an unfair advantage.
Nonetheless, NESL-GPU uses the double-precision version of the log-
arithm instruction, so in comparison to the sum-log problem, the ad-
vantage is negligible as the calculation of the logarithm dominates the
performance.

• A streaming implementation written in CUDA that reflects the stream-
ing model of execution presented in this chapter.

The comparison to Accelerate, SaC and NESL-GPU is done to measure the
performance of the streaming model against other high-level data parallel
languages without streaming execution. NESL-GPU and SaC support irreg-
ular nested data parallelism, while Accelerate only supports flat parallelism,
and consequently NESL-GPU and SaC are similar to the source language for
the streaming model presented in this chapter and therefore the most inter-
esting languages to compare with. Both Accelerate and NESL-GPU support
a GPU backend and perform kernel fusion, but NESL-GPU requires the pro-
grammer to manually run a separate fusion phase and compile and link the
fused kernels. Using kernel fusion in NESL-GPU gives a marginal speedup
for all our experiments, and therefore, only the timings using kernel fusion
for NESL-GPU are presented here. The streaming implementation is based
on the streaming model presented in this chapter, implemented manually.
However, there is nothing to suggest that similar code could not have been

52 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

generated automatically by a compiler. The streaming implementations uses
the CUDA Parallel Primitive library (CUDPP) for performing reduction and
scan primitives as well as stream compaction.

We measure the running time of each experiment by using the wall-clock
time averaged over an appropriate number of executions. Note that the time
it takes to load the CUDA driver and initialize the GPU is not included in
the benchmark, since it varies greatly from platform to platform. Memory
allocation and de-allocation on the GPU and data transfer between device
and host is, however, included in the timings for the CUDA and streaming
implementations.

2.4.1 Log-sum

The log-sum problem can be categorized as flat data-parallelism, and it
can easily be expressed in all languages included in the experiments. In
the streaming source language it can be implemented using only sequence
types, so we can expect to compute the problem in constant space. The total
work is proportional to N – the problem size.

Without going into details, the problem can be compiled from its source
form to the following data-flow network using a straight-forward mapping
of the primitives:

s0 := range(1, N);

s1 := log(s0);

s2 := sum(s1);

Each stream definition is implemented by a separate kernel in CUDA, and
scheduling is simply implemented as a for-loop, scheduling each of the three
definitions in sequence in each iteration.

Figure 2.5 shows the running times of the log-sum problem for a prob-
lem size N varying from 212 to 232. We can see that all the GPU implemen-
tations outperform C and SaC for large enough problem sizes as expected.
Furthermore, the running time of all the GPU implementations converge as
the input size increases. Note that NESL-GPU runs out of memory when
log2(N) > 25. Accelerate and SaC fail when log2(N) > 30 due to the num-
ber of bits used to represent the size of a single dimension is limited to 32.
In both cases, the problem could probably be mapped to a 2-dimensional
matrix without significant performance loss, but such a mapping stands in
contrast to the high-level of abstraction that the languages have been selected
for comparison because of.

From the second plot we can see that the choice of chunk size greatly
affects the running time: the running time grows rapidly as the chunk size

2.4. EMPIRICAL VALIDATION 53

decreases for small chunks sizes (B < 218), but for sufficiently large chunk
sizes (B ≥ 218), the running time stays more or less the same. Furthermore,
a larger block size incurs a larger overhead, which leads to significant per-
formance degradation for small problem sizes. This is an indication that on
our particular hardware, the chunk size B = 218 is a good choice, keeping in
mind that a larger chunk size requires more memory.

2.4.2 Sum of Log-sums

The sum of log-sums problem can be categorized as irregular nested data-
parallelism because the sub-sums varies in size. The total work is propor-
tional to N3. Just like log-sum, sum of log-sums can be implemented using
only sequence types in the streaming language. It is not at all obvious how
to implement this problem efficiently in Accelerate or CUDA as these lan-
guages do not facilitate automatic parallelization of nested data parallelism,
and since the parallelism is irregular, there is no straight-forward way to
sequentialize the programs by hand. We leave out an Accelerate imple-
mentation for this problem and implement two CUDA versions. The two
versions are manually sequentialized on two different levels to make the
problem flat:

• Inner loop: Using N threads, each sub-sum is computed sequentially
in a single thread. The results are then summed in parallel.

• Outer loop: In a top-level sequential loop, compute log-sum for i =

12, · · · , N2 with i threads using the CUDA implementation from the
log-sum experiment.

Both sequentialization strategies are easy to implement, but yield uneven
work distribution.

The compilation of sum-log-sum in the streaming model is similar to
the compilation of log-sum, but with parallel versions of range computation
and summation, leading to segmented streams. Without going into detail,
the compilation will produce the following data-flow network:

s0 := range(1, N)

s1 := mult(s0, s0)

s2 := segment-head-flags(s1)

s3 := ranges(s2);

s4 := log(s2);

s5 := segmented_sum(s2, s3);

s6 := sum(s4);

54 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

12 14 16 18 20 22 24 26 28 30 32
−4

−3

−2

−1

0

1

2

3

4

5

6

log
2
(N)

lo
g

1
0
(m

s
)

Log−sum wall−clock

CPU

Accelerate

CUDA

NESL

Streaming (B=18)

SaC

12 14 16 18 20 22 24 26 28 30 32
−1

0

1

2

3

4

5

6

log
2
(N)

lo
g

1
0
(m

s
)

Log−sum wall−clock

Streaming (B=10)

Streaming (B=12)

Streaming (B=14)

Streaming (B=16)

Streaming (B=18)

Streaming (B=20)

Streaming (B=22)

Streaming (B=24)

Figure 2.5: Benchmark results of the log-sum problem. The x-axis is the
problem size in base-2 logarithm, and the y-axis is the running time in
milliseconds in base-10 logarithm. The upper plot shows the running
time of different implementations measured in wall-clock time. The lower
plot shows the running time of the streaming implementation for different
choices of block sizes.

2.4. EMPIRICAL VALIDATION 55

Here follows and explanation of the newly introduced instructions:

• segment-head-flags: Converts segment lengths to head flags. E.g.

〈2, 3〉 7→ 〈T, F, T, F, F〉.

• ranges: Produces a range 1..n for each segment. E.g.

〈T, F, T, F, F〉 7→ 〈1, 2, 1, 2, 3〉.

It is implemented as a segmented scan of 1’s followed by adding 1 to
each element.

• segmented_sum: Takes a stream of segment head flags and a stream of
values and outputs a sub-sum for each segment. E.g.

〈T, F, T, F, F〉
〈2, 3, 1, 0, 7〉 7→ 〈5, 8〉.

Scheduling is an outer loop over all the instructions with an inner loop over
instructions s2, s3, s4 and s5.

Figure 2.6 shows the running times of the sum of log-sums problem for
a problem size N varying from 24 to 212. Just like for the log-sum problem,
the GPU implementations will only outperform C and SaC for large enough
problem sizes. NESL-GPU has good performance, but runs out of memory
at N = 29. If the implementation was able to continue beyond this point,
the performance seems to coincide with the streaming implementation sug-
gesting that the two have equivalent performance, except the streaming im-
plementation has some initial overhead that is significant for small problem
sizes. The two CUDA versions are outperformed by the streaming imple-
mentation for medium problem sizes (7 ≤ log(N) < 10), which is likely due
to uneven work distribution. The inner loop implementation is apparently
asymptotically superior to the other implementations, but this is likely due
to the total running time being bounded by the most work-heavy thread,
which computes exactly N2 logarithms, suggesting that any work done up
until this thread is started, is negligible. The curve will likely converge to
a cubic slope for even larger problem sizes. The outer loop implementation
seems to reach the point of cubic slope at around log(N) = 11, where it
already outperforms the streaming model. With this problem size, the work
is dominated by a few very large computations of log-sum which can utilize
the entire GPU, so this result is not surprising.

A chunk size of B = 218, appears to be a good choice again. The gap
between the CPU implementation and the remaining implementations is
significantly smaller for sum of log-sums than for log-sum, leading to the
conclusion that none of the implementations handle irregular nested paral-
lelism particularly well.

56 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

4 5 6 7 8 9 10 11 12
−2

−1

0

1

2

3

4

5

6

7

log
2
(N)

lo
g

1
0
(m

s
)

Sum of log−sums wall−clock

CPU

CUDA (inner loop)

CUDA (outer loop)

NESL

Streaming (B=18)

SaC

4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

log
2
(N)

lo
g

1
0
(m

s
)

Sum of log−sums wall−clock

Streaming (B=10)

Streaming (B=12)

Streaming (B=14)

Streaming (B=16)

Streaming (B=18)

Streaming (B=20)

Streaming (B=22)

Streaming (B=24)

Figure 2.6: Benchmark results of the sum of log-sums problem, with the
same conventions as in Figure 2.5.

2.4. EMPIRICAL VALIDATION 57

2.4.3 N-Body

The N-body problem can be categorized as regular nested data-parallelism
(i.e. all sub-computations have the same size). For simplicity we assume
that all bodies have unit mass, and we simulate each body with the unit
time-step. To avoid the problem of singularities, we use the formula

f (~x,~y) =
~x−~y

((~x−~y) · (~x−~y) + ε)3/2 ,

to compute the directional force between body x and y, where the ε term
ensures that no two bodies will ever have zero distance sending them off
to infinity. We define the problem as, given a system of N bodies, for each
body, given an initial position and velocity, compute the acceleration subject
to the force interaction from all other bodies in the system, and compute a
new position and velocity, in three dimensions using the formula

~x` = ~x`−1 + dt ·~v`−1 + 1/2 · dt2 ·~a`−1

~v` = ~v`−1 + dt ·~a`−1

The total work in one iteration is proportional to N2. We measure the aver-
age execution time of an iteration over a long simulation.

Although Accelerate contains no support for nested data-parallelism, the
regularity of the problem enables easy manual flattening by replication of
the bodies to form a matrix of all body-pairs. A scalar function is mapped
over each element of the matrix computing the force between a pair of bod-
ies, and each row is subsequently reduced to find the sum of all forces acting
on each body.

The implementation in NESL-GPU is much more intuitive due to the
support for nested data-parallelism2:

sum_3d(X) = let (X, Y, Z) = unzip3(X)

in (sum(X), sum(Y), sum(Z))

g(x, X) = sum_3d({ f (x, y) : y in X})
nbody(X) = {g(x, X) : x in X}

The matrix of all body-pairs is implicitly computed in this expression since
X must be distributed over itself in order to use X in the inner-most apply-
to-each.

We cannot implement the problem in the streaming language without
using concrete types. More precisely, if we use the NESL expression as a
starting point, the variables that are used in the body of both apply-to-each

2The code for updating positions and velocities is now shown here.

58 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

constructs, must be explicitly stated. The outer apply-to-each uses X, and
consequently from the type rule of apply-to-each, X cannot have sequence
type and must be fully materialized in memory. The solution is to make
sure X is tabulated, which is also what one would assume, and use seq(X)

to traverse it multiple times as a sequence.

g(x, X) = sum_3d({ f (x, y) : y in seq(X) using x})
nbody(X) = {g(x, X) : x in seq(X) using X}

A compiler can utilize the regularity of the problem to generate more
efficient code. More specifically, we can compute the index ranges using
modulo arithmetic, and the segmented sum using a single unsegmented
scan, a gather and a subtraction. If we assume that the streaming compiler
can infer and exploit this regularity, we can generate the following code for
the streaming model:

X := < input >

s0 := 2d_range_x(N, N);

s1 := 2d_range_y(N, N);

s2 := gather(X, s0);

s3 := gather(X, s1);

s4 := force(s2, s3);

s5 := 2d_segmented_sum(N, N, s4);

Here 2d_range_x(N, M) produces the stream

〈

M︷ ︸︸ ︷︷ ︸︸ ︷
0, . . . , N − 1, · · · ,

︷ ︸︸ ︷
0, . . . , N − 1〉 ,

and 2d_range_y(N, M) produces the stream

〈
N︷ ︸︸ ︷

0, . . . , 0, · · · ,

N︷ ︸︸ ︷
M− 1, . . . , M− 1〉 .

2d_segmented_sum(N, M, s) produces a regular segmented sum of s seg-
mented in N segments, each of length M. force is the force calculation
between two bodies, fused into a single instruction. The force calculation
consists solely of scalar operations, so fusion is straightforward, and it is
fair in comparison since both Accelerate and NESL-GPU uses fusion.

The hand-optimized CUDA implementation is based on the algorithm
presented by Nyland, Harris, and Prins in GPU Gems 3 [NHP07] and uses
explicit cache management and tiling.

2.4. EMPIRICAL VALIDATION 59

The implementations in NESL-GPU, Accelerate and Sac do not contain
any explicit sequentialization except for the simulation iterations. This is
important because such a sequentialization would be a platform-specific
optimization, and we are comparing with these languages because they are
platform-agnostic. We were not able to produce an implementation in SaC
that performs better than the CPU implementation for N-Body.

Figure 2.7 shows the running time of N-Body. Here the NESL-GPU im-
plementation runs out of memory for all but the smallest problem sizes (210

bodies) and performs horribly, likely due to explicit replication. Accelerate
on the other hand is able to handle all tested input sizes indicating that it
handles replication symbolically.

Once the input size is large enough, the streaming version is a constant
factor faster than the CPU version, Accelerate is a constant factor faster than
the streaming version, and the CUDA version is a constant faster than Ac-
celerate. Compared to the previous problems, the CUDA implementations
is now significantly faster than the other GPU implementations, and the
streaming implementation is painfully close to the CPU implementation in
performance. From the lower plot we can see that the optimal chunk size is
the same as for the previous problems.

2.4.4 Discussion

Considering the experimental results of the streaming implementation in
isolation, it is evident that the running time of a given problem converges
as the chunk size increases, and furthermore, it converges long before the
chunk size reaches the problem size for large enough problem sizes. As
stated previously, when the chunk size is big enough, the streaming execu-
tion model is largely equivalent to that of NESL. In conclusion, choosing a
reasonable chunk size, the streaming model will not be slower than a tra-
ditional execution model. The three experiments all suggested the same
optimal chunk size of 218, which is important since it is an indication that
the optimal chunk size is independent from the algorithm and problem size,
meaning that for a given concrete machine, a specific chunk size can be se-
lected once and for all programs. Given a chunk size of 218 and depending
on the type, a single buffer requires roughly 8–16 MB worth of memory on
the device, enabling several hundreds of buffers to be allocated at any given
time. This is more than enough for most algorithms. It should be possible to
estimate the number of required buffers before execution begins, at least for
our somewhat restricted source language, and if more buffers are needed
than the GPU capacity enables, the block size can be lowered. In extreme
cases, buffers can be swapped in and out of device memory dynamically.

Comparing the results of the streaming implementation with the other

60 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

6 8 10 12 14 16
−2

−1

0

1

2

3

4

5

log
2
(N)

lo
g

1
0
(m

s
)

N−Body wall−clock

CPU

Accelerate

CUDA

NESL

Streaming (B=18)

6 8 10 12 14 16
−1

0

1

2

3

4

5

6

log
2
(N)

lo
g

1
0
(m

s
)

N−body wall−clock

Streaming (B=10)

Streaming (B=12)

Streaming (B=14)

Streaming (B=16)

Streaming (B=18)

Streaming (B=20)

Streaming (B=22)

Streaming (B=24)

Figure 2.7: Benchmark results of the sum of N-Body problem, with the same
conventions as in Figure 2.5.

2.5. PRELIMINARY CONCLUSIONS AND FUTURE WORK 61

GPU implementations, the experiments show that a streaming execution of
nested data-parallel programs on GPGPUs is on-par with existing GPU-
enabled high-level languages both for flat, regular nested and irregular
nested data-parallelism. We also conclude that much larger problem sizes
are supported when using streaming than what is available in NESL. This is
a critical feature for data-parallel languages, because the benefit of parallel
execution increases as the problem size increases. For small problem sizes,
the difference between 1 second and 10 milliseconds is quickly shadowed
by the overhead of loading and unloading CUDA’s drivers, but the differ-
ence between 1 hour and 100 hours for huge problem sizes is significant.
By allowing a data-parallel program to work on such problem sizes is there-
fore highly valuable, and that is exactly what the streaming execution model
provides that both Accelerate and NESL-GPU does not.

On the other hand, the running time for streaming execution is still con-
siderably higher than we had hoped and what a hand-optimized CUDA
implementation offers. This can partly be attributed to lack of tiling and
explicit cache management. Another concern is that dividing a parallel in-
struction into several kernel invocations, as is required by data-flow execu-
tion, precludes the use of registers to store intermediate results; In CUDA,
it is not possible to carry values stored in registers or shared memory from
one kernel invocations to the next, even if it is the same kernel that is in-
voked. Instead, the global memory must be used, which is much slower.
This indicates that kernel fusion is still beneficial in the streaming model.

The experiments do not provide a clear validation of the streaming model,
but they do not reject it either. The results suggest that implementing a GPU
backend for a NESL-like language that scales to extremely large problem
sizes is possible using the streaming model presented in this chapter, with-
out incurring too severe performance degradation for small and medium
problem sizes.

2.5 Preliminary Conclusions and Future Work

We have outlined a high-level cost model and associated implementation
strategy for irregular nested data parallelism, which retains the performance
characteristics of parallelism-flattening approaches, while drastically lower-
ing the space requirements in several common cases. In particular, many
highly parallelizable problems that also admit constant-space sequential al-
gorithms, when expressed in the language, have space usage proportional
to the number of processors – not to the problem size.

The language and implementation are still under development, and many
details are incomplete or preliminary. Particular on-going and future work,

62 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

not already mentioned at length, includes:

• Extending the language and cost model with recursion, to allow ex-
pression of more complex algorithms. The main challenge here is to
determine to what extent common parallel-algorithm skeletons admit
streaming formulations. For example, to explicitly code a logarithmic-
depth reduce, a divide-and-conquer approach (split vector in halves,
reduce each half in parallel, and add the partial results) will obviously
not work for sequences, when not even the sequence length is known
a priori. On the other hand, a unite-and-conquer reduction (add pairs
of adjacent elements in parallel, then recursively reduce the resulting
half-length sequence) can be implemented in a streaming fashion, and
probably exhibits better space locality as well.

• Extending the model to account for bulk random-access vector writes
(permutes, or more generally, combining-scatter operations). A sig-
nificant class of algorithms that nominally involve random-access vec-
tor updates, such as histogramming or bucket sorting, can still be ex-
pressed in a parallel, streaming fashion by generalizing (segmented)
scans to multiprefix operations [She93]. Making multiprefix primitives
conveniently utilizable by the programmer should minimize, or maybe
even eliminate, the need for explicitly distinguishing between copying
and in-place implementations of vector updates in the cost model.

• Formally establishing the time and space efficiency of the implemen-
tation model, in the sense that the work and depth complexity, and
parallel and sequential space usage, predicted by the high-level model
are in fact realized, up to a constant factor, by the low-level language
with chunk-based streaming.

• A full language implementation with a representative collection of
back-ends (including at least sequential, multicore/SIMD, and GPGPU)
to gather more practical experience with the model, and in particu-
lar determine whether the hand-coded implementations of particu-
lar streaming algorithms can also be realistically generated by a fixed
compiler.

Finally, though we believe that the main value of the streaming model
is its explicit visibility to the programmer, some of the ideas and concepts
presented in this chapter might be adaptable for transparent incorporation
in other data-parallel language implementations (APL, SaC, Data Parallel
Haskell, etc.), to achieve drastic reduction in memory consumption in many
common cases, without requiring explicit programmer awareness of the
streaming infrastructure.

Chapter 3

Functional Array Streams

This chapter is a reprint of [MCECK15] without any non-trivial changes.

Abstract

Regular array languages for high performance computing based on aggre-
gate operations provide a convenient parallel programming model, which
enables the generation of efficient code for SIMD architectures, such as
GPUs. However, the data sets that can be processed with current imple-
mentations are severely constrained by the limited amount of main memory
available in these architectures.

In this chapter, we propose an extension of the embedded array lan-
guage Accelerate with a notion of sequences, resulting in a two level hierar-
chy which allows the programmer to specify a partitioning strategy which
facilitates automatic resource allocation. Depending on the available mem-
ory, the runtime system processes the overall data set in streams of chunks
appropriate to the hardware parameters.

In this chapter, we present the language design for the sequence oper-
ations, as well as the compilation and runtime support, and demonstrate
with a set of benchmarks the feasibility of this approach.

3.1 Introduction

Functional array languages facilitate high-performance computing on sev-
eral levels. The programmer can express data-parallel algorithms declara-
tively, and the compiler can exploit valuable domain specific information to
generate code for specialised parallel hardware. A standard array language
separates itself from traditional languages by offering data-parallel collec-
tion oriented constructs as primitives such as map, fold, scan and permuta-

63

64 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

tion. Without these primitives, the same logic would have to be encoded as
sequential for-loops or recursive definitions, obfuscating data-dependency
and access patterns. Due to the artificial data-dependencies introduced by
the loop counter or the recursion stack, these encodings prevent natural par-
allelisation, and the compiler must resort to program analysis to detect and
exploit implicit parallelism. Such automatic parallelisation strategies are
fragile, and small changes in the code may cause them to fail, significantly
degrading the performance for reasons not obvious to the programmer.

Array languages present a complementary problem. The explicit data-
parallelism exposed in an array program may vastly exceed the actual paral-
lel capabilities of the target hardware. Data-parallel programs often require
working memory in order of the degree of parallelism. Therefore, it is not
always desirable or even possible to execute an array program in its full
parallel form. To conserve space, we would like the compiler to make the
program “less parallel” prior to execution. However, the absence of explicit
sequential data-dependencies prevents natural sequentialisation.

If we would execute each parallel combinator in isolation, we could
simply sequentialise the combinator by partitioning the index-space and
scheduling the different parts in a tight loop. Evidently, this is how CUDA
schedules a kernel in blocks on a large grid.

In practice, however, it is essential to fuse sequences of parallel combina-
tors together to form complex computations, thereby reducing the num-
ber of array traversals and intermediate structures. As soon as such a
sequence includes more than simple maps, the combinators may not tra-
verse the index-space in a uniform way. Consequently, loop fusion can
be very complex. Compiler-controlled sequentialisation affects the fusion-
transformation, and complicates it further. Finding the optimal sequential-
isation strategy in this context is not decidable, so we would have to resort
to using heuristics, leaving the programmer at the mercy of the compiler
again.

Therefore, we propose to give control over this step to the programmer,
who has more knowledge about the nature of the application and size of the
processed data set. We achieve this by including a set of sequence combina-
tors for array languages, so sequential data-dependency over data-parallel
computations can be specified and the amount of parallelism exposed be
controlled.

This chapter presents these new sequence combinators, using the lan-
guage Accelerate as starting point and discusses the extensions to the run-
time system with the required streaming and scheduling mechanism. In
summary, the contributions of this chapter are as follows:

• We present a new set of sequence combinators, which, together with

3.2. ACCELERATE 65

the usual combinators like maps, folds and scans, can be used to ex-
press a two-level hierarchy sequentially combining a sequence of par-
allel operations over chunks of data.

• We present a runtime system extension which implements the neces-
sary scheduling and streaming mechanisms.

• We present an evaluation of the approach presented in the chapter.

While we are currently only targeting single-GPU architectures, the pro-
gramming model we propose in this chapter also allows the programmer
to expose pipeline-parallelism in a program, which we could exploit in an
implementation for multi-GPU architectures. Although outside the scope of
this chapter, other data-parallel architectures, such as multi-processors and
distributed systems, would also benefit from the model presented here.

3.2 Accelerate

Accelerate is a domain specific functional language for high-performance,
multi-dimensional array computations, implemented as deep embedding in
Haskell. In addition to the collection oriented operations similar to those
on lists, like maps, scans, reductions, it also offers array-oriented opera-
tions, such as stencil convolutions, as well as forward- and backward per-
mutations, conditionals and loops. Indeed, apart from the type annotation
(to which we will get back shortly), many Accelerate programs – like this
dot-product example – look almost like the corresponding list operation in
Haskell:

dotp :: Acc (Vector Float)

→ Acc (Vector Float)

→ Acc (Scalar Float)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

In contrast to Haskell, though, Accelerate is strict and fully normalising.
The language has two non-obvious restrictions: (1) Arrays must be reg-

ular. By regular, we mean arrays cannot contain other arrays as elements.
Instead, arrays are multidimensional. Scalars, vectors, matrices, tensors,
and so on, are all regular arrays, but a vector of arbitrary-length vectors
is not. (2) Accelerate does not permit nested data-parallelism. For ex-
ample, even though one could imagine using a two dimensional array as
a vector of vectors, mapping a map over each sub-vector is not allowed.
These restriction enables a smooth compilation to SIMD hardware. Accel-
erate comes with a number of backends, among them a GPU implemen-

66 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

tation generating CUDA [NVI12] code, that demonstrate excellent perfor-
mance [CKL+11, MCKL13].

The restriction to regular computations and arrays is enforced statically
via the type system, which serves to separate Accelerate expressions into
two distinct categories.

• Elt a => Exp a: Expressions which evaluate to values of type a, where
a has to be a member of type class Elt, which includes basic types such
as integers, floats, bools, as well as n-tuples of these. Accelerate gen-
erates valid CUDA C from Exp expressions.

• (Shape sh, Elt a) => Acc (Array sh a): Expressions which evalu-
ate to n-dimensional arrays with element type a and shape sh. Accel-
erate generates CUDA GPU kernels from Acc expressions.

Shapes are sequences of integer dimensions separated by :. (e.g. Z :. 2 :. 3),
and Scalar is a type synonym for a zero-dimensional array, Vector for a
one-dimensional array. The type annotation of the dotp example therefore
states that the function accepts two floating point vectors as arguments, and
returns a scalar floating point value as result. More precisely, since Accel-
erate is a deep embedding, dotp takes in accelerate expressions specifying
computations which produce results of these types, and returns a new com-
putation.

Functions like map, fold and so on are rank polymorphic. For example, the
type of zipWith is

zipWith :: (Shape sh, Elt a, Elt b, Elt c)

⇒ (Exp a → Exp b → Exp c)

→ Acc (Array sh a)

→ Acc (Array sh b)

→ Acc (Array sh c)

Several things are happening here: the type of the function passed to zip

is, by its type, restricted to sequential computations over values of basic
type. The type class constraint Shape sh essentially restricts sh to n-tuples
of integers, where n determines the rank of the array. Both array arguments
have to have the same rank, which is also the rank of the result. The actual
sizes, however, are not tracked statically and may be different.

3.2.1 Fusion

It is well known that the collection oriented style of programming which Ac-
celerate relies on has a serious potential drawback: if implemented naively,

3.2. ACCELERATE 67

by executing each aggregate operation separately, it can result in an exces-
sive number of array traversals, intermediate structures, and poor locality.
For example, it would clearly be inefficient if the code for the dotp exam-
ple would first produce an intermediate array of the pairwise products, and
then, in a second traversal, add all these sums to the final result. There-
fore, Accelerate aggressively employs fusion, merging the operations to more
complex computations, trying to minimise the number of traversals.

Fusion cannot, in general, guarantee that its results are optimal. Con-
sider, for example, a fusible computation whose result is consumed by two
different operations. If we would fuse into both consumers, we would avoid
creating the intermediate structure, but duplicate the work involved to com-
pute the array element, which can, in theory, slow down the performance
considerably. In practice, most computations are fairly cheap compared to
creating and accessing an array, so fusion would result in a significant speed-
up nevertheless. Without sophisticated cost-analysis, the compiler cannot
decide which alternative results in the best performance, so we err on the
side of caution and never fuse computations whose result is used more than
once.

3.2.2 Handling Large Data Sets

We have shown previously [CKL+11, MCKL13] that the Accelerate approach
of expressing parallel computations enables the generation of highly effi-
cient code. The dot-product in Accelerate, for example, is only slightly
slower than CUBLAS, a hand-written implementation of the Basic Linear Al-
gebra Subprograms in CUDA by NVIDIA. However, on GPU architectures,
we can only achieve peak performance if the data set we are processing in
one parallel step is large enough to utilise all processing elements, yet small
enough to still fit in the GPU memory, which is, at currently around 4GB,
for the majority of hardware, much more restricted than CPU memory.

If programmers want to develop GPU programs which process larger
set of data, they have to explicitly stage the computation into a sequence
of parallel computations on smaller data chunks, and combine the subre-
sults. While this is possible, it adds a significant layer of complexity to an
already difficult task, and would lead to code whose relative performance is
architecture dependent.

The other extreme option would be to try and let the compiler shoulder
all the complexity of solving this problem. However, sophisticated optimi-
sations like these have the downside that they usually cannot guarantee op-
timality, and behave in a way hard to predict by the programmer. Therefore,
we choose an intermediate route: we allow the programmer to explicitly
distinguish between parallel, random access structures, and streamed ones,

68 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

which allow only for a more limited set of operations. This gives the pro-
grammer the opportunity to design an algorithm tailored for this model,
instead of hoping the compiler optimisations will work out.

In the following section, we describe the stream extension to Accelerate’s
program model, before we discuss its implementation and performance.

3.3 Programming Model

3.3.1 Examples

Let us go back to our dotp example. If we know that the input vectors
most likely will not fit into memory, or we wish to ensure it minimises its
space usage, we want to tell the compiler to split the input into chunks of
appropriate size, calculate the product and sum for each chunk, and add the
subresults as they are produced. Our stream extension makes this possible:

dotpSeq :: Acc (Vector Float)

→ Acc (Vector Float)

→ Acc (Scalar Float)

dotpSeq xs ys =

collect

$ foldSeqE (+) 0

$ zipWithSeqE (*) (toSeqE xs) (toSeqE ys)

Here, toSeqE turns a normal Vector into a sequence of Scalars, zipWithSeqE
performs element-wise multiplication of the two input sequences, foldSeqE
calculates the sum, and collect takes the conclusion of the sequence com-
putation and turns it into an Acc expression. The rest of this section will
explain these primitives in more detail.

As Accelerate is rank-polymorphic, sequence operations can be parametrised
by shape information. By convention, we denote specialised versions of
these operations for sequences of scalars by the suffix E, as for example
toSeqE above.

It is not just sequences of scalars that are supported, however. Our ex-
tension supports sequences of arbitrary rank. If for example we wanted to
perform a matrix vector multiplication:

mvmSeq :: Acc (Matrix Float)

→ Acc (Vector Float)

→ Acc (Vector Float)

mvmSeq mat vec

= let rows = toSeq (Z:.Split:.All) mat

in collect

3.3. PROGRAMMING MODEL 69

$ fromSeqE

$ mapSeq (dotp vec) rows

In this case, we first split the vector up into rows with toSeq, then apply
dotp vec over every row, turn what is now a sequence of scalars into a
Vector with fromSeqE, before finally collecting the result.

In addition to not requiring the entire matrix be made manifest, this ex-
ample also highlights how our extension enables an extra degree of nesting,
in this case, defining matrix-vector multiplication in terms of the parallel
dot-product, something not previously possible.

3.3.2 Streams

As we have seen in the previous examples, an Accelerate array is a collection
where all elements are simultaneously available, whereas a sequence value
corresponds to a loop, where each iteration computes an element of the
sequence. Sequences are ordered temporally, and are traversed from first to
last element. Once an element has been computed, all previous elements
are out of scope, and may not be accessed again. The arrays of a sequence
are restricted to having the same rank, but not necessarily the same shape.
If the shapes happen to be the same, we call the sequence regular. Using A
to range over array values, and square brackets to denote sequences,

[A1, A2, ..., An]

denotes the sequence that computes A1 first, computes A2 second and so
forth until the final array An is computed. Here, n is the length of the
sequence (possibly zero).

Sequences model the missing high-level connection between the parallel
notation of array languages and sequential notation of traditional for-loops.
The basic sequence combinators are carefully selected such that the arrays
of a sequence can be evaluated entirely sequentially, entirely parallel, or
anything in between as long as the strategy respects the sequence order of
arrays; even on SIMD hardware. The runtime system then selects a strategy
that fits the parallel capabilities of the target hardware. The programmer
may assume full parallel execution with respect to what the hardware can
handle, while maintaining a limit on memory usage. A purely sequential
CPU would evaluate one array at a time with a minimal amount of working
memory. A GPU would evaluate perhaps the first 100 arrays in one go, and
then evaluate the next 100 arrays, and so on. The working memory would
be larger, but not as large as the cost of manifesting the entire sequence at
once. Ideally, the runtime performance, in terms of execution time, should
correspond to a fully parallel specification, and in terms of working memory,

70 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

should be in the order of a constant factor related to the parallel capabilities
of the hardware - Unless any one array of the sequence exceeds this amount.

Of course, not all array algorithms can be expressed as sequences. As
sequences can only be accessed linearly, any algorithm which relies on per-
muting or reducing an array in a non-linear way, cannot be expressed as a
sequence. It is the responsibility of the programmer, not the compiler, to
expose inherent sequentialism.

3.3.3 From Arrays to Sequences and Back

As we discussed previously, the type constructors Exp and Acc represent
nodes in the AST from which Accelerate generates CUDA C code and CUDA
GPU kernels, respectively. Sequence computations are represented by the
type constructor Seq. Accelerate will generate CUDA kernels together with
a schedule for executing the kernels over and over until completion.

While the type constructor Seq represents sequence AST nodes, we use
the Haskell list syntax to represent the actual sequence type. That is, the
type [a] represents sequences of a’s, and the type Seq [a] represents se-
quence computations that produce sequences of a’s when executed. The
type Seq a, where a is not a sequence type, represents sequence computa-
tions that produce a single result of type a. We will see an example of such
a type when we explain foldSeqE.

Sequences are introduced in Accelerate either by slicing an existing array,
as we did in our examples, or by streaming an ordinary Haskell list into
Accelerate, which we will discuss in detail in Section 3.3.4.

In our examples, we used the combinator toSeqE to convert one dimen-
sional array into a sequence of values of the same element type:

toSeqE :: (Elt a)

⇒ Acc (Vector a)

→ Seq [Scalar a]

However, toSeqE is just a special case of the more general combinator toSeq,
which operates on multi-dimensional arrays and is parametrised with a spe-
cific slicing strategy div:

toSeq :: (Division div , Elt a)

⇒ div

→ Acc (Array (FullShape div) a)

→ Seq [Array (SliceShape div) a]

Values of types belonging to the Division type-class define how an ar-
ray is divided into sub-arrays along one or more dimensions, where Split

3.3. PROGRAMMING MODEL 71

at a given position tells the compiler to divide the elements along the corre-
sponding dimension into a sequence, All to leave it intact.

Divisions are generated by the following grammar.

Div 3 div ::= Z | div :. All | div :. Split

FullShape and SliceShape are type functions that, for a given division,
yield the shape of the full array and the shape of every slice. Let us have a
look at an example to see how divisions can be used to slice a two dimen-
sional array in different ways. Let A be the matrix(

1 2 3
10 11 12

)
then we can either leave the matrix intact and create a sequence contain-
ing one element (somewhat pointless), slice it column-wise, row-wise, or
element-wise:

toSeq (Z :. All :. All) A = [
(

1 2 3
10 11 12

)
]

toSeq (Z :. All :. Split) A = [
(

1
10

)
,
(

2
11

)
,
(

3
12

)
]

toSeq (Z :. Split :. All) A = [(1 2 3) , (10 11 12)]

toSeq (Z :. Split :. Split) A = [1, 2, 3, 10, 11, 12]

Fusion, as described in Section 3.2.1, is applied across sequentialisation. This
means that, if matrix A is the result of a computation, we leverage the exist-
ing fusion transformation of Accelerate to combine it with any operation on
Ai. In this way, we avoid the full manifistation of A.

If A is the result of an operation that prevents subsequent fusion, such as
a reduction or a scan, we have no choice but to materialise the entire input
array prior to slicing. This undesirable effect can sometimes be avoided by a
simple transformation that moves the fusion-preventing operation into the
sequence computation. As an example, consider the following program that
converts a matrix into a sequence of row sums:

rowSums :: Acc (Array DIM2 Int)

→ Seq [Scalar Int]

rowSums mat =

toSeqE (fold (+) 0 mat)

Since fold prevents further fusion in Accelerate, the result of (fold (+)

0 mat) will be a fully materialised vector, that happens to hold the entire
sequence at once. If mat has a huge number of rows, full manifestation is
catastrophic. However, it is entirely unnecessary and can be avoided in this
case by first constructing a sequence of rows, and then mapping a sum over
that sequence:

72 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

rowSums ' mat =

mapSeq

(fold (+) 0)

(toSeq (Z:.Split:.All) mat)

Assuming the user of this function provides an array expression mat that
does not prevent further fusion, mat will be fused row-wise into the first
operation of the sequence. Therefore, no initial manifestation is required
and this definition works for arbitrary many rows. As a subject for future
work, the compiler could potentially perform array-to-sequence expression
transformations like this one. For now, as a rule of thumb when working
with sequences, it is advisable to slice early and put as much of the program
logic in Seq rather than in Acc. Finally, as a specific optimization for the GPU
backend, if A is a host-side array constant, it will be transferred to the device
in parts.

Sequences of arrays can be converted into flat data vectors and a vector
containing the shape of each array, or to the data vector only if we are not
interested in the shapes:

fromSeq :: (Shape ix, Elt a)

⇒ Seq [Array ix a]

→ Seq (Vector ix, Vector a)

Ordinary Accelerate array function can be lifted from working on arrays
to working on sequences using mapSeq and zipWithSeq. These sequence com-
binators are parametrised by the to-be-lifted array function, and the denota-
tion is simply to apply the function to each array of the input sequence(s).

mapSeq :: (Arrays a, Arrays b)

⇒ (Acc a → Acc b)

→ Seq [a]

→ Seq [b]

zipWithSeq :: (Arrays a, Arrays b, Arrays c)

⇒ (Acc a → Acc b → Acc c)

→ Seq [a]

→ Seq [b]

→ Seq [c]

The type class Arrays contains n-tuples of Array type, expressing the fact
that the arguments of both operations can be multiple arrays.

In addition to mapping operations over sequences, we can fold a se-
quence of scalars with an associative binary array operator. Unlike with

3.3. PROGRAMMING MODEL 73

map and zipWith, foldSeqE is not implemented in terms of a more general
foldSeq. The reason why is explained in Section 3.4.

foldSeqE :: Elt a

⇒ (Exp a → Exp a → Exp a)

→ Exp a

→ Seq [Scalar a]

→ Seq (Scalar a)

Note that foldSeq still returns a sequence computation, but the result of
that computation is a scalar array, not a sequence. This allows multiple re-
ductions to be expressed and contained in the same sequence computation,
ensuring a single traversal. For example, here we have two reductions, one
summing the elements of an array, the other calculating the maximum. We
can combine this into a single traversal with lift.

maxSum :: Seq [Scalar Float]

→ Seq (Scalar Float , Scalar Float)

maxSum xs = lift (foldSeqE (+) 0 xs

, foldSeqE max 0 xs)

If we want to convert this back into an Acc value, we need to use collect:

collect :: Arrays arrs

⇒ Seq arrs → Acc arrs

Note the Arrays constraint on arrs in collect. As sequences are not
members of the Arrays class this ensures that we cannot embed a whole
sequence into an array computation without first reducing it to an array.

3.3.4 Lazy Lists to Sequences

Our language extension allows interfacing with ordinary Haskell lists. We
define two convenient operations for converting sequence expressions to
Haskell list and vice versa.

streamIn :: Arrays a ⇒ [a] → Seq [a]

streamOut :: Arrays a ⇒ Seq [a] → [a]

streamIn is a language construct that takes a constant sequence and
embeds it in Accelerate. It is the sequence-equivalent of an array constant in
ordinary Accelerate. streamOut on the other hand, is an interpretation that
runs a sequence expression and produces a Haskell list as output. Therefore,
it must be defined on a per-backend basis, just like the ordinary Accelerate
interpretation function run :: Arrays a ⇒Acc a →a. Using streamOut is

74 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

the only way to interpret a sequence expression that is not embedded in an
array expression.

Accelerate is a strict language, and has not been equipped to deal with
infinite sequences until now. Arrays are naturally finite, and the result se-
quence of toSeq is no longer than the size of the input array. However, there
is nothing that prevents the programmer from passing an infinite list to
streamIn. Being a strict language, Accelerate will go into an infinite loop if
the programmer attempts to reduce an infinite sequence. It is however pos-
sible to productively stream out an infinite sequence to an infinite Haskell
list. The elements will then be forced according to the evaluation strategy,
which is hidden from the programmer. For example, if the programmer tries
to print the third element of a streamed out sequence in Haskell, Accelerate
may internally evaluate the first ten elements.

3.4 Execution Model

After discussing the language extensions for sequences, we are now looking
into how we can generate efficient code from these sequence expressions.
For a sequential CPU architecture, a sequential, element-by-element evalua-
tion would be feasible, but would clearly lead to unacceptable performance
on our main target architecture, GPUs. Instead, we want to process just
enough data to saturate the GPU to achieve optimal performance. There-
fore, before code generation, we group multiple elements of the sequence
together in vectors to form chunks. Each chunk can then be streamed to
the GPU and processed in parallel. The actual size of the chunk is chosen
by the runtime, as the best choice depends on the concrete architecture the
program is executed on.

We define a chunk to be a vector of arrays (or n-tuple of arrays) written
with angular brackets 〈A1, ..., Ak〉. Each array is required to have the same
rank, but not necessarily the same shape. k is referred to as the length of the
chunk, and the total size of the chunk elements ∑i∈{1..k} size(Ai) is referred
to as the chunk size. If all the arrays have the same shape, we say that the
chunk is regular. Note that a regular chunk is essentially just an array with
rank r + 1 where r is the rank of each element.

The execution model presented here implements the programming model
by translating sequence expressions to stream-manipulating acyclic dataflow
graphs, where the nodes consume and/or produce chunks that flow along
the edges. There are two key challenges in this approach: Lifting and
scheduling. Sequence operations must be lifted at compile time to oper-
ate on chunks instead of just arrays. At run time, appropriate chunk lengths
must be selected as small as possible while still keeping the backend satu-

3.4. EXECUTION MODEL 75

rated in each step, and the sequence operations must be scheduled accord-
ingly. We solve these challenges for regular chunks by means of vectorisation
together with an analysis phase that yields a static schedule. We proceed to
explain the vectorisation strategy of each primitive sequence operation.

• Array slicing is trivial to vectorise. toSeq is easily extended to produce
chunks of slices, and the chunks will always be regular with known
sizes.

• For streamIn, since Accelerate cannot track shapes, there is no guar-
antee that the list supplied by the programmer contains same-shape
arrays, and consequently, we consider the resulting sequence to be ir-
regular in all cases. One could imagine the addition of a streamInReg

operation that takes the shape of elements as an additional argument.
The programmer then promises that all arrays in the supplied list have
this shape. Such an operation would be beneficial for applications
streaming large amounts of regular data such as video processing.

• Sequence maps (and zipWith’s) are vectorised by applying a lifting
transformation on the argument array function as described in Sec-
tion 3.4.2. Sequence maps are the main source of irregularity since we
can map any array functions. As Accelerate cannot handle irregular ar-
rays, we analyse the mapped array functions to detect irregularity and
avoid chunking in that case. The analysis is described in Section 3.4.4.

• For sequence reduction with an array function as the combining oper-
ator, we need to turn an array-fold into a chunk-fold. Vectorizing the
combining operator gives a function that combines chunks. We could
fold the chunks of a sequence with this function and then use the un-
lifted function in the end to fold the final chunk. However, there are a
number of problems with this approach:

– The combining operator would have to be commutative since el-
ements are combined, not with the next element in the sequence,
but with the element in the next chunk at the same position.

– It is not always desirable to keep a chunk of accumulated values.
For example, fromSeq is a fold using array append as the combin-
ing operator, and the accumulated value is an array containing all
the elements in the sequence seen so far. A chunk of accumulated
values would be unreasonably large.

A better solution is to fold each chunk with the unlifted function im-
mediately and then combine the resulting folded value with the accu-
mulator, again using the unlifted function. However, Accelerate does

76 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

not support a general parallel array fold. Instead, as described in the
following paragraphs, we opt to provide a less general sequence fold
primitive more suitable for chunking.

The sequence fold primitive is named foldSeqFlatten and has the type
signature:

foldSeqFlatten :: (Arrays a, Shape sh, Elt b)

⇒ (Acc a → Acc (Vector sh)

→ Acc (Vector b) → Acc a)

→ Acc a

→ Seq [Array sh b]

→ Seq a

This operation works by applying the given function to each chunk in a
sequence. In each step, the function is applied to an accumulated value, a
vector of shapes and a vector of elements, and it produces a new accumu-
lated value. The vector of shapes is the shapes of the arrays in the input
chunk, and the vector of elements is all the elements of the chunk concate-
nated to a flat vector. Our representation of chunks enables extracting the
shape vector and element vector of a chunk in constant time, also for irreg-
ular chunks. This means that we can execute foldSeqFlatten on chunks
of any length without having to vectorise. The operation unfortunately ex-
poses the chunk size in the surface language as the size of the shape vector.
This is not something the programmer should rely on since it is a back-
end specific parameter. However, the programmer is obligated to obey the
following rule for the folding function:

f (f a sh1 e1) sh2 e2 = f a (sh1 ++ sh2) (e1 ++ e2)

That is, applying the folding function twice on two shape and element vec-
tors must be the same as applying it once on the appended vectors. This
severely limits how the programmer can exploit knowing the chunk size.

Scalar fold foldSeqE is then defined as a prelude function using foldSeqFlatten

and the standard fold operator of accelerate:

foldSeqE :: Elt a

⇒ (Exp a → Exp a → Exp a)

→ Exp a

→ Seq [Scalar a]

→ Seq (Scalar a)

foldSeqE f z =

foldSeqFlatten

(λ acc _ → fold f (the acc))

3.4. EXECUTION MODEL 77

(unit z)

Here the is a convenience function for indexing a scalar array.
Likewise, fromSeq is also currently also a prelude function. Folding with

append is not very efficient, so we plan to specialise this operation in the
near future.

fromSeq :: (Shape ix, Elt a)

⇒ Seq [Array ix a]

→ Seq (Vector ix, Vector a)

fromSeq = foldSeqFlatten f (lift (empty , empty))

where

f x sh1 a1 =

let (sh0 , a0) = unlift x

in lift (sh0 ++ sh1 , a0 ++ a1)

Here empty produces the empty vector and (++) is vector append.

3.4.1 Translation

Sequence expression are first converted to A-normal form where produced
sequences are let-bound, and the sequence arguments in a sequence op-
eration are variables. For example, the sequence dot-product example is
converted into the form:

let s1 = toSeqE xs

s2 = toSeqE ys

s3 = zipWithSeqE (*) s1 s2

in foldSeqE (+) 0 s3

If a sequence expression contains more than one consumer, they are grouped
together in a n-tuple. The A-normal expression is then traversed from top
to bottom and translated into the following continuation-passing-style exe-
cutable representation:

data StreamDAG senv res where

Transduce

:: (senv → s → (a, s))

→ s

→ (s → Bool)

→ StreamDAG (senv , a) res

→ StreamDAG senv res

Consume

78 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

:: (senv → s → s)

→ s

→ StreamDAG senv s

Reify

:: (senv → [a])

→ StreamDAG senv [a]

The type variable senv refers to the surrounding sequence context that holds
the current live values in each step, and res is the final result of the entire
stream execution.

Transduce is a stream transformer with a local state s that produces val-
ues of type a from the surrounding context senv. Sequence maps, toSeq and
streamIn translates to transducers. In each step of the stream, the termina-
tion condition of type

(s -> Bool)

is checked. It is only toSeq and streamIn that can terminate a sequence,
and they do so once there are no more chunks to produce. If the stream is
not ready to terminate, the stepping function of type

(senv -> s -> (a, s))

will be applied to the current context and state to produce a value of type a

that is made available to the subsequent nodes. The function also produces
a new state to be used in the next iteration. The subsequent nodes are then
stepped by recursively stepping the argument of type

StreamDAG (senv, a) res.

Consume also carries a local state that is updated in each step. The fi-
nal state in a consumer will be the result of the sequence. Once termi-
nation is reached, the result can be read from the value of the consumer.
foldSeqFlatten is currently the only operation that translates to a consume.
Multiple folds are combined in a single consume node.

Reify is a special kind of consumer that produces a list of values in each
step. This constructor is only used when a sequence is streamed out. In
this case, instead of a final result, the sequence produces a list of intermedi-
ate results. The function argument converts a chunk from the surrounding
sequence context into a list of arrays. These lists are appended together to
form the result of streamOut. When an element belonging to a chunk is
forced in the host language, the whole chunk is forced along with all pre-
ceding chunks that have not been forced already.

The stepping functions in the stream DAG are mostly obtained by eval-
uating the array-typed arguments of the operations in the sequence using

3.4. EXECUTION MODEL 79

the existing backend. After vectorisation is applied, the translation becomes
straight-forward. The only new backend-specific operation we had to define
are related to slicing and streaming in and out.

3.4.2 Vectorization

Operations applied to the elements of a sequence in the source program have
to be applied in parallel to all the elements of a chunk when we execute
the code on a GPU. This process of lifting element-wise operations to a
parallel operation on a collection, referred to as the lifting transform [BS90],
was popularised by NESL [Ble92].

Lifting, for a fully featured, higher-order functional language is a com-
plicated process and can easily introduce inefficiencies [KCL+12, LCK06].
However, the constrained nature of the Accelerate array language works in
our favour here, and we can get the job done with a much simpler version
of the transformation. While the user-facing surface language may appear
to be higher order, it is strictly first-order. That is to say, the only higher or-
der functions are primitive operations (e.g. map, zipWith, fold) and functions
cannot be let bound.

The transformation LJ f K, which lifts a (potentially already parallel) func-
tion f :: α→ β into vector space has type:

LJ f Kxs :: Vector α→ Vector β

Conceptually, it is just a parallel map. However, we cannot implement it as
such, since f may already be a parallel operation, and feeding it to a parallel
map would result in nested parallelism, precisely what we want to avoid. In
order to maintain flat parallelism, the lifting transform must recurse over the
term applying the transformation to all subterms. Formally, this is defined
as follows.

LJCKv:_ = replicate (length v) C

LJxKv:vs =

{
x x ∈ (v : vs)

replicate (length v) x x /∈ (v : vs)

LJλv. eKvs = λv. LJeKv:vs

LJe1 e2Kvs = LJe1Kvs LJe2Kvs

LJlet v = e1in e2Kvs = let v = LJe1Kvsin LJe2Kv:vs

LJPK_ = P↑

80 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

Here, the lifting transform, LJ·K·, takes a term along with a subset of
its environment, expressed as a list of variables. The subset corresponds to
the variables that have been lifted as part of the transform. For example,
given mapSeq f seq, we want to vectorise f , but f may contain variables that
were bound outside of the sequence computation, in which case we have to
replicate them at their use sites. Similarly, constants, C, are also replicated
at their use sites.

In the case of a primitive operation, P, we use a lifted version of that
operation, P↑ defined in terms of existing primitives. Fortunately, the range
of combinators Accelerate provides is rich enough that lifted versions of all
of them can be implemented with our chosen nested array representation.

Nested Array Representation

A consequence of this flattening transform is that it produces nested vectors.
For example lifting

g :: Vector Float→ Vector Int

is going to yield

LJgK :: Vector(Vector Float)→ Vector(Vector Int).

Indeed, with the multidimensional arrays accelerate supports, arrays of type
Vector (Array (Z:.Int:.Int) Float) could occur. One possible, and else-
where very popular, flattened array representations is this: A vector of ar-
rays is represented as a vector of segment descriptors (the shape of the
sub-array) along with a vector containing all the values of the sub-arrays
flattened and concatenated. For example:[(

1 2
3 4

)
,
(

10 11 12
13 14 15

)]

([2 :. 2, 3 :. 2)] , [1, 2, 3, 4, 10, 11, 12, 13, 14])

However, this representation is unnecessarily general for our model. As
our execution model only allows chunked execution for regular chunks, with
this representation, all the segment descriptors would be the same. Instead,
we use a much simpler representation: A regular vector of arrays of rank
sh can be represented as an array of rank sh :. Int. Of course, this affects
the lifting transform. If we only allow regular vectors then not all array
functions can be lifted. For example, this function cannot be lifted.

enumFromTo :: Int → Int → Vector Int

3.4. EXECUTION MODEL 81

The reason why is that its lifted form does not produce a regular nested
vector. The size of each sub-vector of the output is determined by the con-
tents of the input vectors.

LJenumFromToK· :: Vector Int

→ Vector Int

→ Vector (Vector Int)

We classify an array function as regular if the shape of the output, as
well as the shape of any intermediate arrays, can be determined from the
shape of the input and, assuming the function is open, its environment. We
describe in Section 3.4.4 how we identify these functions and compute their
parallel degree.

This regular nested array representation is also of benefit when it comes
to defining the lifted version of the built in primitives. Typically, the lifting
transform relies heavily on prefix-sums (scans) to perform these segmented
operations [Ble90a]. Forgoing the segment descriptors means that, for ex-
ample, our lifted fold, can be implemented purely in terms of regular fold.
This is because it is already rank polymorphic.

fold :: (Exp e → Exp e)

→ Exp e

→ Array (sh:.Int) e

→ Array sh e

That is to say, it folds along the inner dimension, reducing the rank by
one.

While most of Accelerate’s primitives are rank polymorphic, there are
some notable exceptions. Primarily, prefix-sums (scans) are not rank poly-
morphic. However, we can use segmented scans [CBZ90] and pass in a
vector of segment descriptors that are all the same length.

Implementation

Accelerate is realised as a type preserving embedded language where closed
terms are indexed by their type, and open terms are indexed by their type
and their environment. Here is a simplified version of the core AST.

data OpenAcc aenv t where

Avar :: Idx aenv t

→ OpenAcc aenv t

Alet :: OpenAcc aenv bnd

→ OpenAcc (aenv ,bnd) body

Map :: Exp aenv (a → b)

82 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

→ OpenAcc aenv (Array sh a)

→ OpenAcc aenv (Array sh b)

The Idx aenv t supplied to Avar represents a DeBruijn index of type t

into the environment aenv.

data Idx aenv t where

ZeroIdx :: Idx (aenv ,t) t

SuccIdx :: Idx aenv t

→ Idx (aenv ,s) t

A closed term can then be represented with the empty environment.

type Acc = OpenAcc ()

In order to represent the nested regular arrays that result from the lift-
ing transform, we introduce a type family, Regular, that encodes the non-
parametric representation. 1

type family Regular t where

Regular (Array sh e) = Array (sh:.Int)

Regular (a,b) = (Regular a, Regular b)

Regular (a,b,c)

= (Regular a, Regular b, Regular c)

· · ·
Of course, our lifting transform will, by necessity change a terms envi-

ronment. We can capture this change in environment by encoding the lifting
context as follows.

data Context aenv aenv ' where

Base :: Context aenv aenv

Push :: Context aenv aenv '

→ Context (aenv , t) (aenv ', t)

PushLifted :: Context aenv aenv '

→ Context (aenv ,t) (aenv ', Regular t)

Here, Push represents an unlifted variable and PushLifted one that was
lifted into regular vector space. Our actual lifting transform then takes this
form.

liftAcc :: Context aenv aenv '

→ OpenAcc aenv t

→ OpenAcc aenv ' (Regular t)

1In our implementation Regular is encoded with some slight differences, due to the use
of representation types, but that is orthogonal to the transform we describe.

3.4. EXECUTION MODEL 83

This concludes the vectorisation. With this function, we can lift any
Accelerate expression, including array functions, into a vectorised equiva-
lent that works on regular chunks. We use this to achieve chunked stream
transducers as described previously. It remains to show how streams are
scheduled.

3.4.3 Scheduling

If a sequence is regular with element sizes n, a chunk of length k will have
size n ∗ k. Assuming this size corresponds to the parallel degree required
to compute the chunk (we have to be a bit more careful here which we will
return to shortly), if n is known, k can be fixed for all chunks in a sequence,
consistently saturating the hardware. If on the other hand, a sequence is not
regular, the size of element’s, and thereby the optimal value of k, varies for
each chunk, and the scheduler must re-calculate k in each step.

Right before executing a stream, we perform regularity analysis on the
corresponding sequence expression that computes the element size n or
reports that the sequence is potentially irregular. If n is found, we set
k = kopt/n where kopt is a constant that defines the optimal chunk size
for the given hardware. For SIMD backends, kopt is related to the number
of processors and how many scalar elements each processor operates on in
each step. We also multiply by a constant factor to reduce scheduling over-
head. If n cannot be determined, we currently fall back to purely sequential
(static) scheduling with k = 1, which is always possible. We plan to improve
on this in the future.

As mentioned earlier, size does not always correspond to parallel degree.
For example, summing a n-length vector in log(n) steps will have a parallel
degree of at most n in each step and a result size of 1. If we sequence-
map a vector-sum over a sequence of vectors s, regardless of s, the resulting
sequence is trivially regular with element size 1 (the size of scalars). By
fixing the chunk length to kopt/1 = kopt, one chunk depends on kopt vectors
in s. This means that the chunk length of s would have to be at least kopt.
However, the vectors of s may be arbitrarily large, and as a result, each step
of the stream requires arbitrarily many computational resources, including
working memory, which is what we are trying to avoid. The right approach
here is to check that s is regular first, and if so, use that elements size to
select the chunk length. Furthermore, since the function that can be mapped
over a sequence include general Accelerate array functions, the function may
internally create large arrays of intermediate storage that we have to keep
track of as well.

In principle, each producer and consumer in a stream DAG may have its
own optimal chunk length. Ideally, streams should be processed at different

84 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

rates and communicate with each other using buffers that are either filling
or draining at different points in time. Static scheduling in a multi-rate
context has been covered in the signal processing community [LM87], but
here, the rates are known a priori, and the schedule is then constructed.
Our problem is slightly different. We have a trivial schedule (the purely
sequential one), but we would like to pick the rates such that each step runs
with optimal parallel degree. We take a simpler approach for now: By fixing
the chunk length globally across all stream nodes to be the smallest of the
optimal chunk lengths of each node, the schedule becomes a single simple
loop. The downside is that some nodes may not saturate the hardware,
however, the node with the smallest optimal chunk length (the one that will
run optimally), is almost always the most costly node to execute.

3.4.4 Parallel Degree and Regularity Analysis

We perform the regularity analysis by traversing the sequence expression at
runtime, prior to executing the corresponding stream DAG. At this point,
we have access to the arrays in the surrounding context, that we may use to
refine the analysis. The traversal is essentially interpreting array functions
using partial arrays as defined by the following type interpretation (encoded
as a GADT in the actual implementation):

CJArray sh eK = (Maybe sh, Maybe (sh→ e))

CJ(α1, ..., αn)K = (CJα1K, ..., CJαnK)

We allow an element lookup function in the type of a partial array, but we
will only use it if it is a constant time operation, such as if the array is
already manifest. The cost interpretation of an array expression acc of type
α in a surrounding array context aenv is a function:

CJaenv ` acc : αK : CJaenvK→ (CJαK, Maybe Int)

Here, the result type (α, Maybe Int) is a writer monad where the accumu-
lator type Maybe Int represents the parallel degree or Nothing if it cannot
be determined. If even a single intermediate result has an unknown shape,
we cannot predict the parallel degree of the expression. Array functions
are distinguished syntactically from base array expressions, and the above
interpretation does not apply to functions. Instead array functions are inter-
preted by extending the surrounding context:

CJaenv ` λacc : α→ βK = CJ(aenv, α) ` acc : βK

3.4. EXECUTION MODEL 85

The definition of CJ−K is:

CJcKv =(Just (shape c), Just (λx.c!x))

CJlet acc1in acc2Kv =CJacc1Kv >>= (λx.CJacc2K(v, x))

CJxKv =v(x)

CJλaccKv =λx.CJaccK(v, x)

CJacc1 acc2Kv =CJacc2Kv >>= CJacc1Kv

CJMap _ accKv =CJaccKv >>=

(λ(sh, _).

((sh, Nothing)), fmap size sh)
...

Here v ranges over partial array contexts CJaenvK, fmap is the standard func-
tor map over Maybe, and (>>=) (bind) is the standard bind operator for the
writer monad. size computes the size of a shape.

The cost analysis of a sequence expressions requires shape information
for the sequence in the surrounding sequence context. For the purpose of
detecting regularity, we do not need to track additional information besides
the element type of a sequence type [α]:

CJ[α]K = CJαK

We assume that the sequence expression is in A-normal form. Note that we
are analysing the unlifted array functions before vectorisation. The analysis
for a sequence expression seq in surrounding sequence context senv and
array context aenv has the following signature:

CJaenv, senv ` seq : αK : CJaenvK

→ CJsenvK

→ (CJαK, Maybe Int)

86 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

It is defined as follows:

CJToSeq div accKv _

= (sl, fmap size sl)

where

((sh, _), _) = CJaccKv

sl = fmap (sliceShape div) sh

CJStreamIn xsK_ _ = Nothing

CJMapSeq f xKv w = CJ f K(v, w(x))

CJZipWith f x yKv w = CJ f K(v, w(x), w(y))

CJFoldSeqFlatten f acc xKv w

= CJ f K(v, (sha, Nothing), shs, elts)

where

((sha, Nothing), _) = CJaccKv

(shx, _) = w(x)

shs = (Just (Z :. 1), fmap unit shx)

elts = (fmap ((Z :.) ◦ size) shx, Nothing)

Here w ranges over partial sequence context CJsenvK tracking sequence ele-
ment sizes. sliceShape computes the slice shape from a given source shape
and division strategy. The array argument acc in both the ToSeq case and
the FoldSeqFlatten case are not evaluated in each step of the sequence. We
therefore discard the parallel degree reported by the size analysis on these -
We are only interested in the shapes.

The current definition of the FoldSeqFlatten case is admittedly faulty.
It performs the analysis using the shape of the initial accumulator. If the
accumulator grows, such as when folding with vector append, the actual
parallel degree may very well be much larger than the parallel degree we
report here. A correct definition should check that the shape of the initial
accumulator is equal to the shape of the new accumulator, and only report a
parallel degree if that is the case. However, that would cause the analysis to
fail for our current definition of FromSeq. We therefore omit this check until
we have a better implementation of FromSeq or until we have better support
for dynamic scheduling.

3.5 Evaluation

In order to evaluate the performance of our implementation, we give the re-
sults from two sets of benchmarks. Firstly, three smaller benchmarks where

3.5. EVALUATION 87

 240

 250

 260

 270

 280

 290

 300

 310

220 221 222 223 224 225 226 227

R
un

 T
im

e
(m

s)

Chunk size (# of scalar elements)

Dot product

Accelerate(sequences)
Accelerate

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
un

 T
im

e
(s

)

Input size (millions of elements)

Dot product (large input)

Accelerate(sequences)
Accelerate

Figure 3.1: Dot product benchmark results

88 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

 125

 130

 135

 140

 145

 150

 155

 160

 165

 170

 175

220 221 222 223 224 225 226 227

R
un

 T
im

e
(m

s)

Chunk size (# of scalar elements)

MaxSum

Accelerate(sequences)
Accelerate

Figure 3.2: MaxSum benchmark results

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

218 219 220 221 222 223 224 225 226 227

R
un

 T
im

e
(m

s)

Chunk size (# of scalar elements)

Matrix-Vector multiplication

Accelerate(sequences)
Accelerate

Figure 3.3: MVM benchmark results

3.5. EVALUATION 89

 1

 1.5

 2

 2.5

 3

 3.5

 4

217 218 219 220 221 222 223 224 225 226

R
un

 T
im

e
(s

)

Chunk size (# of scalar elements)

MD5 hash

Accelerate(sequences)
Accelerate

Hashcat

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300 350 400

R
un

 T
im

e
(s

)

Input size (millions of words)

MD5 hash (large input)

Accelerate(sequences)
Accelerate

Figure 3.4: MD5 Hash benchmark results

90 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

 8

 9

 10

 11

 12

 13

 14

 15

217 218 219 220 221 222 223 224 225 226 227

R
un

 T
im

e
(s

)

Chunk size (# of scalar elements)

PageRank

Accelerate(sequences)
Accelerate

Repa

Figure 3.5: PageRank benchmark results

we compare the performance of accelerate sequences against arrays in or-
der to show that no performance is lost by using sequences. Secondly, we
demonstrate two larger scale applications, comparing them both with Ac-
celerate array implementations and other CPU implementations. All bench-
marks were run on a single Tesla K20c (compute capability 3.5, 13 multipro-
cessors = 2496 cores at 705.50 MHz, 5 GB RAM). The host machine has 4
8-core Xeon E5-2650 CPUs (64-bit, 2.00GHz, 64GB ram, with hyperthread-
ing). Our benchmark times include time to transfer the data onto the GPU,
the execution time, and the time to transfer data back to the host, but not
compilation time. The fact that Accelerate is online compiled is orthogo-
nal to what we present here, and compiled kernels are cached to prevent
unnecessary recompilation.

3.5.1 Dot Product

This is simply the example we show in Section 3.3 against the version that
does not use sequences. While this example is very simple, it helps high-
light that there is no significant loss of performance due to the overheads
associated with scheduling sequence computations. At the ideal chunk-size,
224 scalar elements, performance is essentially equal. It is worth noting that
this is significantly less than the total size of the data which is 100 million

3.5. EVALUATION 91

floating point values in each input vector. It is not till 227, that the chunk
size covers all input.

In the second graph, where the chunk size is fixed at 224, we see that
normal Accelerate runs out of memory with input vectors of 700 million
floating point numbers. However, with sequences we are able to process
much larger inputs with no noticeable overhead. That is until it exceeds 3.5
billion in which case it runs out of physical memory on the host and pages
start getting swapped to disk.

3.5.2 MaxSum

Here we demonstrate how, even when applying two separate reductions
over a sequence, only one pass is ever made over the input. The program is
simply:

maxSumSeq :: Vector Float

→ Acc (Scalar Float , Scalar Float)

maxSumSeq xs = collect

$ lift (foldSeqE (+) 0 xs'

, foldSeqE max 0 xs ')

where xs' = toSeqE xs

We compare it against a version written without sequences.

maxSumSeq :: Vector Float

→ Acc (Scalar Float , Scalar Float)

maxSumSeq xs = lift (fold (+) 0 xs, fold max 0 xs)

Here, lift converts (Seq a, Seq b) into Seq (a,b), or (Acc a, Acc b)

into Acc (a,b), depending on the context.
Even though only one pass is made over the input as a whole, this exam-

ple does not outperform normal Accelerate due to limitations in Accelerate’s
fusion system. Because foldSeqE applies fold over each chunk, two traver-
sals of each chunk is made. The sort of horizontal fusion that would resolve
this would be advantageous in this instance.

Once again, we apply this function over 100 million floating point values.

3.5.3 MVM

This is the matrix-vector multiplication example shown earlier. This is not
just a simple reduction, but uses a sequence map, so requires vectorisation.
Once again, we compare it to a version written without sequences.

mvm :: Acc (Matrix Float) → Acc (Vector Float)

92 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

→ Acc (Vector Float)

mvm mat vec

= let h = fst (unindex2 (shape mat))

in fold (+) 0

$ zipWith (*) mat (replicate (lift (Z:.h:.All)) vec)

The net result in this case is that, after subsequent optimisation passes,
both examples produce almost identical code. The only difference being
index manipulation. From the graph it can be observed that, even with very
small chunk sizes, the version with sequences runs in close to the same time
as the version without. The input is a matrix of 10000× 10000 floating point
values.

3.5.4 MD5 Hash

The MD5 message-digest algorithm [Riv92] produces a 128-bit cryptographic
hash. For the purposes of establishing the ideal chunk size we apply this
algorithm to each word in a dictionary of 64 million words, attempting sim-
ple password recovery. Like MVM above, we generate very similar code to
a version written without sequences. However, in this case, slight differ-
ences in index manipulation actually work in our favour, giving us minor
improved performance over the contender. We also compare our results to
that of Hashcat, a CPU-based password recovery tool.

To demonstrate the effectiveness of Accelerate sequences or out-of-core
algorithms, we also run this benchmark against dictionaries of varying size.
As can be seen, if sequences are not used, only a dictionary of up to 75
million words will fit in the GPUs memory. If they are used, however, we
can use dictionaries up to an almost arbitrary size. Although, like the dot
product example, if the dictionary is larger than can fit in physical host
memory then there is slowdown due to paging. This occurs at around 400
million words.

3.5.5 PageRank

While our current restriction on sequences being regular is not ideally suited
to graph processing, we can still implement graph algorithms, like PageR-
ank [PBMW99] by changing the way we represent a graph. In this case, we
represent it as a sequence of links (edges). This is a much heavier, in terms
of space, than a representation using a sparse matrix in compressed sparse
row (CSR) format, however it is still performant. Comparing our results to
that of a CPU-based implementation written in Repa [KCL+10, LCKPJ12],
we see that while it can use a more space-efficient representation, we still
outperform it in terms of overall speed.

3.6. RELATED WORK 93

For the benchmark, we use a dump of the Wikipedia link graph that
contains approximately 130 million links.

3.6 Related Work

There are a number of languages which aim at facilitating GPU program-
ming in the presence of data streams. For example, the Brook[Buc03] stream
programming language is an extension of C with support for data parallel
computations. BrookGPU [BFH+04] is an implementation of a subset of
Brook which targets GPUs.

Brook uses only streams to express parallelism.
Sponge[HSW+11] is a compilation framework for GPUs using the syn-

chronous data flow streaming language StreamIt[TKA02].
Both Sponge and BrookGPU are based on a very different programming

model. Starting from a stream programming model, the compiler and run-
time system tries to execute the code efficiently on a GPU architectures. We
provide the programmer both with parallel arrays, which support a much
wider range of parallel operations, and more restricted streams. This distinc-
tion enables the programmer to design algorithmic solutions for a problem
better tailored towards the actual architecture, while still providing a high
level of abstraction.

Though it does not target GPUs, the Proteus[PPW95] language uses an
idea similar to chunking to restrict the memory requirements of vectorisa-
tion based implementations of nested data-parallel programs.

While there are a number of domain specific languages to support GPU
programming, some of them also embedded in Haskell, [Ell04, MM10, CSS08,
Lar11, RSA+13, BR12] to name some, none of them currently, to the best of
our knowledge, support streams.

A conceptual stream model for NESL has been presented in previous
work [MF13]. The model is motivated by the lack of a good realizable
space cost model, and it is conceptually similar to ours; Sequences are ex-
posed at the source level and execute in streams of bounded chunks. The
model is more general than ours in the sense that it allows nested sequences.
However, it has yet to be implemented with a high-performance backend.
Furthermore, the work presented here features more operations on multi-
dimensional arrays.

3.7 Future Work

The work presented in this chapter is a first step towards full streaming
support for collection-oriented parallel languages targeting GPUs. Our next

94 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

steps will be to lift some of the current restrictions of the model, as well
as further improving the performance of the generated code and runtime
system. In particular, we are planning to address the following issues in the
near future:

• Chunked execution of irregular sequences: This would allow us to
express more algorithms over irregular data, like graph processing,
but will require more sophisticated scheduling strategies than in the
regular case.

• More combinators: We currently only support a minimal set of combi-
nators in Accelerate, and there are a number of obvious additions, as
for example scans on non-scalar sequences which we will add.

• Automatic sequentialisation: As mentioned in the introduction, the
whole point of exposing sequences to the programmer is that optimal
automatic sequentialisation is generally undecidable. That does not
mean that the compiler should not attempt it however. Guided by
a size analysis, the compiler could opportunistically transform array
expressions into equivalent sequence traversals in the presence of very
large intermediate arrays.

With respect to performance improvements:

• We do not yet attempt to transfer the data for the next chunk while
we process the current one. This overlapping of communication and
computation could potentially give significant improvements to overall
runtime [GLGLBG12].

• As we have already mentioned, our model lends itself very well to
multi-gpu support via pipeline-parallelism. This is our ultimate aim,
but it does carry with it challenges in regards to fusion of sequence
computations– i.e. that sequence operations should not be always
fused, but rather split up amongst devices where possible.

Chapter 4

Streaming Nested Data
Parallelism on Multicores

This chapter is adapted from [MF16].
There are significant changes in all section except Section 4.5: Experiments and
Section 4.6: Conclusion and Future Work.

Abstract

The paradigm of nested data parallelism (NDP) allows a variety of semi-
regular computation tasks to be mapped onto SIMD-style hardware, includ-
ing GPUs and vector units. However, some care is needed to limit space con-
sumption in situations where the available parallelism may vastly exceed the
available computation resources. To allow for an accurate space-cost model
in such cases, we have previously proposed the Streaming NESL language,
a refinement of NESL with a high-level notion of streamable sequences.

In this chapter, we report on experience with a prototype implementation
of Streaming NESL on a 2-level parallel platform, namely a multicore system
in which we also aggressively utilize vector instructions on each core. We
show that for several examples of simple, but not trivially parallelizable,
text-processing tasks, we obtain single-core performance on par with off-
the-shelf GNU Coreutils code, and near-linear speedups for multiple cores.

4.1 Introduction

While the semantics of the original NESL language does not preclude a
streaming SIMD implementation [PPCF95], or even a MIMD-oriented ap-
proach [BG96], the language is not particularly well suited for such an im-
plementation strategy. The reason is that the cost model makes no formal

95

96 CHAPTER 4. STREAMING NDP ON MULTICORES

distinction between operations that are streamable, and the ones that re-
quire random access to vector elements, and thus the programmer may be
encouraged to use idioms (such as accessing the last element of a vector as
v[#v− 1]) that needlessly force full materialization.

Therefore, in order to investigate the potential for streaming execution,
we have previously [MF13] (Chapter 2) proposed a refinement of NESL,
tentatively called Streaming NESL (SNESL), that makes streamability ap-
parent in the programming and cost models. The main difference to NESL
is that the language syntax and type systems make a clear distinction be-
tween sequences, which are conceptually always traversed in order (including
by reduces and scans), and vectors that afford random access and multiple
traversals, but must be materialized, with a corresponding space cost.

In the above-mentioned previous work, we presented very preliminary
timings on GPUs for hand-transformed code. While the numbers were not
inherently discouraging, it became clear that the CUDA API is not well
suited as a backend for SNESL, since kernel launches are relatively ex-
pensive, requiring chunks to be big in order to achieve good performance,
which means that each chunk can no longer fit in on-chip cache. Even more
problematically, as of CUDA 7.5, “shared” (on-chip, per-thread-block) mem-
ory does not persist across kernel invocations, leading to considerable extra
memory traffic. While it might be possible to utilize the hardware more effi-
ciently through a lower-level interface, this would require substantial further
development.

NESL without streaming on GPUs has been explored in the language
Nessie [RS]. Previously [MCECK15] (Chapter 3), we implemented stream-
ing execution on GPUs, albeit for a different language: Accelerate with a
streaming extension similar to the one we propose for NESL. Accelerate
only supports limited nesting of data parallelism in the form of regular
multi-dimensional arrays. Streaming Accelerate performs on par with ordi-
nary Accelerate, but it relies heavily on the regularity of the language and
aggressive fusion.

In this chapter, we consider the prospect of streaming on multicore CPUs
while exploiting SIMD instructions. We show that, for several representative
tasks, even on a single core, the SNESL execution time is comparable to that
of a sequential C program, while performance on multiple cores handily
exceeds the sequential code.

The section on SNESL from the original publication has been left out here. We
instead jump straight to the backend language SVCODE and refer the reader to
Chapter 2 for a description of SNESL.

4.2. STREAMING VCODE (SVCODE) 97

ctrl :: 1→ S1
map_⊕ :: Sπ1 × · · · × Sπk→ Sπ ⊕::π1×···πk→π

segscan_R :: SBool× Sπ→ Sπ R::π×π→π

to_flags :: SInt→ SBool

dist :: ∀π.Sπ × SBool→ Sπ

pack :: ∀π.Sπ × SBool→ Sπ

unpack :: ∀π.Sπ × Sπ × SBool→ Sπ

segtab :: ∀π.Sπ × SBool→ Suπ

so_gather :: ∀π.SInt× SInt× Suπ→ Sπ

usum :: SBool→ S1
usegsum :: SBool× SBool→ SBool

consa :: Sπ→ Sπ a::π

segmergek :: ∀π.

k︷ ︸︸ ︷
(SBool× Sπ)× · · · × (SBool× Sπ)→Sπ k>0

usegmergek ::

k︷ ︸︸ ︷
(SBool× SBool)× · · · × (SBool× SBool)→SBool k>0

check :: SBool→ 1
write_filefilepath :: SChar→ 1
read_filefilepath :: 1→ SChar

Figure 4.1: Core stream instruction with types.

4.2 Streaming VCODE (SVCODE)

As described in Section 2.3, recall that the backend language for Streaming
NESL is a flat list of stream-defining instructions. To emphasize the analogy
to the NESL compiler, we adapt its name for the flat-sequence language.
However, our SVCODE bears little syntactic resemblance to VCODE, mainly
because the former is currently just a flat list of instructions of the form

si := pi si1 ... sik

where all i1, ...ik are less than i, representing previously defined primitive-
value streams. On the other hand, VCODE is explicitly stack-structured, to
support recursive functions.

Let p range over primitive instruction names, s range over stream identi-
fiers (natural numbers), t (for “transducer”) range over stream instructions

98 CHAPTER 4. STREAMING NDP ON MULTICORES

and c (for “commands”) range over SVCODE programs. The formal gram-
mar for SVCODE programs is quite simple and is given by:

p ::= map_⊕ | segscan_R | · · · (see Figure 4.1)

INSTR 3 t ::= pi si1 ... sik

SVCODE 3 c ::= ε | c1; c2 | si := t

The full list of instructions in our implementation is bigger, as it in-
cludes specialized instructions that we generate through various SVCODE-
to-SVCODE optimization. Although we present the types for instructions as
polymorphic here, SVCODE is explicitly typed. Every stream in SVCODE
has primitive type of the form Sπ for some primitive SNESL type π. Streams
of tuples are represented as tuples of streams. SVCODE programs can be
type checked by simply keeping track of the defined streams’ types while
going through the list of instructions from top to bottom and check that the
argument types match.

We will now demonstrate the semantics of some of the instructions
through examples. map_⊕, segscan_R, dist and pack should be fairly self-
explanatory from their types.

The ctrl instruction simply creates the initial control stream:

JctrlK = 〈∗〉

The operation to_flags is used to convert a length-based segment de-
scriptor to a flag-based one. This need arises when converting vectors to
sequences or in the translation of &:

Jto_flagsK 〈3, 4, 0, 1〉 = 〈F, F, F, T, F, F, F, F, T, T, F, T〉

The operation segtab is an atypical instruction. It defines an operational
segmentation or grouping of elements in a stream. It is used when tabu-
lating sequences. Essentially, the instruction takes a flag-segmented stream
and returns the data stream, but where the segment information is recorded
in the runtime system for the purpose of defining the buffer size. In the
following example

JsegtabK 〈'a', 'b', 'c', 'd', 'e'〉 〈F, F, T, F, F, F, T〉 = 〈
︷ ︸︸ ︷
'a', 'b',

︷ ︸︸ ︷
'c', 'd', 'e'〉,

the runtime system will allow 'a', 'b' to be manifest at the same time and
also 'c', 'd', 'e'. This means, if the chunk size is 1, the runtime system
will first grow the buffer to size 2, then to size 3. If the chunk size is 10,
segtab will have no effect in this example as both groupings can fit in the
buffer at the same time. These streams that have an operational grouping,

4.2. STREAMING VCODE (SVCODE) 99

are marked by superscripting an u on the stream type constructor, the u
stands for “unbounded” as these streams are statically unbounded in their
buffer size. They may be used in place of any ordinary ungrouped (or
bounded) streams. However, there is one instruction that explicitly requires
an unbounded stream as input: so_gather. so_gather or “semi-ordered
gather” is basically a gather operation, but where the gathering indices are
divided into an offset and a positive relative index. The offsets are then
required to be monotonically increasing. Consider the following example:

Jso_gatherK 〈0, 0, 0, 3, 3, 3〉
〈2, 1, 0, 1, 1, 1〉

〈
︷ ︸︸ ︷
'a', 'b', 'c',

︷ ︸︸ ︷
'd', 'e'〉

= 〈'c', 'b', 'a', 'e', 'e', 'e'〉

Here, the value streams has two groupings: 'a', 'b', 'c' and 'd', 'e'. The
offsets for these grouping are 0 and 3. We see that the first three indices refer
to the first group while the last 3 indices refers to the second group. Once
the runtime system reaches the point where the offset becomes 3, it may
safely free the group 'a', 'b', 'c' by removing the values from the buffer,
since monotonicity implies that they will never be indexed again.

The usum instruction conceptually performs a sum of a stream of unary
numbers:

JusumK 〈T, F, F, T, F, T〉 = 〈∗, ∗, ∗〉

Here, the input stream represents the numbers 0, 2, 1 in unary. The sum of
these numbers is 3, so usum outputs 3 unit elements. usum is used to define
control streams that defines the current parallel degree.

usegsum performs a unary segmented sum, and it is used in the transla-
tion concatσ to construct the new segment descriptor:

JusegsumK 〈T, F, F, T, F, T〉
〈F, F, T, F, F, T, F, F, T〉

= 〈T, F, F, F, F, T, F, F, T〉

In this example, the first stream is a segment descriptor defining 3 segments
of the second stream. The first segment is empty, the next segment contains 2

unary values
︷ ︸︸ ︷
F, F, T,

︷ ︸︸ ︷
F, F, T (representing 2, 2), and the last segment contains

a single unary value F, F, T (representing 2). We then “sum” each segment
by appending the unary values. So, since it is empty, the first segment sums
to 0, which is just T. The second segment sums to 4 which is F, F, F, F, T and
the last segment sums to 2 which is F, F, T.

100 CHAPTER 4. STREAMING NDP ON MULTICORES

The cons instruction pushes an element in the front of a stream. The
last element in the stream is discarded. Cons can be used to right-shift the
elements of a stream by one, i.e. creating a delay of 1 in the stream:

JconsK1 〈2, 3, 4〉 = 〈1, 2, 3〉

It can be used to convert an end-flag representation to a head-flag repre-
sentation. End-flag and head-flag are two different representation strategies
for representing segment descriptors in a unary representation (suitable for
streaming). Consider the segmentation described by the three sub-segment
lengths (0,2,1). The head-flag representation is T, F, F, T, F, T, and the end-
flag representation is T, T, F, F, T, F. Notice that the latter presentation cor-
responds to the former, but where the elements are shifted one position to
the right, and a T is added to the front. The corresponding example usage
of consa is:

JconsKT 〈T, F, F, T, F, T〉 = 〈T, T, F, F, T, F〉.

segmergek merges k segmented streams in a round-robin fashion. For
example:

Jsegmerge2K 〈F, F, T, T, F, F, FT〉
〈'a', 'a', 'a', 'a', 'a'〉
〈F, T, F, T, F, T〉
〈'b', 'b', 'b'〉

= 〈'a', 'a', 'b', 'b', 'a', 'a', 'a', 'b'〉

Here, we merge a stream of 'a'-characters with a stream of 'b'-characters.
We start by selecting a segment from the first stream: the 'a'-stream. The
first segment is F, F, T, or 2, which means we first select two 'a'-characters
for the result stream. We then select a segment from the 'b'-stream. The first
segment here is F, T, so we simply select a single 'b' for the next element
of the result. The result, so far, is then 'a', 'a', 'b'. The next segment in
the 'a'-stream is empty (T), so we select no elements an proceed to select
the next segment in the 'b'-stream, which gives us 'a', 'a', 'b', 'b'. We
continue this process until both streams are exhausted.

usegmergek, or unary segmented merge, is similar to segmergek, except
that the value streams are unary numbers, and we merge segments of unary
numbers instead of segments of single values.

The check instruction is the way we implement runtime failure in SV-
CODE. It gives a unit result if all values in the input stream are T:

JcheckK 〈T, T, T, ..., T, T〉 = ∗

4.3. SNESL TO SVCODE 101

If at least one value is F, the semantics are left undefined, and the runtime
system aborts with an error.

The instruction read_file f ilepath and write_file f ilepath allows interfac-
ing with external files and pipes. A file may be used as a stream of char-
acters, and a stream of characters may be written to a file. The runtime
system performs reads and writes incrementally as the buffers are filled and
emptied.

4.3 SNESL to SVCODE

The translation from SNESL to SVCODE is based on the interpretation de-
scribed in Chapter 2 Section 2.3.2. Instead of interpreting the primitive
stream operations as the mathematical stream they denote, we generate SV-
CODE instructions. Thus, the definition is almost identical but with different
interpretations for the primitive operations and where we use a monad to
capture fresh identifiers and instruction generation.

The translation runs in a monad that allows us to generate fresh stream
identifies and write SVCODE fragments:

Gen a = N→ (a, SVCODE, N)

In Haskell terms, Gen is a state monad where the state is N combined with
a writer monad that writes SVCODE. Note that SVCODE is a monoid
where ε is the identity and append is given by:

ε ++ c = c

c ++ ε = c

c1 ++ c2 = c1; c2

We define the standard bind and return as:

return x i = (x, ε, i)

bind f g i = let (x, c1, i′) = f i
(y, c2, i′′) = g x i′

in (y, c1 ++ c2, i′′)

For better readability, we will make use of the standard Haskell do-notation
for complex usage of bind:

do{x ← f ; g x} ≡ bind f g

Gen defines a special function that allows us to emit instructions. The type
of emit is

emit : INSTR→Gen SId,

102 CHAPTER 4. STREAMING NDP ON MULTICORES

where SId are stream identifiers. The argument is an instruction of the form
p si1 ... sik where the sij ’s will be previously emitted stream identifiers. This
is only enforced after translation by a type check on the generated SVCODE.
The definition of emit is:

emit(p si1 ... sik) i = (i, si := p si1 ... sik , i + 1)

When emit is used in conjunction with bind, an SVCODE program is con-
structed incrementally.

We can now define our primitives as simple instruction emitters:

rep s a = emit(map_const a s)

usum s = emit(usum s)

pdist s1 s2 = emit(pdist s1 s2)

And so on. Note that map_const is a map instruction that maps the units in
the control stream to the constant a.

For the purpose of encoding high-level structure in low-level represen-
tations, we use a tree algebraic data structure:

Tree a ::= a | (Tree a, ..., Tree a)

We adopt the notation of a postfix t on meta-variables that ranges over trees.
For example, while s ranges over SId, st ranges over Tree SId.

Translation of expressions is given in Figure 4.2. This definition is almost
identical to the translation given in Chapter 2. The calligraphic S refers to
SVCODE and S JeK can be read as “the SVCODE of e”. The translation of e
takes the form

S JeK ζ i = (st, c, i′).

Here, i is the next fresh identifier, st is the result (a tree of stream identifiers
representing a high-level value), c is the generated program and i′ is the
next fresh identifier after code generation of e. ζ is a mapping from SNESL
variables to trees of stream identifiers:

ζ ::= [x1 7→ st1, ..., xk 7→ stk].

In ζ, each xi of type σi is mapped to an sti of type S JσiK, where S JσK = πt
maps the general type σ to a tree of primitive types πt, defined by (this
definition is identical to the definition in Section 2.3.1):

S JBoolK = SBool

S JIntK = SInt

S JRealK = SReal

S J(σ1, ..., σk)K = (S Jσ1K , · · · ,S JσkK)

S J[τ]K = (S JτK , (SInt, SInt))

S J{σ}K = (S JσK , SBool)

4.3. SNESL TO SVCODE 103

S JeK ζ : SId→Gen (Tree SId)

S JxK ζ s = return (ζ x)
S JaK ζ s = rep s a

S J(x1, ..., xk)K ζ s = return (ζx1, ..., ζxk)

S Jx.iK ζ s = let (t1, ..., tk) = ζ x in return ti

S Jlet x = e1 in e2K ζ s = do {st← S Je1K ζ s; S Je2K ζ[x 7→ st] s}
S Jφ(x)K ζ s = S JFKφ (ζ x) s

S
q
{e0 : x in x0 using xτ1

1 , ..., xτk
k }

y
ζ s =

let (t, s′) = ζ x0 in
do s′′ ← usum s′

st1 ← distτ1 (ζx1) s′
...
stk ← distτk (ζxk) s′

st← S Je0K [x 7→ t, (xi 7→ sti)
k
i=1] s′′

return (st, s′)

S
q
{e0 | x0 using xσ1

1 , ..., xσk
k }

y
ζ s =

let s0 = ζ x0 in
do s′ ← b2u s0

s′′ ← usum s′

st1 ← packσ1 (ζx1) s0
...
stk ← packσk (ζxk) s0
st← S Je0K [(xi 7→ sti)

k
i=1] s′′

return (st, s′)

Figure 4.2: Translating SNESL to SVCODE.

104 CHAPTER 4. STREAMING NDP ON MULTICORES

An important point is the translation of individual builtin primitives.
The translation of a primitive φ is given by S JFKφ which takes a stream tree
and the control stream, and produces a new stream tree in the Gen monad.
We will now give examples of the translation of scanR, reduceR, &, tabτ and
seqτ.

Scan Scan is straight-forward to translate using the builtin segmented scan.

S JFKscanR
(s0, s1) _ = do s′1 ← short_ f orm s1

s′0 ← emit(segscanR s0 s′1)
return (s′0, s1)

Since scan in SNESL has the type {π} → {π} for some reduction operator
R : π × π→ π, the translation of scan accepts two stream identifiers (s0, s1)

where s0 is a stream of values of type π and s1 is an end-flag segment
descriptor. Due to the possibility of empty segments, segment descriptors
use a representation where there is one additional flag for each segment.
On the other hand, in order to have an efficient implementation, segmented
scan is defined for segment descriptors where the length of the segment
descriptor is the same as the length of the value stream. This is why we
have a short_ f orm function. This function gives the short form of a general
form. It is implemented using pack and cons. To give an example, the two
representation forms of {3, 1, 4}, {}, {1}, {5, 9} are

General form: (〈3, 1, 4, 1, 5, 9〉, 〈F, F, F, T, T, F, T, F, F, T 〉)
Short form: (〈3, 1, 4, 1, 5, 9〉, 〈F, F, T, T, F, T 〉)

Notice that we lost the information of the presence of {} in the short form. In
our actual implementation, it is not always necessary to compute the short
form as some operations provide it for free. We therefore track what seg-
ment descriptors already have a short form defined, and we only compute
it once if we have to compute it at all.

Reduce Although it would be an optimization, we do not currently pro-
vide segmented reduction as a primitive, and we do not have to. We can
simply perform a segmented scan and pack the last values into a resulting
stream. However, some care must be taken. An empty sequence does not
have any values for us to pack. There are a couple of ways to get around
this. One of the least efficient ways, but an asymptotically correct and a
simple way to do this is to unpack the identity element in the original value
stream. By adding the identity element to the end of each segment in the

4.3. SNESL TO SVCODE 105

value stream, the segment descriptor becomes the short form for the ex-
tended value stream. This translation is given by:

segreduce s0 s1 = do s2 ← rep s1 Rid
s3 ← emit(map_not s1)

s4 ← emit(unpack s2 s0 s3)

s5 ← emit(segscan_R s4 s1)

emit(pack s5 s1)

S JFKreduceR
(s0, s1) _ = segreduce s0 s1

We have extracted segreduce as a separate function since we will use it later.
There is amble room for optimizations in this definition. If there are

many empty or almost empty segments, unpacking the identity element is
costly. Here, it would be better to unpack the identity element after the
pack. Another optimization we do in our implementation, is to special case
the unlifted version to perform a simple reduction, using a non-segmented
reduction primitive. We also allow the SNESL programmer to use a special
reduction reduce1R that has undefined behavior on empty sequences. This
allows us to ignore the empty case and provide a much simpler definition:

S JFKreduce1R
(s0, s1) _ = do s′1 ← short_ f orm s1

s′0 ← emit(segscanR s0 s′1)
emit(pack s′0 s′1)

Iota The basic translation of (lifted) iota (&) is to perform a segmented scan
of 1’s. First, we convert the input stream, which defines the lengths of each
segment, to flag representation using the builtin operation to_flags. We
then generate a constant stream of 1’s with the same length as the number
of elements we need, and finally we perform a segmented scan. Iota can
cause runtime failure if the argument is negative. We therefore check it
using the check instruction: Finally, we attach the segment descriptor and
we are done:

iotas s = do s1 ← usum s
s2 ← rep s 1
s′ ← short_ f orm s
emit(segscan+ s2 s′)

S JFK& s0 s = do szeros ← rep s 0
scheck ← emit(map_geq s0 szeros)

emit(check scheck)

s2 ← emit(to_flags s0)

s3 ← iotas s2

return (s3, s2)

106 CHAPTER 4. STREAMING NDP ON MULTICORES

In our actual implementation, we consider unlifted iota as a special case and
have a special range instruction that is much more efficient. Another possi-
ble optimization that we do not currently implement is to have a specialized
version of segmented scan that specializes the scanned values (not the seg-
ment descriptor) to a constant. In this way, we can avoid having to generate
the constant stream of ones.

Tab In SNESL, tabτ converts a sequence of τ-typed values to a vector. In
SNESL, this corresponds to changing the segment descriptor representation
and segtab’ing the values in order to specify that vectors are fully manifest.
In the base case, a sequence of primitive type π is tabulated by:

psegtab sv ssd = emit(segtab sv ssd)

To support the full polymorphic version of tabτ, we define a function induc-
tively over the concrete type τ:

segtabπ s0 s = psegtab s0 s

segtab(τ1,...,τk) (st1, ..., stk) s = do st′1 ← segtabτ1 st1 s
...

st′k ← segtabτk stk s

return (st′1, ..., st′k)

segtab[τ] (st0, (ss, sl)) s = do s′s ← psegtab ss s

s′l ← psegtab sl s

return (st0, (s′s, s′l))

We also need to convert a flag segment descriptor to a virtual segment
descriptor. Luckily, sequences do not use virtual segmentation, so the vir-
tual segment descriptor that we generate, is really a normal length-based
segment descriptor where the offsets are a simple scan of the lengths.

to_lens s0 = do s1 ← usum s0

s2 ← rep s1 1
segreduce+ s2 s0

We define a scan using segmented scan:

scanR s0 = do s1 ← rep s0 F

emit(segscanR s0 s1)

4.3. SNESL TO SVCODE 107

The final translation is then:

S JFKtabτ
(st0, ssd) s = do sl ← to_lens ssd

ss ← scan+ sl
s′ ← short_ f orm s
st1 ← segtabτ st s′

return (st1, (ss, sl))

Seq In SNESL, seqτ converts a vector of τ-typed values to a sequence. In
SNESL, this corresponds to changing the segment descriptor representation
from virtual segmentation (offsets and lengths) to segment end flags. We
therefore also have to sequence the segments by gathering them, since we
can no longer represent virtual segmentation. For this purpose, SVCODE
provides the so_gather operation.

so_gather ss si sv = emit(so_gather ss si sv)

This allows us to define a segmented gather operation for primitive types:

psegGather ss sl sv = do ssd ← to_ f lags sl
si ← iotas ssd
ss′ ← pdist ss ssd
so_gather ss′ si sv

We can generalize segmented gather to any stream tree representing a value
of concrete high-level type τ:

segGatherπ ss sl s = psegGather ss sl s

segGather(τ1,...,τk) ss sl (st1, ..., stk) = do st′1 ← segGatherτ1 ss sl st1

...

st′k ← segGatherτk ss sl stk

return (st′1, ..., st′k)

segGather[τ] ss sl (st0, (s′s, s′l)) = do s′′s ← psegGather ss sl s′s
s′′l ← psegGather ss sl s′l
return (st0, (s′′s , s′′l))

Notice how we use virtual segment description in the vector-type case and
simply performs the segmented gather on the segment descriptor and leave
the data streams untouched. We are now ready to give the translation of
seqτ:

S JFKseqτ
(st0, (ss, sl)) s = do ssd ← to_ f lags sl

st1 ← segGatherτ ss sl st
return (st1, ssd)

108 CHAPTER 4. STREAMING NDP ON MULTICORES

One optimization we perform in the actual implementation, is that we keep
track of whether or not a virtual segment descriptor is actually a normal
length-based segment descriptor. In that case, there is no need to perform
the gather operation since the values are already guaranteed to be in se-
quence. We can then return the data streams st0 as they are.

4.3.1 Optimization

In order to optimize SVCODE, we first perform static analysis. The proper-
ties we try to establish are: Stream length, stream element value (if it is con-
stant) and, for segment flag streams, the number of segments (the number
of T-flags). The analysis is based on constraint generation and resolution. It
is similar to the shape analysis found in [RS], where we also generate con-
straints for element value. Additionally, for boolean streams, we generate
constraints for the number of T-flags. This is useful information because in
segment descriptor stream, the number of T-flags corresponds directly to
the number of segments. We can therefore track the resulting length of a
segmented reduction and similar operations. Although it would be possi-
ble, we do not currently generate constraints for the uniformity of segments
(i.e. whether or not all segments in a segment descriptor have the same
length). Uniform segments are found in regular multi-dimensional arrays,
which permits a whole class of useful optimizations. It could be an area of
future investigation.

If a stream has a known length and value, we can simply replace the
stream’s definition by a special instruction: constant with the type

constant.∀π.π × Int→ Sπ

The semantics are simply to replicate the first argument n times where n is
the second argument. For example:

JconstantK T 5 = 〈T, T, T, T, T〉

For an example that uses this optimization, consider the pathological
SNESL program:

{3 + 4 : _ in &100}

It translates to the SVCODE below. For brevity we have temporarily intro-
duced an iotas instruction that computes the iota values from the segment
descriptor. We have also omitted a check of the argument to iotas.

s := ctrl;

s0 := rep s 100;

s1 := to_flags s0;

4.3. SNESL TO SVCODE 109

s2 := iotas s1;

s3 := usum s1;

s4 := rep s3 3;

s5 := rep s3 4;

s6 := map_add s4 s5

Here, (s6, s1) is the handle to the result and can therefore not be eliminated.
s6 is the data stream and s1 is the segment descriptor. Our size-analysis
infers the following information where l=n means the length of the stream
is n, v=a, means that all the values of the stream are equal to a and t=n
means the stream is a boolean stream and it contains n T-flags. We annotate
the instructions with comments containing the information we get from our
analysis:

s := ctrl; -- l=1, v=*

s0 := rep s 100; -- l=1, v=100

s1 := to_flags s0; -- l=101, t=1

s2 := iotas s1; -- l=100

s3 := usum s1; -- l=100, v=*

s4 := rep s3 3; -- l=100, v=3

s5 := rep s3 4; -- l=100, v=4

s6 := map_add s4 s5 -- l=100, v=7

Note that we have used the information about the number of T flags (and
the length) in s1 to infer the length of s2. This is because the constraint for the
length of the output stream of usum is given by the equation lout = lin− tin.
Also note that the analysis infers the value of the last stream. This is done by
allowing the analysis to perform scalar computations for map instructions
when all arguments have known constant values.

The streams where both the length and the value is known can be re-
placed by constant stream definitions. The program then turns into the
equivalent program:

s := constant * 1;

s0 := constant 100 1;

s1 := to_flags s0;

s2 := iotas s1;

s3 := constant * 100;

s4 := constant 3 100;

s5 := constant 4 100;

s6 := constant 7 100

Dead-code elimination can then reduce the program to:

110 CHAPTER 4. STREAMING NDP ON MULTICORES

s0 := constant 100 1;

s1 := to_flags s0;

s6 := constant 7 100

Similarly, we also use specialized instructions for some of the core instruc-
tions where one stream argument is specialized to a constant. For instance,
if we make a slight change to our running example:

{x + 4 : x in &100},

then, after the optimization we have seen so far, we will end up with the
program:

s0 := constant 100 1;

s1 := to_flags s0; -- l=101, t=1

s2 := iotas s1; -- l=100

s5 := constant 4 100;

s6 := map_add s2 s5 -- l=100

But, we know that s5 is constantly 4, so we can replace map_add by a new
specialized instruction which we call map_add_const with the type

map_add_const : SInt× Int→ SInt

Now, we can avoid generating the constant stream of 4’s and the final pro-
gram becomes:

s0 := constant 100 1;

s1 := to_flags s0;

s2 := iotas s1;

s6 := map_add_const s2 4

We also attempt to eliminate runtime checks by checking if the argument
to check is constantly true. We may also find that the stream is constantly
false, in which case we can reduce the whole program to an error message.
All these optimizations can lead to dead-code elimination opportunities,
which we then exploit.

If two instruction in an SVCODE program are the same and have identi-
cal arguments, we can almost always eliminate the last occurrence, and sub-
stitute any subsequent occurrences of the last stream identifier for the first.
The exception is instructions that take no stream arguments (e.g. constant
and read_file). Two such identical instructions have no interrelated con-
straint on the rate of which elements are produced. By replacing one with
the other, we effectively constraint the consumers to consume the stream at
the same rate. It might be the case that the consumers of the last instruction

4.4. DPFLOW: A MULTICORE INTERPRETER FOR SVCODE 111

must operate at a different rate than the first. Hence, we cannot eliminate
one and still ensure that streamability is preserved. If, on the other hand,
the two identical instructions take a stream (the same stream) as argument,
they are already constrained to operate at the same rate, and replacing one
with the other will not affect the streamability of the network in any way.

The generated code for many SNESL operations can be improved if we
know that the input does not contain any empty sequences. As we saw in
the translation for reduceR in the previous section, segmented sum, where
none of the segments are empty, can be implemented as a segmented scan
followed by a pack. If just one segment is empty, we must also perform an
unpack to write the zero element in the result. In our current implemen-
tation, this can be hinted in the source code. However, in many cases, it
should be possible to discover this information automatically in the static
analysis phase. That would involve generating constraints on the length of
the segments in segment flag streams.

4.4 DPFlow: A Multicore Interpreter for SVCODE

The key piece that separates this chapter from our previous chapter [MF13]
is a fully implemented multicore interpreter for SVCODE. We call this inter-
preter DPFlow; a contraction of data parallelism and dataflow. In essence,
DPFlow is a low-level dataflow-based virtual machine, that executes SV-
CODE instructions using chunked streams and highly optimized data-parallel
kernels written in C.

The kernels exploit both threaded execution and vector instructions,
which we realize using pthreads and the automatic vectorization found in
gcc 5.3. Crucially, the kernels are not generated per program, but are pre-
compiled only once. This allows very fine-tuned optimization of each ker-
nel, since we do not have to incorporate that into a code generator. For
instance, we know exactly what kernels are automatically vectorized. When
this is not the case, we may opt to vectorize the kernels by hand using Intel’s
SSE intrinsics (see Section 4.4.4).

4.4.1 Execution

DPFlow starts by setting up a network of stream transducers in memory
based on a given SVCODE program. Each definition becomes one trans-
ducer. A transducer holds a fixed-sized buffer where the bytes of the output
stream are stored, and a local state. The local state contains accumulators,
an end-of-stream flag, a write cursor and multiple read cursors; one for every
input stream. After the initial phase, the transducers are fired repeatedly
by the scheduler until all transducers have reached end-of-stream. Firing a

112 CHAPTER 4. STREAMING NDP ON MULTICORES

transducer is the act of calling the corresponding kernel and updating all
involved cursors.

A cursor is a relative offset in a buffer. A read cursor allows a reader
to consume only part of the current bytes in the buffer and remember
that. This is important to support different data rates. For example, the
map_char_to_int transducer reads a stream of characters and converts them
to a stream of (32-bit) integers. Since four bytes are output for every input
byte, the transducer can consume at most a quarter of the chunk size bytes
at a time. If the input buffer holds more than that, the transducer must per-
form a partial consumption of the input buffer. An example network and
execution is illustrated in Figure 4.3.

In more detail, a transducer fires by first computing the number of avail-
able elements from the input buffers and the number of elements that there
are room for in the output buffer. If the output buffer is uninitialized, it
requests an empty buffer from the nursery. The transducer then calls a ker-
nel function that performs the actual computation. The kernel functions are
simple functions on arrays. When the kernel is done, the transducer ad-
vances the read cursors and the write cursor, and updates the end-of-stream
indicator. Elements that are located before the smallest read cursor of a
buffer will never be used again. When a read cursor is advanced, a buffer
may therefore become completely used, in which case that buffer is returned
to the nursery, as is the case in step Fire C(2) of Figure 4.3.

4.4.2 Nursery

By using a nursery, we are able to reuse memory that is already in cache.
Without a nursery, each transducer would have its own pre-allocated buffer,
and all the buffers may not be able to fit in the cache at the same time. This
means that each transducer may have to bring its input buffers into cache
each time it fires, resulting in bad cache utilization.

With a nursery on the other hand, in the ideal scenario, the network
consists of a long string of unary map transducers that fully consumes their
input in each step. Here, only two buffers are needed: A read buffer and a
write buffer. After each transducer is executed, the read buffer becomes the
new write buffer and vice versa. In practice however, transducers of greater
arity require more than one read buffer, and buffers are not fully consumed
due to different data rates. In our experiments, the number of buffers re-
quired is approximately one third of the total number of transducers in the
network.

4.4. DPFLOW: A MULTICORE INTERPRETER FOR SVCODE 113

Fire C (2):

A

_

_

_

_

B

_

_

_

_

C

3

5

7
_

SVCODE:

A := read_file("in_file")

B := map_neq_const(A, 0)

C := pack(A, B)

Initial:

A

_

_

_

_

B

_

_

_

_

C

_

_

_

_

Fire A:

A

3

5

0

7

B

_

_

_

_

C

_

_

_

_

Fire B:

A

3

5

0

7

B

T

T

F

T

C

_

_

_

_

Fire C (1):

A

3

5

0

7

B

T

T

F

T

C

3

5

7
_

Figure 4.3: An illustration of a stream transducer network that removes all
null characters (0) from a file named “in_file”. The figure shows three stream
transducers firing one at a time and the contents of their buffers (which are
limited to a chunk size of 4). Write cursors are illustrated with solid arrows,
and read cursors are illustrated with dashed arrows. Fire A: The reader
transducer fills its buffer with bytes from the input file and moves its write
cursor to the end of the buffer. Fire B: Each byte is compared to 0 in the
transducer for map_neq_const. The read and the write cursors are moved.
Fire C (1): The pack transducer filters the bytes from the read transducer
using the booleans from the map transducer. Fire C (2): Since all read
cursors on the buffers for A and B are at the end, the buffers are emptied by
resetting the cursors and are hereby ready for the next chunk of data.

114 CHAPTER 4. STREAMING NDP ON MULTICORES

4.4.3 Scheduling

An important part of executing a network is finding out what transducer
to execute next. Scheduling is important for performance, because we want
to minimize the number of active buffers and maximize the work in the
kernels. We want to avoid executing a transducer with almost empty input
buffers, as that would magnify the overhead of scheduling, and violate the
high-level work/step cost model.

As an example, in Figure 4.3, notice that there are two strategies for
further execution: Either fire the consumer(s) of (C) even though its buffer
is less than full, or repeat the steps in the figure in an attempt to fill the
buffer completely. The latter strategy requires more buffers to be active at
the same time, reducing the effectiveness of the nursery, while the former
strategy causes the consumers to fire with less-than-full input buffers. In
this example, the buffer is almost full, but it could as well have been almost
empty. There is definitely opportunity for future work investigating the cost
and benefit of different strategies. In this chapter however, we focus on the
simplest possible scheduling strategy called loop scheduling.

Loop scheduling executes the transducers in succession from the first
to the last, starting over unless the network has reached completion. The
transducers fire regardless of the fullness of the buffers. Consequently, a
transducer may fire on almost empty input, which is sub-optimal in theory.
In particular, we break the step part of the work/step cost model. How-
ever, in practice, loop scheduling performs well. This is due to a number of
reasons. First, its simplicity makes the scheduling overhead small. Second,
when executing with a chunk size much greater than the available paral-
lel resources (as we do), a step in the cost model is actually many steps
in the execution. Therefore, a non-full step likely saturates all available re-
sources, and since we do obey the work part of the cost model, we achieve
good performance anyway. Third, loop scheduling exhibits good nursery
usage. Since consumers are usually located close to producers, and since
we consume buffers as soon as possible, buffers are returned to the nurs-
ery and recycled relatively quickly, resulting in fewer total number of buffer
allocations and, in turn, better cache utilization. We have not encountered
any examples where loop scheduling performs significantly worse than a
hard-coded, supposedly optimal, schedule.

4.4.4 SIMD Vectorization

Most kernels consist of a simple for-loop doing a single operation. One
would therefore expect a high-quality C compiler to generate vectorized in-
structions for the pre-compiled kernel. Maps and reductions are indeed

4.4. DPFLOW: A MULTICORE INTERPRETER FOR SVCODE 115

generally automatically vectorized, but this is not the case for scans and
scan-like operations, such as packing. We have checked with the latest ver-
sion (as of the time of writing) of gcc (5.3), clang (3.8) and icc (16.0), and none
of them vectorize a simple scan with addition. We therefore hand-vectorize
scan and segmented-scan kernels using Intel’s SSE intrinsics.

An advantage of DPFlow, as opposed to writing a program in a tradi-
tional language like C, is that the programmer does not have to worry about
whether or not the vectorizer succeeds. Adding a single scan-like depen-
dency in a loop in C, will most likely cause the vectorization of the entire
loop to fail. In effect, every operation in the loop becomes slow, not just
the scanned operation. On top of that, if the compiler performs loop fusion,
it may introduce scan-like dependency in an otherwise vectorizable loop,
causing the vectorizer to fail in a non-obvious way.

In order to explore the possibility of improving the performance of scans,
we have investigated different scan patterns: The Kogge-Stone scan cir-
cuit [KS73], the Sklansky scan circuit [Skl60] and Blelloch’s scan algorithm
[Ble90a]. Our best implementation is the Kogge-Stone scan circuit [KS73],
with which we have been able to boost the performance of float-add scan by
a factor of 3. For the segmented version we have boosted the performance
by a factor between 1.13 and 2.5 depending of the average length of the
segments and whether or not they are regular.

SSE instructions pose a number of limitation on how a circuit can be
implemented. The operators of the circuit must be arranged for small fixed-
sized SIMD execution, which may require shuffling elements around. Ad-
ditionally, there is only a limited number of vector registers, so our circuits
must be small and used iteratively to scan a whole chunk. This means we
have to account for an accumulator, which could simply be added to the
first element at the start of each iteration. However, we have found that it is
more efficient to broadcast the accumulator to a vector, and add it to all the
elements in the end of each iteration.

We compare ourselves against baseline implementations in C, which are
given in Figure 4.5.

Kogge Stone Scan

Kogge Stone scan is not work efficient. The asymptotic complexity is O(n log n).
However, Kogge Stone circuits are a good fit for SIMD execution, since the
operations are arranged in a very regular way, and thus require little shuf-
fling.

Figure 4.6 show the smallest Kogge Stone Scan circuit we have imple-
mented. It scans one vector containing 4 floats in each iteration, which cor-
responds to the first 4 vertical lines of the illustration. The vector is added

116 CHAPTER 4. STREAMING NDP ON MULTICORES

Benchmark Speedup Elements scanned per vector addition
sse_blelloch_1x4 2.95 4 / 3
sse_blelloch_2x4 2.32 8 / 6
sse_blelloch_4x4 2.21 16 / 13
sse_kogge_stone_1x4 2.95 4 / 3
sse_kogge_stone_2x4 3.35 8 / 6
sse_kogge_stone_4x4 3.02 16 / 14
sse_sklansky_2x4 2.17 8 / 4

Figure 4.4: Vectorized scan speedups. The table show the speedups of a
normal scan with floating point addition.

void scan_baseline(float *xs, float *ys, int n) {

float acc = 0.0f;

int i;

for (i = 0; i < n; ++i) {

acc = acc + xs[i];

ys[i] = acc;

}

}

Figure 4.5: Scan baseline implementation.

to a left shifted version of itself two times with an increasing shift. The first
addition performs the operation λ[a, b, c, d]→ [a, a + b, b + c, c + d], and the
second addition performs the operation λ[a, b, c, d]→ [a, b, a + c, a + d]. Fi-
nally, the accumulator is added to every element and then updated. The
result is that we need 3 vector additions to scan every 4 floats. We also im-
plemented a version that scans two vectors in each iteration, and one that
scans four vectors in each iteration. The benchmarks in Figure 4.4 are la-
beled with a post-fix to indicate the number of 4-element vectors scanned
in each iteration. In the case of Kogge Stone: 1x4, 2x4 and 4x4. The best
implementation of vectorized scan according to our experiment, is a version
of this algorithm where we scan 2 vectors.

Blelloch’s Scan

Blelloch’s scan algorithm, is the only work-efficient algorithm (i.e. with
asymptotic work of O(n)) we explore. However, asymptotic complexity is
not a interesting here, because we operate on very small circuits. The prop-
erty only manifests itself when we compare the number of elements scanned
per vector addition for Blelloch’s scan and Kogge Stone Scan in Figure 4.4.
For 1 and 2 vectors per iteration, they require exactly the same number of

4.4. DPFLOW: A MULTICORE INTERPRETER FOR SVCODE 117

// Left shift a 4 element vector by i elements, shifting in zeroes.

inline __m128 lshift(__m128 v, int i) {

return _mm_castsi128_ps(_mm_slli_si128(_mm_castps_si128(v), 4*i));

}

// 4 elements, 3 vector additions.

void sse_steele_1x4(float *xs, float *ys, int n) {

__m128 v, acc;

acc = _mm_set1_ps(0.0f);

int i;

for (i = 0; i+3 < n; i += 4) {

v = _mm_load_ps(xs + i);

v = _mm_add_ps(lshift(v, 1), v);

v = _mm_add_ps(lshift(v, 2), v);

v = _mm_add_ps(acc, v);

_mm_store_ps(ys + i, v);

// Broadcast the last element to the accumulator:

acc = _mm_shuffle_ps(v, v, _MM_SHUFFLE(3, 3, 3, 3));

}

}

Figure 4.6: Float addition scan based on the Kogge Stone circuit using Intel’s
SSE intrinsics. At the top there is an illustration of the circuit. The illustra-
tion is from [MG09]. Below the illustration, an implementation of the circuit
is given.

118 CHAPTER 4. STREAMING NDP ON MULTICORES

vector additions. When using 4 vectors per iteration, Blelloch’s scan requires
one less than Kogge Stone scan. At this point however, the benchmarks al-
ready starts to degrade in performance – most likely due to vector register
pressure.

Blelloch’s algorithm is commonly used to implement scans on large ar-
rays on GPUs, where work-efficiency is much more important. It is divided
in an upsweep phase that recursively computes the sum of the array while
keeping the partial sums, and a downsweep phase that computes the re-
maining elements with the previously computed partial sums.

Figure 4.7 shows the smallest circuit based on Blelloch’s scan we have im-
plemented. The upsweep phase is the upper gray operations in the circuit
and the downsweep phase is the lower black operations. The implementa-
tion scans one vector containing 4 floats in each iteration, which corresponds
to the first 4 vertical lines in the illustration.

In the implementation there are two steps. The first step performs the
operation λ[a, b, c, d]→ [a, a + b, c, c + d], and the second step performs the
operation λ[a, b, c, d]→ [a, b, b + c, b + d]. To be more efficient, the down-
sweep is done at the same time as the last step in the upsweep. The up-
sweep phase corresponds to the first step and b + c in the second step. The
downsweep phase is simply b + d in the second step.

Like in the case of Kogge Stone scan, we have implemented instances of
the circuits up to 4 vectors in each iteration. The execution times are gener-
ally worse than for Kogge Stone scan except in the simplest case where the
circuits are almost identical. We believe this is due to an increased amount
of shuffling.

Sklansky scan

Sklansky’s circuit has the attractive property, from a vectorization perspec-
tive, that the number of additions in each step is constant. Choosing an
appropriately-sized network therefore yields a situation, in which we must
perform exactly 4 additions in each step. If we ignore the problem of arrang-
ing elements for vector execution, this circuit then maps directly to SIMD
execution using 4-element vectors.

Figure 4.7 shows the only Sklansky scan circuit we have implemented.
If all other operations were free and only the additions and memory oper-
ations had a time cost, this implementation would almost certainly be the
fastest as it has the best vector additions to number of elements ratio; Only 4
vector additions are required to scan every 8 elements. Unfortunately, shuf-
fling is not free, and the benchmark performs the worst of all the vectorized
scans we have tested (though still more than twice as fast as the baseline).

4.4. DPFLOW: A MULTICORE INTERPRETER FOR SVCODE 119

// 4 elements, 3 vector additions

void sse_blelloch_1x4(float *xs, float*ys, int n) {

__m128 v, acc128, zero;

acc128 = _mm_set1_ps(0.0f);

zero = _mm_setzero_ps();

int i;

for (i = 0; i+3 < n; i += 4) {

v = _mm_load_ps(xs + i);

v = _mm_add_ps(_mm_blend_ps(zero, _mm_moveldup_ps(v), 10), v);

v = _mm_add_ps(_mm_shuffle_ps(zero,v, _MM_SHUFFLE(1,1,0,0)), v);

v = _mm_add_ps(v, acc128);

acc128 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(3, 3, 3, 3));

_mm_store_ps(ys + i, v);

}

}

Figure 4.7: Float addition scan based on Blelloch’s scan algorithm using In-
tel’s SSE intrinsics. The circuit is a Brent-Kung circuit upon which Blelloch’s
scan algorithm is based. The circuit illustration is from [MG09].

Segmented Scan

For the flag-segmented versions, we have only considered the Kogge Stone
scan. It is implemented in the same way as non-segmented scan by using
Blelloch’s well-known operator transformation [Ble90a]:

(f1, a)⊕ (f2, b) = (f1 ∨ f2, (f2 · a) + b),

where f2 · a is the operation that resets the accumulator if f2 = T and leaves
a unchanged otherwise. We represent flags with bytes, so a vector of flags in
SSE contains 16 flag values. We have to pay an additional cost of unpacking
the flags into 4 element vectors in order to perform the transformed addition
operation with vector instructions.

Our baseline implementations of segmented scan are given in Figure 4.9.

120 CHAPTER 4. STREAMING NDP ON MULTICORES

// 8 elements, 4 vector additions

void sse_sklansky_2x4(float *xs, float *ys, int n) {

__m128 x1, x2, _x1, _x2, acc;

acc = _mm_set1_ps(0.0f);

int i;

for (i = 0; i+7 < n; i += 8) {

x1 = _mm_load_ps(xs + i);

x2 = _mm_load_ps(xs + i + 4);

_x1 = _mm_shuffle_ps(x1,x2, _MM_SHUFFLE(2,0,2,0));

_x2 = _mm_shuffle_ps(x1,x2, _MM_SHUFFLE(3,1,3,1));

_x2 = _mm_add_ps(_x1, _x2);

_x1 = _mm_shuffle_ps(_x1, _x2, _MM_SHUFFLE(3,1,3,1));

_x2 = _mm_shuffle_ps(_x2, _x2, _MM_SHUFFLE(2,0,2,0));

_x1 = _mm_add_ps(_x2, _x1);

x1 = _mm_shuffle_ps(x1, _x1, _MM_SHUFFLE(2,0,1,0));

x1 = _mm_insert_ps(x1, _x2, _MM_SHUFFLE(0,1,0,0));

x2 = _mm_shuffle_ps(x2, _x1, _MM_SHUFFLE(3,1,1,0));

x2 = _mm_insert_ps(x2, _x2, _MM_SHUFFLE(1,1,0,0));

x1 = _mm_add_ps(acc, x1);

acc = _mm_shuffle_ps(x1, x1, _MM_SHUFFLE(3, 3, 3, 3));

x2 = _mm_add_ps(acc, x2);

acc = _mm_shuffle_ps(x2, x2, _MM_SHUFFLE(3, 3, 3, 3));

_mm_store_ps(ys + i, x1);

_mm_store_ps(ys + i + 4, x2);

}

}

Figure 4.8: The implementation scans two vectors containing 4 floats each in
each iteration using Intel’s SSE intrinsics. The scan is based on the Sklansky
scan circuit. The circuit illustration is from [MG09].

4.4. DPFLOW: A MULTICORE INTERPRETER FOR SVCODE 121

void seg_scan_baseline(bool *fs, float *xs, float *ys, int n) {

float acc = 0.0f;

int i;

for (i = 0; i < n; ++i) {

acc = fs[i] ? 0 : acc;

acc = acc + xs[i];

ys[i] = acc;

}

}

void seg_scan_branchless(bool *fs, float *xs, float *ys, int n) {

float acc = 0.0f;

int i;

union {

uint32_t i;

float f;

} a;

int f;

a.f = acc;

for (i = 0; i < n; ++i) {

f = fs[i];

a.i = (f - 1) & a.i;

a.f = a.f + xs[i];

ys[i] = a.f;

}

}

Figure 4.9: Segmented scan baseline implementations.

Figure 4.10 shows our speedups for different types of segments, long and
short, regular and irregular segments. The vectorized versions are branch-
less, and do therefore not benefit from branch prediction. For short regular
segments, we see that the branch predictor works perfectly. The branchful
baseline therefore performs very well, and the speedup from vectorization
is almost non-existent. We also see that the branchless baseline is quite slow
in comparison. The same trend is noticeable – although to a lesser extend –
for long segments, irrespective of whether or not the segments are regular.
Here, the branch predictor correctly guesses when a segment does not end,
but it almost surely fails to correctly guess when an end of segment occurs.
The best scenario for our implementation is short irregular segments, where
the branch predictor fails often. Here we achieve an even greater speedup
than what was the case for non-segmented scan. In any case, since we out-
perform the baseline on all benchmarks, it is safe to say that segmented scan
is worth to vectorize.

122 CHAPTER 4. STREAMING NDP ON MULTICORES

(short)
Benchmark Speedup
baseline_branchless 0.44
sse_kogge_stone_2x4 1.13
sse_kogge_stone_4x4 1.16

(short-ireg)
Benchmark Speedup
baseline_branchless 1.29
sse_kogge_stone_2x4 3.27
sse_kogge_stone_4x4 3.48

(long)
Benchmark Speedup
baseline_branchless 0.60
sse_kogge_stone_2x4 1.50
sse_kogge_stone_4x4 1.58

(long-ireg)
Benchmark Speedup
baseline_branchless 0.59
sse_kogge_stone_2x4 1.49
sse_kogge_stone_4x4 1.57

Figure 4.10: Vectorized segmented scan speedups. The tables show the
speedups of a flag-segmented scan with floating point addition for differ-
ent types of segments. (short) and (short-ireg) benchmarks short segments
of length 4. (long) and (long-ireg) benchmarks long segments of length 100.
For (short-ireg) and (long-ireg) the segment lengths is an average value as the
lengths are chosen at random to benchmark irregular segments.

4.4.5 Multi-Threading

One could hope that making DPFlow multi-threaded would require little
more than placing OpenMP pragmas on top of each kernel loop. The reality
is not so simple, however. It turns out that kernels are called very fre-
quently and do not contain enough work, so the overhead of creating and
joining threads in each kernel, as OpenMP does, becomes too expensive. We
cannot simply increase the chunk size to accommodate the overhead, since
that overflows the cache. Instead, we start a pool of worker threads at the
beginning, and keep them alive for the entire duration of the execution. The
worker threads busy-wait until the main thread passes work to them by us-
ing low-level synchronization primitives. When calling a kernel function,
the main thread first places the kernel arguments in a globally accessible
array. It then signals the worker threads to call the same kernel function.
Each thread runs the kernel on part of the index space, and signals the main
thread, again using low-level synchronization, when they are done.

Multi-threaded scan and other scan-like kernels work in two passes. In
the first pass, each thread performs a reduction on its part of the input array.
The reduced results are then passed to the main thread, which scans them
to compute a start accumulator for each thread. The second pass uses the
hand-vectorized scan kernels. Each thread performs a scan using the given
start accumulator.

One could expect a doubling of single-threaded execution time, because

4.5. EXPERIMENTS 123

we effectively multiply the work by 2 by doing 2 passes. However, experi-
ments show that the additional work is negligible. Partly because the first
pass is a reduction which is relatively cheap as it does not require a mem-
ory write operation, and partly because it ensures that the relevant (to each
thread) part of the input array is in cache for the second pass. Further-
more, the reduction pass is automatically vectorized by the C compiler and
is generally more efficient then the scan pass.

4.5 Experiments

Text processing algorithms often contain sequential dependencies and irreg-
ular groupings (lines, words, etc.). This makes them difficult to parallelize
in languages with explicit task parallelism, and difficult to express in data-
parallel languages without support for nested data parallelism. We evaluate
four text-processing benchmarks that showcase SNESL’s ability to express
irregular nested data parallelism with scalable performance. Furthermore,
we use the examples to empirically evaluate the cost model described in
Chapter 2.

The benchmarks are selected from common Linux command line tools:
word count, max line length, line reverse, and cut. We also revisit two basic
benchmarks from Chapter 2: logsum and logsumsum. Logsum sums the
logarithms of i where i ranges from 1 to n, which is a way to compute
log(n!). Logsumsum computes the grand sum of multiple logsums.

To deal with file I/O, we introduce two functions in SNESL, read_file

and write_file, that allows the programmer to work with files as sequences
of characters. In order to avoid large overhead in measurements during the
benchmarks, we use a RAM-based filesystem (tmpfs).

For the experiments, we use a 2.50 GHz Intel Xeon E5-2670 v2 with 10
cores, 256 KB L2 cache and 25 MB shared L3 cache. We perform the text
processing benchmarks on a 3.5 GB file: the ASCII encoding of Pride and
Prejudice by Jane Austen concatenated 5000 times, downloaded from Project
Gutenberg (https://www.gutenberg.org/files/1342/1342.txt). Line reverse
is from the standard package util-linux, version 2.27, and the other text
utilities are from GNU Coreutils, version 8.25.

4.5.1 Logsum

We define logsum as logsum(N) = ∑N
i=1 log i, computed in double precision.

We compare ourselves to a straight-forward C implementation using a loop
and an accumulator. We also test the program with OpenMP annotations
on the loop.

In SNESL, logsum can be expressed as follows:

124 CHAPTER 4. STREAMING NDP ON MULTICORES

fun logsum(N) =

sum({log(real(i+1)) : i in &N})

(sum is an alias for reduce_plus.)
The cost model for space as given in Chapter 2 gives that the expected

space cost of the execution logsum is O(min(P, N)) where P is the chunk
size and N is the N from the program text, i.e. the problem size. Inspecting
the generated SVCODE confirms that this is indeed the case. The gener-
ated program only defines a small number of bounded buffers and no un-
bounded buffers. By tracing the execution, we see that each streams has no
more than N + 1 elements. Assuming DPFlow does not allocate more mem-
ory than necessary, this means that each stream cannot use more space than
min(P, N + 1). Since there is only a constant number of such streams, the
whole program should use no more than O(min(P, N)) space. Indeed, dur-
ing the execution of the experiment with a fixed value for P and increasing
values for N, we observe that once N exceeds P/8, the memory usage, as
reported by our operating system, stops increasing. The factor of 1/8 comes
from the chunk size being given in bytes whereas N is a number of doubles.

The benchmark numbers for N = 108 are given in Figure 4.11. They
show that SNESL performs on par with C and OpenMP. Furthermore, the
performance scales with the number of threads, matching the execution time
of OpenMP.

From the graph, we also see that the choice of chunk size does not matter
as long as it is between 100 KB and 10 MB. Below 100 KB, the overhead
of scheduling and managing buffers and cursor becomes too significant.
Above 10 MB we start to exceed the L3 cache. All in all, these results are
very promising. It remains to be seen how we fare on more complicated
examples.

4.5.2 Logsumsum

Logsumsum computes the grand sum of multiple logsums. For some func-
tion f : N→N, we define

logsumsum f (M) =
M

∑
N=1

f (N)

∑
i=1

log(i)

This example is admittedly a bit contrived, but it serves as a simple
example that highlights the challenges of irregular nested data parallelism.
For the sake of simplicity, we ignore the possibility of memoization if f is
non-injective, and we do not compute larger logsums from smaller, already
computed, logsums.

4.5. EXPERIMENTS 125

Benchmark Speedup Chunk size Milliseconds
c 1.00 N/A 2646

omp-1 0.99 N/A 2658
omp-2 1.90 N/A 1393
omp-4 3.76 N/A 701
omp-6 5.30 N/A 498
omp-8 6.70 N/A 394
omp-10 8.43 N/A 313
snesl-1 1.00 65536 2640
snesl-2 1.92 4194304 1379
snesl-4 3.62 4194304 750
snesl-6 5.23 4194304 510
snesl-8 7.00 4194304 383
snesl-10 8.70 4194304 308

Figure 4.11: Logsum execution times and speedups.

126 CHAPTER 4. STREAMING NDP ON MULTICORES

Logsumsum is difficult to parallelize without flattening as the best par-
allelization strategy depends on f . If the image of f contains very large
numbers, computing the logsum for those numbers will dominate the per-
formance, and parallelization of the inner summation would be sufficient.
If, on the other hand, f only produces small numbers, parallelizing the inner
summation would expose very little parallelism. Here, it would be better to
parallelize the outer summation, and let each thread compute M/p small
logsums. However, the distribution of work may become skewed if the loop
is parallelized naively. For example, the function f (x) = 10x/M yields small
skewed numbers.

We express logsumsum in SNESL as:

fun logsumsum(M) =

sum({ logsum (10 * (N+1) / M) : N in &M})

The expected space cost of the execution logsumsum is O(min(P, M)).
The generated SVCODE only consists of bounded streams, which immedi-
ately confirm this cost in the case that M is greater than P (when the problem
size is greater than the chunk size). For the other case (small problem sizes),
we calculate the maximum number of elements in each stream defined in
the SVCODE. Since no stream has more than 7M + 10/M + 18 elements, the
space cost must be in O(M) as required.

The result of logsumsum for M = 2× 107 are given in Figure 4.12. As
we see, SNESL performs approximately 20% slower than C using a single
thread, and the performance scales decently. We were unable to obtain any
speedup by placing OpenMP pragmas on either the inner loop, the outer
loop or both. In light of this, the 20% performance drop seems a small price
to pay.

4.5.3 Word Count

Word counting is a bit trickier than simply counting whitespace characters.
Words, as defined by “wc -w”, may be separated by more than one whites-
pace characters, and a word only counts towards the total word count if it
contains at least one “printable” character. The numeric value of the whites-
pace characters are 9 to 13 and 32, and the printable characters are 32 to 126.
The following is a SNESL program that produces exactly the same result as
“wc -w” in the POSIX locale, even on binary files:

-- Whitespace?

fun ws(c) = c == ' ' || c >= '\t' && c <= '\r'

-- Printable character?

4.5. EXPERIMENTS 127

Benchmark Speedup Chunk size Milliseconds
c 1.21 N/A 2461

snesl-1 1.00 1310720 2974
snesl-2 1.90 1310720 1562
snesl-4 3.40 1310720 874
snesl-6 4.73 1310720 628
snesl-8 6.09 1310720 488
snesl-10 7.33 1310720 405

Figure 4.12: Logsumsum execution times and speedups

128 CHAPTER 4. STREAMING NDP ON MULTICORES

fun pc(c) = c <= '~' && c > ' '

-- Is word printable?

fun pw(w) = reduce -or({pc(c): c in w})

fun wc(file) =

let cs = read_file(file)

in sum({ int(pw(w))

: w in sep({(c, ws(c)): c in cs})})

Here, sep is an new primitive SNESL operation that is similar to f lagpartσ,
but is tailored for convenient text files partitioning. The type is given by

sepσ :: {(σ, Bool)}→ {{σ}}.

Compared to
f lagpartσ :: ({σ}, {Bool})→{{σ}},

the difference is that sep separates by punctuating elements and therefore
cannot produce empty sub-sequences as the punctuating element is the end
in each sub-sequence. f lagpart on the other hand is the more general op-
eration that allows empty sub-sequences in the output. For f lagpart, the
boolean sequence is at least as long as the element sequence. For sep, the
boolean sequence that identifies punctuating elements is always exactly the
same length as the element sequence. This allows easy separation by e.g.
newline character in a text file without having to construct boolean sequence
that is longer than the character sequence first as input to f lagpart.

The expected space cost of the execution word count is O(min(P, N))

where N is the size of the file. Like logsum, this is confirmed by inspecting
the generated SVCODE.

The results are given in Figure 4.13. Surprisingly, we out-perform “wc
-w”. Even on a single thread, we out-perform the Linux tool by more than
50%. On top of that, we scale well with the number of threads, even though
the problem is irregular.

4.5.4 Max Line Length

The problem of finding the maximum length of the lines in a file resembles
word count. The challenge here, is that tab characters expand to count for
1–8 characters in the Linux tool we compare against (“wc -L”). To mimic this
behavior, we separate each line by tabulation characters in SNESL and then
compute the length of each “tab word” and round up to the nearest multiple
of 8. Care must be taken to treat the last tab word in each line differently as
it should not be expanded.

4.5. EXPERIMENTS 129

Benchmark Speedup Chunk size Milliseconds
wc -w 0.65 N/A 19760
snesl-1 1.00 163840 12770
snesl-2 2.06 163840 6214
snesl-4 3.54 327680 3607
snesl-6 4.73 655360 2700
snesl-8 5.84 655360 2188
snesl-10 6.74 1310720 1894

Figure 4.13: Word count speedups

Rounding up can be done using bitwise operations:

fun round_to_8(n) = (n | 7) + 1

The tricky part is to treat the last tab word differently. We do this by using
the builtin tail_flags operation, which gives us a boolean for each word,
that we can use to distinguish the last tab word. The following function
computes the length of a line in SNESL:

fun line_len(l) =

let ws = sep({(c, c == '\t') : c in l})

in

sum({ let n = #w - 1

in (is_last ? n : round_to_8(n))

: w in ws;

is_last in tail_flags(ws)

})

We are now ready to compute the maximum line length of a file:

fun lines(cs) =

sep({(c, c == '\n') : c in cs})

fun max_ll(file) =

let cs = read_file(file)

in maximum ({ line_len(l) : l in lines(cs)})

The expected space cost of the execution max line length is O(min(P, N))

where N is the size of the file. This is confirmed by inspecting the generated
SVCODE.

The results are given in Figure 4.14. Once again, we are faster than
the Linux tool in single-threaded performance, and we scale well with the
number of threads.

130 CHAPTER 4. STREAMING NDP ON MULTICORES

Benchmark Speedup Chunk size Milliseconds
wc -L 0.74 N/A 19760

snesl-1 1.00 655360 14420
snesl-2 1.86 1310720 7764
snesl-4 3.17 1310720 4554
snesl-6 4.31 1310720 3343
snesl-8 5.24 1310720 2750
snesl-10 6.04 1310720 2385

Figure 4.14: Max line length speedups

4.5.5 Line Reverse

Reversing each line in a file is accomplished using the Linux tool “rev”. The
equivalent program in SNESL is interesting, because it is impossible to ex-
press without using vectors. Reversing a line requires unbounded buffering,
which we express in SNESL as a sequence of vectors.

We first define a function to reverse a line (a sequence of characters). The
function assumes that the line ends in a newline character. That character
is kept in the end as we do not want to move newline characters to the
beginning of each line.

fun rev_line(w) =

let v = tab(w);

n = #v-1

in {v!(i == n ? i : n-1-i) : i in &n}

We then reverse each line, like so:

fun rev(file_in , file_out) =

let cs = read_file(file_in);

res = {rev_line(l) : l in lines(cs)}

in write_file(file_out , concat(res))

The expected space cost of the execution line reverse is O(min(P + l, N))

where N is the size of the file and l is the length of the longest line in the file.
When N is larger than P + l (the file is small), we can confirm the cost by
inspecting the generated SVCODE and see that no stream holds more than
N + 1 elements. In the other case, we see that one stream is unbounded
and the rest are bounded (by P). The one unbounded stream is defined by
segtab generated by the tab command in the rev_line function, which is
called on each line of the file. If the longest line (l) is smaller than P, segtab
will operate as a normal bounded stream and will therefore also be bounded

4.5. EXPERIMENTS 131

Benchmark Speedup Chunk size Milliseconds
rev 1.88 N/A 21942

snesl-1 1.00 327680 40864
snesl-2 1.86 655360 22694
snesl-4 3.02 655360 13534
snesl-6 4.01 1310720 10188
snesl-8 4.90 1310720 8343
snesl-10 5.61 1310720 7286

Figure 4.15: Line reverse speedups

by P. If, on the other hand, l is larger than P, the stream defined by segtab

will be bounded by l. In either case, the stream is bounded by max(P, l)
which, together with the bounded streams gives the total asymptotic space
cost of P + l as required. We can therefore confirm that the cost model
accurately describes the cost of executing line reverse in this example.

The space cost of a non-streaming, data-parallel line reverse would be
O(N). The space cost of a streaming, but not data-parallel, version would
be O(l). We note that if we take P to be the number of processors, our
space cost of O(min(P + l, N)) is what we expect to be the space cost of a
streaming and data-parallel line reverse implementation.

The results are given in Figure 4.15. Here, our single-threaded perfor-
mance is not particularly impressive, being nearly half as fast as “rev”.
However, once we increase the number of threads, we easily out-perform
the Linux tool, which does not have multi-threaded support.

4.5.6 Cut

The cut benchmark explores filtering. Here, we select the ith column of
a space delimited file (i.e., cut -d" " -fi). Cut is interesting because it
requires random-access on a vector of words, i.e. a vector of vector of char-
acters. Cut still works even when a line does not have enough columns. In
this case, there are two possible outcomes. If there is only one column (i.e.
the line contains no space characters), then the whole line is returned. Oth-
erwise, the empty string is returned. The benchmark therefore also explores
true conditionals where we do not evaluate the false branch (as opposed to
sel (? :)), which may cause out of bounds error in this case.

We first define two functions for converting lines to tabulated rows and
indexing fields of a row:

fun row(l) =

tab({ tab(f)

132 CHAPTER 4. STREAMING NDP ON MULTICORES

Benchmark Speedup Chunk size Milliseconds
cut -d" " -f2 1.98 N/A 16192

snesl-1 1.00 655360 32120
snesl-2 1.78 655360 18012
snesl-4 2.92 655360 11003
snesl-6 3.79 655360 8480
snesl-8 4.42 655360 7262
snesl-10 4.95 655360 6491

Figure 4.16: Cut speedups

: f in sep({(x, x == ' ') : x in l})})

fun index_field(r, ix) =

let n = #r;

i = n == 1 ? 0 : ix

in if i < n

then r ! i

else [' ']

Then, we bring the functions together to define “cut” in SNESL:

fun cut(in, out , ix) =

let cs = read_file(in);

res =

{ let f = index_field(row(l), ix)

in { (c == ' ' ? '\n' : c)

: c in seq(f)}

: l in lines(cs)

}

in write_file(out , concat(res))

The expected space cost of the execution line reverse is O(min(P + l, N))

where N is the size of the file and l is the length of the longest line in the
file. The space cost can be confirmed similarly to the analysis in the line
reverse example.

The results with i = 2 can be seen in Figure 4.16. The performance of
SNESL is, again, not as impressive as our previous experiments. We only
beat the Linux tool if we use 4 threads or more. A part of the reason is
conditionals with non-scalar type. The if-then-else becomes more than 60
instructions in SVCODE that accounts for approximately 20% of the execu-
tion time.

4.6. CONCLUSIONS AND FUTURE WORK 133

4.6 Conclusions and Future Work

We have shown that a chunked-dataflow execution model for streaming
nested data parallelism – despite a number of apparent inefficiencies due to
scheduling and data-transfer overheads – actually gives single-core perfor-
mance similar to sequential C code on a selection of simple text-processing
tasks. We attribute this parity mainly to the much better utilization of
SIMD instructions by hand-written kernels, than what is achieved by current
industrial-strength compilers. Crucially, however, the dataflow code is also
directly suitable for further speedup by subdividing the per-chunk work
equally among multiple cores. Taking into account that parallel algorithms
for scans at least double the number of fundamental operations performed,
in addition to increased bookkeeping overheads, we observe speedups on
moderate numbers of cores that are probably close to what can be reason-
ably achieved.

An immediate area for future work is static checking of schedulability,
to outlaw inherently non-streamable computations such as

let m = reducemin(s) in {x−m : x in s}

(where we can only know m after having traversed all of s, and so cannot
use it to process s from the beginning). Intuitively, a SNESL program should
only be considered correct if it cannot deadlock when executed with a chunk
size of one element, corresponding to a purely sequential program with
coroutines. While simple sufficient criteria for this property exist (or can
be derived from classical work on synchronous dataflow, e.g. [LM87]), the
abstraction of nested sequences brings some challenges in turning them into
a compositional (and programmer-comprehensible) analysis or type system.
However, we expect to establish formally that if a system does not deadlock
with a chunk size of one element, it will not deadlock for any larger (not nec-
essarily uniform throughout the network) size either; thus, stress-testing the
network with minimal buffer sizes should still uncover many concurrency
bugs.

Finally, there are still ample opportunities for performance tuning. Though
the compiler already performs a simple shape analysis before the flattening
transformation, and a range of peephole optimizations on the generated SV-
CODE, we expect that further improvements such as selective transducer
fusion (especially map–map, which shouldn’t interfere significantly with
vectorization, analysis-guided specialized representations of data and/or
descriptor streams (e.g., run-length compression), and similar tweaks would
improve both single-core performance and scalability even further.

Chapter 5

Toward a Formal Validation
of the SNESL Cost Model

It is one thing to have a nice theoretical characterization of time and space
usage and another to know whether it actually works in practice or not. We
deemed it more important to have early indications for the latter. Conse-
quently, the majority of the work undertaken in this dissertation has been
devoted to implementation and experimentation, and we have not pursued
a theoretical result. Nevertheless, we have reflected on what would be nec-
essary in order to prove a theorem that formally validates our cost model.

5.1 Translation soundness

The first result we would like to have is semantic preservation by the trans-
lation defined in Section 2.3.2. Recall the “is represented as” relation (/)
that relates the low-level representation back to frontend values. Using this
relation, we can state a theorem that validates that the translation is sound
with respect to the computed values:

Theorem: Translation Soundness
For all [] ` e : σ, if

[] ` e ⇓ v $ ω

for some v and ω, then1

v / [[e]][] 〈∗〉.

1 Note that technically, [[−]] really defines an interpretation into mathematical streams
and not a translation. However, the flattening translation, which we are actually interested
in, is baked into this interpretation, and so interpreter soundness trivially implies translation
soundness.

135

136 CHAPTER 5. TOWARD A FORMAL VALIDATION

The proof of translation soundness rests on a lemma that does not as-
sume empty contexts and does not necessarily give a translation using the
unit control stream 〈∗〉.

Before we can state the lemma, we need some definitions. Define the
“are represented as” relation:

(v1, ..., vl) /
l st⇔ {v1, ..., vl} / (st, 〈

l︷ ︸︸ ︷
F, ..., F, T〉) l>0

This relation relates multiple high-level values of the same type to a single
low-level representation. Some examples:

(1, 2, 3) /3 〈1, 2, 3〉
({1, 2}, {}, {3}) /3 (〈1, 2, 3〉, 〈T, T, F, T, F, T〉)

((1, T), (2, T), (3, F), (4, F)) /4 (〈1, 2, 3, 4〉, 〈T, T, F, F〉)

As can be seen, the relation essentially looks under the top-most segment
descriptor and allows us to relate low-level values with more than one T in
the top-most segment descriptor. Note that for l = 1, (/) is the same as (/1)
as we have

(v1) /
1 s⇔ {v1} / (s, 〈F, T〉)⇔ v1 / s.

We then lift this definition to value environments. For high-level environ-
ments ρ1, ..., ρl and low-level environment ζ, define

(ρ1, ..., ρl) /
l ζ

if and only if, for all i ∈ 1..l, dom(ρi) ⊇ dom(ζ) and for all x ∈ dom(ζ),
(ρ1(x), ..., ρl(x)) / l ζ(x).

Translation Soundness Lemma For all Γ ` e : σ, l > 0, (ρ1, ..., ρl) /
l ζ (all

ρi well-typed in Γ). If

ρ1 ` e ⇓ v1 $ ω1 · · · ρl ` e ⇓ vl $ ωl

for some v1, ..., vl and ω1, ..., ωl , then

(v1, ..., vl) /
l [[e]]ζ 〈

l︷ ︸︸ ︷
∗, ..., ∗〉.

The proof is by induction on the syntax of e. The most important case is
apply-to-each, which we will demonstrate here. We assume a weakening
lemma in the type system that allows us to add assumptions to the typing
context.

5.1. TRANSLATION SOUNDNESS 137

Case e = {e0 : x in x0 using x1, ..., xk}. Since there is only one typing
rule for apply-to-each, the typing derivation must be:

Γ(x0) = {σ0}
(
Γ(xi) = τi

)k
i=1 [x 7→ σ0, x1 7→ τ1, ..., xk 7→ τk] ` e0 :: σ

Γ ` {e0 : x in x0 using x1, ..., xk} :: {σ} (k≥0)

There is also only one big-step evaluation rule that applies, so each of the
big-step derivations must be:

ρi(x0) = {vi,1, ..., vi,l′i
}
(
ρi[x 7→ vi,j] ` e0 ⇓ v′i,j $ ωi,j

)l′i
j=1

ρi ` {e0 : x in x0 using xτ1
1 , ..., xτk

k } ⇓ {v′i,1, ..., v′i,l′i} $ ωi

It remains to show that

({v′1,1, ..., v′1,l′1
}, ..., {v′l,1, ..., v′l,l′l}) /

l [[{e0 : x in x0 using x1, ..., xk}]]ζ 〈
l︷ ︸︸ ︷

∗, ..., ∗〉

From the definition of the translation we have

[[{e0 : x in x0 using xτ1
1 , ..., xτk

k }]]ζ s =

let (t, s′) = ζ x0 in
([[e0]][x 7→ t, (xi 7→ distτi (ζxi) s′)k

i=1] (usum s′), s′)

From ρi(x0) = {vi,1, ..., vi,l′i
} for i = 1..l and from (ρ1, ..., ρl) /

l ζ, we have
that

({v1,1, ..., v1,l′1
}, ..., {vl,1, ..., vl,l′l

}) / l ζ x0

Furthermore, from the definition of representation of sequences and (t, s′) =
ζ x0, we have

(
︷ ︸︸ ︷
v1,1, ..., v1,l′1

, ...,
︷ ︸︸ ︷
vl,1, ..., vl,l′l

) / l′′ t,

where l′′ = ∑l
i=1 l′i and

s′ = 〈
l′1︷ ︸︸ ︷

F, ..., F, T, ...,

l′l︷ ︸︸ ︷
F, ..., F, T〉.

Now, there are two sub-cases: l′′ = 0 and l′′ > 0. The first case l′′ = 0 is
a base case that does not use the inductive hypothesis. We will proceed to
demonstrate the case where l′′ > 0.

For the using variables xj in x1, ..., xk, from (ρ1(xj), ..., ρl(xj)) / l ζxj, we
have (v′′1,j, ..., v′′l,j) / l ζxj for some v′′i,j. Since s′ defines l segments, we get
(from the definition of dist, and by pulling the result back to high-level
values) that

(

l′1︷ ︸︸ ︷
v′′1,j, ..., v′′1,j, ...,

l′l︷ ︸︸ ︷
v′′l,j, ..., v′′l,j) /

l′′ distτj (ζxj) s′.

138 CHAPTER 5. TOWARD A FORMAL VALIDATION

By combining this result with (v1,1, ..., v1,l′1
, ..., vl,1, ..., vl,l′l

) / l′′ t, and by using
the definition of /l′′ for contexts, we get that the high-level contexts with
updated values for x are indeed represented as the low-level context holding
t for x and the v′′i,j values (note that dom(ρi[x 7→ vi,j]) ⊇ dom([x 7→ t, (xi 7→
distτi (ζxi) s′)k

i=1]) holds because the using variables must be in ρi by the
assumption that each ρi is well-typed in Γ):

(
︷ ︸︸ ︷
ρ1[x 7→ v1,1], ..., ρ1[x 7→ v1,l′1

] ...,
︷ ︸︸ ︷
ρl [x 7→ vl,1], ..., ρl [x 7→ vl,l′l

]) / l′′

[x 7→ t, (xi 7→ distτi (ζxi) s′)k
i=1]

By induction on e0 with this and with l′′ > 0 and with all the big-step
evaluations of e0 and the typing derivation of e0 (after weakening the con-
text), we get

(
︷ ︸︸ ︷
v′1,1, ..., v′1,l′1

, ...,
︷ ︸︸ ︷
v′l,1, ..., v′l,l′l) /

l′′ [[e0]][x 7→ t, (xi 7→ distτi (ζxi) s′)k
i=1] 〈

l′′︷ ︸︸ ︷
∗, ..., ∗〉

But since usum s′ = 〈
l′′︷ ︸︸ ︷
∗, ..., ∗〉, the right-hand side is really

[[e0]][x 7→ t, (xi 7→ distτi (ζxi) s′)k
i=1] (usum s′),

which is the definition of the whole translation without the segment de-
scriptor s′. We can attach s′, and since the segments add up to the high-level
lengths l′1, ..., l′l , the representation relation gives us the desired result:

({v′1,1, ..., v′1,l′1
}, ..., {v′l,1, ..., v′l,l′l}) /

l [[{e0 : x in x0 using x1, ..., xk}]]ζ 〈
l︷ ︸︸ ︷

∗, ..., ∗〉.

5.2 Translation completeness

The other direction of the translation soundness theorem also holds as we
do not turn a program that results in an error in the big-step semantics into
a error-free program that gives a result in the translated semantics.

Theorem: Translation Completeness
For all [] ` e : σ, if

[[e]][] 〈∗〉 = st

for some stream value st, then

[] ` e ⇓ v $ ω

for some v and ω and v / st.

5.3. SPACE COST MODEL 139

Since we do not have recursion, the only things that can go wrong in the
big-step semantics are runtime errors. The only operations that can cause
runtime errors are:

• !τ: Out-of-bounds error when indexing.

• zipk
σ1,...,σk

: Zipping two sequences of different lengths.

• &: Iota on negative arguments.

• theσ: If the argument sequence does not have length 1.

• f lagpartσ: Flag-partitioning a sequence where the number of T-flags
does not match the number of elements in the sequence.

• Many scalar operations cause an error on certain inputs such as log(0),
x/0 and sqrt(−1).

We ensure that the generated code inserts checks for all these operations,
and thus, translation completeness holds.

5.3 Space Cost Model

The ultimate goal of a formal treatment is to prove the correctness of our
space cost model. The time cost model is more or less identical to the work–
step cost model for NESL, and although it would be necessary to validate
the time cost model as well in an exhaustive validation, we focus on the
space cost model here, since that is the novel part. We refer to our empirical
validation for an assertion of the correctness of the time cost model.

The denotational semantics of translated SNESL expressions defined in
Chapter 2 does not say anything about buffers and the maximum size of
buffers. Consequently, translation soundness and completeness has essen-
tially only been proved for the most lenient evaluation strategy possible:
fully eager semantics. In order to say anything about chunked evaluation,
we must define a notion of buffers and the chunk size formally. For that,
we will use the translation given in Chapter 4, Figure 4.2, and define an
operational semantics for SVCODE.

5.3.1 Operational Semantics for SVCODE

Suppose we have two operational semantics for SVCODE. One that is fully
eager (like the denotational translation) and one that is fully sequential. To
describe them, we will use two to-be-defined judgments:

c ` Φp
0 ⇒ Φp

1

140 CHAPTER 5. TOWARD A FORMAL VALIDATION

c ` Φs
0 → Φs

1

Here c ranges over SVCODE programs, ⇒ is a single step in the parallel
operational semantics, and → is a single step in the sequential operational
semantics. Φ[p|s] ranges over the runtime state of the dataflow DAG. It is
a mapping from stream identifiers to stream values. In the parallel seman-
tics, Φp maps stream identifiers to fully manifest streams. In the sequential
semantics, Φs maps bounded stream identifiers to single-valued cells that
may only hold one value at a time, and unbounded stream identifiers to
buffers whose sizes are determined by the stepping rules of the judgment.
They should reflect the intended semantics of segtab where one argument
defines the segments on the buffer, and the semantics must allow one full
segment to occupy the buffer at a time.

The induced multi-step judgments⇒∗ and→∗ then tracks the additional
space (= the number of primitive values) stored in Φ[p|s] in each step. We
annotate multi-step sequences with this information as a postfix ($ S):

c ` Φp
0 ⇒

∗ Φp
1 $ S

c ` Φs
0 →∗ Φs

1 $ S

Since the parallel semantics is essentially the same as the denotational
semantics given in Chapter 2, translation soundness and completeness holds
for the parallel semantics.

The two semantics should produce the same observable result in the final
state. Note that, in the parallel semantics, the instructions are evaluated one
at a time, from top to bottom, possibly by keeping a program counter in
Φp, whereas, in the sequential semantics, any instruction that has sufficient
input data and room in its output cell may step. To allow comparing the
results, we allow observation on Φs that can look at past values. Thus Φs

obs
is a mapping from stream identifiers to all values of that stream seen so far.
We can then state the desired partial equivalence of the two semantics as:

If c ` init(c)→∗ Ωs $ S, and

c ` init(c)⇒∗ Ωp $ S then Ωs
obs = Ωp.

Where init(c) is the initial runtime state for the program c and Ω ranges
over runtime states that are in a completed state. That is, if the sequential se-
mantics terminate and the parallel semantics also terminate then the result-
ing states are equal under full observation of the sequential state. Starting
from a high-level SNESL expression e, we know from translation sound-
ness when⇒∗ terminates. Whether or not→∗ terminates is less certain and
requires a schedulability analysis. Strictly speaking, for the purpose of prov-
ing the upcoming desired theorem about space cost preservation, one could

5.3. SPACE COST MODEL 141

cheat by defining the sequential semantics so that no program ever termi-
nates. However, our implementation certainly suggests that it is possible to
define the sequential semantics so that almost all programs that terminate
in the parallel semantics, also terminate in the sequential semantics, and we
expect an actual definition to behave similarly.

5.3.2 Space Cost Preservation

Desired Theorem: Space Preservation For all [] ` e : σ, l > 0, let

(st, c, _) = S JeK [] s0 1.

If [] ` e ⇓ v $ (W, D; M, N; L) then 2 things:

1. Parallel space preservation: If

s0 := ctrl; c ` init(s0 := ctrl; c)⇒∗ Ωp $ S

then S = O(1 + L).

2. Sequential space preservation: If

s0 := ctrl; c ` init(s0 := ctrl; c)→∗ Ωs $ S

then S = O(1 + M + N).

In the translation, the s0 argument is the control stream, and 1 is the next
fresh identifier. If we can prove this desired theorem, we can combine the
two results and extrapolate to P processors by scaling the number of active
buffers (recorded in M) by P. This is sufficient because the unbounded
buffers are also accounted for in M and N only refers to the additional space
requirements for these buffers. In other words, scaling M scales all active
buffers. If, for any buffer, we overflow the parallel size by scaling with P,
we assume that the operational semantics does not allocate more than the
parallel size. We can then derive the expected cost on P processors as

S = O(min(P ·M + N, L)).

142 CHAPTER 5. TOWARD A FORMAL VALIDATION

The lemma that the theorem rests upon is quite complicated. The fol-
lowing is a sketch of how it could look:

Desired Lemma: Space Preservation Lemma For all Γ ` e : σ, l > 0, c0, ζ,
ρ1,...,ρl , i, sctrl, such that ρ1,...,ρl are well-typed in Γ and ζ maps the variables
of Γ to stream identifiers defined in c0, and i > j for all sj defined in c0, and
sctrl defines a stream of units in c of length l, let

(st, c, _) = S JeK ζ sctrl i.

If ρ1 ` e ⇓ v1 $ (W1, D1; M1, N1; L1) · · · ρl ` e ⇓ vl $ (Wl , Dl ; Ml , Nl ; Ll)

then 2 things:

1. Parallel space preservation: If

c0 ` init(c0)⇒∗ Ωp
1 $ S′

and
c0; c ` init(c0; c)⇒∗ Ωp

2 $ S

then S− S′ = O(Σl
i=1Li).

2. Sequential space preservation: If

c0 ` init(c0)→∗ Ωs
1 $ S′

and
c0; c ` init(c0; c)→∗ Ωs

2 $ S

then S− S′ = O(maxl
i=1 Mi + maxl

i=1 Ni).

The lemma states how much additional space is required in the parallel and
sequential evaluation of a translated program in a not necessarily empty
context. c0 represents any SVCODE program that computes the contexts
ρ1,..., ρl . We then consider an extended program c0; c where c is the instruc-
tions generated from e. If c0 terminates using S′ space and the extended
program terminates using S space, then the difference is at most the amount
of additional space required by the instructions in c. The additional space
in the two operational semantics is then related to the high-level cost model.
Just like the lemma for translation soundness, this lemma also relates mul-
tiple high-level evaluations with a single low-level evaluations.

We will now present a sketch of the required proof. The proof proceeds
by induction on the syntax of e:

5.3. SPACE COST MODEL 143

• Case e = a: There is also only one big-step evaluation rule that applies,
so each of the big-step derivations must be:

ρi ` a ⇓ a $ (1, 1; 1, 0; 1)

We start by showing parallel space preservation (1.). We have

S JeK ζ sctrl n = (n, n := rep sctrl a, n + 1)

Assume
c0 ` init(c0)⇒∗ Ωp

1 $ S′

c0; n := rep sctrl a ` init(c0; n := rep sctrl a)⇒∗ Ωp
2 $ S

then we must show

S− S′ = O(Σl
i=11) = O(l).

Since sctrl defines a stream of length l by assumption, rep sctrl a defines
a stream of length l as well. In the parallel semantics, this should
require exactly l space to evaluate, and so adding this instruction can
only introduce l more space, so S− S′ = O(l) as required.

The case of sequential space is analogous, only here, we must show S−
S′ = O(1). Since rep uses bounded buffers, the sequential semantics
cannot define more than 1 cell in Ω. Clearly, this requires 1 space and
we are done.

• Variables, tuples and projection: These operations generate no addi-
tional instructions. Therefore, c0; c = c0 and assuming determinism
with respect to space S = S′. But then S − S′ = 0 which trivially
satisfies what we must show.

• Case e = let x = e0 in e1: We must have:

ρi ` e0 ⇓ v0,i $ (W0,i, D0,i; M0,i, N0,i; L0,i)

ρi[x 7→ v0,i] ` e1 ⇓ v1,i $ (W1,i, D1,i; M1,i, N1,i; L1,i)

ρi ` let x = e0 in e1 ⇓ v1,i $
(W0,i + W1,i, D0,i + D1,i; M0,i + M1,i, N0,i + N1,i; max(L0,i, L1,i + P‖v0,i‖))

By inspecting the translation rule for let-bindings. We see that the
generated SVCODE takes the form

c0; (c′0; c′1)

where c′0 is the code generated from e0 and c′1 is the code generated
from e1. We will proceed by sketching the proof for parallel space and
sequential space preservation separately:

144 CHAPTER 5. TOWARD A FORMAL VALIDATION

1. Parallel space: Assume (A)

c0 ` init(c0)⇒∗ Ωp
1 $ S′

and:
c0; (c′0; c′1) ` init(c0; (c′0; c′1))⇒∗ Ωp

2 $ S.

which we assume is the same as (B):

(c0; c′0); c′1 ` init((c0; c′0); c′1)⇒∗ Ωp
2 $ S,

where we have associated the SVCODE fragments differently. It
then remains to show that

S− S′ = O(Σl
i=1(max(L0,i, L1,i + P‖v0,i‖)).

Since we assumed (B), we can conclude (C):

c0; c′0 ` (c0; c′0)⇒∗ Ωp
3 $ S0.

For some intermediate result-state Ωp
3 and some space cost S0.

That is, we can remove instruction from the end of an SVCODE
program without introducing non-termination. This is obviously
true but formally requires a separate lemma. Now, by using the
induction hypothesis on e0 on (A) and (C) with all the other as-
sumption unchanged we get:

S0 − S′ = O(Σl
i=1L0,i).

Using the induction hypothesis on e1 (with all the assumption
corrected to account for the new binding) on (C) and (B) we get

S− S0 = O(Σl
i=1L1,i).

Rearranging the two equations for space we get:

S− S′ = O(Σl
i=1L0,i) + O(Σl

i=1L1,i) = O(Σl
i=1(L0,i + L1,i)).

Unfortunately, this is greater (or at least different) than what we
must show, i.e.

S− S′ = O(Σl
i=1(max(L0,i, L1,i + P‖v0,i‖)).

The reason is that we have not accounted for deallocation in the
operational semantics. In order to complete this case, the parallel
semantics must be able to capture that streams that are no longer

5.3. SPACE COST MODEL 145

referred to are freed. For let-bindings, that means that the streams
in e0 that do not constitute the stream values bound to x are freed
after evaluating e0. For example, in the parallel evaluation of

let x = e0 in φ(x),

the value v0 of e0 can be safely discarded once it is consumed by
φ(x). If a stream escapes the scope, e.g. x is visible in e1 in

let y = let x = e0 in (φ(x), x) in e1,

its size is accounted for in the cost model by the term P‖(v′0, v0)‖
that arises when costing the outer let-binding. v′0 is the value of
φ(v0).
This has the side-effect that if the value occurs multiple time, such
as in

let x = e0 in (φ(x), x, x),

then we charge the size of x twice. In our actual implementation
we do not copy x twice. Since our cost model is conservative, this
is not a problem.

2. Sequential space: This case is very much the same as the case
for parallel space, except that we actually arrive at the correct
result. The cost model for sequential space in let-bindings com-
bines the cost of e0 and e1 by summation. This is because, unlike
for parallel space, we cannot assume that it is safe to deallocate
streams defined in e0 after the scope of x. The dataflow nature of
the sequential semantics might require us to step e1 before e0 is
completed.

• Case e = {e : x in x0 using xτ1
1 , ..., xτk

k }: There is also only one big-step
evaluation rule that applies, so each of the big-step derivations must
be:

ρi(x0) = {vi,1, ..., vi,l′i
}
(
ρi[x 7→ vi,j] ` e0 ⇓ v′i,j $ ω′i,j

)l′i
j=1

ρi ` {e0 : x in x0 using xτ1
1 , ..., xτk

k } ⇓ {v′i,1, ..., v′i,l′i} $ ωi

Here, for each i in 1..l, each ω′i,j (for j in 1..l′i) is related to ωi as de-
fined by the cost model. We will give more precise definitions in the
subcases to follow. The translation of e takes the form

c0; c = c0; si := usum sctrl; cdist; c′0

where cdist is the SVCODE generated from distributing the using vari-
ables and c′0 is the SVCODE generated from the body expression e0.

146 CHAPTER 5. TOWARD A FORMAL VALIDATION

1. Parallel space: According to the cost model, the parallel space for
evaluating e in ρi (for i = 1..l) is

ωi,L = l′i + l′i · Σk
i=1|τi|+ Σl′i

j=1ω′i,j,L.

By assuming evaluation of c0 and evaluation of c0; c, we arrive to
a point where it remains to show that

S− S′ = O

(
l

∑
i=1

(l′i + l′i · Σk
i=1|τi|+ Σl′i

j=1ω′i,j,L)

)

= O

(
l

∑
i=1

l′i +
l

∑
i=1

(l′i · Σk
i=1|τi|) +

l

∑
i=1

(Σl′i
j=1ω′i,j,L)

)

= O

(
l′′ + l′′ · Σk

i=1|τi|+
l

∑
i=1

(Σl′i
j=1ω′i,j,L)

)
where l′′ =

l

∑
i=1

l′i

We must account for the space cost of usum, the distributions,
and c. l′′ is the parallel degree of the body, and consequently
the length of the streams defined by usum and dist. The space
cost of usum is accounted for by the first term l′′. By a simple
inductive proof of the concrete types, the space cost of the dis-
tributions are accounted for by the second term l′′ · Σk

i=1|τi| (both
also work when l′′ = 0, in which case usum and dist does not al-
locate anything), the space cost of c requires two subcases: l′′ = 0
and l′′ > 0.

– Subcase l′′ = 0: If l′′ = 0, then each of l′i = 0 for i = 1..l and

∑l
i=1(Σ

l′i
j=1ω′i,j,L) = 0. Therefore, the execution of the transla-

tion of e0 is required to use no space in the parallel semantics.
One way of showing this, could be by a separate lemma that
shows that when the control stream is empty, no space is
used. This should go through as all instructions results in the
empty stream on empty stream arguments.

– Subcase l′′ > 0: Induction hypothesis on e0 gives a space cost
of

S− S0 = O(
l

∑
i=1

(Σl′i
j=1ω′i,j,L)),

where S0 is the parallel space cost that includes everything
so far as well as usum and the distributions. This cost is ac-
counted for by the last term as they are identical.

5.3. SPACE COST MODEL 147

2. Sequential space: According to the cost model, the seqeuntial
space for evaluating e in the different environments are

ωi,M = 1 + Σk
i=1|τi|+

l′imax
j=1

ω′i,j,M

and

ωi,N =
l′imax

j=1
ω′i,j,N .

The core equation we have to show here is then:

S− S′

= O
(

l
max
i=1

(
1 + Σk

i=1|τi|+
l′imax

j=1
ω′i,j,M

)
+

l
max
i=1

(
l′imax

j=1
ω′i,j,N

))
= O

(
1 + Σk

i=1|τi|+
l

max
i=1

(
l′imax

j=1
ω′i,j,M

)
+

l
max
i=1

(
l′imax

j=1
ω′i,j,N

))

usum and the distributions are accounted for by the terms 1 +

Σk
i=1|τi| because both usum and dist define a single bounded

buffers. For the translation and evaluation of e0 we consider two
sub-cases:

– Subcase l′i = 0 for all i ∈ 1..l: So

l
max
i=1

(
l′imax

j=1
ω′i,j,M

)
+

l
max
i=1

(
l′imax

j=1
ω′i,j,N

)
= 0.

This subcase is similar to the subcase for parallel space. If e0

requires no space, then it cannot have any active buffers, and
there is nothing to account for.

– Subcase l′i > 0 for some i ∈ 1..l: Induction on e0 gives a space
cost of

S− S0 = O
(

l
max
i=1

(
l′imax

j=1
ω′i,j,M) +

l
max
i=1

(
l′imax

j=1
ω′i,j,N)

)
,

where S0 is the sequential space cost that includes everything
so far as well as usum and the distributions. This cost is ac-
counted for by the last term.

• Case {e | x0 using xσ1
1 , ..., xk

σk}: The case for conditional comprehen-
sions is similar to apply-to-each. dist and pack are basically the same
operation with respect to space cost.

Chapter 6

Conclusion

The previous chapters certainly indicate a positive assessment of our orig-
inal hypothesis: Data-parallel functional programming languages can be-
come more space-efficient by using streaming semantics instead of being
fully eager. We have demonstrated so for both GPUs and CPUs. As a gen-
eral technique, we have demonstrated how data-parallel languages can be
extended with sequences:

1. Many fully manifesting vector computations can be re-expressed as
sequence computation allowing a large class of problems to be formu-
lated statically as streamable.

2. Sequences integrate well with the existing languages. We support
manifest vector-to-sequence conversion through sequencing and sequence-
to-vector conversion through tabulation. Lifting (and flattening in
the case of SNESL) allows efficient support chunking – including se-
quences of vectors where each element is generated by a vector com-
putation.

3. Sequences offer the same time-performance characteristics as vectors,
and offer much better space performance.

4. For SNESL, we have been able to formulate an intuitive, high-level,
language-integrated cost model for space that clearly describes the im-
proved space-performance characteristics of sequences over vectors.

For both NESL and Accelerate we have integrated a large subset of the
language as part of the syntax for sequences. Streaming Accelerate is a bit
more restricted in the sense that only regular sequences (sequences of arrays,
where the arrays have the same size) are executed predictably efficient. This
seems to reflect the general regularity of the language in a natural way.

149

150 CHAPTER 6. CONCLUSION

Chapter 2 presented the formal foundation of our work: We formalized
the language SNESL that extends NESL with sequences and extended the
cost model of NESL with a cost model of space that guarantees that se-
quences are streamed, but also that sequences evaluate using all available
parallel resources. In particular, our model retains the performance charac-
teristics of NESL’s parallelism-flattening approaches.

Chapter 3 empirically explored the streaming model on GPUs using a
different frontend language that does not allow irregular nested data par-
allelism. The chapter extended the programming language Accelerate with
sequences akin to those described in Chapter 2. We did not attempt to
formalize a cost model for Streaming Accelerate, as the original Accelerate
language does not have a cost model. We showed that much larger data
sets can be processed on the GPU with virtually no additional effort from
the programmer and with virtually no penalty on performance. This was
shown on a number of representative benchmarks. Unlike CPUs, GPUs have
no means of recovering when running out of memory, so a streaming im-
plementation for GPUs is quite valuable, especially considering that GPUs
are quite popular in the big data community.

Chapter 4 implemented the full streaming model, including support for
irregular nested data parallelism, on multicores, and demonstrated good
timings and positive empirical evidence of the validity of the cost model,
both for time and space. By implementing SNESL, the Chapter showed
significant performance improvements on CPUs over GNU coreutils text
processing tools. Here, execution times are sometimes faster due to better
cache utilization. Moreover, on a single thread, execution times may even
be faster than sequential C code in situations where the C code is written in
such a way that the compiler cannot apply automated vectorization whereas
we can.

Figure 6.1 shows a summary of the results of all the experiments in this
thesis. Notice that Streaming Accelerate has practically the performance as
ordinary Accelerate for all the benchmarks. The most remarkable numbers
in the table for SNESL are the single-threaded speedup of word count and
max line length of 1.5 and 1.4 respectively, and the scaling (with number of
threads) factor of the four text processing benchmarks of between 0.5 and
0.7. Since text processing contains difficult to parallelize irregular nested
data parallelism evidenced by the lack of multi-threading support in GNU
Coreutils, these scaling factors are impressive despite being sub-optimal (op-
timal scaling is 1.0).

The overall positive assessment of the two languages SNESL and Stream-
ing Accelerate, and the difference in architecture for CPUs and GPUs, sug-
gests that our streaming approach has wide applicability across multiple

151

Benchmark Frontend Backend NDP? Speedup Scaling
Dot product S. Acc. S. Acc. CUDA None 1.0
maxSum S. Acc. S. Acc. CUDA None 1.0
mvm S. Acc. S. Acc. CUDA Reg 1.0
MD5 S. Acc. S. Acc. CUDA Reg 1.0
PageRank S. Acc. S. Acc. CUDA Reg 1.0
Logsum SNESL Hw. CUDA None 0.8
Logsum SNESL DPFlow None 1.0 0.9
Logsumsum SNESL Hw. CUDA IReg 0.7
Logsumsum SNESL DPFlow IReg 0.8 0.7
N-Body SNESL Hw. CUDA Reg 0.2
Word count SNESL DPFlow IReg 1.5 0.7
Max line length SNESL DPFlow IReg 1.4 0.6
Line Reverse SNESL DPFlow IReg 0.5 0.6
Cut SNESL DPFlow IReg 0.5 0.5

Figure 6.1: This table contains a summary of all the experiment benchmarks
in this thesis. S. Acc. abbreviates Streaming Accelerate. Hw. abbreviates
Hand-written. The CUDA backends runs on GPU while the DPFlow back-
end runs on multicores. The column NDP? ascertains whether the prob-
lem contains no nested data parallelism (None), regular nested data paral-
lelism (Reg) or irregular nested data parallelism (IReg). The speedup col-
umn shows the speedup compared to the baseline implementation for the
largest tested problem size. The baseline compared against are handwrit-
ten CUDA without streaming for handwritten CUDA, ordinary Accelerate
for Streaming Accelerate, and GNU Coreutils for the DPFlow text process-
ing benchmarks and C for DPFlow logsum and logsumsum. For DPFlow,
speedups are measured on a single thread since most of the baseline im-
plementations do not have multithread support. The last column lists how
well the benchmark scales with the number of threads where 1.0 is perfect
scaling.

152 CHAPTER 6. CONCLUSION

platforms for regular-parallel as well as irregular-parallel problems.
Finally, Chapter 5 took the initial steps toward a formal validation of the

cost model. The main idea is to first formulate an operational semantics
for the low-level flat language (SVCODE) with a low-level cost model. We
then want to show that the cost model of SNESL is related to the cost model
of SVCODE: The low-level cost of SNESL programs translated to SVCODE
are asymptotically bounded on P processors by the high-level cost of the
original SNESL program. The theoretical work is incomplete yet promising.

6.1 Related Work

This thesis primarily builds on the work on NESL [Ble92, BCH+94] and
Accelerate [CKL+11]. Our key technique of chunking is a generalization of
piecewise execution [PPCF95]. NESL-GPU [BR12], Proteus [PPW95] and Data
Parallel Haskell [LCK+12] are all languages that employ flattening nested
data parallelism although they do not support streaming. On the other
hand, BrookGPU [BFH+04] and Sponge [HSW+11] are stream-based data-
parallel languages that do not offer flattening.

The thesis was developed in context of the HIPERFIT research center.
A number of other data parallel languages are being developed in the con-
text of HIPERFIT: FCL [DESS16], Bohrium [KLB+13], APLtail [ED14] and
Futhark [HEO14, HO14]. This thesis is a suitable reference point if these
languages are to be extended with streaming functionality.

6.2 Further Work Summary

Streaming Accelerate As of this writing, the language is under active de-
velopment, and some of the points are being addressed by the people work-
ing on Accelerate at the University of New South Wales. The points may be
summarized as:

• Chunked execution of irregular sequences.

• Low-level optimizations such as automatic sequentialisation, overlap-
ping of data transfer and computation and multi-GPU support.

SNESL The future work mentioned in the two SNESL papers remains
mostly unsolved. The one exception is that the second paper implements
a multicore backend for SNESL, which was a point of future work in the
first paper. The other points may be summarized as:

• Extending the language and cost model with recursion.

6.2. FURTHER WORK SUMMARY 153

• Static checking of schedulability.

• Formally establishing the time and space efficiency of the implemen-
tation model.

• Extending the model to account for bulk random-access vector writes
(permutes, or more generally, combining-scatter operations) in order
to support histogramming and bucket sorting.

Even without these points, Streaming Accelerate and SNESL are both
already useful languages for high-level functional data-parallel streaming.
The underlying principle of sequence expressions and a chunked dataflow
execution model could certainly have interest and bring value to other func-
tional data-parallel languages. In a world where storage, computations and
data sets are getting larger, but the speed of light remains the same, stream-
ing will eventually become an unavoidable concern for any data-parallel
language. This thesis breaks new ground towards platform-independent,
cost-model guided streaming.

Bibliography

[BCH+94] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hard-
wick, Jay Sipelstein, and Marco Zagha. Implementation of a
portable nested data-parallel language. Journal of Parallel and
Distributed Computing, 21(1):4–14, April 1994.

[BFH+04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon
Fatahalian, Mike Houston, and Pat Hanrahan. Brook for
GPUs: Stream computing on graphics hardware. In ACM
SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages 777–786, New
York, NY, USA, 2004. ACM.

[BG96] Guy E. Blelloch and John Greiner. A provable time and space
efficient implementation of NESL. In International Conference
on Functional Programming, ICFP’96, pages 213–225, Philadel-
phia, Pennsylvania, May 1996.

[BGM99] Guy E. Blelloch, Phillip B Gibbons, and Yossi Matias. Prov-
ably efficient scheduling for languages with fine-grained par-
allelism. Journal of ACM, 46(2):281–321, March 1999.

[Ble90a] Guy E. Blelloch. Prefix sums and their applications. Technical
Report CMU-CS-90-190, November 1990.

[Ble90b] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT
Press, Cambridge, MA, USA, 1990.

[Ble92] Guy E. Blelloch. NESL: A nested data-parallel language. Tech-
nical Report CMU-CS-92-103; updated version: CMU-CS-05-
170, School of Computer Science, Carnegie Mellon University,
1992.

[Ble95] Guy E. Blelloch. NESL: A nested data-parallel language (3.1).
Technical report, 1995. http://www.cs.cmu.edu/afs/cs.cmu.
edu/project/scandal/public/papers/CMU-CS-95-170.ps.

gz.

155

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/CMU-CS-95-170.ps.gz
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/CMU-CS-95-170.ps.gz
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/CMU-CS-95-170.ps.gz

156 BIBLIOGRAPHY

[Ble96] Guy E. Blelloch. Programming parallel algorithms. Communi-
cations of the ACM, 39(3):85–97, March 1996.

[BR12] Lars Bergstrom and John Reppy. Nested data-parallelism on
the GPU. In Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2012), ICFP ’12,
pages 247–258, Copenhagen, Denmark, 2012. ACM.

[BS90] Guy E. Blelloch and Gary W. Sabot. Compiling collection-
oriented languages onto massively parallel computers. J. Par-
allel Distrib. Comput., 8(2):119–134, February 1990.

[Buc03] Ian Buck. Brook language specification, October 2003. http:

//merrimac.stanford.edu/brook.

[CBZ90] Siddhartha Chatterjee, Guy E. Blelloch, and Marco Zagha.
Scan primitives for vector computers. In Proceedings of the 1990
ACM/IEEE Conference on Supercomputing, Supercomputing ’90,
pages 666–675, Los Alamitos, CA, USA, 1990. IEEE Computer
Society Press.

[CKL+11] Manuel M. Chakravarty, Gabriele Keller, Sean Lee, Trevor Mc-
Donell, and Vinod Grover. Accelerating Haskell array codes
with multicore GPUs. In Proceedings of the Sixth Workshop on
Declarative Aspects of Multicore Programming, DAMP ’11, pages
3–14, Austin, Texas, USA, 2011. ACM.

[CLJ+07] Manuel M. Chakravarty, Roman Leshchinskiy, Simon Pey-
ton Jones, Gabriele Keller, and Simon Marlow. Data parallel
Haskell: A status report. In Proceedings of the 2007 Workshop on
Declarative Aspects of Multicore Programming, DAMP ’07, pages
10–18, Nice, France, 2007. ACM.

[CSS08] Koen Claessen, Mary Sheeran, and Joel Svensson. Obsidian:
GPU programming in Haskell. In IFL: Implementation and Ap-
plication of Functional Languages, 2008.

[DESS16] Martin Dybdal, Martin Elsman, Bo Joel Svensson, and Mary
Sheeran. Low-level functional gpu programming for paral-
lel algorithms. In Proceedings of the 5th International Workshop
on Functional High-Performance Computing, pages 31–37. ACM,
2016.

[ED14] Martin Elsman and Martin Dybdal. Compiling a subset of
APL into a typed intermediate language. In Proceedings of

http://merrimac.stanford.edu/brook
http://merrimac.stanford.edu/brook

BIBLIOGRAPHY 157

the 1st ACM SIGPLAN International Workshop on Libraries, Lan-
guages and Compilers for Array Programming, ARRAY’14. ACM,
2014.

[Ell04] Conal Elliott. Programming graphics processors functionally.
In Haskell Workshop. ACM Press, 2004.

[GLGLBG12] Juan GóMez-Luna, José MaríA GonzáLez-Linares, José Igna-
cio Benavides, and NicoláS Guil. Performance models for
asynchronous data transfers on consumer graphics process-
ing units. J. Parallel Distrib. Comput., 2012.

[HEO14] Troels Henriksen, Martin Elsman, and Cosmin E Oancea. Size
slicing: a hybrid approach to size inference in futhark. In
Proceedings of the 3rd ACM SIGPLAN workshop on Functional
high-performance computing, pages 31–42. ACM, 2014.

[HO14] Troels Henriksen and Cosmin E Oancea. Bounds checking: An
instance of hybrid analysis. In Proceedings of ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for
Array Programming, page 88. ACM, 2014.

[HSW+11] Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor
Mudge, and Scott Mahlke. Sponge: Portable stream program-
ming on graphics engines. SIGARCH Comput. Archit. News,
39(1):381–392, March 2011.

[KCL+10] Gabriele Keller, Manuel M. T. Chakravarty, Roman Leshchin-
skiy, Simon L. Peyton Jones, and Ben Lippmeier. Regular,
shape-polymorphic, parallel arrays in Haskell. In ICFP: Inter-
national Conference on Functional Programming. ACM, 2010.

[KCL+12] Gabriele Keller, Manuel M. Chakravarty, Roman Leshchinskiy,
Ben Lippmeier, and Simon Peyton Jones. Vectorisation avoid-
ance. In Proceedings of the 2012 Haskell Symposium, Haskell ’12,
pages 37–48, Copenhagen, Denmark, 2012. ACM.

[KLB+13] Mads RB Kristensen, Simon AF Lund, Troels Blum, Kenneth
Skovhede, and Brian Vinter. Bohrium: unmodified numpy
code on cpu, gpu, and cluster. Python for High Performance and
Scientific Computing (PyHPC 2013), 2013.

[KS73] Peter M Kogge and Harold S Stone. A parallel algorithm for
the efficient solution of a general class of recurrence equations.
IEEE transactions on computers, 100(8):786–793, 1973.

158 BIBLIOGRAPHY

[KS96] Gabriele Keller and Martin Simons. A calculational approach
to flattening nested data parallelism in functional languages.
In Proceedings of the Second Asian Computing Science Confer-
ence on Concurrency and Parallelism, Programming, Networking,
and Security, ASIAN ’96, pages 234–243, Singapore, 1996.
Springer-Verlag.

[Lar11] Bradford Larsen. Simple optimizations for an applicative ar-
ray language for graphics processors. In DAMP: Declarative
Aspects of Multicore Programming. ACM, 2011.

[LCK06] Roman Leshchinskiy, Manuel MT Chakravarty, and Gabriele
Keller. Higher order flattening. In Computational Science–ICCS
2006, pages 920–928. Springer, 2006.

[LCK+12] Ben Lippmeier, Manuel M. T. Chakravarty, Gabriele Keller,
Roman Leshchinskiy, and Simon L. Peyton Jones. Work effi-
cient higher-order vectorisation. In International Conference on
Functional Programming, ICFP’12, pages 259–270, Copenhagen,
Denmark, September 2012.

[LCKPJ12] Ben Lippmeier, Manuel Chakravarty, Gabriele Keller, and Si-
mon Peyton Jones. Guiding parallel array fusion with indexed
types. In Haskell Symposium. ACM, 2012.

[LM87] Edward Ashford Lee and David G Messerschmi’tt. Static
scheduling of synchronous data flow programs for digital sig-
nal processing. IEEE Transactions on Computers, 2(36), 1987.

[Mad12] Frederik M. Madsen. Flattening nested data parallelism. Mas-
ter project. 2012. http://www.diku.dk/~fmma/publications/
nested.pdf.

[Mad13] Frederik M. Madsen. A streaming model for nested data par-
allelism. Master’s thesis, DIKU, University of Copenhagen,
March 2013. http://www.diku.dk/~fmma/publications/

thesis-report%20(handin).pdf.

[MCECK15] Frederik M. Madsen, Robert Clifton-Everest, Manual M. T.
Chakravarty, and Gabriele Keller. Functional array streams.
In Proceedings of the 4th ACM SIGPLAN Workshop on Func-
tional High-performance Computing, FHPC ’15, pages 23–34,
New York, NY, USA, 2015. ACM.

http://www.diku.dk/~fmma/publications/nested.pdf
http://www.diku.dk/~fmma/publications/nested.pdf
http://www.diku.dk/~fmma/publications/thesis-report%20(handin).pdf
http://www.diku.dk/~fmma/publications/thesis-report%20(handin).pdf

BIBLIOGRAPHY 159

[MCKL13] Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele
Keller, and Ben Lippmeier. Optimising purely functional GPU
programs. In ICFP: International Conference on Functional Pro-
gramming, September 2013.

[MF13] Frederik M. Madsen and Andrzej Filinski. Towards a stream-
ing model for nested data parallelism. In Proceedings of the
2nd ACM SIGPLAN Workshop on Functional High-performance
Computing, FHPC ’13, pages 13–24, New York, NY, USA, 2013.
ACM.

[MF16] Frederik M. Madsen and Andrzej Filinski. Streaming nested
data parallelism on multicores. In Proceedings of the 5th ACM
SIGPLAN Workshop on Functional High-performance Computing,
FHPC ’16, New York, NY, USA, 2016. ACM.

[MG09] Duane Merrill and Andrew Grimshaw. Parallel scan for
stream architectures. University of Virginia, Department of Com-
puter Science, Charlottesville, VA, USA, Technical Report CS2009-
14, 2009.

[MM10] Geoffrey Mainland and Greg Morrisett. Nikola: Embedding
compiled GPU functions in Haskell. In Haskell Symposium.
ACM, 2010.

[NHP07] Lars Nyland, Mark Harris, and Jan Prins. Chapter 31. Fast
N-Body Simulation with CUDA. In Hubert Nguyen, editor,
GPU Gems 3. Addison-Wesley Professional, 2007.

[NVI12] NVIDIA. CUDA C Programming Guide, 2012.

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking: Bringing order to
the web. 1999.

[PJ08] Simon Peyton Jones. Harnessing the multicores: Nested data
parallelism in Haskell. In Proceedings of the Sixth Asian Sympo-
sium on Programming Languages and Systems, APLAS ’08, pages
138–150, Bangalore, India, 2008. Springer-Verlag.

[PP93] Jan F. Prins and Daniel W. Palmer. Transforming high-level
data-parallel programs into vector operations. In Proceedings
of the Fourth SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP ’93, pages 119–128, San Diego,
California, USA, 1993. ACM.

160 BIBLIOGRAPHY

[PPCF95] Daniel W. Palmer, Jan F. Prins, Siddhartha Chatterjee, and
Rickard E. Faith. Piecewise execution of nested data-parallel
programs. In Languages and Compilers for Parallel Computing,
8th International Workshop, LCPC’95, volume 1033 of Lecture
Notes in Computer Science, Columbus, Ohio, August 1995.

[PPW95] Daniel W. Palmer, Jan F. Prins, and S. Westfold. Work-efficient
nested data-parallelism. In Proceedings of the Fifth Symposium
on the Frontiers of Massively Parallel Computation (Frontiers’95),
FRONTIERS ’95, pages 186–193, McLean, Virginia, 1995. IEEE
Computer Society.

[Riv92] Ronald Rivest. The MD5 message-digest algorithm. 1992.

[RPI95] J. W. Riely, Jan F. Prins, and S. P. Iyer. Provably correct vector-
ization of nested-parallel programs. In Proceedings of the Con-
ference on Programming Models for Massively Parallel Computers,
PMMP ’95, pages 213–222, Washington, DC, USA, 1995. IEEE
Computer Society.

[RS] John Reppy and Nora Sandler. Nessie: A NESL to CUDA
compiler. Paper presented at the 18th International Workshop
on Compilers for Parallel Computing, CPC ’15, London.

[RSA+13] Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown,
Vojin Jovanovic, HyoukJoong Lee, Martin Odersky, and Kunle
Olukotun. Optimizing data structures in high-level programs:
New directions for extensible compilers based on staging. In
POPL’13. ACM, 2013.

[SBHG08] Daniel Spoonhower, Guy E. Blelloch, Robert Harper, and
Phillip B. Gibbons. Space profiling for parallel functional
programs. In International Conference on Functional Program-
ming, ICFP’08, pages 253–264, Victoria, BC, Canada, Septem-
ber 2008.

[Sch03] Sven-Bodo Scholz. Single Assignment C: Efficient support for
high-level array operations in a functional setting. Journal of
Functional Programming, 13(6):1005–1059, 2003.

[She93] Thomas J. Sheffler. Implementing the multiprefix operation
on parallel and vector computers. In Fifth Annual ACM Sym-
posium on Parallel Algorithms and Architectures, pages 377–386,
1993.

BIBLIOGRAPHY 161

[Skl60] Jack Sklansky. Conditional-sum addition logic. IRE Transac-
tions on Electronic computers, (2):226–231, 1960.

[TKA02] William Thies, Michal Karczmarek, and Saman Amarasinghe.
StreamIt: A language for streaming applications. In Compiler
Construction. Springer, 2002.

[ZM12] Yongpeng Zhang and Frank Mueller. CuNesl: Compiling
nested data-parallel languages for SIMT architectures. In 41st
International Conference on Parallel Processing, ICPP 2012, pages
340–349, 2012.

	Contents
	Preface
	Acknowledgments
	Introduction
	Background and Motivation
	Time, Space and the Speed of Light
	Parallelism
	Data Parallelism
	Nested Data Parallelism (NDP)
	Flattening
	Ideal Cost Model

	Hypothesis and Method
	NESL
	Virtual Segment Descriptors

	Contributions
	Terminology
	Road Map

	Towards a Streaming Model for NDP
	Introduction
	A Simple Language with Streamed Vectors
	Syntax and Informal Semantics
	Value Size Model
	Evaluation and Cost Model

	Implementation Model
	Data Representation
	Translation
	Execution Model

	Empirical Validation
	Log-sum
	Sum of Log-sums
	N-Body
	Discussion

	Preliminary Conclusions and Future Work

	Functional Array Streams
	Introduction
	Accelerate
	Fusion
	Handling Large Data Sets

	Programming Model
	Examples
	Streams
	From Arrays to Sequences and Back
	Lazy Lists to Sequences

	Execution Model
	Translation
	Vectorization
	Scheduling
	Parallel Degree and Regularity Analysis

	Evaluation
	Dot Product
	MaxSum
	MVM
	MD5 Hash
	PageRank

	Related Work
	Future Work

	Streaming NDP on Multicores
	Introduction
	Streaming VCODE (SVCODE)
	SNESL to SVCODE
	Optimization

	DPFlow: A Multicore Interpreter for SVCODE
	Execution
	Nursery
	Scheduling
	SIMD Vectorization
	Multi-Threading

	Experiments
	Logsum
	Logsumsum
	Word Count
	Max Line Length
	Line Reverse
	Cut

	Conclusions and Future Work

	Toward a Formal Validation
	Translation soundness
	Translation completeness
	Space Cost Model
	Operational Semantics for SVCODE
	Space Cost Preservation

	Conclusion
	Related Work
	Further Work Summary

	Bibliography

