Streaming for Functional
Data-Parallel Languages

Frederik M. Madsen
University of Copenhagen
fmma@diku.dk

September, 2016

This thesis has been submitted to the
PhD School of The Faculty of Science,
University of Copenhagen

iii

Abstract

In this thesis, we investigate streaming as a general solution to the space
inefficiency commonly found in functional data-parallel programming lan-
guages. The data-parallel paradigm maps well to parallel SIMD-style hard-
ware. However, the traditional fully materializing execution strategy, and
the limited memory in these architectures, severely constrains the data sets
that can be processed. Moreover, the language-integrated cost semantics
for nested data parallelism pioneered by NESL depends on a parallelism-
flattening execution strategy that only exacerbates the problem. This is be-
cause flattening necessitates all sub-computations to materialize at the same
time. For example, naive n by n matrix multiplication requires n® space in
NESL because the algorithm contains 7> independent scalar multiplications.
For large values of #, this is completely unacceptable.

We address the problem by extending two existing data-parallel lan-
guages: NESL and Accelerate. In the extensions we map bulk operations
to data-parallel streams that can evaluate fully sequential, fully parallel or
anything in between. By a dataflow, piecewise parallel execution strategy,
the runtime system can adjust to any target machine without any changes in
the specification. We expose streams as sequences in the frontend languages
to provide the programmer with high-level information and control over
streamable and non-streamable computations. In particular, we can extend
NESL's intuitive and high-level work—-depth model for time complexity with
similarly intuitive and high-level model for space complexity that guaran-
tees streamability.

Our implementations are backed by empirical evidence. For Stream-
ing Accelerate we demonstrate performance on par with Accelerate without
streams for a series of benchmark including the PageRank algorithm and
a MD5 dictionary attack algorithm. For Streaming NESL we show that for
several examples of simple, but not trivially parallelizable, text-processing
tasks, we obtain single-core performance on par with off-the-shelf GNU
Coreutils code, and near-linear speedups for multiple cores.

iv

Resumé

I denne afhandling undersoger vi streaming som en general losning pa den
plads-ineffektivitet, der er at finde blandt mange funktionelle data-parallelle
sprog. Det data-parallelle paradigme har en god overseettelse til SIMD-
hardware, men den traditionelle fuldt materialiserende kerselsstrategi, og
den begraensede mangde hukommelse pé disse arkitekturer, begreenser dog
de dataseet der kan arbejdes pa. Den sprog-integrerede omkostningsmodel
for nested data-parallelisme, pioneret af NESL, afhaenger af en parallelisme-
udglattende korselsstrategi, der kun forveerrer problemet. Dette er fordi
udglatning nedvendigger at alle delberegninger er materialiseret pd samme
tid. For eksempel kreever naiv n gange n matrix-multiplikation 13 plads i
NESL, fordi algoritmen indeholder n3 uafheengige skalar-multiplikationer.
For store veerdier af n er dette helt uacceptabelt.

Vi adresserer problemet ved at udvide to eksisterende data-parallelle
sprog: NESL og Accelerate. I udvidelserne overseetter vi parallelle opera-
tioner til data-parallelle stromme der kan evalueres helt sekventielt, helt par-
allelt eller alt indimellem. Ved brug af en dataflow, stykvis parallel kersels-
strategi, kan runtime-systemet tilpasse sig enhver malmaskine uden no-
gen endring i specifikationen. We eksponerer streamme som sekvenser i
frontend-sproget for at give programmeren et hejt niveau af information og
kontrol over strembare og ikke-strombare beregninger. Navnligt udvider
vi NESL's intuitive og hejniveau arbejde—skridt omkostningsmodel med en
ligeledes intuitiv og hejniveau omkostningsmodel for plads der garanterer
strombarhed.

Vores implementationer er opbakket af empirisk evidens. For Stream-
ing Accelerate demonstrerer vi ydelse pa linje med Accelerate uden stream-
ing for en reekke benchmarks heriblandt PageRank-algoritmen og en MD5
opslagsangrebs-algoritme. For Streaming NESL viser vi for adskillige sim-
ple, men ikke trivielt paralleliserbare, tekst-processerings-opgaver, at vi op-
nar ydelse pa linje med GNU Coreutils veerktejer, og neer linezer speedup pa
flere kerner.

Contents

Contents
Preface
Acknowledgments

1 Introduction

1.1 Background and Motivation
1.1.1 Time, Space and the Speed of Light

1.1.2 Parallelism

1.1.3 Data Parallelism
1.1.4 Nested Data Parallelism (NDP)

1.1.5 Flattening

116 Ideal CostModel
1.2 Hypothesis and Method

13 uNESL

1.3.1 Virtual Segment Descriptors

14 Contributions . .
1.5 Terminology . . .
1.6 Road Map

2 Towards a Streaming Model for NDP

2.1 Introduction . . .

2.2 A Simple Language with Streamed Vectors

221 Syntax and

Informal Semantics

222 ValueSizeModel x
2.2.3 Evaluation and CostModel x
2.3 ImplementationModelo 0oL
2.3.1 Data Representation

2.3.2 Translation

233 ExecutionModel
24 Empirical Validation

ix

x1

N Ul W DN /-

11
14
14
22
24
25
26

vi

CONTENTS

241 Log-sum, 52

242 Sumoflog-sums. 53

243 N-Body........... 57

244 Discussion oo o o000 59

2.5 Preliminary Conclusions and Future Work 61
Functional Array Streams 63
31 Introduction 63
32 Accelerate 65
321 Fusion 66

3.22 Handling Large DataSets 67

3.3 Programming Model, 68
331 Examples 68

332 Streams oo 69

3.3.3 From Arrays to Sequencesand Back 70

334 Lazy ListstoSequences 73

34 ExecutionModel 0 0L 74
341 Translation. 77

34.2 Vectorization 79

343 Scheduling. 83

3.4.4 Parallel Degree and Regularity Analysis 84

35 Evaluation 0 0 L 86
351 DotProduct 90

352 MaxSumo o o 91
353 MVM 91
354 MD5SHash....................... ... 92

355 PageRank 92

36 Related Work 93
37 FutureWork 93
Streaming NDP on Multicores 95
41 Introduction L L. 95
42 Streaming VCODE (SVCODE) 97
43 SNESLtoSVCODE 101
43.1 Optimization 108

44 DPFlow: A Multicore Interpreter for SVCODE 111
441 BExecution 111
442 Nursery 112
443 Scheduling. 114
444 SIMD Vectorization. 114

445 Multi-Threading 122

45 Experiments oL 123

CONTENTS

451 Logsum,
452 Logsumsum,
453 WordCount
454 MaxLineLength
455 LineReverse.
456 Cut
4.6 Conclusions and Future Work

5 Toward a Formal Validation

5.1 Translationsoundness
5.2 Translation completeness
53 SpaceCostModel
5.3.1 Operational Semantics for SVCODE
53.2 Space Cost Preservation

6 Conclusion
6.1 Related Work
6.2 Further Work Summary

Bibliography

vii

123
124
126
128
130
131
133

135
135
138
139
139
141

149
152
152

155

Preface

This is my PhD dissertation, which I completed at the Computer Science
Department at the University of Copenhagen (DIKU) in September 2016
(expected) under the HIPERFIT research center. It is the culmination of my
work as PhD student under Andrzej Filinski.

The dissertation is structured around three papers, on all of which I am a
main author. The papers were published and presented at different install-
ments of the ACM SIGPLAN Workshop on Functional High-Performance
Computing (FHPC) in the years 2013, 2015 and 2016. The papers are pre-
sented each in a separate chapter, and in chronological order.

The first paper is presented as it was published with a couple of revi-
sions: The original space cost model was too pessimistic and has conse-
quently been updated. The second paper is presented as it was published.
The third paper has been heavily revised in order to better fit in the dis-
sertation. The introduction has been removed to avoid repetition, and the
description of the target language and its interpreter has been expanded to
give a more detailed description. Finally, we have added a section in the end
that reflects on the potential of a formal proof of validity of the cost model.

The bulk of the work has been carried out by myself at DIKU under su-
pervision of, and in collaboration with, Andrzej. This work includes Chap-
ter 2 and Chapter 4, and parts of the introduction that are adapted from my
Master’s Thesis [Mad13], which I completed during my PhD (my PhD was
an integrated 4+4 program).

Chapter 3 was developed during my change of scientific environment at
the University of New South Wales in Sydney (UNSW), in collaboration with
Rob Clifton-Everest under the supervision of Gabriele Keller and Manuel
Chakravarty.

ix

Acknowledgments

Andrzej Filinski is an incredibly intelligent, insightful and discerning man,
and I hold him in the highest regard. He has been a great help throughout
my time at DIKU, and I thank him most sincerely.

Thanks to my dear friends and colleagues at HIPERFIT. Thanks to Mar-
tin Elsman for employing me in the research center and for arranging many
enjoyable meetings and retreats. Thanks to Fritz Henglein for setting the
agenda while allowing me to focus on my own work. Thanks to Martin Dyb-
dal, Troels Henriksen and Cosmin Oancea who also work on data-parallel
languages and whom have been a great source of discussions and inspira-
tion.

A warm thank you to all the people I got to know in Sydney during my
stay at UNSW. You gave me a great time both professionally and personally.
Thanks to Amos Robinson, Michael Schréder, Abdallah Saffidine, George
Roldugin, Li Lee and Timo von Holtz. Special thanks to Robert Clifton-
Everest for working with me on Streaming Accelerate. Thanks to Manuel
Chakravarty and Gabriele Keller for hosting me and making me feel wel-
come.

An infinite stream of thanks to my beloved Nikoline. Thanks for the sur-
prise party, thanks for accompanying me to Sydney and thanks for enduring
my devotion to my work.

Frederik M. Madsen, Copenhagen 2016

xi

Chapter 1

Introduction

1.1 Background and Motivation

Making computations run fast is perhaps the single biggest agenda in con-
temporary computer science. Today’s successful scientific papers often demon-
strate impressive improvements in the execution time for some problem in
some context. Multiple areas of research are working towards this common
goal: Algorithms, programming languages, systems and architectures. This
dissertation studies the problem from a programming language perspective.

Programming languages abstract the underlying hardware — the ma-
chine. They create a formal language in which programmers and algorithms
researchers can talk to each other and to the machine. If the language is
sufficiently abstract (high level) the same language may be used for many
different machines, including, hopefully, the machines of tomorrow.

This is an attractive property for many reasons. For instance, programs
written in a high-level language are less platform-dependent, and therefore
also more future proof. Furthermore, a good abstraction hides many low-
level details of the machine from the programmer, allowing the programmer
to focus on the essence of the problem. Together, these qualities may dras-
tically increase the value of the enormous amount of man hours spend on
programming every day, world wide.

However, it is absolutely crucial that the high-level programs execute ef-
ficiently on the target machine(s). Execution time and power consumption
are both important considerations when considering the quality of a piece
of software. For many application, response time is critical, and power con-
sumption adversely affects the environment and one’s electricity bill. Energy
consumption is proportional to execution time, and consequently, lowering
the execution time should be the foremost concern.

2 CHAPTER 1. INTRODUCTION

1.1.1 Time, Space and the Speed of Light

Computers are not exempt from the laws of physics, but we like to think they
are. Even though physics tells us that information cannot travel faster than
the speed of light, many machine models in computer science erroneously
assumes that it can. The random-access machine model assumes that a
piece of information can be retrieved from an arbitrarily large storage space
in constant time, which is clearly a violation of the principles of physics.

In reality, the time it takes to access a cell must be proportional to the
physical distance between the cell and the observer — here, the computa-
tional unit. In an n-sized collection, the time for random access therefore
cannot be any faster than O(y/n). This assumes that the storage occupies
all three dimensions of space. In practice, storage is primarily arranged in
two-dimensional grids (or small number of layers of two-dimensional grids),
which gives an even worse bound of O(/n).

A realistic value of n is given by the address space of modern 64-bit
systems, which allows up to 2 locations. Constant-time random-access can
be justified in a machine model by considering this number to be a constant.
However, the hidden constant factors are not insignificant. Most models that
do account for the size of the storage, charge O(logn) for random-access.
This is still overly optimistic if one considers the concrete factors at n = 2%4:

Random-access: =1
Log-access: log,(2%%) = 64
Theoretical limit: V264 ~ 2,600,000
Theoretical limit (2D): V264 4,300, 000,000

Over the years, we have witnessed a general increase in the amount of
data being processed and the sheer scale of computations. This makes the
problem increasingly more pronounced, and the model becomes increas-
ingly inaccurate. Reality shows that locality matters, and caching mecha-
nisms have proven to be a serious necessity. Accessing information not in
cache is almost always orders of magnitude slower than accessing in-cache
information.

Caches are by no means a silver bullet. They only work when the same
piece of information is retrieved multiple times in a short period of time.
Whether or not they create the illusion of true random-access, therefore de-
pends on the nature and the right formulation of the problem. Caches are
implemented by hardware designers, and are usually completely transpar-
ent to the programmer. If the programmer wishes to tweak the program to
get better cache behavior, it usually has to be done at a very low level of

1.1. BACKGROUND AND MOTIVATION 3

abstraction; the programmer must know the details of the cache hierarchy
of the machine.

In this dissertation, we attack the problem from a programming lan-
guage standpoint. A part of our hypothesis is, that by confining random-
access to only where it is absolutely needed, at the language level, streaming,
as a programming language paradigm, can aid programmers design, imple-
ment and reason about random-access-friendly algorithms at a high level of
abstraction, without even knowing what a cache is.

However, by simply abolishing random-access everywhere, we end up
with a terribly restricted language. Even though many problems can be
expressed without the use of random-access, other problems inherently re-
quire the ability to perform the indexing operation. The challenge is there-
fore to design an abstraction for streams that clearly encapsulates the extend
of which a computation requires random-access within a context of streams
and manifest data.

Furthermore, we want a language that affords high-level reasoning about
time and space, and that can be implemented efficiently on any given ma-
chine, especially including, since we care about performance, parallel ma-
chines.

1.1.2 Parallelism

After the breakdown of Moore’s law, one of the key factors in modern hard-
ware performance is parallelism. Since a single core hardly gets any faster,
modern machines are made faster by employing many parallel cores. As
long as the problem to be solved can be hopefully broken down into more
pieces, more cores can work on the problem at the same time. Almost all
problems exhibit parallelism in one way or another.

Parallel machines come in many flavors, and are generally programmed
in wildly different ways. Exploiting the full potential parallelism of a given
parallel machine requires careful attention to the low-level details. If a pro-
gramming language is too abstract, it becomes very difficult to exploit the
parallelism fully, not only from the perspective of the programmer, but also
from the perspective of the compiler that has to infer these low-level details.
Thus, there is a trade-off between abstraction and performance.

A high-level language can never perform as well as a low-level language,
but we try to get as close as possible; close enough that the benefits of
abstraction out-weights the loss in performance. One of the main hurdles,
and the focus of this dissertation, is the advent and the added complexity of
parallelism.

4 CHAPTER 1. INTRODUCTION

1.1.3 Data Parallelism

Data parallelism is one approach to dealing with parallelism from a lan-
guage point-of-view. Here, parallelism is expressed as parallel operations
on sequences of values. The operations on sequences are specified uni-
formly, and the language then translates to parallel operations on the target
machine however it sees fit. Thus, the programmer can expect the values
of a sequence to be computed simultaneously if the machine has enough
parallel resources.

Data parallelism is very natural and high-level way of thinking about
parallelism. There are other ways of thinking about parallelism, for instance
task parallelism. Here, parallelism must be explicitly stated by the program-
mer in the form of tasks to run, potentially on different physical processors.
Although more natural for some applications (including applications in sys-
tems, communication and concurrency), this approach is a lot more explicit,
and therefore a lot less abstract, than the data-parallel approach. Moreover,
it precludes homogeneously parallel machines, that are unable to exploit
parallelism in completely unrelated tasks. In data parallelism, task are in-
herently related, since operation are specified uniformly.

It is important to stress, that data-parallel programming languages al-
most always express work that can be done in parallel, not work that must
be done in parallel. This is because the available parallel resources, the number
of available processing units, can vary greatly from back-end to back-end,
and it is usually easy for the compiler to “chunk up” parallel steps that are
too parallel into several steps, whereas it would be tedious, if not impossible,
for the programmer to do so manually for each imaginable back-end. The
amount of work in a single step can therefore be used as a measure of poten-
tial parallel degree of a program, and once a program is executed on a specific
back-end, we can measure the actual parallel degree of the program, which
should be the same as the minimum of the available parallel resources and
potential parallel degree.

Chunks and the act of chunking is a central principle in this thesis. More
formally, a chunk is defined as a positive number of contiguous elements
of a linear data structure. The number of elements is referred to as the
chunk size. The smallest chunk size is 1 while the greatest chunk size is the
whole data structure. “Chunking up” means to take a linear data structure
and divide all the elements into non-overlapping chunks. More often than
not, these chunks will be similar in size, and when a common upper bound
is placed on the chunk sizes, we refer to this upper bound as the chunk
size, implicitly referring to the common maximum size of each individual
chunk. The convention of referring to the chunk size extends to multiple
data structures that shares the same global chunk size.

1.1. BACKGROUND AND MOTIVATION 5

Data parallelism in a programming language can be achieved simply by
having a library of parallel algorithms that operate on sequences. A common
way to introduce more expressive data parallelism, is to introduce a new
construct that essentially is a parallel foreach loop, or a parallel sequence
comprehension:

{ep:xine},

where x may be free en e¢y. We call this parallel comprehension an apply-to-
each. The semantics is, first to evaluate e; to a sequence of values [0y, ..., v;].
Then, the body expression e is evaluated I times, once for each v; substi-
tuted for x, the result of which forms the resulting sequence of the whole
expression. In functional languages, this construction is commonly referred
to as a map of Ax.ey over ej.

A key point is, that each evaluation of the body must be independent in
order to claim that they can be executed in parallel or out of order without
unexpected results, and it is therefore necessary that the body expression
has no side-effects, that can effect the parallel evaluations. This makes func-
tional programming very attractive for this kind of data parallelism.

1.1.4 Nested Data Parallelism (NDP)

Some data-parallel programming languages allows data-parallel constructs

to be nested. Those languages are referred to as nested data-parallel lan-
guages. The unrestricted apply-to-each construct affords nested data-parallelism
in the form of nested maps and maps of other data-parallel operations. An
example of a nested data-parallel expression is:

{{eo:xine }:yiney}

Conversely, a flat data-parallel programming language is a programming
language that can express data parallelism, but does not allow nesting. This
is usually imposed as restrictions in the type system, or by simply not having
an apply-to-each construct in the language.

Nestedness is an inherent property of a data-parallel language with the
parallel apply-to-each construct. Consequently, nested data-parallel lan-
guages are generally more expressive than flat parallel languages, and many
common parallel algorithms are indeed more concise and/or more poten-
tially parallel, when written in a nested data-parallel language [Ble96]. At
the source level, nested data parallelism is clearly more desirable than flat
data parallelism, but at the compiler level the story is the opposite.

As mentioned in the previous section, it is usually up to the compiler
to perform chunking as necessary in a data-parallel language. Chunking is
trivial if the data-parallel operation is flat since it is just a matter of doing

6 CHAPTER 1. INTRODUCTION

some work in one step, and then proceed to do the rest. In the case of
nested data parallelism the process of chunking becomes less obvious as
each sub-computation may have a different potential parallel degree. A
common approach for nested data parallelism languages is to flatten nested
data parallelism expressions into equivalent flat data-parallel expressions
first, and then compile it or interpret it using a simple flat data-parallel
compiler or interpreter.

1.1.5 Flattening

Flattening was first proposed by Guy Blelloch and realized in the program-
ming language NESL [BS90, Ble90b, Ble95], and has later been studied and
refined by others such as Jan Prins and Daniel Palmer with the language
Proteus [PP93, RP195, PPW95], and Gabriele Keller, Simon Peyton Jones and
Manuel Chakravarty with the language Data Parallel Haskell [KS96, PJOS,
CLJ+07].

The main idea of flattening is to lift every primitive operation in the
language. In the lifted version, the input and output type are lifted to se-
quences. E.g if we have an addition primitive with the type

+ : (Int, Int) — Int,
then lifted addition has the type (where square brackets the sequence type):
L(+) : [(Int, Int)] = [Int] .

Furthermore, it is common to convert sequences of tuples into tuples of
sequences. In that case, lifted addition has the type:

L(+) : ([Int], [Int]) — [Int].

In this representation, barring length checking, zipping (and unzipping) be-
comes free, which is very convenient when dealing with lifted contexts con-
taining many conceptually zipped vectors.

Lifting can be extended to expressions. In a standard type system, for
any well-typed expression e with type T in type context I' (writtenasI' - e :
T), the lifting of e has type:

[T+ L(e) : [7]

where the length of the context (which is a sequence of contexts) is supposed
to be the same as the length of the result.

If we apply the sequence-of-tuples to tuple-of-sequences transformation
on the context I' = [x1 — Ty, ..., X — Ti, the lifting of e has the type:

[x1 — [T], .., xx = [w]] F L(e) : [T]

1.1. BACKGROUND AND MOTIVATION 7

which gives a single context (rather than a sequence of contexts) that can
be used in a standard type system. Furthermore, lifting variables and let-
bindings becomes trivial and can be implemented simply as:

L(x)=x

L(letx =epine;) =letx = L(eg) in L(e7)

At the basis, primitive operation application is then lifted by using the lifted
version of the operation:

However, constants become a bit more complicated. For I' - n : Int where
n ranges over constant integers, we need the lifted version [I'] - £(n) : [Int]
to evaluate to a sequence of n’s where the length of the sequence is the same
as the length of the context (which is a sequence of contexts). In order to do
so, the language must support the primitive (or something equivalent):

distribute; :: (T,Int) — [7T]

If apply-to-each and the iota operation is available, distribute can be imple-
mented as
distribute(x,n) = {x : _in &n}.

Here & is the iota operation (the name is borrowed from APL). It takes
a non-negative integer n as input and produces the sequence [0..n — 1] as
output.

In the tuple-of-sequences representation, we do not always have the
length argument at hand. In particular, the context might be empty, and
so, we cannot provide a lifting for constants in that case:

L(n) = distribute(n,?)

If the context is non-empty;, i.e. if there exists an x in the (lifted) domain, we
can define
L(n) = distribute(n, #x)
where
#e o [T] = Int

is the length operation, which must be provided as a primitive also. One so-
lution is to let lifting be indexed by an expression that evaluates the needed
length. Another solution is to ensure that the context is always non-empty
by let-binding a dummy control value at the top level, e.g.:

letctrl = () ine

8 CHAPTER 1. INTRODUCTION

We will use the latter approach.

As we shall see in a moment, it is not necessary to define lifting of apply-
to-each. The ultimate goal of lifting is to eliminate nested data parallelism.
Lifting allows us to eliminate apply-to-each constructs, thus eliminating
nested data parallelism. The required transformation is called flattening.
We denote it here by F(—). It operates on typed expressions, and it pre-
serves the types. If I' - e : 7, then T F F(e) : T and F(e) is guaranteed to be
free of apply-to-each constructs.

It works by transforming apply-to-each constructs to let-bindings. The
body expression is lifted to operate on the entire sequence at once instead of
on each element. This lifting requires the surrounding context (the variables
in the context other than x) to be distributed over the length of x. In a context
where the domain (without x) is xq, ..., xx, the flattening of the apply-to-each
construct is:

F({eo:xine}) =1let x = F(e)
x1 = distribute(xy, #x)

X = distribute(xy, #x)
in L(F(ep))

Note that let-bindings here are not recursive, and x; = distribute(xq,#x)
defines a new value for x; that hides the old value. This is the central case
in the flattening transformation. In all other cases, F(—) is simply applied
to the sub-expressions. By flattening eg before lifting it, we eliminate apply-
to-each constructs before lifting and do therefore not have to consider lifting
apply-to-each.

As a simple example, consider flattening the expression {x+1 : x in &10}
in the empty context. Remember, &10 computes the sequence [0,1,2,...,9].
We will use a top-level control value to lift constants. In this case, the con-
stant 1 needs lifting. Thus, we want to calculate the following flattening:

F(letctrl = () in {x +1:x in &10})
The first step is to flatten the let-binding which simply flattens the let-bound
expression and the body expression. Flattening the let-bound expression

does nothing as F(()) = (), so

F(letctrl = () in {x+1:x in &10})
=letctrl = () in F({x+1: x in &10})

1.1. BACKGROUND AND MOTIVATION 9

We now arrive at the interesting case where we must flatten an apply-to-
each. Following the rule, we get:

letctrl = () in F({x+1: x in &10})

= let ctrl = () in let x = F(&10)
ctrl = distribute(ctrl, #x)

in L(F(x+1))

We can then apply F(&10) = &10 and F(x+1) = x + 1 (since these ex-
pression do not contain apply-to-each), and lift the body by L(x +1) =
L(+)(x, distribute(1, #ctrl)) to get the final result:

F(letctrl = () in {x+1:x in &10})

=letctrl = () inlet x = &10
ctrl = distribute(ctrl, #x)
in L(+)(x,distribute(1,#ctrl))

As can be seen, the control stream is re-defined as ctrl = distribute(ctrl, #x)
which means that the parallel degree is now the same as the length of x. The
new control stream is then used to distribute the constant 1. Further simple
program analysis allows us to eliminate the control stream entirely as the
whole expression reduces to:

let x = &10 in L(+)(x, distribute(1,#x)).

It is not always possible to eliminate the control stream. If the control stream
is consumed in multiple places, for example, it cannot be eliminated without
incurring duplication of work.

In the case of nested data parallelism, the operation in the inner-most
body will be lifted twice, as can be seen by the following example: In the
context [xss — [[Real]]], we have:

F({{sqrt(x) : x in xs} : xs in xss})
= let xs = xss in let x = xs in L£(L(sqrt)(x))

Then, how do we proceed with L(L(sqrt)(x))? If we use the same rule for
lifting for lifted operation as we do for non-lifted operations, we would get
L(L(p)(x)) = L(L(p))(x). However, that would require us to have to de-
fine lifted versions of every operation up to an arbitrary high level of lifting.
In order to avoid that, the lifting transformation can treat lifting lifted opera-
tions differently from lifting non-lifted operations. Essentially, it is possible
to transform doubly-lifted operations into singly-lifted operations by con-
catenating the input, applying the singly-lifted operation and partitioning

10 CHAPTER 1. INTRODUCTION

the output according to the shape of the original input. For that we need
two additional and fairly standard primitive operations:

concaty :: [[t]] = [7]
partitiony :: ([t], [Int]) — [[7]]
We can then describe the lifting of lifted operations as follows:
L(L(p)(x)) = partition(L(p)(concat(x)), L(#)(x))

Here, L£(#) is the lifted version of # that computes the top-most structure
of a nested sequence. The following is one way to define (by example) the
three operations:

concat([la,b], L [c)) = [a,b,c]
£ ([0, b) = 201
partition([a,b,c],[2,0,1]) = [la,b],[], [c]]

The whole approach is made viable by a clever representation of nested se-
quences that allows these three operations to be cheap. A nested sequence is
represented by a flat data sequence with an accompanying segment descrip-
tor that holds the nesting structure of the nested sequence. As an example
the nested sequence:

0=1[11,2,3], |4, [, [5,6]],
will be represented by a flat data sequence:
d=11,2,3,4,5,6],
and a segment descriptor describing the length of each sub-sequence:
so=1[3,1,0,2].

This representation can be generalized to sequences of any nesting depth.
For example:

o=[0. [L23], 4, 0,56, (7], 189,10]]
will be represented by
d=11,2,3,4,5,6,7,8,9,10]
and

so=1[3,1,0,2,1,0,3]
s1 = 1[0,4,3]

1.1. BACKGROUND AND MOTIVATION 11

Concatenation is then achieved by simply removing the top-most seg-
ment descriptor, and similarly partitioning by the shape of the original input
is achieved by attaching the top segment descriptor of the original input on
top of the result. A general property of the segment descriptors is that the
sum of the elements in a segment descriptor equals the length of the lower
segment descriptor (or data sequence). Depending on the backend, flatten-
ing is a necessary step in order to execute nested data-parallel programs.
Flattening also gives work balancing for map-like operations for free, since
we concatenate all sub-sequences in nested data parallelism expressions.
Reduction and scans can also be made work balanced by providing efficient
lifted versions of these operations. These essentially become segmented re-
duce and segmented scan, which have well-known efficient parallel imple-
mentations.

1.1.6 Ideal Cost Model

The usual way to reason about time in an abstract way is to consider the two
extreme cases: A sequential machine with one processor (available parallel
resources = 1), and a machine with an unbounded number of processors
(available parallel resources = o). The time complexity on a sequential ma-
chine is often called work and the time complexity on an unbounded parallel
machine is often called steps or depth. Steps is also a measure of the longest
chain of sequential dependencies in a program.

By assigning an idealized work and step complexity to the primitive
operations, the ideal work and step complexities of any expression can be
quantified in a natural language-based cost model alongside the value se-
mantics. This provides a simple compositional cost model, that is easily
understood by the programmer.

The reasons why this approach works, as Blelloch demonstrates using
Brent’s Lemma in [Ble90b], is that the asymptotic time complexity T on a
given machine with P processors can then be derived as a function of work
and steps:

T = O(work/ P + steps)

Le. the total work can be cleanly distributed over P processors with the ex-
ception of the longest sequential path. Unfortunately, this result assumes the
random-access model, which does not sufficiently penalize random-access.
Consequently, large vectors are not discouraged in the considered imple-
mentation models. On the contrary, bigger is better, as large vectors exhibit
a larger degree of potential parallelism. In practice, this causes a space cost
proportional to the degree of potential parallelism, when, in many cases, a
space cost proportional to the degree of realized parallelism is sufficient.

12 CHAPTER 1. INTRODUCTION

For example, 7 X n matrix multiplication contains 1> scalar multiplica-
tions that can all be computed in parallel. Whether it is a good idea to
compute them all in parallel or not depends on #n and the available parallel
resources of the backend. Both are parameters that the programmer should
not be aware of when expressing the algorithm in a high level language.

For an even simpler example, consider the expression

sum([1..n]),

that simply sums the numbers from 1 to n. If we assign the following real-
istic costs to the basic operations:

Operation Work Steps
sum([v1, ..., v;]) l log!
[l..12] L—-IL 1,

the cost model will charge sum([1..n]) with 2n work and 1 + log n steps.

This can be trivially realized by performing the two steps one at a time
and storing the intermediate result in memory in its full length. In other
words, the cost model suggests a fully eager semantics. For large values of
n, not only will this result in bad cache performance, we might run out of
space altogether.

An immediate fix, is to manually divide the computation at the expres-
sion level, and transform the expression into the equivalent expression (with
respect to the result):

sum([1.n/2]) + sum([n/2 + 1..n))

where the two operands to (+) are computed sequentially. That is, first
sum([1..n/2]) fully evaluates to a number, and only then will sum([n/2 +
1..n]) evaluate.

Even though work is still 2n, the steps is increased from 1+ logn to
2+2log 5 =2+2(logn — 1) = 2log n. Since 2log n is almost always worse
than 1+ logn, the execution time is likely worse on machines that have
sufficient available parallel resources. On the other hand, a less parallel
machine might benefit from this transformation. We do not want to punish
the programmer for exposing too much parallelism. The actual space cost
should not depend on the potential degree of parallelism, but rather the
degree of realized parallelism. What is needed is a cost model for space,
that prohibits the implementation model from being fully eager — unless
there is enough available parallel resources.

There is no standard way to reason about space in a data-parallel pro-
gram; the subject is not covered as much as time complexity. Most exist-
ing data-parallel languages do not distinguish the space complexity on a

1.1. BACKGROUND AND MOTIVATION 13

sequential machine from the space complexity on a parallel machine!, i.e.
there is no space-related equivalent of work and steps giving a space com-
plexity cost model in the two extreme case of available parallel resources =
1 and available parallel resources = co. One of the assertions of this disserta-
tion is that we need to make this distinction between sequential and parallel
space, and one of the contributions is to provide a natural, language-based
cost model, that sufficiently quantifies the space complexity, and derives an
ideal space cost given a concrete machine.

Continuing with our simple example, our approach is to assign sequen-
tial and parallel space cost to the primitive operations:

Operation Work Steps Sequential space Parallel space
sum([vy, ..., v1]) l log! 1 1
(..15] I - 1 1 L—1h,

and augmenting the semantics with a language-based cost model for space.
By doing so, in addition to having values for work and steps, our examples
has a sequential space of 2 and a parallel space of 1 + n.

Ideally, on a concrete machine with P processors, the evaluation of an
expression with sequential space S; and parallel space S, must satisfy an
asymptotic space cost of

S = O(min(P - S1,5)).

Our example must then evaluate in O(min(P,n)) space. This means that
the implementation model is no longer allowed to manifest the entire range
before commencing the reduction. Keep in mind that it still has to obey the
time cost model which stipulates an asymptotic execution time in O(n/P).
The only way this can be realized, is if the execution model executes the
operations in chunks, and the size of each chunk is O(P). Instead of a fully
eager semantics, the execution model needs to dynamically perform the
transformation we did earlier, and instead of splitting the expression in two,
it may have to split the expression into multiple steps.

It is, however, not always possible to evaluate each step of a program in
sequential fixed-sized chunks. There are a number of situations in which
our simple approach breaks down. For instance, as mentioned earlier, we
cannot allow unrestricted indexing, as the chunk that contains the indexed
element may not be available at the time of the index operation. Another
problem arises if we attempt to use a sequence from the outer context in the

IThere are some notable exception to this statement, Guy Blelloch et. al. has given
a provably space efficient scheduling for nested parallelism[BGM99], but their work only
applies to fine-grained control parallelism.

14 CHAPTER 1. INTRODUCTION

body of an apply-to-each. For example the expression
let xs = [1..1000] in {xs : _in [1..100]}

requires traversing xs 100 times in the apply to each. We will explore the
problematic situations and how we can deal with them in this dissertation.

1.2 Hypothesis and Method

Data-parallel programming languages — in particular, nested data-parallel
programming languages — can become more space-efficient — without de-
grading performance — by using streaming semantics instead of being fully
eager. Execution times may even be faster due to better cache utilization.
Mainly due to random-access, the class of programs amendable for stream-
ing execution is not clearly marked out in most languages, and in order to
provide predictable performance and/or formal guarantees about perfor-
mance, the frontend language must be extended with a restricted syntax for
streamable expressions. It is possible to define such an extension such that:

1. It contains a large subset of the original language, and therefore allows
a large class of data-parallel problems to be expressed as streams.

2. It integrates well with the original language in the sense that streams
may be converted to manifest vectors and vice versa, and streams of
non-streamable computations are expressible.

3. Streams are data-parallel and have at least as good time performance
as their manifest counterparts in the original language.

4. It allows high-level platform-independent predictions and/or guaran-
tees about space performance, with excellent space performance for
streams compared to fully manifest data structures.

The hypothesis is tested by theorizing, implementation and experimen-
tation on different platforms, with most of the work devoted to implementa-
tion. We implement streaming extensions to two existing languages: NESL
and Accelerate. Streaming NESL targets multicores with vector units and
Streaming Accelerate targets GPUs. The two implementations are validated
by empirical experiments.

1.3 uNESL

The primary focus in this dissertation centers around the programming lan-
guage NESL [Ble95]. NESL is a first-order functional nested data-parallel

1.3. uNESL 15

language with ML-like syntax. The standard implementation model for
NESL is VCODE, which is a stack-based vector bytecode language. It suffers
from the space problem of fully eager evaluation outlined in the previous
sections.

NESL has a formal cost model for work and steps, which makes it suit-
able for testing our hypothesis. In this section we give a brief description of
uNESL, a language we have designed as a simplified version of NESL that
contains only the core functionality. This is the language we attempt to im-
prove by extending it with stream syntax and semantics, and a cost model
for space usage.

The values of yNESL are:

a == T|F|n@mez)|r(er)|---

v al (vy,..,vr) | [01, .., 01

where [v1, ..., vj] is a sequence of values of length I. As part of our notation,
I and k both range over natural numbers: k are small, statically known num-
bers, such as the number of elements in a tuple, while [are potentially very
large runtime-dependent numbers, such as the length of a sequence.

The types are:

= Bool | Int | Real | - -

T o= 7wl (nm,.. %) | [7]

The syntax of uNESL expressions is defined as:

e = x|al(e,..e) |eilletx=r¢epine
| ¢(e) | {eo: x in ey using xq, ..., x;}

¢ == @ |mkseqt | zip’;1 ,,,,, v | partition: | concaty | & | #: | !¢
| reducer | scang

& = 4| |log]--

R == +|*|max|min

uNESL has let-bindings, products and nested data parallelism in the form
of the apply-to-each construct. For apply-to-each, we adapt the notation
throughout the remainder of the thesis of {eg : x in e; using x1, ..., X }, where
x1 through x; lists the free variables (other than x in ep). Unlike ordinary let-
bindings, in the flattening execution strategy, these variables are distributed
over the sequence of e; before ¢y can evaluate, and they consequently require
special attention in an operational semantics and a precise cost model.

16 CHAPTER 1. INTRODUCTION

The builtin operations ¢ (see Figure 1.2) contains only the minimal set of
operations necessary to express all of NESL's operations. The &-operation
reads as iota and &(n) computes the sequence [0, ..., n — 1]. The #-operation
is the length operation and the !-operation is indexing.

For ease of reading, we introduce a couple of syntactic short-hands:

le1, ..., ex] = mkseq®(eq, ..., e)

e1 ++ ex = concat([eq, e2)])

Conditionals are not primitive as they are expressible through the other
constructs of the language. As demonstrated in the following, we can repre-
sent a nullable value with an empty sequence for null and a unit sequence
for a non-null value, and we can then use apply-to-each to evaluate an ex-
pression conditionally:

if e; then e] else e =

let b = bool2int(e1) in
({e2: _in &b using FV(e2)} ++ {e3 : _in &(1 — b) using FV(e3)}) !+ 0

Here, FV (e) refers to the free variables of e. Likewise, we can define guarded
apply-to-each constructs.

{eo: xin e1 | e using x1,..., xx } =

concat({{eo : _in &(bool2int(ey)) using x, x1, ..., ¢ } : x in e; using x1,...x })

Here, the body expression ¢j is only evaluated in the cases where e, evalu-
ates to T. Notice that crucially, x is available to be used in e.

The type system (Figure 1.1) and big-step semantics (Figure 1.4) are quite
standard, with the exception that the semantics incorporates a cost model
for work and steps. Primitive operations are given types and semantics
separately in Figures 1.2 and 1.3.

The cost model presented here, is similar to the one presented for the
original NESL. Note that the cost of distributing a using variable (one of
x1,...xx in {eg : x in e; using x1, ..., X }) is not accounted for immediately
in the cost of apply-to-each. Instead, it is accounted for by the fact that the
cost of variable lookup is non-zero. If the x; appears in the body ej, and is
reached in each of the / evaluations of ¢y, the sum of the costs of looking up
x; would end up being the same as the cost of distributing x; up front (which
would be I). In other cases, x; might not be reached in all the evaluation of
eo, it might not appear at all in eg, or it might even appear multiple times.
This makes it quite difficult to respect the cost model using a flattening
execution strategy where the distribution generally has to happen once and

1.3. uNESL

'te:t

Ix)=r1
I'txoT I'T:Bool T'kFn:lInt T'Fr::Real

k
IF'ei:t7), 5
(i 1)1:1 'ke:: (1.'1,..., Tk) (1<ick)
T'E (e, er) = (11,0 Tc) IkeinT
IT'keut Tlx—1wFenm I'Fexn ¢uT—1
I'Fletx=¢ine; 17y I'¢le) :m
I'kep:: [T()] [xl—>T0,X1l—>T1,...,xkl—>Tk] FeuoT

I't{e:xin ey using xy,..., x;} :: [T]

Figure 1.1: Typing rules for yNESL.

+ = (Int,Int) — Int
k
mkseqk (EJ?) — [t] k=0
Zip%,...,rk 2: ([Tl], ey [Tk] — [(Tl, ey Tk)] k>1
partition, ([], [Int]) — [[7]]

concaty [[T]] = [7]

& Int — [Int]

#: = [1]—Int

' ([T],Int) = T
reduceg : [1t] =T Ri(mn)—n

scang [t] =[] Ri(mm)—n

Figure 1.2: Primitive operations types.

18 CHAPTER 1. INTRODUCTION

+(no,m) = (ng+mny1)
mkseqt (v1, .., v) = ([01, ., 0], 25 [0i]) k0
zz'p';1 ,,,,, Tk([v%,...,vll],...,[vi,...,vi]) = ([(v%,...,v,l),...,(vll,...,vf{)],
25212;-‘:1|v§]) k=1
n ny

1 ’
o0,y T, By [0r]) 2yt
[Ulf---rvl]/Z§:1|vi\)
0,..,n—1],n) o0<n
l

Un, |vn|) 0<n<i
IR 5:101‘1 I)
[0, [R]}_1i, ..., [R]IZ104], 1)

Figure 1.3: Primitive operations semantics. [R] is the reduction denotation
of the reduction operator R. E.g. summation for R = +.

prior to executing e;. In the next chapter, the adaptation of writing the
using-variables explicitly will become apparent, as we will adapt a slightly
different cost model that charges the cost of distribution up front in the
apply-to-each rule and charges zero for variable lookup. This makes it more
precise with respect to flattening.

All primitive operation are defined to take unit steps, which means we
abstract away the logarithmic depth that is often associated with a divide-
and-conquer parallel implementation of primitive operations. Instead, we
add a logarithmic term to the derived asymptotic time complexity. That is,
given an evaluation of p F e || v$ (W, D), we can expect an asymptotic
actual running time on P processors in

O(W/P + DlogP),

which has DlogP instead of D. As derived by Blelloch [Ble90b] among
others, in the PRAM model, the logarithmic factor shows up anyway due
to the cost of allocating tasks to processors, so there is not much gained in
accounting for the logarithmic depth in the cost model, and abstracting it
away makes depth costing simpler.

1.3. uNESL 19

pellv$(W,D)

plx) =0
pFx{y0%$(1,1)

pFala$(1,1)

(o e b oi$ (Wi, D))"
Y [(61, ceey ek) ~U* (vll ceees 'Uk) $ (Z;(:lwil ZZF:lDi)

pFel (v1,..,v) % (W,D)
ptFeilov$(W,D)

pFeydvo$(Wo, Do) plx—vo]lberv1$(Wy,Dy)
pHletx=epine; | v1$ (Wo+ Wi, Do+ Dy)

pteodvg$ (Wo, Do) Fp(vg) = (v, W)
pE¢leo) dv$ (Wo+W,Do+1)

p eyl {v1,... 01} $ (Wo, Do) (p[x = oi] el vj$ (W, Di))ﬁ:l

pF{e:xin xp using x1, ..., ¢} 4 {0}, ..., 0]} $ (Wo + Z!_, W;, Dg + max'_, D;)

Figure 1.4: Evaluation semantics with costs.

20 CHAPTER 1. INTRODUCTION

The work cost of operations are defined along side their semantics in
Figure 1.3. Work is often related to the size of the computed value. The size
of a value v is denoted by |v|, and is defined as:

la] = 1
(01, 00)] = ZE vy
(o1,]| = Zh il

Unlike NESL, uNESL does not support recursion. If recursion is desired,
it must be manually unfolded. Parallel algorithms are almost always lim-
ited to a logarithmic depth recursion, so static unfolding is not as bad as it
may sound. The biggest problem is unfolding a recursion with a statically
unknown depth. In this case, the recursion must be unfolded a number of
times that represents the maximum possible recursion depth. A recursion
that splits an array of unknown length in two equal sizes can be unfolded
32 times and can then support arrays up to a length of 232.

Figure 1.5 lists a classical example of a program written in NESL (apart
from the recursive function definition and some type annotations, this is
actually a yuNESL program). The program is a parallel implementation of
the quicksort algorithm that showcases the use of nested data parallelism in
a recursive divide-and-conquer strategy:.

In the recursive case, the function gsort is called inside an apply-to-each
on the two recursive cases: On all the elements smaller than the pivot and
on all the elements greater than the pivot. In order to obey the cost model,
the evaluation must take advantage of parallelism across blocks in the call
tree on the same horizontal level in the figure. This is exactly what flattening
achieves.

The same program can be written in uNESL by unfolding the definition
of gsort a small number of times, with the deepest occurrence replaced by
some error-generating expression (e.g. a division by zero) in the hope that
this case will never be reached. Since the recursion depth is expected to be
logarithmic in the size of the input sequence, a modest number of unfolds
is almost always sufficient for all realistic input sizes. Importantly, since the
time cost model is defined in terms of the evaluation semantics, the time
cost of the statically unfolded program is no different from the dynamically
unfolded program. Ie. unvisited depths in the recursion do not count
towards the time cost.

The cost model is almost realized by fist compiling uINESL programs to
flat vector code. The compilation employs flattening as described previously
in Section 1.1.5. The vector code is then evaluated eagerly.

1.3. uNESL 21

function gsort(a) =
if (#a < 2)

then a
else
let
pivot = a ! (#a/2) in let
lesser = {e in a | e < pivot} in let
equal = {e in a | e == pivot} in let
greater = {e in a | e > pivotl} in let
result = {gsort(v) : v in mkseq(lesser,greater)}
in concat ([result ! O, equal, result ! 1])
‘ Quicksort |
! !
| Quicksort ‘ | Quicksort ‘
! ! 1
| Quicksort | | Quicksort ‘ | Qs ‘ | Quicksort ‘
! ! 1 1 !
| Qs | | Qs | |Quicksort| ‘Quicksort| ‘Quicksort| | Qs ‘
! 1 1 1 1 1
1 Qs | [Qs | [Qs][Qs |

Figure 1.5: The quicksort algorithm implementation and call tree. The im-
plementation and illustration is from [Ble95]. Just using parallelism within
each block yields a parallel running time at least as great as the number
of blocks (O(n)). Just using parallelism from running the blocks in parallel
yields a parallel running time at least as great as the largest block (O(n)). By
using both forms of parallelism the parallel running time can be reduced to
the depth of the tree (expected O(lg n)).

22 CHAPTER 1. INTRODUCTION

The reason why the cost model is not fully realized, is that the cost model
essentially assumes MIMD execution, which vector code does not provide.
Consider the costing of apply-to-each in Figure 1.4. It stipulates that the
depth of the evaluation of an apply-to-each is the maximum depth of each
sub-evaluation. If the body expression contains conditionals, the compila-
tion will generate vector instructions for each branch that are executed in
separate steps and then combined in the end. In other words, the total num-
ber of steps is the sum of the steps in each branch and not the maximum.
Turning the max into a sum in the cost model for apply-to-each, would be
overly pessimistic as that would stipulate that there is no parallelism at all
in an apply-to-each, which is not the case. A general fix that allows proper
SIMD execution costing, would require keeping track of all execution paths.
Such a cost model quickly becomes complicated for larger programs, and is
consequently not suitable as an intuitive cost model for the programmer.

There is one redeeming point however. Like the if-then-else in the quick-
sort example (Figure 1.5), conditionals in parallel algorithms are often the
distinction between a base case and a recursive case. The base case is often
of constant depth. If at most one branch has non-constant depth, the prob-
lem goes away as maximum and summation becomes asymptotically the
same operation (i.e. O(x +k) = O(x) = O(max(x, k) for some constant k).
Such a program is called contained by Blelloch in [Ble95]. In this dissertation,
we keep in mind that the cost model only works for the flattening transfor-
mation in the case of contained programs. Characterizing the resource cost
of non-contained programs optimistically is outside the scope of the NESL
cost model and the cost model investigated here.

1.3.1 Virtual Segment Descriptors

Another issue with the cost model is the cost of distributing constants over
a comprehension. Variable lookup is assigned a work-cost and a step-cost of
1. This correctly accounts for the distribution of variables of primitive type.
For example, in the flattened version of

let c =42 in {c + x : x in &(100) using c},

c is distributed over the 100 instances of x, which is necessary before the
lifted version of + can be performed. This action should take 1 step and 100
work, which the cost model accounts for through the costing rules of vari-
able lookup and apply-to-each. The problem arises when a non-primitive
value is distributed. For example, consider the expression

let c = &1000 in {c ! x : x in &(100) using c}.

1.3. uNESL 23

Here, similarly, c must be distributed over the 100 instances of x in order to
perform the lifted version of indexing. Using segment lengths as segments
descriptors for nested sequences as described in Section 1.1.5, the only way
to represent the distribution of ¢, would be to copy all 1000 elements a
hundred times. To see why, consider the representation of c:

([1000],
[0, ...,999]).

This value distributed a thousand times (named ¢’) would then be repre-
sented by:

([100],
100

" —
(11000, ..., 1000],
[0,...,999, ...,0, ...,999])).

Here, the length of the data vector (the bottom-most vector) is 100 - 1000,
which is much greater than what can be computed using 100 units of work.
Clearly, either the cost model is significantly flawed, or the chosen represen-
tation of nested sequences is insufficient.

A solution is to use a different segment descriptor representation known
as virtual segment descriptors. This representation — and scattered segment
descriptors, which we shall see in a moment — was first presented by Ben
Lippmeier et al. [LCK"12]. Apart from segment lengths, virtual segment
descriptors also has an offset into the underlying segmented vector. In this
way, segments can overlap and the same segment can be repeated without
copying the underlying data. This allows us to represent ¢’ as:

({(0,100)],
100
([(0,1000), ..., (0, 1000)],
[0, ...,999]))

Here, all the segments draw from the same segment in the data vector (offset
0) and the length of the data vector is 1000. More importantly, there is no
work involved in computing it; it is identical to the data vector in c. The
only work required is computing the vector

100

[(0,1000), ..., (0,1000)],

which can be done in 100 work assuming the size of an element in a segment
descriptor is 1 even though it is a pair. This assumption is no different than
assuming booleans and reals have the same size.

24 CHAPTER 1. INTRODUCTION

Virtual segment descriptors complicate some of the lifted operations on
nested sequences. In particular, the lifted sequence constructor (or append
if that was the primitive) becomes impossible to implement in the cost-
prescribed way. Lifted append takes two sequences of the same length
where the elements are sequences themselves and the same type. It then
merges the two sequences by appending the element of the two sequences
pointwise. In the virtual segment descriptor representation, this approach
translates to a situation where we have two values represented by (sdq,a)
and (sdy, b), and we must combine sd; and sd, by pointwise addition and
interleave the elements of 4 and b (which may themselves be trees of seg-
ment descriptors and data vectors).

We could implement the operation by appending a and b appending sd;
and sdp, and then adjust the segment offsets from sd, by the length of a.
However, due to virtual segmentation, a and b may be much larger than
the values they represent, so this could be much more costly than the cost
model prescribes because the cost model only operates on the represented
high-level values. Low-level values that are much larger than the values they
represent arise in expressions like indexing sequences of sequences, where
we cannot afford to copy the whole indexed sequence but simply index the
segment descriptor and keep the data vector as it is.

Another approach could be to do a normalization step that converts vir-
tual segment description into an equivalent non-virtual length-based seg-
ment description. This approach fails because it can cause the distribu-
tion problem (which virtual segment descriptors were originally designed
to solve) to manifest [Mad12].

To achieve a full work-efficient representation, it is necessary to employ
a more elaborate segment descriptor representation known as scattered seg-
ment descriptors. Scattered segment descriptors are virtual segment de-
scriptors that furthermore allows the segments to be located in different
data vectors. In this dissertation, we leave scattered segment descriptors for
future work, and employ virtual segment descriptors and consider the se-
quence constructor to be more expensive than it ideally could be. We note
that the actual work cost semantics is non-trivial to define as it depends on
the representation and not on the high-level value.

1.4 Contributions

The main contributions of this dissertation are:

¢ The formal design of a high-level programming language for (nested)
data-parallel streaming;:

1.5. TERMINOLOGY 25

— The formal distinction between streamed and manifest collec-
tions, and the classification of their relationship.

— A cost model for space usage (a cost model for time also exists,
but it is not a contribution of this dissertation).

- An implementation strategy:

+ A low-level dataflow language based on stream chunking.

+ A (presumably) cost-preserving translation from the high-
level language to the low-level language, which includes a
well-known flattening transformation adopted to streams.

¢ Two concrete implementations:

1. Streaming Accelerate, which implements regular streaming of
multi-dimensional arrays on GPUs.

2. Streaming NESL, which implements general streaming of nested
data parallelism on multicores with vector instructions.

¢ A number of experimental benchmarks.

1.5 Terminology

The terms sequences, arrays, vectors and streams all refer to an enumer-
ated collection of objects that allows repetitions. In all cases, the objects
of a collection must all belong to the same type. As a general rule, arrays
and vectors emphasize a spatial collection, streams emphasize a temporal
collection, and for sequences, it depends on the context.

Sequence Sequence is the high-level mathematical term. It is the term we
expose to the programmer in the front-end languages.

The word sequence is used to describe the primary collection type in
NESL, which is actually implemented as a spatial collection.

In Streaming NESL - the language developed in this thesis shortened to
SNESL - and Streaming Accelerate, sequences are characterized by being
elementwise fully streamable.

Array In Accelerate, array refers to the primary collection type: a spatial
finite multi-dimensional grid of primitive values (i.e. scalars). In the one-
dimensional case, an array is also referred to as a vector. n-dimensional
arrays, where n > 1, may be thought of as being nested arrays of n — 1
dimensions. However, the nesting is always regular, meaning that sub-arrays
must have the same length.

26 CHAPTER 1. INTRODUCTION

In other contexts, arrays refer to a fixed-sized contiguous region of mem-
ory (e.g. an array in C).

Vector In NESL terminology, vectors refers to the low-level implementa-
tion model where programs are compiled to VCODE (short for vector code).
As such, vectors are flat implementation-specific data structures, usually re-
alized as low-level arrays.

In SNESL terminology, both sequences and vectors are high-level con-
cepts. Whereas sequences are streamable, vectors are not. This means that
vectors supports random-access, but have worse space cost semantics.

Stream In this dissertation, streams are the low-level implementation-specific
data structure for sequences. They can be thought of as a buffer in memory
that holds some of the value of the stream. Over time, the buffer is incre-
mentally updated, so that in the end, all values will have been in the buffer.

Both sequences and vectors in SNESL are implemented with streams.
Sequences use bounded buffering, while vectors use unbounded (more pre-
cisely, runtime-bounded) buffering.

1.6 Road Map

Chapter 2: Towards a Streaming Model for Nested Data Parallelism [MF13]
Here, we introduce the syntax and semantics of SNESL, as well as the in-
dented implementation model based on chunked streaming. We also give
hand-written GPU timings. However, we do not pursue an actual GPU im-
plementation.

Chapter 3: Functional Array Streams [MCECK15] Here, we explore an
implementation of a streaming model on GPUs for the programming lan-
guage Accelerate; a data-parallel language, similar to NESL, but based on
regularly shaped multi-dimensional arrays instead of nested vectors. Con-
sequently, Accelerate does not offer true nested data parallelism.

Chapter 4: Streaming Nested Data Parallelism on Multicores This chap-
ter is a based on [MF16]. Here, we return to SNESL to give a full work-
ing implementation of streaming nested data parallelism. We implement a
backend based on multicores with vector instructions, and measure actual
performance numbers.

Chapter 2

Towards a Streaming Model for
Nested Data Parallelism

This chapter is based on [MF13].
Sections with non-trivial changes or additions are marked with a x.

Abstract

The language-integrated cost semantics for nested data parallelism pioneered
by NESL provides an intuitive, high-level model for predicting performance
and scalability of parallel algorithms with reasonable accuracy. However,
this predictability, obtained through a uniform, parallelism-flattening exe-
cution strategy, comes at the price of potentially prohibitive space usage in
the common case of computations with an excess of available parallelism,
such as dense-matrix multiplication.

We present a simple nested data-parallel functional language and associ-
ated cost semantics that retains NESL's intuitive work—depth model for time
complexity, but also allows highly parallel computations to be expressed in
a space-efficient way, in the sense that memory usage on a single (or a few)
processors is of the same order as for a sequential formulation of the algo-
rithm, and in general scales smoothly with the actually realized degree of
parallelism, not the potential parallelism.

The refined semantics is based on distinguishing formally between fully
materialized (i.e., explicitly allocated in memory all at once) vectors and po-
tentially ephemeral sequences of values, with the latter being bulk-processable
in a streaming fashion. This semantics is directly compatible with previ-
ously proposed piecewise execution models for nested data parallelism, but
allows the expected space usage to be reasoned about directly at the source-
language level.

27

28 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

The language definition and implementation are still very much work
in progress, but we do present some preliminary examples and timings,
suggesting that the streaming model has practical potential.

2.1 Introduction

A long-standing goal in high-performance computing has been to develop
a programming notation in which the inherent parallelism in regular data-
processing tasks can be naturally expressed (also by domain specialists, not
only trained computer scientists), and gainfully exploited on today’s and to-
morrows hardware. The functional paradigm has shown particular promise
in that respect, being close to mathematical notation, and focusing on what
is to be computed, rather than how. In particular, computations expressed
purely functionally are naturally deterministic.

However, a good programming notation should also enable the program-
mer to predict, with reasonable accuracy, what kind of performance to ex-
pect from a particular way of expressing a calculation. For sequential lan-
guages, even (eager) functional ones, it is usually fairly easy to deduce the
asymptotic time and space behavior of an algorithm, at least for the purpose
of choosing between different alternatives; indeed, elementary complexity
analysis is routinely taught in undergraduate classes. However, for parallel
computations, the programmer has often been at the mercy of the compiler:
sometimes an innocuous-looking change in the concrete expression of an
algorithm may have drastic performance implications (in either direction).

The NESL language [Ble92] was a breakthrough not only in offering a
concise, platform-independent notation for expressing complex, multi-level
parallel algorithms in functional style, but perhaps even more so for offering
an intuitive, language-integrated cost model to the programmer. The model
allows one to derive expected work and depth complexities of a high-level
parallel algorithm in a structural way, with effort comparable to that for a
purely sequential language.

The NESL compilation model is centered around a relatively simple and
predictable “flattening” translation to a uniform, low-level implementation
language based on segmented prefix sums (scans) of flat vectors [BCH"94].
This means that, from the derived high-level parallel costs assigned by the
model, one can immediately obtain a fairly reliable prediction of the ex-
pected concrete performance of the program, and especially how it will scale
with increasing number of processors.

However, a substantial weakness in the NESL model is that, while time
complexities of most algorithms are usually close to what would be intu-
itively expected, having flat vector operations as the only vehicle for express-

2.1. INTRODUCTION 29

ing parallelism means that many “embarrassingly parallel” computations
(say, matrix multiplication), when naturally expressed in the language, will
uniformly allocate space proportional to the available parallelism (for in-
stance, allowing for up to n® independent scalar multiplications when mul-
tiplying two n-by-n matrices), even if the available computation resources
are nowhere near sufficient to exploit this parallelism. Consequently, pro-
grammers are often forced to explicitly sequentialize their code, to avoid
prohibitive — or at least embarrassing — space usage. In other words, the plain
NESL model effectively penalizes code that exposes “too much” parallelism.

For an even simpler example, consider the problem of computing X!, logi (

logn!), where 7 is on the order of 10°. In NESL, this computation would be
naturally expressed as

logsum(n) = sum({log(float(i)) :iin [1:n]}),

with work O(n), and depth O(1).! Since the depth is negligible in com-
parison to the work, for all realistic numbers of processors p, we expect
the computation time to be O(n/p), which is as good as could be hoped
for. But conversely, the computation will conceptually allocate and traverse
O(n) space, even when p = 1.

Of course, the NESL cost model does not force the compiler to naively
allocate gigabytes of space for the above computation. For example, a 4-core
back-end is perfectly allowed to divide the range into 4 equal parts, let each
core compute the corresponding subrange sum, and then sequentially add
up the 4 final results. This still achieves very close to a 4-times speedup over
the sequential code, with negligible memory use. But relying on the com-
piler to be clever in such cases means that the programmer effectively has
no reliable mental model of how much memory a conceptually low-space
algorithm can be expected to use under any given circumstances. Worse,
the space usage may be subtly context dependent: maybe the obvious opti-
mization will be performed at the top level, but not inside another, already
parallel computation with varying subproblem sizes, such as

sum({logsum(n*n):nin [1:1E3]}).

We aim to refine the NESL language cost model so that, in addition to
determining meaningful depth and work complexities, the space usage will
also reflect what is intuitively truly required for execution — without sacrific-
ing platform independence and the efficient, vector-based implementation

n the NESL cost model, the logarithmic depth of the summation tree is accounted for
in the mapping to a PRAM model, not in the source-level depth. This way, many hidden
administrative tasks, such as data distribution, can also be given depth 1, simplifying the
calculations considerably. But even if sum were computed with an explicit parallel algorithm,
it would only have depth O(log).

30 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

model. We do this by explicitly introducing the notion of streaming at the
language level.

Streaming A key feature of NESL and similar languages is that the linked-
list datatype commonly used to express bulk operations, such as maps or
folds in functional settings, is replaced by a type of immutable arrays with
constant-time access to arbitrary elements. This is done not so much to to
accommodate algorithms that do need truly random access to individual
elements (though those are important too), but mainly for two reasons:

1. To allow all processors to immediately get to work on pieces of large
problems. For example, adding two billion-element vectors elemen-
twise has no inherent inter-element dependencies; but if the vectors
were represented as linked lists that each had to be traversed, this
traversal would represent a major sequential bottleneck.

2. To ensure spatial locality and compactness, in particular to fully uti-
lize cache lines, and allow meaningful prefetching of data from main
memory. While (1) above could largely be achieved by some kind
of indexing superstructure (e.g., a balanced binary tree with pointers
to equal-length segments of the lists), gathering each processor’s as-
signed work from all over memory would still represent a significant
overhead.

However, full random-access vectors are actually overkill for many ap-
plications, such as vector addition. In principle, one could achieve most of
goals (1) and (2) by segmenting the vectors into individually allocated chunks
(of size anywhere from a few hundreds to a few millions elements), with the
additions within a pair of chunks performed in parallel, but with the chunks
themselves still processed sequentially. (Indeed, if the vectors are so large
that they do not fit into main memory at all, but must be read in from aux-
iliary storage, such a chunked implementation is what the programmer has
to code explicitly.)

Of course, an appropriate chunk size depends heavily on the platform,
and we do not want to force programmers to commit to any particular size
in the code: they should merely express the computational task in a way
that is conductive to streaming, and the compiler should take care of the
rest.

Returning to the sum-of-logsums example (and ignoring that some of the
computations could obviously be shared), if the chunk size is, for instance,
10%, then the early chunks will cover the computations of logsum(n?) for
multiple n’s (1 through 13 plus most of 14 for the first one), while the late
chunks will each just cover part of logsum(n?) for a single n (the last 1 takes

2.1. INTRODUCTION 31

10 chunks). This would be considerably more awkward to express if one
were doing the problem partitioning manually.

Related work The space usage of flattening-based implementations of nested
data-parallel algorithms has long been recognized as a problem. In the
standard implementation of the NESL front end [BCH"94] (and appar-
ently inherited in both direct derivatives such as NESL-GPU [BR12], and
reimplementations such as CuNesl [ZM12]), the most immediately appar-
ent problem arises from the excessive distribution of large vectors across
parallel computations. It is ameliorated by an explicit parallel fetch, such
that {v[i] : 7 in a} can be considerably more efficiently expressed as v — a.
This performance anomaly is also relatively easy to fix by a refined flattening
translation, such as the one in Proteus [PPW95], or in recent versions of Data
Parallel Haskell [LCK*12]. However, neither of these approaches addresses
the more general problem of sequences always being fully represented in
memory at once.

In particular, Blelloch and Greiner’s space-efficient model implementa-
tion of NESL [BG96] takes a materializing semantics of sequences as the
sequential baseline, and establishes that a parallel implementation does not
need that much additional space to achieve speedups. (This is reasonable,
since the available NESL operations on sequences, such as random-access
indexing, in general force them to be materialized, in order to achieve the
work complexity predicted by the model.) However, it does not flatten nested
sequence constructions, keeping space usage reasonable in, e.g., the sum-of-
logsums problem or the naive n-body algorithm. The downside is that the
execution model requires more general task-level parallelism, not immedi-
ately realizable on a SIMD machine, or even on a vector-oriented GPU. It
also relies on a fairly sophisticated garbage collector, working efficiently at
low granularities. In contrast, we propose a language model that identifies
streamable computations already at the source level, assigning them much
lower sequential space costs. With this refinement, the uniform parallelism-
flattening approach can still be employed, with all computations and alloca-
tions/deallocations performable in bulk.

Subsequent work on space costs of parallel functional programs has also
tended to focus less on data parallelism, and more on general task paral-
lelism. In particular Spoonhower et al. [SBHGO08], building on the work by
Blelloch and Greiner, extend the deterministic parallelism model and cost
semantics to futures, but further deemphasize SIMD-like execution mod-
els. Futures allow streaming computations (which fall outside the strictly
nested parallelism model) to be expressed, along with much more general
computation structures. In contrast, we use a rather modest generalization

32 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

of nested parallelism by modeling streams of unbounded length as concep-
tually existing all at once, but only being materialized a fragment at a time.

Finally, our back-end execution model is similar to piecewise execution of
flattened data-parallel programs [PPCF95], which also focuses on reducing
the space usage in a data-parallel setting. The main difference is that we
expose the streamability potential also in the source cost model. Our initial
timing experiments suggest that piecewise execution is still relevant as an
execution model on modern platforms (GPGPUs), perhaps even more so
than on the hardware of the mid-1990s.

2.2 A Simple Language with Streamed Vectors

In this section we present a minimalistic, expression-oriented core language
for expressing nested data-parallel computations (only). For the purpose of
defining the semantics, the language is slightly more explicit than one would
expect from a practically usable notation. Programs written in an end-user
language (such as NESL) would be desugared and elaborated into our nota-
tion, possibly with the default being the fully materializing elaboration, but
allowing the programmer to express others by suitable syntax extensions.

Throughout this section we will use the convention that the metavari-
able k, when used as a length, ranges over “small” natural numbers (typi-
cally related to static program sizes), while I ranges over “potentially large”
numbers (related to runtime data sizes).

2.2.1 Syntax and Informal Semantics

Types and values The language is first-order and explicitly typed, with a
grammar of types (in Haskell-style notation):

= Bool | Int | Real | - --
T o= 7wl (.. %) | [7]

= 1| (01,...,0%) | {o}

Here 7 represents some fixed collection of primitive types. T is the gram-
mar of concrete types, the values of which are always fully materialized in
memory. In particular, vectors [t] provide constant-time read access to arbi-
trary elements. (Vectors of vectors may be jagged; there is no requirement
that they represent proper matrices.)

More unconventionally, ¢ is the grammar of general, or streamable, types,
which adds sequence types {c}. Unlike vectors, sequences do not have to be
fully represented in memory at the same time, and do not provide random
access to elements. However, just like vectors, they have a strict semantics,

2.2. A SIMPLE LANGUAGE WITH STREAMED VECTORS 33

and every sequence will always be fully computed (exactly once) in a pro-
gram execution; this is essential to allow chunked processing of sequences
while presenting a chunk-size indifferent cost model to the programmer.
Note that sequences may contain vectors, but not the other way around.

The intensional semantics of sequences could be summarized as “strict
but lazy”. Just as in NESL, sequences are always fully evaluated, whether
their values are needed or not. However, in SNESL this evaluation may
happen incrementally, with the sequence being produced and consumed in
chunks. As the chunking is completely transparent to the programmer, we
impose an exactly-once semantics in order to maintain a deterministic and
predictable value and cost model: with a purely demand-driven, Haskell-
stream-like semantics of sequences, we would simply discard a failing or
very expensive computation in a part of the sequence that was never re-
quested. But since each individual chunk is always fully evaluated for uni-
formity, the observable behavior in such cases would ultimately depend on
the chunk size.

The values are as follows:

a == T|F|n@ez)|r@er)|---
v == al(v1,., %) | [0, 0] | {v1,., 01}

Here, a are the atomic values of the relevant primitive types. Values are
typed in the obvious way.

Expressions The expression language is syntactically very similar to a NESL
subset; the main difference is in the refined typing of the constructs and
built-in operations. The raw grammar is quite minimal, as follows:

e = xl|al| (xy, ., x) | xi|letx =epine; | p(x)
| {eo : x in xp using x1, ..., x¢ } | {eo | xo using x1, ..., x }
¢ = (See Figure 2.2)

For simplicity, we require many subexpressions to be variables; more gen-
eral expressions can be brought into the required form by adding let-bindings.
(In larger examples we may assume that this let-insertion has been done au-
tomatically by a desugaring phase.)

The typing rules are given in Figure 2.1. They should be quite straight-
forward, except possibly the rules for comprehensions {- - - }. In particular,
in the explicit syntax, we require that all the auxiliary variables occurring
free in the comprehension body (and representing values constant across
all iterations) be explicitly listed. (Again, the list can be mechanically con-
structed by the desugarer, by simply enumerating the variables occurring
free in ¢; the order is not significant.)

34 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

Tkte:o

I'(x)=0c
IT'txuno IT'HT:Bool ThHn:Int TFr:: Real

k
(F(xl) = U)z 1 r(x) = (Ulr-'~rgk) (1<i<k)
N (xll X) (01/ Yy) I'xic J; T
T'key:op T[x—op]bFer oy I'x)=01 ¢ —0m
I'letx=¢yine; oy ' ¢(x) o

k
F(X()) = {0’0} (I"(xi) = Ti)i:l [X = 00, X1 > T, ee) X Tk] Feu:o

I't{e:xin xp using x1, ..., x; } :: {0’} (k>0)

I'(xo) = Bool (T(x;) = (71)1c) [x1 > 09, e, x> 0] Fe o

It {e]|xp using x1, ..., x¢} :: {c} (k>0)

Figure 2.1: Typing rules

In the general form of comprehensions (with the “in” syntax), to pre-
serve the invariant that sequences are only traversed once, any auxiliary
variables must be of concrete type, i.e., materialized throughout the evalua-
tion of the comprehension. The restricted form (with the “|” syntax) could
be seen as abbreviating a general comprehension,

{e| xo using X} “=" {e: _iniota(b2i(xp)) using X}

where b2i(F) = 0, b2i(T) = 1, and iota(n) = {0,...,n —1}. Le. this constructs
evaluates to the empty sequence or a singleton sequence depending on the
boolean variable xp. Importantly, e is not evaluated in the case where xj is
F. However, since e evaluates at most once, there are no restrictions on the
types of the auxiliary variables.

Complementing the base syntax are the primitive operations in Fig-
ure 2.2. (We will usually write binary operators infix in concrete exam-
ples.) Most of these should be self-explanatory, with the following notes.
The ellipses after “+” represents a collection of further basic arithmetic and
logical operations, all with types of the form (7, ..., 7tx) — 710. mkseg* con-
structs a length-k sequence; empty tests whether a sequence has zero length
(but without traversing it otherwise); and the returns the sole element of a
singleton sequence. ++ appends two sequences, and zip* tuples up corre-

2.2. A SIMPLE LANGUAGE WITH STREAMED VECTORS 35

+ (Int,Int) — Int
k
mkseqk @ o0) > {0} k=0
emptyy {c} — Bool
thes {c} =0
o = ({o}{o}) —o
Ziph,, o ({1}, o {od) = {(on, o)} k21
flagpart, == ({c}, {Bool}) - {{o}}
concaty {{o}} = {0}
iota Int — {Int}
tab, {t} = [1]
seqr [t] = {7}
length, [t] — Int
It ([t],Int) = 7
reducer {Int} = Int Re{+,x,max,..}
scang {Int} = {Int} Re{+ x,max..}

Figure 2.2: Primitive operations

sponding elements of k equal-length sequences. flagpart chops a sequence
into subsequences, e.g.,

flagpart({3,1,4,1,5,9}, {F,F,F, T,T,F, T,F,F,T}) =
{{3, 1,4}, {}, {1}, {59}}.

(The flag sequence must end in a T, and the number of F’s sequence must
match the number of elements in the data sequence.) Conversely, concat
appends all subsequenes into one.

Finally, tab tabulates and materializes a sequence into a vector, while seq
streams the elements of a vector as a sequence. length returns the length
of a vector; and element indexing, !, is zero-based. reducegr computes the
R-reduction of sequence elements (where R ranges over a fixed collection of
basic monoids R), while scang computes the exclusive scan (all proper-prefix
reductions), e.g., scan ({3,5,4,2}) = {0, 3,8,12}.

In the actual implementation, we make available a number of short-
hands. First, as already mentioned, the front-end automatically performs
let-insertions where general expressions are used instead of variables, and

36 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

computes the auxiliary-variable lists in comprehensions. It also infers the
type subscripts on primitive operations. Further, we allow pattern-matching
bindings on the left-hand side of = and in, so that, e.g.,

let (x,y) =eine =
letp=cinletx=p.linlety=p2ine,
where p is a fresh variable. Likewise, we allow comprehensions to traverse
several sequences of the same length simultaneously,
{e:xjiney;...;xine} =
{e: (x1,...,xx) in zip(ey, ..., ex) } .

And we may combine general and predicated comprehensions:
{e:xiney | e1} = concat({{e|e1} :xiney}),

where, naturally, any variable occurring free in e or e; must be of concrete
type. Moreover, we allow sequence and vector constructions as abbrevia-
tions:

{e1,...ex} = mkseqk(el,...,ek)
le1,....,ex] = tab({ey,...ex}).

Finally, note that the base language does not include an explicit condi-
tional form. Instead, we can define it as:

if ¢y then ¢ else e, =
let b = ep in the({e1 | b} ++ {e2 | 71}),

This decomposition mirrors the data-parallel NESL computation model for
conditionals occurring inside comprehensions: rather than alternating be-
tween evaluating e; and e; on a per-element basis, we first evaluate e; for
the subsequence of elements where ¢y evaluates to T, then e, for those where
ep evaluates to F, and finally merge the results.

Likewise, other useful functions can be efficiently (at least in an asymp-
totic sense) defined in terms of the given primitive ones. For example, we
can compute the length of a sequence:

slength = {0} —Int
slength(s) = reduce;({1:_ins}).
Some operations require a little more thought to express in a streamable

way. For example, to tag each element of a sequence with its serial number,
we cannot simply say,

number . {c} — {(c,Int)}
number(s) = zip(s,iota(slength(s))),

2.2. A SIMPLE LANGUAGE WITH STREAMED VECTORS 37

because that would require traversing s twice. Instead, we must say,
number(s) = zip(s,scani({1:_ins})).

(In fact, iota is nominally implemented in terms of a +-scan anyway, so
the above solution is arguably more direct than explicitly computing the
sequence length first.)

The language as presented does not provide for programmer-defined
functions, so the definitions above must be thought of as notational abbrevi-
ations. True functions, possibly recursive, add another layer of complication
— not so much in the high-level semantics, but more in the compilation and
low-level execution model. For now, we have concentrated on the function-
less fragment, since it already highlights most of the significant issues re-
lated to streaming.

Likewise, there is no notion of unbounded iteration (whether in the form
of tail recursion or more explicitly), and hence potential divergence; but
given the eager nature of the language, there should be no semantic problem
with introducing potential non-termination. However, just like in Haskell,
we are forced to — at least formally — identify all run-time errors (division
by zero, indexing out of bounds, etc.) with divergence; if we distinguish
between them, the language becomes formally nondeterministic: if it aborts
with an error in one run, another run might diverge, or abort with a differ-
ent error, depending on low-level scheduling decisions. We still guarantee,
however, that if a run terminates with a non-error answer, all other runs will
also terminate with that answer.

2.2.2 Value Size Model x

The actual data representation is invisible to the programmer, and has no
influence on the value semantics. However, in order to provide a reasonable
model of the program’s execution and resulting space-usage behavior, we
do need to have a formal, asymptotically accurate, definition of the size of
any particular value. In the streaming setting, we characterize the size as a
pair of metrics, representing, respectively, the space required to process the
value sequentially and in parallel.

More specifically, for any value v, we define P||v| as its parallel size,
and S||v|| as its sequential size, as follows:

Plal = 1
Pll(o1, o) = T Plloi|
Plloy,.v]ll = 1+Zi_,P|vil

Pl{or, o}l = 1+Zi4(1+Ploil])

38 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

Sllal = (1,0)
Sl o)l = (Z, M, ZEN;)
where Yi. S ||vi|| = (M;, N;)
Slv1,.. o] = (1+maxi_; M;, =K P|loi])
where Vi.S||v;|| = (M;,_)
SI{v1, .., i}l = (14 maxi_; M; maxi_; N;)

where Yi. S|vi|| = (M;, N;)

The sequential size is divided in two natural numbers (M, N), where M
represents scalable space that scales with the chunk size and N represents
vectorial space; space that must manifest regardless of the chunk size. The
sequential size without this distinction is simply M + N. On P processors,
the actual size of v where P||v|| = L and S||v|| = (M, N) is supposed to be
O(min(P-M+ N, L)).

For simplicity, since we are mainly interested in asymptotic behavior, we
consider all atomic values to require the same amount of space, though there
wouldn’t be any problem with accounting more precisely for space usage,
so that, e.g., a Real would have a constantly larger size than a Bool.

For tuples, the arity k is statically known, and doesn’t need to be explic-
itly represented at runtime at all, so the size of a tuple is simply the sum of
sizes of the elements. In particular, empty tuples take truly zero space.

On the other hand, for vectors, the extra 14 represents the need to store
the length of the vector somewhere, in addition to the element values. (This
cost may be non-negligible for a nested vector type like [[Int]], especially if
many of the inner vectors may be empty.) This cost mirrors the eventual
concrete representation, where a nested vector is represented as a separate
vector of subvector lengths and a vector of the underlying values.

The vectorial size of a vector is the sum of the parallel sizes of all its
elements. This means that all elements must be allowed to exist at once,
regardless of the number of processors available. The length of the vector is
recorded in the scalable size (the 1+ term), which indicates that the top-most
layer of vector lengths are streamed. If the vectors are small and the chunk
size is large, it is necessary to manifest more than one vector at a time. This
is reflected in the definition of the scalable size as the largest scalable size of
all the elements. Although we have already accounted for all the elements
in the vectorial size, we must also include a scalable term to account for
this case. In effect, the space an implementation is allowed to allocate for a
stream of vectors is the chunk size plus the length of the longest vector in
the stream. A slightly more restricted implementation is possible that only
allows the maximum of the chunk size and the longest vector to be allocated

2.2. A SIMPLE LANGUAGE WITH STREAMED VECTORS 39

(i.e. max instead of plus). However, that would require the chunk size to
appear as a parameter to the cost model.

Finally, for sequences, the conceptual representation model is that seg-
ment boundaries are represented as flags marking the end of each subse-
quence. The reason for this difference from vectors is that, when streaming
a sequence of subsequences, we do not know the length of each subsequence
until after it has been generated. Also, since we want a faithful representa-
tion of consecutive empty sequences, we effectively represent a value of type
{{r}} asif it were {7t + ()}, i.e., every element is either a data element or a
subsequence terminator.

More fundamentally, sequences differ from vectors in that they are in
general not materialized in memory all at once; in fact, for purely sequential
execution, they are processed strictly one element at a time. Therefore, the
sequential size of a sequence value is simply the size of its largest element,
while the parallel size — where all elements are simultaneously available for
processing — is the sum of the element sizes, just like for vectors.

2.2.3 Evaluation and Cost Model *

We will now consider a big-step semantics of the language and primitive
operations. As far as the computed result is concerned, one could simply
erase the distinction between vectors and sequences, and even identify them
both with simple ML-style lists. The parallel nature of the language, and
the role of streaming and random-access indexing, is only made apparent
through the cost semantics.

Since sequence values are not directly expressible as literals in the lan-
guage (syntactic sugar notwithstanding), precluding a simple substitution-
based semantics, we use a semantics in which open expressions are evalu-
ated with respect to an environment p, mapping variables to their values.

The form of the judgment is thus |p e || v$ w|, where the cost metric w is

built as follows.

A metric is a 5-tuple of natural numbers, w = (W, D; M, N; L), where
the first two capture the standard work and depth cost of the computation.
The former represents the total number of atomic (constant-cost) operations
performed during the evaluation; it corresponds to the execution time on
a single processor, T;. The latter (also called the span, or step complexity)
represents the longest chain of sequential dependencies in the computation,
thus representing how fast the evaluation could proceed with an unlimited
number of processors, T.. Note that we will always have W > D, with the
inequality being strict precisely when parallel evaluation is possible.

Like in NESL, the components of a tuple constructor — though nominally
independent — are not considered to be evaluated in parallel (as far as the

40 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

cost model is concerned; an opportunistic compiler of course has the option
of doing so anyway). This reflects our focus on data parallelism, where se-
quences are the only source of speedups. In particular, in an expression like
f(x1) + f(x2), the two f-computations would not be considered indepen-
dent, but will be performed in sequence, and in particular with the depths
summed. (In fact, in our restricted language, the addition will have to be
explicitly let-sequenced anyway.)

If the programmer intends to actively exploit the parallelism in evaluat-
ing the summands independently, he can write instead,

let r = tab({f(x) : x in {xq,x2}}) in r10+7!1.

This would most likely only be appropriate in the context of a recursive def-
inition of f, so that the total available parallelism would increase drastically
at each level of recursion.

The last components of the cost, dubbed sequential and parallel space, rep-
resent the maximal space usage during the computation, respectively cor-
responding to a fully sequential execution (i.e., S1), and one exploiting the
maximal number of processors (Se).

The parallel space, denoted by L, represents the space used in a fully
eager evaluation of streams. This corresponds to the traditional VCODE
implementation. Fully eager evaluation is necessary for step-efficiency in the
case where the available parallel resources exceeds the potential parallelism
in the expression.

Just like for the size model for values, the sequential space for compu-
tations is captured by two numbers denoted N and M. N represent the
total number of active streams. By active we mean non-empty. Non-empty
streams are not charged a space cost, and should therefore not be allocated
in an actual implementation. The reason why it is necessary to make this
distinction is that branches in the computation that are never visited, should
not count towards the space cost. This is particularly important in recursive
definitions where the branches deeper than deepest path in the dynamic call
tree are never visited. Although our language does not support recursion at
this point, we do want to create a good cost model for statically unfolded
recursion in the hope that the cost model will scale to dynamic unfolding.
In a statically unfolded recursion, it would be inefficient to charge a space
cost for each recursive step, when in practice, the evaluation might stop ear-
lier than that. Just like for values, N is dubbed the scalable space, and each
active stream are allowed to use up to the chunk size amount of space for
its buffer.

On top of that, M represents the vectorial space, and can be thought of as
the maximum size that all the unbounded buffers in the computation may

2.2. A SIMPLE LANGUAGE WITH STREAMED VECTORS 41

take. This is the amount of space that a computation may require besides the
scalable space. Crucially, this metric is invariant to the chunk size as we do
not want to charge P times the length of a very long vector. Not only would
that be overly pessimistic, it may even cause the sequential space to vastly
exceed the parallel space. Unbounded buffers arise in operations on vectors,
and the vectorial space of a computation is a metric that reports the sum of
the largest vectors in all its sub-computations. Sub-computations that do
not involve vectors, simply have a vectorial space of zero. In practice, it
is not necessarily the case that the longest vector of all sub-computation are
manifest at the same time, so our space cost model is an over-approximation.
However, since our model is not parameterized by the actual chunk size, it
would be impossible to give a more precise measure.

The evaluation rules are given in Figure 2.3. Note that variable accesses
are themselves considered free wrt. time (the cost is assigned to the com-
putations using the variable’s value). Tuple construction and component
selection costs are also considered negligible (since they don’t actually per-
form any extra data movement at runtime in our implementation model),
but literals do have unit cost.

More interestingly, in let-bindings, both work and depth costs of the
subexpression evaluations are summed, reflecting strict sequential evalua-
tion of ep and e;. But for space usage, the parallel space used to evaluate the
let-expression is the maximum of two numbers: the space used to evaluate
eg, and the sum of the size of eyp’s value and the space needed to evaluate
e1. This choice reflects that the lifetime of a variable is limited to the scope
of its let-binding. The reason for using summation in the sequential space
in let-bindings, is that in a dataflow execution model, operations must be
allowed to execute partially and then be suspended in order to allow other
operations to execute. For let-bindings, this means that values may still be
needed in future execution when executing parts outside the scope of the
variable. It may happen that e; must take a step before ¢y can continue,
even though some of the temporary values in ey are not fully used. It would
therefore be incorrect to require all temporary storage to be deallocated in
eg before we allow e; to execute, which is precisely what the parallel space
stipulates.

Note that let-bindings, though commutative wrt. value and time costs
are not so wrt. space costs. That is, in an expression,

let x; = e7 in let x; = ¢ in (x1,x2),

as long as x; does not occur in e, and vice versa, the order of the bindings
does not matter for the result value, or work and depth. However, if e;
returns a small result but uses much temporary space, while e, requires little

42 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

pFelv$(W,D;M,N;L)

p(x) =0
pFx{0%(0,0;0,0;0)

pFala$(1,1;,1,0;1)

(P(xi) = Ui):‘(:1
o (x1,.., %) ¥ (v1,...,v6) $(0,0;0,0;0)

o(x) = (1, vg)
ok xilv;$(0,00,0;0)

p Feo vo$ (Wo, Do; Mo, No; Lo)
plx — vo] Fe1 § v1$ (Wi, Dy; My, Ny; Ly)
pFletx=e¢yine; J 01 $
(Wo + W1, Do + D1; Mg + M1, No + Ni; max(Lo, L1 + P||vo]))

Fy(o(x)) = (o, W)
p o) Y v$ (W, 180 Pllol])

p(xo) = {ov1,..., o1} (p[x — v] kel vi$ (W, Di; M;, N; Li))izl

pF{e:xin xokusing xlrl,l..., xlf"} lkl {7}, ..., v;}&";
((I+1) -2 || + Wi, 2, |t| + max;_; Dj;
1+ 2K |5 + maxt_; M;, maxi_; N; 1 +1-ZK |5+ =L L)

p(xo) =F
ot {e|xo using x7', ..., x,%} | {}$ (=X, |os], =5, |oi];1,0;1)

p(x) =T pFelv$(W,D;M,N;L)

p ' {e|xo using x7", ..., 5,7} || {v}}$
(5 loi| + W, =5 Joi| + D; 1+ 25 oy + M, N; 1+ 25 |5 + L)

Figure 2.3: Evaluation semantics with costs

2.3. IMPLEMENTATION MODEL 43

space beyond the large result it allocates, the above sequencing is preferable
to the one with the bindings of x; and x, swapped.

The value and cost of primitive operations ¢ are given by an auxiliary
function Fy. The value returned should be immediate from the informal se-
mantics of the operations. As previously mentioned, we consider the depth
to always be 1, even for operations like reduce. The work can be taken to
be simply the (parallel) size of the result in all cases except for the and zip,
which perform no work; ! which has unit cost; and concat and reduce whose
work is proportional to the length of the input sequence.

Finally, for sequence comprehensions (general or restricted), work and
depth costs of the body computations are combined in the expected way, but
with the addition of explicit distribution or packing costs for the auxiliary
variables. (For notational simplicity, we have assumed that all such variables
have been annotated by their types in the using-clause.) Also, the space costs
exhibit a difference between the sequential and parallel cases analogous to
the one for value sizes. For the space costs, the per-element size of a type,
|o|, is given by:

la) = 1
(01, 00| = Z e
{o}t = lol+1
] =1

Note that this is different from the sizes of values of that type: since se-
quences are never copied, and vectors in the implementation are copied as
pointers, their actual lengths don’t matter.

2.3 Implementation Model

Much like the source language refines NESL, the implementation model
is also an extension of NESL's parallelism-flatting approach, in that the
two effectively coincide in the case of fully materialized vectors, but we
have a more space-efficient model for implementing sequences, including
sequences of vectors.

For sequences, our model is conceptually similar to that of piecewise ex-
ecution [PPCF95], in which long sequences are broken up into fixed-sized
chunks (which may cross segment boundaries). Each chunk is then pro-
cessed using all available computation units, and the chunks are processed
sequentially using a dataflow model.

The main difference in our model is that the chunking (but not the chunk
size!) is exposed at the source level in the type system and cost model, rather

44 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

than as an optimized implementation strategy, whose applicability in any
particular situation remains hidden to the programmer — except through
sometimes drastic effects on performance or memory use. In particular,
unlike transparent piecewise execution of NESL or Proteus programs, the
compiler will never silently recompute a sequence if it needs to be traversed
more than once; instead, the programmer must explicitly make the choice
between materialization and recomputation based on the overall asymptotic-
complexity requirements for time and space usage.

2.3.1 Data Representation

In a bit more detail, all values are represented as trees of low-level, flat
streams of primitive values. Writing SA for the set of finite streams of A-
elements, we interpret source-language types as follows:

[Bool] = SB

[Int] = SZ

[Real] = SR
[(o1,y0i)] = [on] x -+ x [o]
(] = [% (SN x 5N)

[{o}] = [o] xSB

Tuples are just cartesian products. For vectors, we augment the interpre-
tation of the base type with a generalized segment descriptor describing starts
and lengths of the vectors. In the canonical representation, the segments
are allocated contiguously, and so the starting positions are simply given as
the +-scan of the lengths. For example, writing streams between (- - -), and
using < for the “is represented as” relation, we have:

[3,1,4], 1, [1], [5,9]] <
(((3,1,4,1,5,9),((0,3,3,4),(3,0,1,2)), ({0), (4)))

However, we also allow the subvectors to be permuted, allocated non-contiguously,
or share data — even across segment boundaries. For example, the above
nested vector could also be represented non-canonically as

(((7.5,9,3,1,4),((3,0,4,1), (3,0,1,2)), ({0), (4)))

(Note that the length stream is always the same as in the canonical repre-
sentation.) More usefully, we can represent the vector of all prefixes or suf-
fixes of another vector in linear, rather than quadratic space. The only well-
formedness constraint is that each “slice” (determined by a corresponding
(start,length) pair) has to fit entirely within the base vector.

2.3. IMPLEMENTATION MODEL 45

This representation corresponds to Lippmeier et al.’s virtual segment de-
scriptors [LCK'12], introduced to avoid the performance anomaly in code
like {v!i : i in a} where the entire vector v is first distributed to all parallel
computations, each one of which selects only a single element. By instead
keeping track of segment starts and lengths separately (rather than uniquely
determining the former by a +-scan of the latter), we can avoid duplicating
the full data, but only the pointers. The price, of course, is the potential
for read-read memory contention, but that will normally be a second-order
effect compared to the performance impact on both time and space of proac-
tive massive duplication.

(We do not presently use scattered segment descriptors, where different
segments may also come from different base vectors, because the need for
copying in appends is significantly reduced in our setting: it is only needed
in the case where the concatenated sequence must ultimately be material-
ized.

For sequences, as previously mentioned, we represent subsequence bound-
aries as flags:

{314}, {}, {1}, {5,9}} <
(((3,1,4,1,5,9), (F,F,F, T,T,F, T,F,F,T)), (F,F,F,F,T))

Here, the representation is actually unique. It can be seen as a unary coun-
terpart of the canonical vector representation (where the segment starts are
redundant).

The explicit flag representation is intended for interfacing between oper-
ations. When bulk-processing a chunk, as in a segmented scan, we can coa-
lesce consecutive T’s in the flag vector to a simple count; then the segment-
flag vector has exactly as many elements as the data vector, and so the cor-
responding elements of both can be accessed in constant time. For example,
the above sequence without the top-most segment descriptor can be repre-
sented in two forms:

General form: ((3,1,4,1,5,9), (F,F,F, T,T,F, T,F,F, T))
Contracted form: ((3,1,4,1,5,9), (0, 0, 2, 1, 0,1))
The two forms are uniquely determined from each other, except in the case
where the segment descriptor has at least one leading T. It is therefore

also necessary to keep a separate count of the number of leading T’s in the
contracted form.

2.3.2 Translation

In the actual implementation, we translate a nested data-parallel source pro-
gram to a stream-manipulating target-language program in a low-level lan-

46 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

[x[Cs = Cx
[a]Cs = repsa
[(x1,ex0)[0s = (Cx1, ..., Oxk)
[xi]Cs = let (ty,...tx) =Cxint;
[letx =e1inex]¢s = lett=[e1]C s in [ex]]C[x —] s

[¢p(x)]Ts = [Flp(Zx)s
[{eo : x in xg using x7', ..., x*}]|Cs =
let (t,s') = {xp in
(leoll [x = t, (x; > dist, ({x;) s')5] (usum s'),s")
[{eo | xo using x7*,.., x;*}[{ s =
let sg = C xp,8' = b2u(sg) in
(leo] [(xi = packes, (Cxi) s0)f_q] (usum s'),s")

Figure 2.4: Interpreter composed with translation.

guage (dataflow language for primitive streams). Here, for conciseness, we
present the essence of the translation by directly interpreting each source-
language term as the mathematical stream it denotes. The translation and
interpretation is given in Figure 2.4.

The semantics is compositional and type directed: For every I' ¢ :: 0,
we have [e] : [I] = S1 — [¢], where { € [I'] is a run-time environment
mapping each variable x in dom(T') to a low-level stream tree in [I'(x)].
The meaning of a closed top-level expression e is then given by [e] [] ().
In general, the stream of dummy input values represents the parallelism
degree of the computation, represented in unary because the length of a
sequence is in general not known a priori.

In the translation, the auxiliary function (rep : 1 —+ A — SA) produces
a stream with every x* in s replaced by a in (rep s a). The function usum :
SB — S1 counts, in unary, the F’s in a segment-boundary stream; formally,
we can define it by the equations:

usum () =)
usum (F|s) = (x|usum s)
usum (T|s) = usums

(We write stream heads and tails between (-|-).) For any concrete 7, the

2.3. IMPLEMENTATION MODEL 47

distribution function dist; : [t] = SB — [1] is given by:

disty sos = pdistsgs
dist(.....) (tl,..., tk) s = (diSt-(l tl S,...,diStTk tk S)
dist () (to,ss,s1) s = (to, pdist ss s, pdist s's),

where pdist : SA — SB — SA is a segmented distribute for atomic values:

pdist () () = ()

pdist {a|s) (F|s') = (a|pdist (a|s)s’)

pdist (a|s) (T|s') = pdistss'.
Note that each iteration consumes exactly one element of the flag stream, but
zero or one element of the data stream. (For actual execution, as described
in the next section, streams are processed chunkwise, and the element-wise
specification would be implemented efficiently in parallel using segmented
scans, like in NESL.)

The restricted comprehension is handled similarly. b2u : SB — SB maps

truth values to segment flags:

bu () = ()
b2u (F|f) = (T|b2u f)
2u (T|f) = (F|(T|b2u f))

The function pack, : [[¢] — SB — [c] is defined analogously to dist;, in
terms of a primitive ppack : SA — SB — SA given by:

ppack ()) = 0
ppack (alas) (F|bs) = ppack as bs
ppack (alas) (T|bs) = (a|ppack as bs),

but pack also has an additional clause for packing sequence types:
packn(t,s) b = (packe t (pdist bs),upack s b).

That is, we first distribute the pack flags b according to stream’s segment
flags, and use them to pack the underlying stream elements. upack : SB —
SB — SB is like ppack but packs unary numbers (subsequences of the form
(F,...,F, T), rather than atomic values.

The other primitive functions in [F] are defined similarly, many in a
type-directed fashion. For instance, mkstrf . is ultimately defined in terms
of a k-way primitive merge:

pmerge ()---() = ()
pmerge (a1 |s1)--- (ax|sg) = (ai|---{(ax|pmergesy---si)).

48 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

2.3.3 Execution Model

The low-level streaming language is effectively a dag of stream definitions,
represented as a linear list of “instructions” such as

s1:=1it(5); s2:= iota(sl); s3 := reduce_plus(s2),

similar in principle to the control-free fragment of VCODE [BCH " 94] (though
we use named variables rather than a stack model). However, while it would

be correct (wrt. the value computed and work/depth complexity) to execute

such a sequence from top to bottom, it would entirely defeat the point of

streamability, and the space usage would always be on the order of the

“parallel space” from the cost model, even on a completely sequential ma-

chine.

Instead, we compute the stream definitions incrementally and chunk-
wise, in a dataflow fashion. We repeatedly “fire” the definitions to transform
some elements in the input stream(s) into elements of the output stream.
Each stream definition has an associated buffer, which represents a mov-
ing window on the underlying stream of values. For streams representing
vector-free values, the buffer is always of a fixed size, related to the number
of processors; but for streams of vectors, the buffer may expand dynamically
to contain at least each subvector at once. (The buffer never shrinks below
the chunk size, so that, for example, the buffer for a stream of length-2 vec-
tors would normally contain many such vectors at once.) Note that vectors
only represent data storage, not active computations; it is only when they
are explicitly turned into sequences (by seq) that they are either divided or
coalesced into chunks.

Each stream window can only move forwards; once it passes past a part
of the stream, those stream elements become inaccessible. To ensure that all
consumers of a stream have accessed the stream elements they need before
the window advances, the implementation maintains read-cursors for each
stream, keeping track of the progress of each reader, to make sure that all
of the consumer firings have happened before the next producer firing is
enabled.

In addition to the buffer, each stream may have a fixed-size accumulator,
which keeps tracks of the computation state across chunks. For example,
when computing the sum or +-scan of a stream, the accumulator represents
the sum of the elements so far, and is used to “seed” the computation of
the next chunk, rather than restarting from zero each time. (This is how
sums or scans of vectors larger than the maximal block size must be imple-
mented in CUDA anyway; the difference is that we allow the processing of
consecutive sum/scan chunks to be interleaved with chunks from unrelated
computations.)

2.3. IMPLEMENTATION MODEL 49

To keep the scheduling overhead small compared to the work performed
in each chunk, their size must generally be chosen somewhat larger than the
number of available processors. For example, on a fairly large GPU, a suit-
able chunk size seems to be 64k-256k elements; see next section for details.
Currently, for simplicity, the chunk size is fixed for all streams and through-
out the computation, but in principle, it could vary dynamically, depending
on memory pressure, or even adaptively based on on-going performance
measurements.

Streamability To actually be executable in a streaming fashion, source pro-
grams must respect the inherent temporal dependencies between subcompu-
tations. Most notably, no auxiliary variable in a general comprehension may
depend on a computation that requires a prior traversal of the sequence
currently being traversed. For example,

let s = {log(real(x 4+ 1)) : x in iota(n)} in
let m = reduce, (s) in
reducey ({x x x+m: x in s using m})

cannot be executed in constant space (i.e., independent of 1), without dupli-
cating the computation of s, because m is only known after all of s has been
traversed. On the other hand, the following, mathematically equivalent, ex-
pression is fine:

let s = {log(real(x + 1)) : x in iota(n)} in
let m = reduce, (s) in
reduces ({x X x : x in s}) + slength(s) x m

because all three traversals of s can be performed in the same pass. An
alternative approach would be to materialize s, and traverse the stored copy
twice:
let sv = tab({log(real(x + 1)) : x in iota(n)}) in
let m = sum(seq(sv)) in
reducey ({x x x +m : x in seq(sv) using m})

A related situation arises with 4+ (or mkstr): while transducing s to
s ++ scan (s) is obviously infeasible in constant space, s ++ {sum(s)} or
scany (s) ++ {sum(s)} are fine — but {sum(s)} ++ s or {sum(s)} ++ scan(s)
are not.

In our current implementation, such illegal dependencies are only de-
tected at runtime, but they should be conservatively preventable already
at the source level by a suitable analysis and/or type system. Linear types
would correctly detect all illegal dependencies. However, such a type system
would be too conservative as many streamable expression are outlawed. For

50 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

example, let s = iota(n) in reducemin(s) + redicemax(s) is perfectly stream-
able (the two reduction can be performed synchronously), but the expres-
sion cannot be typed as s is consumed twice.

In most functional (or imperative) languages, a programmer who wants
to compute, say, both the sum of a number sequence and whether it contains
any zero elements, without unnecessarily materializing it, must explicitly
merge both reductions into a single foldl (or loop). Even though a lazy
language, like Haskell, could in principle compute both consumers of s in

. sum s ... not (all (/= 0) s)

in lockstep, garbage-collecting s incrementally, most likely it would memo-
ize all of s during the computation of sum, and only deallocate it again after
the all had been computed. In any case, the programmer would not be able
to count on the optimization.

It remains to be seen if working in a nominally eager language, but
with additional temporal constraints between variables (and getting an er-
ror instead of a silent space explosion when those constraints are violated),
is desirable in practice. We suspect that for performance-sensitive applica-
tions, it may be; otherwise, the obvious easy fix is for the compiler to insert
(possibly with a warning) seq/tab-pairs and/or duplicate computations, in
those places where it cannot guarantee streamability.

2.4 Empirical Validation

The practical applicability of our model is investigated through a number
of experiments over three semi-realistic parallel problems. The GPU used
for the benchmarks is an NVIDIA GeForce GTX 690 (2 GB memory, 1536
cores, 915 MHz), and the CPU is a dual AMD Opteron 6274 (2 x 16 cores,
2200 MHz). Due to significant numerical sensitivity, all tests are performed
using double-precision floating points for real numbers when possible. The
problems we consider are:

¢ The sum of logarithms from the Introduction. From now on referred
to as log-sum.

* A total sum of several sum of logarithms, also presented in the Intro-
duction. From now on referred to as sum of log-sums.

¢ An N-body simulation, where the force interaction for all pairs of bod-
ies is computed, without using any special data structures.

2.4. EMPIRICAL VALIDATION 51

For all problems, we compare the running time on a number of imple-
mentations:

¢ A single-threaded C implementation running on the CPU serving as a
sanity check for the rest of the implementations.

¢ A hand-optimized CUDA implementation.

e An implementation in Accelerate [CKL*11] version 0.13.0.1, a GPU-
enabled language embedded in Haskell.

¢ Animplementation in Single Assignment C (SaC) [Sch03] version 1.00_17229
using a multicore backend. SaC also supports a GPU target, but for
the experiments that we consider, the SaC compiler does not emit GPU
code. Namely, with-loops with reductions are not executed on the
GPU in the version of SaC we have tested.

* An implementation in NESL-GPU [BR12], both with and without ker-
nel fusion. NESL-GPU is NESL with a VCODE interpreter imple-
mented in CUDA as back-end. Real numbers are only implemented
with single-precision in the NESL-GPU backend, so the NESL bench-
marks suffer from numerical imprecision and an unfair advantage.
Nonetheless, NESL-GPU uses the double-precision version of the log-
arithm instruction, so in comparison to the sum-log problem, the ad-
vantage is negligible as the calculation of the logarithm dominates the
performance.

* A streaming implementation written in CUDA that reflects the stream-
ing model of execution presented in this chapter.

The comparison to Accelerate, SaC and NESL-GPU is done to measure the
performance of the streaming model against other high-level data parallel
languages without streaming execution. NESL-GPU and SaC support irreg-
ular nested data parallelism, while Accelerate only supports flat parallelism,
and consequently NESL-GPU and SaC are similar to the source language for
the streaming model presented in this chapter and therefore the most inter-
esting languages to compare with. Both Accelerate and NESL-GPU support
a GPU backend and perform kernel fusion, but NESL-GPU requires the pro-
grammer to manually run a separate fusion phase and compile and link the
fused kernels. Using kernel fusion in NESL-GPU gives a marginal speedup
for all our experiments, and therefore, only the timings using kernel fusion
for NESL-GPU are presented here. The streaming implementation is based
on the streaming model presented in this chapter, implemented manually.
However, there is nothing to suggest that similar code could not have been

52 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

generated automatically by a compiler. The streaming implementations uses
the CUDA Parallel Primitive library (CUDPP) for performing reduction and
scan primitives as well as stream compaction.

We measure the running time of each experiment by using the wall-clock
time averaged over an appropriate number of executions. Note that the time
it takes to load the CUDA driver and initialize the GPU is not included in
the benchmark, since it varies greatly from platform to platform. Memory
allocation and de-allocation on the GPU and data transfer between device
and host is, however, included in the timings for the CUDA and streaming
implementations.

24.1 Log-sum

The log-sum problem can be categorized as flat data-parallelism, and it
can easily be expressed in all languages included in the experiments. In
the streaming source language it can be implemented using only sequence
types, so we can expect to compute the problem in constant space. The total
work is proportional to N — the problem size.

Without going into details, the problem can be compiled from its source
form to the following data-flow network using a straight-forward mapping
of the primitives:

so := range(1,N);
S1 = lOg(SO);
sp := sum(sy);

Each stream definition is implemented by a separate kernel in CUDA, and
scheduling is simply implemented as a for-loop, scheduling each of the three
definitions in sequence in each iteration.

Figure 2.5 shows the running times of the log-sum problem for a prob-
lem size N varying from 2!? to 232, We can see that all the GPU implemen-
tations outperform C and SaC for large enough problem sizes as expected.
Furthermore, the running time of all the GPU implementations converge as
the input size increases. Note that NESL-GPU runs out of memory when
log,(N) > 25. Accelerate and SaC fail when log,(N) > 30 due to the num-
ber of bits used to represent the size of a single dimension is limited to 32.
In both cases, the problem could probably be mapped to a 2-dimensional
matrix without significant performance loss, but such a mapping stands in
contrast to the high-level of abstraction that the languages have been selected
for comparison because of.

From the second plot we can see that the choice of chunk size greatly
affects the running time: the running time grows rapidly as the chunk size

2.4. EMPIRICAL VALIDATION 53

decreases for small chunks sizes (B < 2!8), but for sufficiently large chunk
sizes (B > 21%), the running time stays more or less the same. Furthermore,
a larger block size incurs a larger overhead, which leads to significant per-
formance degradation for small problem sizes. This is an indication that on
our particular hardware, the chunk size B = 218 isa good choice, keeping in
mind that a larger chunk size requires more memory.

24.2 Sum of Log-sums

The sum of log-sums problem can be categorized as irregular nested data-
parallelism because the sub-sums varies in size. The total work is propor-
tional to N°. Just like log-sum, sum of log-sums can be implemented using
only sequence types in the streaming language. It is not at all obvious how
to implement this problem efficiently in Accelerate or CUDA as these lan-
guages do not facilitate automatic parallelization of nested data parallelism,
and since the parallelism is irregular, there is no straight-forward way to
sequentialize the programs by hand. We leave out an Accelerate imple-
mentation for this problem and implement two CUDA versions. The two
versions are manually sequentialized on two different levels to make the
problem flat:

¢ Inner loop: Using N threads, each sub-sum is computed sequentially
in a single thread. The results are then summed in parallel.

¢ Outer loop: In a top-level sequential loop, compute log-sum for i =
12,---,N? with i threads using the CUDA implementation from the
log-sum experiment.

Both sequentialization strategies are easy to implement, but yield uneven
work distribution.

The compilation of sum-log-sum in the streaming model is similar to
the compilation of log-sum, but with parallel versions of range computation
and summation, leading to segmented streams. Without going into detail,
the compilation will produce the following data-flow network:

so := range(l,N)

s1 := mult(sp,So)

s := segment-head-flags(sy)
s3 := ranges(sy);

S = log(s2)

S5 := segmented_sum(sy,S3);

S¢ := sum(sy);

54 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

Log—sum wall-clock

6 -
CPU
5 |-
—6— Accelerate
al —— CUDA
—+— NESL
3 —&— Streaming (B=18)

Iog10(ms)

log,,(N)
Log—sum wall-clock
6 ~
Streaming (B=10)
51 | - - - streaming (B=12)
Streaming (B=14) P
4} - | —+— Streaming (B=16)
—%— Streaming (B=18)
Streaming (B=20)
Tg 3r + -+ Streaming (B=22)
s * -~ Streaming (B=24) P
(@]
o

12 14 16 18 20 22 24 26 28 30 32

Figure 2.5: Benchmark results of the log-sum problem. The x-axis is the
problem size in base-2 logarithm, and the y-axis is the running time in
milliseconds in base-10 logarithm. The upper plot shows the running
time of different implementations measured in wall-clock time. The lower
plot shows the running time of the streaming implementation for different
choices of block sizes.

2.4. EMPIRICAL VALIDATION 55

Here follows and explanation of the newly introduced instructions:

* segment-head-flags: Converts segment lengths to head flags. E.g.
(2,3) — (T,F, T,F,F).

* ranges: Produces a range 1..n for each segment. E.g.
(T,F,T,F,F) — (1,2,1,2,3).

It is implemented as a segmented scan of 1’s followed by adding 1 to
each element.

* segmented_sum: Takes a stream of segment head flags and a stream of
values and outputs a sub-sum for each segment. E.g.

(T, F, T, F, F)

2,3 1, 0 7>H<5'8>‘

Scheduling is an outer loop over all the instructions with an inner loop over
instructions sy, s3, s4 and ss.

Figure 2.6 shows the running times of the sum of log-sums problem for
a problem size N varying from 2% to 2!2. Just like for the log-sum problem,
the GPU implementations will only outperform C and SaC for large enough
problem sizes. NESL-GPU has good performance, but runs out of memory
at N = 2%, If the implementation was able to continue beyond this point,
the performance seems to coincide with the streaming implementation sug-
gesting that the two have equivalent performance, except the streaming im-
plementation has some initial overhead that is significant for small problem
sizes. The two CUDA versions are outperformed by the streaming imple-
mentation for medium problem sizes (7 < log(N) < 10), which is likely due
to uneven work distribution. The inner loop implementation is apparently
asymptotically superior to the other implementations, but this is likely due
to the total running time being bounded by the most work-heavy thread,
which computes exactly N? logarithms, suggesting that any work done up
until this thread is started, is negligible. The curve will likely converge to
a cubic slope for even larger problem sizes. The outer loop implementation
seems to reach the point of cubic slope at around log(N) = 11, where it
already outperforms the streaming model. With this problem size, the work
is dominated by a few very large computations of log-sum which can utilize
the entire GPU, so this result is not surprising.

A chunk size of B = 218, appears to be a good choice again. The gap
between the CPU implementation and the remaining implementations is
significantly smaller for sum of log-sums than for log-sum, leading to the
conclusion that none of the implementations handle irregular nested paral-
lelism particularly well.

56 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

Sum of log—sums wall-clock

12

12

7 ~
6r cPU
—— CUDA (inner loop)
[e
5 —=4— CUDA (outer loop)
—+— NESL
4r —&— Streaming (B=18)
. - — —8aC
E 3
=
8 2
1z
o P
1t e g
_2 1 1 1 1 1 1 1 J
4 5 6 7 8 9 10 11
log,,(N)
Sum of log—sums wall-clock
5
45 Streaming (B=
— — — Streaming (B
4 Streaming (B:
—+— Streaming (B
3.5 —*— Streaming (B
-+ Streaming (B
3 + - Streaming (B
8 * - Streaming (B=
T 25
D
o
2
D R PHEOE S
1F
0.5
O J
4 5 6 7 8 9 10 11
log,(N)

Figure 2.6: Benchmark results of the sum of log-sums problem, with the

same conventions as in Figure 2.5.

2.4. EMPIRICAL VALIDATION 57

2.4.3 N-Body

The N-body problem can be categorized as regular nested data-parallelism
(i.e. all sub-computations have the same size). For simplicity we assume
that all bodies have unit mass, and we simulate each body with the unit
time-step. To avoid the problem of singularities, we use the formula

L i
TN =G -G-pror

to compute the directional force between body x and y, where the € term
ensures that no two bodies will ever have zero distance sending them off
to infinity. We define the problem as, given a system of N bodies, for each
body, given an initial position and velocity, compute the acceleration subject
to the force interaction from all other bodies in the system, and compute a
new position and velocity, in three dimensions using the formula

—

Xp = Xpq+dt-Tq+1/2-d G4
Uy = Up_1+dt-dpq

The total work in one iteration is proportional to N2. We measure the aver-
age execution time of an iteration over a long simulation.

Although Accelerate contains no support for nested data-parallelism, the
regularity of the problem enables easy manual flattening by replication of
the bodies to form a matrix of all body-pairs. A scalar function is mapped
over each element of the matrix computing the force between a pair of bod-
ies, and each row is subsequently reduced to find the sum of all forces acting
on each body.

The implementation in NESL-GPU is much more intuitive due to the
support for nested data-parallelism?:

sum_3d(X) = let(X,Y,Z) = unzip3(X)
in (sum(X), sum(Y), sum(Z2))

glx,X) = sun 3d({f(xy):yin X})
nbody(X) = {g(x,X):xin X}

The matrix of all body-pairs is implicitly computed in this expression since
X must be distributed over itself in order to use X in the inner-most apply-
to-each.

We cannot implement the problem in the streaming language without
using concrete types. More precisely, if we use the NESL expression as a
starting point, the variables that are used in the body of both apply-to-each

2The code for updating positions and velocities is now shown here.

58 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

constructs, must be explicitly stated. The outer apply-to-each uses X, and
consequently from the type rule of apply-to-each, X cannot have sequence
type and must be fully materialized in memory. The solution is to make
sure X is tabulated, which is also what one would assume, and use seq(X)
to traverse it multiple times as a sequence.

g(x,X) = sum 3d({f(x,y):yin seq(X) using x})
nbody(X) = {g(x,X):xin seq(X) using X}

A compiler can utilize the regularity of the problem to generate more
efficient code. More specifically, we can compute the index ranges using
modulo arithmetic, and the segmented sum using a single unsegmented
scan, a gather and a subtraction. If we assume that the streaming compiler
can infer and exploit this regularity, we can generate the following code for
the streaming model:

X := < input >

so := 2d_range x(N,N);

s1 := 2d_range_y(N,N);

s, = gather(X,sp);

s3 = gather(X,s1);

sy = force(sy,s3);

s5 := 2d_segmented_sum(N, N, sy);

Here 2d_range_x(N, M) produces the stream

M

©,...,.N-1,---,0,...,N—1),

and 2d_range_y(N, M) produces the stream

N N
——
©,...,0,--- , M—1,..., M—1).

2d_segmented_sum(N, M,s) produces a regular segmented sum of s seg-
mented in N segments, each of length M. force is the force calculation
between two bodies, fused into a single instruction. The force calculation
consists solely of scalar operations, so fusion is straightforward, and it is
fair in comparison since both Accelerate and NESL-GPU uses fusion.

The hand-optimized CUDA implementation is based on the algorithm
presented by Nyland, Harris, and Prins in GPU Gems 3 [NHP07] and uses
explicit cache management and tiling.

2.4. EMPIRICAL VALIDATION 59

The implementations in NESL-GPU, Accelerate and Sac do not contain
any explicit sequentialization except for the simulation iterations. This is
important because such a sequentialization would be a platform-specific
optimization, and we are comparing with these languages because they are
platform-agnostic. We were not able to produce an implementation in SaC
that performs better than the CPU implementation for N-Body.

Figure 2.7 shows the running time of N-Body. Here the NESL-GPU im-
plementation runs out of memory for all but the smallest problem sizes (21°
bodies) and performs horribly, likely due to explicit replication. Accelerate
on the other hand is able to handle all tested input sizes indicating that it
handles replication symbolically.

Once the input size is large enough, the streaming version is a constant
factor faster than the CPU version, Accelerate is a constant factor faster than
the streaming version, and the CUDA version is a constant faster than Ac-
celerate. Compared to the previous problems, the CUDA implementations
is now significantly faster than the other GPU implementations, and the
streaming implementation is painfully close to the CPU implementation in
performance. From the lower plot we can see that the optimal chunk size is
the same as for the previous problems.

2.4.4 Discussion

Considering the experimental results of the streaming implementation in
isolation, it is evident that the running time of a given problem converges
as the chunk size increases, and furthermore, it converges long before the
chunk size reaches the problem size for large enough problem sizes. As
stated previously, when the chunk size is big enough, the streaming execu-
tion model is largely equivalent to that of NESL. In conclusion, choosing a
reasonable chunk size, the streaming model will not be slower than a tra-
ditional execution model. The three experiments all suggested the same
optimal chunk size of 2!%, which is important since it is an indication that
the optimal chunk size is independent from the algorithm and problem size,
meaning that for a given concrete machine, a specific chunk size can be se-
lected once and for all programs. Given a chunk size of 2! and depending
on the type, a single buffer requires roughly 8-16 MB worth of memory on
the device, enabling several hundreds of buffers to be allocated at any given
time. This is more than enough for most algorithms. It should be possible to
estimate the number of required buffers before execution begins, at least for
our somewhat restricted source language, and if more buffers are needed
than the GPU capacity enables, the block size can be lowered. In extreme
cases, buffers can be swapped in and out of device memory dynamically.
Comparing the results of the streaming implementation with the other

60 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

N-Body wall-clock

5 -

al CPU
—©— Accelerate
—<v— CUDA

3r —+— NESL
—&— Streaming (B=18)

@ 2
E
o
o
o 1
0
-1F
_2 1 1 1 1 J
6 8 10 12 14 16
log,(N)
N-body wall-clock
6 ~
Streaming (B=10)
5+ — — — Streaming (B=12) P
Streaming (B=14) -
—+— Streaming (B=16)
Al —— Streaming (B=18)
Streaming (B=20) v
& 3F + - Streaming (B=22) L
3 * - Streaming (B=24) d
o
o
L 2
1
0 g

l0g,(N)

Figure 2.7: Benchmark results of the sum of N-Body problem, with the same
conventions as in Figure 2.5.

2.5. PRELIMINARY CONCLUSIONS AND FUTURE WORK 61

GPU implementations, the experiments show that a streaming execution of
nested data-parallel programs on GPGPUs is on-par with existing GPU-
enabled high-level languages both for flat, regular nested and irregular
nested data-parallelism. We also conclude that much larger problem sizes
are supported when using streaming than what is available in NESL. This is
a critical feature for data-parallel languages, because the benefit of parallel
execution increases as the problem size increases. For small problem sizes,
the difference between 1 second and 10 milliseconds is quickly shadowed
by the overhead of loading and unloading CUDA'’s drivers, but the differ-
ence between 1 hour and 100 hours for huge problem sizes is significant.
By allowing a data-parallel program to work on such problem sizes is there-
fore highly valuable, and that is exactly what the streaming execution model
provides that both Accelerate and NESL-GPU does not.

On the other hand, the running time for streaming execution is still con-
siderably higher than we had hoped and what a hand-optimized CUDA
implementation offers. This can partly be attributed to lack of tiling and
explicit cache management. Another concern is that dividing a parallel in-
struction into several kernel invocations, as is required by data-flow execu-
tion, precludes the use of registers to store intermediate results; In CUDA,
it is not possible to carry values stored in registers or shared memory from
one kernel invocations to the next, even if it is the same kernel that is in-
voked. Instead, the global memory must be used, which is much slower.
This indicates that kernel fusion is still beneficial in the streaming model.

The experiments do not provide a clear validation of the streaming model,
but they do not reject it either. The results suggest that implementing a GPU
backend for a NESL-like language that scales to extremely large problem
sizes is possible using the streaming model presented in this chapter, with-
out incurring too severe performance degradation for small and medium
problem sizes.

2.5 Preliminary Conclusions and Future Work

We have outlined a high-level cost model and associated implementation
strategy for irregular nested data parallelism, which retains the performance
characteristics of parallelism-flattening approaches, while drastically lower-
ing the space requirements in several common cases. In particular, many
highly parallelizable problems that also admit constant-space sequential al-
gorithms, when expressed in the language, have space usage proportional
to the number of processors — not to the problem size.

The language and implementation are still under development, and many
details are incomplete or preliminary. Particular on-going and future work,

62 CHAPTER 2. TOWARDS A STREAMING MODEL FOR NDP

not already mentioned at length, includes:

¢ Extending the language and cost model with recursion, to allow ex-
pression of more complex algorithms. The main challenge here is to
determine to what extent common parallel-algorithm skeletons admit
streaming formulations. For example, to explicitly code a logarithmic-
depth reduce, a divide-and-conquer approach (split vector in halves,
reduce each half in parallel, and add the partial results) will obviously
not work for sequences, when not even the sequence length is known
a priori. On the other hand, a unite-and-conquer reduction (add pairs
of adjacent elements in parallel, then recursively reduce the resulting
half-length sequence) can be implemented in a streaming fashion, and
probably exhibits better space locality as well.

* Extending the model to account for bulk random-access vector writes
(permutes, or more generally, combining-scatter operations). A sig-
nificant class of algorithms that nominally involve random-access vec-
tor updates, such as histogramming or bucket sorting, can still be ex-
pressed in a parallel, streaming fashion by generalizing (segmented)
scans to multiprefix operations [She93]. Making multiprefix primitives
conveniently utilizable by the programmer should minimize, or maybe
even eliminate, the need for explicitly distinguishing between copying
and in-place implementations of vector updates in the cost model.

¢ Formally establishing the time and space efficiency of the implemen-
tation model, in the sense that the work and depth complexity, and
parallel and sequential space usage, predicted by the high-level model
are in fact realized, up to a constant factor, by the low-level language
with chunk-based streaming.

e A full language implementation with a representative collection of
back-ends (including at least sequential, multicore /SIMD, and GPGPU)
to gather more practical experience with the model, and in particu-
lar determine whether the hand-coded implementations of particu-
lar streaming algorithms can also be realistically generated by a fixed
compiler.

Finally, though we believe that the main value of the streaming model
is its explicit visibility to the programmer, some of the ideas and concepts
presented in this chapter might be adaptable for transparent incorporation
in other data-parallel language implementations (APL, SaC, Data Parallel
Haskell, etc.), to achieve drastic reduction in memory consumption in many
common cases, without requiring explicit programmer awareness of the
streaming infrastructure.

Chapter 3

Functional Array Streams

This chapter is a reprint of [MCECK15] without any non-trivial changes.

Abstract

Regular array languages for high performance computing based on aggre-
gate operations provide a convenient parallel programming model, which
enables the generation of efficient code for SIMD architectures, such as
GPUs. However, the data sets that can be processed with current imple-
mentations are severely constrained by the limited amount of main memory
available in these architectures.

In this chapter, we propose an extension of the embedded array lan-
guage Accelerate with a notion of sequences, resulting in a two level hierar-
chy which allows the programmer to specify a partitioning strategy which
facilitates automatic resource allocation. Depending on the available mem-
ory, the runtime system processes the overall data set in streams of chunks
appropriate to the hardware parameters.

In this chapter, we present the language design for the sequence oper-
ations, as well as the compilation and runtime support, and demonstrate
with a set of benchmarks the feasibility of this approach.

3.1 Introduction

Functional array languages facilitate high-performance computing on sev-
eral levels. The programmer can express data-parallel algorithms declara-
tively, and the compiler can exploit valuable domain specific information to
generate code for specialised parallel hardware. A standard array language
separates itself from traditional languages by offering data-parallel collec-
tion oriented constructs as primitives such as map, fold, scan and permuta-

63

64 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

tion. Without these primitives, the same logic would have to be encoded as
sequential for-loops or recursive definitions, obfuscating data-dependency
and access patterns. Due to the artificial data-dependencies introduced by
the loop counter or the recursion stack, these encodings prevent natural par-
allelisation, and the compiler must resort to program analysis to detect and
exploit implicit parallelism. Such automatic parallelisation strategies are
fragile, and small changes in the code may cause them to fail, significantly
degrading the performance for reasons not obvious to the programmer.

Array languages present a complementary problem. The explicit data-
parallelism exposed in an array program may vastly exceed the actual paral-
lel capabilities of the target hardware. Data-parallel programs often require
working memory in order of the degree of parallelism. Therefore, it is not
always desirable or even possible to execute an array program in its full
parallel form. To conserve space, we would like the compiler to make the
program “less parallel” prior to execution. However, the absence of explicit
sequential data-dependencies prevents natural sequentialisation.

If we would execute each parallel combinator in isolation, we could
simply sequentialise the combinator by partitioning the index-space and
scheduling the different parts in a tight loop. Evidently, this is how CUDA
schedules a kernel in blocks on a large grid.

In practice, however, it is essential to fuse sequences of parallel combina-
tors together to form complex computations, thereby reducing the num-
ber of array traversals and intermediate structures. As soon as such a
sequence includes more than simple maps, the combinators may not tra-
verse the index-space in a uniform way. Consequently, loop fusion can
be very complex. Compiler-controlled sequentialisation affects the fusion-
transformation, and complicates it further. Finding the optimal sequential-
isation strategy in this context is not decidable, so we would have to resort
to using heuristics, leaving the programmer at the mercy of the compiler
again.

Therefore, we propose to give control over this step to the programmer,
who has more knowledge about the nature of the application and size of the
processed data set. We achieve this by including a set of sequence combina-
tors for array languages, so sequential data-dependency over data-parallel
computations can be specified and the amount of parallelism exposed be
controlled.

This chapter presents these new sequence combinators, using the lan-
guage Accelerate as starting point and discusses the extensions to the run-
time system with the required streaming and scheduling mechanism. In
summary, the contributions of this chapter are as follows:

¢ We present a new set of sequence combinators, which, together with

3.2. ACCELERATE 65

the usual combinators like maps, folds and scans, can be used to ex-
press a two-level hierarchy sequentially combining a sequence of par-
allel operations over chunks of data.

¢ We present a runtime system extension which implements the neces-
sary scheduling and streaming mechanisms.

¢ We present an evaluation of the approach presented in the chapter.

While we are currently only targeting single-GPU architectures, the pro-
gramming model we propose in this chapter also allows the programmer
to expose pipeline-parallelism in a program, which we could exploit in an
implementation for multi-GPU architectures. Although outside the scope of
this chapter, other data-parallel architectures, such as multi-processors and
distributed systems, would also benefit from the model presented here.

3.2 Accelerate

Accelerate is a domain specific functional language for high-performance,
multi-dimensional array computations, implemented as deep embedding in
Haskell. In addition to the collection oriented operations similar to those
on lists, like maps, scans, reductions, it also offers array-oriented opera-
tions, such as stencil convolutions, as well as forward- and backward per-
mutations, conditionals and loops. Indeed, apart from the type annotation
(to which we will get back shortly), many Accelerate programs — like this
dot-product example — look almost like the corresponding list operation in
Haskell:

dotp :: Acc (Vector Float)
— Acc (Vector Float)
— Acc (Scalar Float)
dotp xs ys = fold (+) O (zipWith (*) xs ys)

In contrast to Haskell, though, Accelerate is strict and fully normalising.
The language has two non-obvious restrictions: (1) Arrays must be reg-
ular. By regular, we mean arrays cannot contain other arrays as elements.
Instead, arrays are multidimensional. Scalars, vectors, matrices, tensors,
and so on, are all regular arrays, but a vector of arbitrary-length vectors
is not. (2) Accelerate does not permit nested data-parallelism. For ex-
ample, even though one could imagine using a two dimensional array as
a vector of vectors, mapping a map over each sub-vector is not allowed.
These restriction enables a smooth compilation to SIMD hardware. Accel-
erate comes with a number of backends, among them a GPU implemen-

66 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

tation generating CUDA [NVI12] code, that demonstrate excellent perfor-
mance [CKL*11, MCKL13].

The restriction to regular computations and arrays is enforced statically
via the type system, which serves to separate Accelerate expressions into
two distinct categories.

* Elt a => Exp a: Expressions which evaluate to values of type a, where
a has to be a member of type class E1t, which includes basic types such
as integers, floats, bools, as well as n-tuples of these. Accelerate gen-
erates valid CUDA C from Exp expressions.

* (Shape sh, Elt a) => Acc (Array sh a): Expressions which evalu-
ate to n-dimensional arrays with element type a and shape sh. Accel-
erate generates CUDA GPU kernels from Acc expressions.

Shapes are sequences of integer dimensions separated by :. (e.g. Z :. 2 :. 3),
and Scalar is a type synonym for a zero-dimensional array, Vector for a
one-dimensional array. The type annotation of the dotp example therefore
states that the function accepts two floating point vectors as arguments, and
returns a scalar floating point value as result. More precisely, since Accel-
erate is a deep embedding, dotp takes in accelerate expressions specifying
computations which produce results of these types, and returns a new com-
putation.

Functions like map, fold and so on are rank polymorphic. For example, the
type of zipWith is

zipWith :: (Shape sh, Elt a, Elt b, Elt c)
= (Exp a — Exp b — Exp c¢)
— Acc (Array sh a)
— Acc (Array sh b)
— Acc (Array sh c¢)

Several things are happening here: the type of the function passed to zip
is, by its type, restricted to sequential computations over values of basic
type. The type class constraint Shape sh essentially restricts sh to n-tuples
of integers, where n determines the rank of the array. Both array arguments
have to have the same rank, which is also the rank of the result. The actual
sizes, however, are not tracked statically and may be different.

3.2.1 Fusion

It is well known that the collection oriented style of programming which Ac-
celerate relies on has a serious potential drawback: if implemented naively,

3.2. ACCELERATE 67

by executing each aggregate operation separately, it can result in an exces-
sive number of array traversals, intermediate structures, and poor locality.
For example, it would clearly be inefficient if the code for the dotp exam-
ple would first produce an intermediate array of the pairwise products, and
then, in a second traversal, add all these sums to the final result. There-
fore, Accelerate aggressively employs fusion, merging the operations to more
complex computations, trying to minimise the number of traversals.

Fusion cannot, in general, guarantee that its results are optimal. Con-
sider, for example, a fusible computation whose result is consumed by two
different operations. If we would fuse into both consumers, we would avoid
creating the intermediate structure, but duplicate the work involved to com-
pute the array element, which can, in theory, slow down the performance
considerably. In practice, most computations are fairly cheap compared to
creating and accessing an array, so fusion would result in a significant speed-
up nevertheless. Without sophisticated cost-analysis, the compiler cannot
decide which alternative results in the best performance, so we err on the
side of caution and never fuse computations whose result is used more than
once.

3.2.2 Handling Large Data Sets

We have shown previously [CKL"11, MCKL13] that the Accelerate approach
of expressing parallel computations enables the generation of highly effi-
cient code. The dot-product in Accelerate, for example, is only slightly
slower than CUBLAS, a hand-written implementation of the Basic Linear Al-
gebra Subprograms in CUDA by NVIDIA. However, on GPU architectures,
we can only achieve peak performance if the data set we are processing in
one parallel step is large enough to utilise all processing elements, yet small
enough to still fit in the GPU memory, which is, at currently around 4GB,
for the majority of hardware, much more restricted than CPU memory:.

If programmers want to develop GPU programs which process larger
set of data, they have to explicitly stage the computation into a sequence
of parallel computations on smaller data chunks, and combine the subre-
sults. While this is possible, it adds a significant layer of complexity to an
already difficult task, and would lead to code whose relative performance is
architecture dependent.

The other extreme option would be to try and let the compiler shoulder
all the complexity of solving this problem. However, sophisticated optimi-
sations like these have the downside that they usually cannot guarantee op-
timality, and behave in a way hard to predict by the programmer. Therefore,
we choose an intermediate route: we allow the programmer to explicitly
distinguish between parallel, random access structures, and streamed ones,

68 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

which allow only for a more limited set of operations. This gives the pro-
grammer the opportunity to design an algorithm tailored for this model,
instead of hoping the compiler optimisations will work out.

In the following section, we describe the stream extension to Accelerate’s
program model, before we discuss its implementation and performance.

3.3 Programming Model

3.3.1 Examples

Let us go back to our dotp example. If we know that the input vectors
most likely will not fit into memory, or we wish to ensure it minimises its
space usage, we want to tell the compiler to split the input into chunks of
appropriate size, calculate the product and sum for each chunk, and add the
subresults as they are produced. Our stream extension makes this possible:

dotpSeq :: Acc (Vector Float)
— Acc (Vector Float)
— Acc (Scalar Float)
dotpSeq xs ys =
collect
$ foldSeqE (+) 0
$ zipWithSeqE (*) (toSeqE xs) (toSeqE ys)

Here, toSeqE turns a normal Vector into a sequence of Scalars, zipWithSeqE
performs element-wise multiplication of the two input sequences, foldSeqE
calculates the sum, and collect takes the conclusion of the sequence com-
putation and turns it into an Acc expression. The rest of this section will
explain these primitives in more detail.

As Accelerate is rank-polymorphic, sequence operations can be parametrised
by shape information. By convention, we denote specialised versions of
these operations for sequences of scalars by the suffix E, as for example
toSeqE above.

It is not just sequences of scalars that are supported, however. Our ex-
tension supports sequences of arbitrary rank. If for example we wanted to
perform a matrix vector multiplication:

mvmSeq :: Acc (Matrix Float)
— Acc (Vector Float)
— Acc (Vector Float)
mvmSeq mat vec
= let rows = toSeq (Z:.Split:.All) mat
in collect

3.3. PROGRAMMING MODEL 69

$ fromSeqE
$ mapSeq (dotp vec) rows

In this case, we first split the vector up into rows with toSeq, then apply
dotp vec over every row, turn what is now a sequence of scalars into a
Vector with fromSeqE, before finally collecting the result.

In addition to not requiring the entire matrix be made manifest, this ex-
ample also highlights how our extension enables an extra degree of nesting,
in this case, defining matrix-vector multiplication in terms of the parallel
dot-product, something not previously possible.

3.3.2 Streams

As we have seen in the previous examples, an Accelerate array is a collection
where all elements are simultaneously available, whereas a sequence value
corresponds to a loop, where each iteration computes an element of the
sequence. Sequences are ordered temporally, and are traversed from first to
last element. Once an element has been computed, all previous elements
are out of scope, and may not be accessed again. The arrays of a sequence
are restricted to having the same rank, but not necessarily the same shape.
If the shapes happen to be the same, we call the sequence regular. Using A
to range over array values, and square brackets to denote sequences,

[All AZ/ cees Ai’l]

denotes the sequence that computes A; first, computes A, second and so
forth until the final array A, is computed. Here, n is the length of the
sequence (possibly zero).

Sequences model the missing high-level connection between the parallel
notation of array languages and sequential notation of traditional for-loops.
The basic sequence combinators are carefully selected such that the arrays
of a sequence can be evaluated entirely sequentially, entirely parallel, or
anything in between as long as the strategy respects the sequence order of
arrays; even on SIMD hardware. The runtime system then selects a strategy
that fits the parallel capabilities of the target hardware. The programmer
may assume full parallel execution with respect to what the hardware can
handle, while maintaining a limit on memory usage. A purely sequential
CPU would evaluate one array at a time with a minimal amount of working
memory. A GPU would evaluate perhaps the first 100 arrays in one go, and
then evaluate the next 100 arrays, and so on. The working memory would
be larger, but not as large as the cost of manifesting the entire sequence at
once. Ideally, the runtime performance, in terms of execution time, should
correspond to a fully parallel specification, and in terms of working memory,

70 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

should be in the order of a constant factor related to the parallel capabilities
of the hardware - Unless any one array of the sequence exceeds this amount.

Of course, not all array algorithms can be expressed as sequences. As
sequences can only be accessed linearly, any algorithm which relies on per-
muting or reducing an array in a non-linear way, cannot be expressed as a
sequence. It is the responsibility of the programmer, not the compiler, to
expose inherent sequentialism.

3.3.3 From Arrays to Sequences and Back

As we discussed previously, the type constructors Exp and Acc represent
nodes in the AST from which Accelerate generates CUDA C code and CUDA
GPU kernels, respectively. Sequence computations are represented by the
type constructor Seq. Accelerate will generate CUDA kernels together with
a schedule for executing the kernels over and over until completion.

While the type constructor Seq represents sequence AST nodes, we use
the Haskell list syntax to represent the actual sequence type. That is, the
type [al represents sequences of a’s, and the type Seq [a] represents se-
quence computations that produce sequences of a’s when executed. The
type Seq a, where a is not a sequence type, represents sequence computa-
tions that produce a single result of type a. We will see an example of such
a type when we explain foldSeqE.

Sequences are introduced in Accelerate either by slicing an existing array,
as we did in our examples, or by streaming an ordinary Haskell list into
Accelerate, which we will discuss in detail in Section 3.3.4.

In our examples, we used the combinator toSeqE to convert one dimen-
sional array into a sequence of values of the same element type:

toSeqE :: (Elt a)
= Acc (Vector a)
— Seq [Scalar al

However, toSeqE is just a special case of the more general combinator toSeq,
which operates on multi-dimensional arrays and is parametrised with a spe-
cific slicing strategy div:

toSeq :: (Division div, Elt a)
= div
— Acc (Array (FullShape div) a)
— Seq [Array (SliceShape div) al

Values of types belonging to the Division type-class define how an ar-
ray is divided into sub-arrays along one or more dimensions, where Split

3.3. PROGRAMMING MODEL 71

at a given position tells the compiler to divide the elements along the corre-
sponding dimension into a sequence, A11 to leave it intact.
Divisions are generated by the following grammar.

Div > div :=Z | div :. A1l | div :. Split

FullShape and SliceShape are type functions that, for a given division,
yield the shape of the full array and the shape of every slice. Let us have a
look at an example to see how divisions can be used to slice a two dimen-
sional array in different ways. Let A be the matrix

1 2 3
10 11 12
then we can either leave the matrix intact and create a sequence contain-

ing one element (somewhat pointless), slice it column-wise, row-wise, or
element-wise:

toSeq (Z :. A1l :. A11)
toSeq (Z :. A1l :. Split)
toSeq (Z :. Split :. All)
toSeq (Z :. Split :. Split)

Fusion, as described in Section 3.2.1, is applied across sequentialisation. This
means that, if matrix A is the result of a computation, we leverage the exist-
ing fusion transformation of Accelerate to combine it with any operation on
A;. In this way, we avoid the full manifistation of A.

If A is the result of an operation that prevents subsequent fusion, such as
a reduction or a scan, we have no choice but to materialise the entire input
array prior to slicing. This undesirable effect can sometimes be avoided by a
simple transformation that moves the fusion-preventing operation into the
sequence computation. As an example, consider the following program that
converts a matrix into a sequence of row sums:

rowSums :: Acc (Array DIM2 Int)
— Seq [Scalar Int]
rowSums mat =
toSeqE (fold (+) O mat)

Since fold prevents further fusion in Accelerate, the result of (fold (+)
0 mat) will be a fully materialised vector, that happens to hold the entire
sequence at once. If mat has a huge number of rows, full manifestation is
catastrophic. However, it is entirely unnecessary and can be avoided in this
case by first constructing a sequence of rows, and then mapping a sum over
that sequence:

72 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

rowSums ' mat =
mapSeq
(fold (+) 0)
(toSeq (Z:.Split:.All) mat)

Assuming the user of this function provides an array expression mat that
does not prevent further fusion, mat will be fused row-wise into the first
operation of the sequence. Therefore, no initial manifestation is required
and this definition works for arbitrary many rows. As a subject for future
work, the compiler could potentially perform array-to-sequence expression
transformations like this one. For now, as a rule of thumb when working
with sequences, it is advisable to slice early and put as much of the program
logic in Seq rather than in Acc. Finally, as a specific optimization for the GPU
backend, if A is a host-side array constant, it will be transferred to the device
in parts.

Sequences of arrays can be converted into flat data vectors and a vector
containing the shape of each array, or to the data vector only if we are not
interested in the shapes:

fromSeq :: (Shape ix, Elt a)
= Seq [Array ix al
— Seq (Vector ix, Vector a)

Ordinary Accelerate array function can be lifted from working on arrays
to working on sequences using mapSeq and zipWithSeq. These sequence com-
binators are parametrised by the to-be-lifted array function, and the denota-
tion is simply to apply the function to each array of the input sequence(s).

mapSeq :: (Arrays a, Arrays b)
(Acc a — Acc b)

Seq [al]

Seq [b]

U

zipWithSeq :: (Arrays a, Arrays b, Arrays c)
(Acc a — Acc b — Acc c¢)

Seq [a]

Seq [b]

Seq [c]

Lild

The type class Arrays contains n-tuples of Array type, expressing the fact
that the arguments of both operations can be multiple arrays.

In addition to mapping operations over sequences, we can fold a se-
quence of scalars with an associative binary array operator. Unlike with

3.3. PROGRAMMING MODEL 73

map and zipWith, foldSeqE is not implemented in terms of a more general
foldSeq. The reason why is explained in Section 3.4.

foldSeqE :: Elt a

(Exp a — Exp a — Exp a)
Exp a

Seq [Scalar al

Seq (Scalar a)

L1l

Note that foldSeq still returns a sequence computation, but the result of
that computation is a scalar array, not a sequence. This allows multiple re-
ductions to be expressed and contained in the same sequence computation,
ensuring a single traversal. For example, here we have two reductions, one
summing the elements of an array, the other calculating the maximum. We
can combine this into a single traversal with 1ift.

maxSum :: Seq [Scalar Float]
— Seq (Scalar Float, Scalar Float)
maxSum xs = 1lift (foldSeqE (+) 0 xs
, foldSeqE max 0 xs)

If we want to convert this back into an Acc value, we need to use collect:

collect :: Arrays arrs
= Seq arrs — Acc arrs

Note the Arrays constraint on arrs in collect. As sequences are not
members of the Arrays class this ensures that we cannot embed a whole
sequence into an array computation without first reducing it to an array.

3.3.4 Lazy Lists to Sequences

Our language extension allows interfacing with ordinary Haskell lists. We
define two convenient operations for converting sequence expressions to
Haskell list and vice versa.

streamIn :: Arrays a = [a] — Seq [a]
streamOut :: Arrays a = Seq [a]l] — [al

streamIn is a language construct that takes a constant sequence and
embeds it in Accelerate. It is the sequence-equivalent of an array constant in
ordinary Accelerate. streamOut on the other hand, is an interpretation that
runs a sequence expression and produces a Haskell list as output. Therefore,
it must be defined on a per-backend basis, just like the ordinary Accelerate
interpretation function run :: Arrays a =Acc a —a. Using streamQut is

74 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

the only way to interpret a sequence expression that is not embedded in an
array expression.

Accelerate is a strict language, and has not been equipped to deal with
infinite sequences until now. Arrays are naturally finite, and the result se-
quence of toSeq is no longer than the size of the input array. However, there
is nothing that prevents the programmer from passing an infinite list to
streamIn. Being a strict language, Accelerate will go into an infinite loop if
the programmer attempts to reduce an infinite sequence. It is however pos-
sible to productively stream out an infinite sequence to an infinite Haskell
list. The elements will then be forced according to the evaluation strategy,
which is hidden from the programmer. For example, if the programmer tries
to print the third element of a streamed out sequence in Haskell, Accelerate
may internally evaluate the first ten elements.

3.4 Execution Model

After discussing the language extensions for sequences, we are now looking
into how we can generate efficient code from these sequence expressions.
For a sequential CPU architecture, a sequential, element-by-element evalua-
tion would be feasible, but would clearly lead to unacceptable performance
on our main target architecture, GPUs. Instead, we want to process just
enough data to saturate the GPU to achieve optimal performance. There-
fore, before code generation, we group multiple elements of the sequence
together in vectors to form chunks. Each chunk can then be streamed to
the GPU and processed in parallel. The actual size of the chunk is chosen
by the runtime, as the best choice depends on the concrete architecture the
program is executed on.

We define a chunk to be a vector of arrays (or n-tuple of arrays) written
with angular brackets (Aj, ..., Ax). Each array is required to have the same
rank, but not necessarily the same shape. k is referred to as the length of the
chunk, and the total size of the chunk elements) ;c(;) size(A;) is referred
to as the chunk size. If all the arrays have the same shape, we say that the
chunk is regular. Note that a regular chunk is essentially just an array with
rank r + 1 where r is the rank of each element.

The execution model presented here implements the programming model
by translating sequence expressions to stream-manipulating acyclic dataflow
graphs, where the nodes consume and/or produce chunks that flow along
the edges. There are two key challenges in this approach: Lifting and
scheduling. Sequence operations must be lifted at compile time to oper-
ate on chunks instead of just arrays. At run time, appropriate chunk lengths
must be selected as small as possible while still keeping the backend satu-

3.4. EXECUTION MODEL 75

rated in each step, and the sequence operations must be scheduled accord-
ingly. We solve these challenges for regular chunks by means of vectorisation
together with an analysis phase that yields a static schedule. We proceed to
explain the vectorisation strategy of each primitive sequence operation.

* Array slicing is trivial to vectorise. toSeq is easily extended to produce
chunks of slices, and the chunks will always be regular with known
sizes.

¢ For streamln, since Accelerate cannot track shapes, there is no guar-
antee that the list supplied by the programmer contains same-shape
arrays, and consequently, we consider the resulting sequence to be ir-
regular in all cases. One could imagine the addition of a streamInReg
operation that takes the shape of elements as an additional argument.
The programmer then promises that all arrays in the supplied list have
this shape. Such an operation would be beneficial for applications
streaming large amounts of regular data such as video processing.

* Sequence maps (and zipWith’s) are vectorised by applying a lifting
transformation on the argument array function as described in Sec-
tion 3.4.2. Sequence maps are the main source of irregularity since we
can map any array functions. As Accelerate cannot handle irregular ar-
rays, we analyse the mapped array functions to detect irregularity and
avoid chunking in that case. The analysis is described in Section 3.4.4.

¢ For sequence reduction with an array function as the combining oper-
ator, we need to turn an array-fold into a chunk-fold. Vectorizing the
combining operator gives a function that combines chunks. We could
fold the chunks of a sequence with this function and then use the un-
lifted function in the end to fold the final chunk. However, there are a
number of problems with this approach:

— The combining operator would have to be commutative since el-
ements are combined, not with the next element in the sequence,
but with the element in the next chunk at the same position.

- It is not always desirable to keep a chunk of accumulated values.
For example, fromSeq is a fold using array append as the combin-
ing operator, and the accumulated value is an array containing all
the elements in the sequence seen so far. A chunk of accumulated
values would be unreasonably large.

A better solution is to fold each chunk with the unlifted function im-
mediately and then combine the resulting folded value with the accu-
mulator, again using the unlifted function. However, Accelerate does

76 CHAPTER 3. FUNCTIONAL ARRAY STREAMS

not support a general parallel array fold.