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Abstract

With the introduction of platforms like CUDA and OpenCL, the superior computing power of
modern GPUs compared to CPUs is used more and more often to accelerate general purpose
computations. Data parallel primitives like reduce, scan or sort can be used as simple,
deterministic building blocks for parallel algorithms, hiding the complexity of the underlying
GPU implementation. The multireduce and multiscan, generalizations of the ordinary reduce
and scan, have immediate applications for common algorithmic problems and show potential
to be useful primitives as well. This thesis aims to find efficient GPU algorithms for both of
theses problems, which currently do not exist.

In order to establish a baseline CPU implementation to which GPU algorithms can be com-
pared, we first discuss sequential algorithms for both multireduce and multiscan. We point
out performance problems of sequential algorithms for both operations which stem from poor
use of various caches, and show that huge pages and partial radix sorting can be used to avoid
these problems. We find that the potential improvement which can be achieved through sort-
ing differs wildly between different CPUs, and provide a simulator to estimate the benefit of
this method for any given system.

For GPUs, we systematically evaluate possible algorithms for both problems. We examine
three main groups of algorithms: parallel adaptations of the sequential algorithm, GPU
adaptations of existing PRAM algorithms, and sort-based conversions to simpler problems,
namely segmented scan and reduce. For each of these possibilities, we discuss how the
GPU memory hierarchy can be used for best performance, and which additional algorithmic
improvements can be implemented for operators which are commutative as well as associative.
For the multireduce, we propose an algorithm which, despite its generality, performs at least
as well as the best published histogramming algorithm for all inputs and provides a 18X
speedup over the CPU algorithm for small numbers of buckets. We also propose an algorithm
based on sorting and segmented reduction which, in contrast to the previous algorithm, can
also be used for non-commutative operators, and whose performance is on par with reduce-by-
key implementations of current libraries. For large numbers of buckets, the range of available
algorithms is smaller and the speedup compared to the CPU implementation can shrink to a
factor of three. Like for CPUs, we establish that partial sorting can lead to better cache hit
rates and better overall performance under certain circumstances.

Subsequently, we apply the insights gained in the design of multireduce algorithms to closely
related problems, namely scattering and histogramming. In the latter case, the superior
work distribution of our fastest multireduce algorithm results in a 40% speedup over the
best currently available histogram algorithm, independently of the input data, making our
solution the fastest existing histogram algorithm for GPUs.

A similar discussion is presented for possible multiscan algorithms. We observe that the
only existing work-efficient PRAM algorithm for the multiscan is intrinsically unsuited for
execution on GPUs and leads to poor performance. While a moderate speedup compared
to the sequential algorithm is possible, the overall performance of multiscan is significantly
worse than that of multireduce algorithms. We therefore conclude that the multiscan cannot
be recommended as a general building block for GPU algorithms.
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Chapter 1

Introduction

1.1 Motivation and Structure

In 1965, Gordon Moore [31] predicted that the number of transistors on a chip would at least
double every year for the next ten years. While the exact rate of increase has been adjusted
to a doubling every 18 months, this prediction, known as "Moore’s law", has stood the test of
time and, with some minor deviations, holds true until today. In recent years, however, the
way in which this increase of computing power is expressed has changed in a major way. Until
2003, the clock frequency of processor cores doubled along with the number of transistors,
thus steadily increasing the performance of sequential, single-thread algorithms. Since then,
however, physical limitations have prevented clock frequencies from substantially surpassing 4
GHz [35], and today the performance of single cores no longer increases significantly. Instead,
CPU manufacturers have started to increase the number of cores on a single CPU die. Since
the beginning of this trend, programmers therefore have to use several CPU cores at once in
order to fully utilize a system’s resources.

Existing programs which were written with single core systems in mind can sometimes benefit
from having multiple cores. This is the case if they employ concurrency, i.e. they use different
threads for performing different tasks. This is the case in many programs, since the use of
multiple threads has many benefits even on single core systems: They are means to ensure the
responsiveness of parts of a system in the presence of other ongoing computation. Obvious
applications of this are user interfaces, which are expected to react to user inputs even while
the application is working on something else, or servers, which have to be able to quickly
respond to many clients’ requests even if some specific request triggers a lot of computation.
But while the goal of concurrency is not necessarily to achieve a speedup on multi-core
hardware, concurrent applications naturally benefit from a system’s ability to execute several
computations at once. If, however, the main or only goal of using multiple threads is a
speedup on multi-core systems, this is referred to as parallelism. Parallelism is therefore
only sensible to employ on multi-core systems, since multiple threads do not benefit an
application’s performance significantly if all threads have to be executed sequentially.

There are two main brands of parallelism, task parallelism and data parallelism. The former
denotes a situation where different threads (and therefore different cores) perform different
computations, using either the same or different data. In many cases, the border between
concurrency and task parallelism is fluid, since, as pointed out before, letting a different
thread handle a specific task may be sensible for reasons other than performance, yet doing
so on a multi-core system will automatically result in a speedup. But task parallelism can
also be employed explicitly and without concurrency in mind.

However, task parallelism comes with many problems. For one, it generally does not scale
well with the number of available processors. If a number n of tasks is executed in different
threads, then the application’s performance can benefit from using up to n cores, but any
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additional cores will be left unused. Since the number of cores in typical consumer and server
CPUs is expected to rise further in the future, this is unsatisfying, especially because for most
applications, there is only a very limited number of tasks that can naturally be separated
from one another.

Another issue is that, in many cases, cooperation between different threads is necessary, often
requiring the use of tools like locks or synchronization between threads. This is problematic
because, firstly, the achievable speedup is limited if threads have to wait for other threads
to release a lock, or to reach a synchronization barrier. Secondly and more importantly,
it introduces non-determinism and thereby makes it much more difficult to write correct
programs. Problems like race conditions and deadlocks, which simply cannot happen in
single-thread code, are a major problem that many programmers find hard to avoid. This
is only a problem if tasks that are executed in parallel have side effects that affect other
threads, but in most applications, this is often the case.

The second brand of parallelism, data parallelism, has none of these problems. In data
parallelism, the same task is performed for many pieces of data in parallel. An obvious
condition for this to work is that there is a big number of data elements on which the same
or similar computations have to be performed. If this is the case, however, the program can
potentially make use of as many processors as there are pieces of data. Furthermore, this kind
of parallelism can be exploited by programmers without having to write explicitly parallel
code that uses threads. Not all algorithms can be implemented this way, but in most cases,
skeletons for data parallel operations can be provided in libraries or in language primitives, so
that application programmers only have to input application-specific logic, and generic code
will handle the distribution of the available data among the available cores. In these cases,
the application itself will be completely deterministic, thus avoiding most of the problems
that plague concurrent and task-parallel programming.

While CPUs have been forced to embrace parallelism by physical limitations which have
made improvement of purely sequential performance impossible, they have still stayed close
to their original design: Every single CPU core is in itself a fully functional processor and is
generally optimized to deliver good single thread performance. The main difference to CPUs
before 2003 is that several such cores are combined on one die. This conservative approach
to parallel hardware can be called multi-core.

There is, however, a different approach, which is often called many-core. In this approach,
the number of processors combined on one chip is not a handful(two to eight), but tens or
hundreds. In order to achieve this, the cores have to be simple in nature, sharing resources
where possible, and giving up on many of the optimizations that allow optimal single thread
performance, like for example out-of-order-execution. A multiprocessor designed with this
paradigm in mind derives its strength from its ability to execute many instructions at the
same time, which can lead to a much higher number of operations executed per time unit
than a multi-core approach. The downside is usually that utilization of all cores is necessary
to achieve good performance, since single thread performance can be more than ten times
lower than that of traditional single-core or even multi-core CPUs [40)].

A natural approach for designing such hardware is SIMD (Single Instruction, Multiple Data),
where several cores concurrently execute the same instruction on different data. This allows
several cores to share facilities like the instruction counter, branching hardware and instruc-
tion cache, which keeps individual cores small and simple and enables manufacturers to pack
even more cores on one die. Hardware following this paradigm is obviously a great foundation
to run data-parallel programs, as the hardware is specifically optimized to efficiently perform
the same computations on many pieces of data.

CPUs have adopted this principle to some degree by offering SIMD instructions as part of the
Streaming SIMD Extensions (SSE), which offer special instructions that perform an arith-
metic operation on a number (usually between two and eight) values at once. The reliance on
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Figure 1.1: Schematic structure of CPUs as opposed to GPUs (adapted from [13])

special instructions means that programs need specific adaptations to make good use of SSE
instructions, and the additional effort for this is usually only invested for computationally
intensive applications. In most cases, single CPU cores therefore still perform the bulk of
their work completely sequentially.

A type of hardware that follows the SIMD principle on a deeper and more fundamental
level are graphics processors (GPUs) [23]. Until the late 1990s, graphics hardware consisted
entirely of fixed-function pipelines with a single purpose, the acceleration of 3D rendering.
They were configurable to some degree, but not freely programmable like CPUs. From 2001
onwards, manufacturers introduced programmable pixel and vertex shaders, which enabled
advanced effects that were not feasible with the old fixed function architecture. In the fol-
lowing years, these different shader types evolved to use the same hardware, resulting in
the so-called unified shader architecture in 2006. These unified shaders could be used as
either pixel, vertex or geometry shaders, depending on the needs of the application. Unified
shaders were therefore fully programmable processors with the flexibility to execute different
kinds of tasks, and since the number of shaders increased with every new generation, GPUs
slowly turned into general purpose processors with hundreds of cores working in parallel (see
Figure .

Moreover, the pressure to achieve higher and higher performance, mostly for 3D video games,
had resulted in a highly parallel processor design with enormous floating point performance,
far beyond that of then-current CPUs. Figure shows the peak floating point performance
of CPUs and GPUs over the last few years; the best GPUs consistently outperform the
best CPUs by a factor of ten to 20. Note that the performance shown for CPUs is the
cumulated peak performance of several cores using SSE instructions, which increase the
CPU’s throughput up to a factor of eight (see [47] for a performance comparison of scalar
and SIMD instructions). The peak performance of a completely sequential algorithm using
a single core and scalar operations is therefore much lower than shown in Figure 1.2
Researchers soon noticed this potential and attempted to use GPUs for applications other
than 3D rendering, introducing the concept of GPGPU (general-purpose computing on graph-
ics processing units). There were, however, many obstacles: The APIs that had to be used to
program shaders were intended to be used for graphics processing only. Programs therefore
had to be written in shader languages like GLSL or HSHL, which offer no support for custom
data types, only accept inputs in the form of textures, and write results to the frame buffer
in the form of pixel values. There were further architectural limits: Pixel shader routines,
for example, are expected to compute the final value of a single pixel and can therefore only
write to that pixel’s location in the frame buffer; writes to dynamically computed locations
are impossible [23].

With the release of the next generation of graphics processors in 2007, NVIDIA then intro-
duced the Compute Unified Device Architecture (CUDA), making GPUs fully programmable
using an extension of C/C-++ and without thinking of data in terms of 3D rendering. From
then on, programmers and researchers have strived to exploit the superior processing power
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Figure 1.2: Comparison of floating point performance of CPUs and GPUs (single preci-
sion) [40]
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Figure 1.3: Reduction and scan of an input vector using addition

of GPUs for various purposes.

One approach for making GPU acceleration accessible to users is, as mentioned before, the
use of skeletons. The Thrust library [20] is one example of this; designed to resemble the
C++ Standard Template Library (STL), it offers reusable and composable skeletons that
allow users to transparently use GPU acceleration without having to write GPU-specific
code. In order to achieve this, it offers functions for various problems like sorting, gathering
and scattering, as well as higher order functions like map, reduce and scan.

A reduction combines a vector of inputs using a binary function. If the function is, for
example, addition, then a reduction of a vector of numbers will compute the sum of all
numbers in the vector. The scan is a closely related operation: Instead of calculating a single
reduction, it outputs a vector containing the reductions of all prefixes of the input vector.
Both operations are illustrated in Figure [1.3]

The scan in particular has been a useful tool that serves as a basis for many other parallel
algorithms and has been called "a miracle of efficient parallel communication" [I2]. Though
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Figure 1.4: Multireduce and multiscan using addition

seemingly inherently sequential, it can be trivially distributed among many cores and effi-
ciently computed in parallel.

The same is true for reductions: Especially when algorithms are expressed as compositions
of several high level functions, one can imagine that there will often be a need to reduce a
number partial results.

While these two operations have been implemented on GPUs and are almost ubiquitously
used, their generalizations, multireduce and multiscan, have not. Multireduce and multiscan
generalize the ordinary reduce and scan in a similar way: In addition to a single vector of
input values, they accept a vector of labels. For every label, a multireduce computes the
reduction of all values with that label. The multiscan, on the other hand, computes for every
input value the reduction of all previous values with the same label. Both operations are
illustrated in Figure [1.4] and will be defined more precisely in Section

The multiscan has been proposed as a fundamental primitive for parallel computation several
times.

In 1987, Ranade [39] proposed an abstract machine which only offers a number of set op-
erations and a multiscan operation as primitives. In spite of this, it still subsumes many
other abstract machines proposed at the time, proving the expressive power of the multiscan
in combination with a small number of other primitives. Similarly to the ordinary scan, a
number of algorithms can be elegantly expressed in terms of multiscans, including sorting
[39] and sparse matrix vector multiplication [45]. Additionally, since an ordinary scan is
just a special case of a multiscan, all applications of scans can also be expressed in terms of
multiscans as well.

The multireduce likewise has a number of obvious applications. Scattering and histogram-
ming, two operations that are ubiquitous in data parallel computing, are special cases of
multireduce. A possible application for the general multireduce is MapReduce as presented
by Google [14], a general framework for parallel computation consisting of two phases (see
Figure [1.5)). In the first, the map phase, a unary function is applied ("mapped") to a large
number of input values in parallel, resulting in a number of key-value-pairs. In the reduce
phase, these are then distributed to different processors by their key, and a reduction is per-
formed on the values of each key separately. This distribution by keys, called "shuffling",
obviously requires some kind of scattering, gathering or sorting. Additionally, different keys
are generally thought to be processed by different processors, possibly resulting in poor load
balancing among the available resources if the distribution of keys is very skewed. An effi-
cient multireduce operation could make the shuffling unnecessary, thus saving resources and
enabling a sensible use of the available processing power.

In spite of this, there has been no theoretical proposal or practical implementation of either
multiscan or multireduce on modern parallel hardware. The most recent paper on the subject
was written by Sheffler in 1993 and targets contemporary CRAY supercomputers.
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Figure 1.5: Schematic structure of the MapReduce framework

The aim of this thesis is therefore to evaluate the possibility of implementing these two
functions efficiently on modern graphics processors. In order to accomplish this, we will first
define the multireduce and multiscan as well as relevant related operations and special cases.
Since most of these operations have have simple optimal algorithms in theory, we will then
introduce the theoretical models of computers which are typically used to evaluate algorithm
performance on an abstract level, so that we can later point out how these models differ
from actual hardware. Based on this, we will try to find optimal sequential algorithms for
multireduce and multiscan, which we will use as a baseline to evaluate the performance of
the GPU implementation against. Subsequently, the architecture of GPUs will be examined
in detail and the requirements that algorithms have to satisfy in order to perform well on
GPUs will be explained.

We will then begin a systematic evaluation of possible algorithms, first for the multireduce,
then for the multiscan, discussing relevant literature along the way. This includes GPU
algorithms for related problems as well as general parallel algorithms for multireduce and
multiscan, which will be evaluated for their adaptability for GPUs. Throughout this discus-
sion, we will implement and benchmark different algorithms wherever necessary.

Since, as pointed out before, there is a number of frequently used operations which is closely
related especially to the multireduce, we will apply the insights won in the previous discussion
to these problems and evaluate their usefulness in these cases.

1.2 Definitions

An ordinary reduce (also known as a fold) is a higher order function that applies a given
binary operator to all values in a vector. While it is not generally necessary for the input to
be a vector of values (it could also be a tree or another recursive data structure), we will be
working exclusively with vectors in this thesis. More formally:

Given a monoid M with an associative binary operation ®: M x M — M and a neutral
element e € M, a reduce operates on a vector of values [vg, v1, ..., p—1], where each v; € M,
and computes r such that

<
I

. 3

L)L
&
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Typical choices for ® are addition, multiplication, minimum, or maximum on integer or
floating point values.

A scan, also known as a prefix sum, takes the same inputs and computes a vector of values
[70, 71, ..., Tn—1] that contains the result of the reduce of all prefixes of the input vector. There
are two variants of scans: for an ezclusive scan, the ith output element will be the reduce of
the input vector up to but excluding the ith input element, such that

k—1
Tk = @ vy,
=0

whereas for an inclusive scan, the ith output element is the reduce of the prefix including
the ith element, such that

There are segmented versions of both reduce and scan, with an additional input vector
[fo, f1, ., fn—1], with each f; € {0,1}. These serve as flags that denote the beginning of
a new segment. The reduce and scan are then computed for each individual segment. If g of
the input flags are set to one (and the input is therefore partitioned into ¢ segments), and
the beginnings of new segments are denoted by the set P of {pg, p1,...,pg—1} (so that f,, =1
if i € P), and these positions are assigned so that p; < p;41 for all i < ¢ — 1, then the result
of a segmented reduce is a vector [rg, 1, ...rq—1] such that

@fi;;fl v fk<qg-—1
T =
Tl e ifk=q-1

i=pg

The definition of a segmented scan is analogous. Using

Q. = Pg—-1 if DPg—-1 <k
pist. pi <k <piy1 ifpg1 >k,

the output [rg,71, ..., 7—1] of a segmented scan can be defined as

k—1
o
1=k
in the exclusive case and
k
re=C)
i=qy

for the inclusive case.

Note that the result of segmented scans is undefined if the first flag is not set to one. Since
the start of the vector must necessarily begin a new segment, there is no meaningful inter-
pretation of the segmented scan if the flags state otherwise. This is not necessarily the case
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for segmented reduces, where the beginning of the input vector may just be ignored until a
set flag is encountered.

Multireduce is another generalization of the ordinary reduce operation and performs separate
reductions on groups of values in a vector. In contrast to the segmented reduce, these groups
of values do not have to be sections of adjacent values in the input vector, but can be
distributed freely.

For a vector of values [vg,v1,...,vn—1], where each v; € M, and a vector of integer labels
[lo,l1, ey ln—1] with each I; € {0,1,...,m — 1}, a multireduce computes a vector of reductions
[0, 71, --ey Tm—1] such that

TkZQ[Uj | ke{0,1,....m—1} ANl; =K.

A common special case of a multireduce where all values are equal to one, i.e. v; = 1 for all
i€{0,1,....,n— 1}, and ® is chosen to be addition, is called a histogram.

Multiscan, which is more commonly known as multiprefiz, generalizes the scan operation
(see for example Blelloch’s introduction [3]) in a similar way, and can also be described as
performing multireduce for all prefixes of the input vectors.

Given the same inputs as before, the multiscan operation computes the vector [sg, s1, ..., Sp—1]
such that

8; = @[Uj | 7€{0,..,i} Al =]

for the inclusive multiscan, or

5; = @[’Uj | 7€{0,..,i—1} Al =1].

for the exclusive multiscan.

Analogous to histogramming, there is a special case of the multiscan where all values are
equal to one, which we will refer to as multitagging.

The scatter operations is closely related to the multireduce and can be defined as follows:
Given a vector of values [vg, v1,...,Up—1], and a vector of integer labels [lo, 11, ..., l—1] with
each [; € {0,1,...,m — 1}, the scatter computes the vector [sg, s1, ..., S;m—1] such that

s; = vj s.t. j = max{kl|l, = 1i}.

If there is no such v; (because the set {k|l;, = i} is empty), s; is either undefined, or may fall
back to either a default value or corresponding value in an additional input vector. By this
definition, if several values are scattered to the same location, the one with the highest index
(i.e. the last one) wins.

Note that with this definition, the scatter can be regarded as a special case of the multireduce,
where the operator ® is defined as

rOY=y.
Sometimes the scatter is defined less strictly, so if several values are scattered to the same

location, any one of them may win. For this type of scatter, the definition for s; is simply

si=wvjs.t. i =1;.
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In this thesis, we will generally assume that a scatter follows the first definition, and point
out that we are using the second definition whenever we do so.

The scatter has a mirror image, the gather. Although its structure is different from all of the
aforementioned operations, we will still include it here and throughout the thesis because of its
close relation to the scatter, and because many of the performance considerations applicable
to the other operations also apply to the gather.

Given a vector of values [vg,v1, ..., Uym—1], and a vector of integer labels [lg, [y, ..., 1,—1] with
each [; € {0,1,...,m — 1}, the gather computes a vector [sq, 51, ..., Sp—1] such that

S = Uy, -

In the widespread case where n = m, and with the vector of labels being some permutation
of the integers [0, ...,m — 1], gather and scatter are therefore two different ways of perform
a permutation of the given vector of values. Additionally, both definitions of the scatter are
equivalent in this case.

1.3 Theoretical models of computation

When evaluating the algorithmic complexity of a given algorithm, one first needs to choose
an abstract machine on which the algorithm is assumed to run. In comparison to real world
computers, such abstract machines are much simpler, usually offering only a very limited
number of instructions and consisting of only few distinct parts, and are defined mathemat-
ically. This also means that they can offer features that real life computers cannot have in
principle, like unlimited amounts of memory. Reasoning about the runtime and space re-
quirements of a given algorithm is therefore much simpler on an abstract machine (and, since
there are many more different versions of actual computing hardware than different actual
machines, the result is much more generally applicable).

While this approach results in general, provable statements about the runtime of a given
algorithm, it is not without flaws. It is, for example, possible that an algorithm whose
theoretical complexity is optimal may be less than optimal on an actual computer, because
the computer’s hardware operates differently than that of the chosen abstract machine.

We will now describe the two abstract machines most commonly used for evaluating the
complexity for either sequential or parallel algorithms, respectively.

e A random access machine (RAM) consists of a finite program that operates on an
arbitrarily large number of registers holding integers. The size of the integers is generally
assumed to be finite, but large enough to contain the index of any register. The main
difference between a RAM and other similar abstract machines of its time is that the
RAM offers instructions to indirectly address registers. The instruction X; < Xx;, for
example, copies the contents of register number X; to register X;. A similar instruction
exists for copying an integer to an indirectly specified register. This way of addressing
essentially enables the user to use the registers like a block of continuously addressed
memory that can be randomly accessed, hence the name. The cost of a random memory
access, although suggested differently in the original paper [I1], is usually assumed to
be constant.

Additionally, the random access machine offers basic arithmetic operations (while the
original paper only mentions addition and subtraction, one usually also includes multi-
plication and division as well as all other operations that modern processors can execute
in constant time), comparisons and conditional branches, all of which also take unit
time.
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e A parallel random access machine (PRAM) is a generalized version of a RAM that
essentially consists of an arbitrarily large number of RAMs which can communicate
through shared memory of finite, but arbitrarily large size. A PRAM is usually as-
sumed to operate in a Single-Instruction-Multiple-Data (SIMD) fashion, meaning that
the same program is run on all processors. Each processor does, however, know its
own index, which allows for meaningful communication through shared memory. All
processors of a PRAM synchronously execute cycles of the following three phases:

1. Load value from shared memory
2. Perform local computation

3. Write value to shared memory

Each of these phases can, of course, be left out.

An obvious problem PRAMs have that does not occur in RAMs are access conflicts,
i.e. several processors reading from or writing to the same shared memory cell. There
are numerous types of PRAMs that handle this problem differently:

— Exclusive Read Exclusive Write (EREW): No two processors are allowed to read
from or write to the same memory cell at once. A program that ignores this con-
straint is an illegal program for this type of PRAM and its behaviour is undefined.

— Concurrent Read Exclusive Write (CREW): No two processors are allowed to write
to the same memory cell at once. Reading from the same cell is allowed.

— Concurrent Read Concurrent Write (CRCW): Both reading from the same cell and
writing to the same cell are allowed. There are, again, several types of CRCW
PRAMs to distinguish the results of simultaneous writes to the same cell:

x COMMON CRCW: Writing to the same cell is only allowed if all processors
write the same value. If this is not the case, the program is, again, illegal,
and the behaviour is undefined.

x* ARBITRARY CRCW: One randomly chosen write will succeed; the values
written to the same memory cell by other processors are discarded.

* PRIORITY CRCW: Each processor has a fixed priority. The processor with
the highest priority will succeed. (cf. [16])

Additional types of PRAMs exist [27], but those mentioned before are the most fundamental
ones, and we will not discuss any others.

There are no significantly different definitions of RAMs, and where different models exist, they
are generally equally powerful and can simulate each other without asymptotic performance
loss, the situation is more complicated for parallel algorithms. Any algorithm that runs on
a COMMON CRCW PRAM will, for example, run correctly on an ARBITRARY CRCW
PRAM, while the opposite is not necessarily true. Similarly, any ARBITRARY CRCW
PRAM algorithm will work on a PRIORITY CRCW PRAM but not the other way around.
For parallel algorithms one should therefore always state the assumed abstract machine as
well as the derived algorithmic complexity.

While both RAMs and PRAMs differ from the architecture found in real life computers
in many ways, the main differences for the purposes of this thesis lie in the organization
and performance of the memory. Instead of being an infinite, continuous block with equal
(constant) access time to any part of it, no matter if it was accessed before or not, real life
memory subsystems consist of a hierarchy of several types of memory with increasing size and
increasing latency that work together in complex ways. We will discuss important differences
between theoretical model and actual hardware in detail in Section for the CPU and in
Section [B.] for the GPU.
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Chapter 2

Sequential implementation

In this chapter, we will examine the how the multireduce, multiscan and related problems can
be solved by sequential algorithms. Our aim is to find an optimal sequential algorithm which
we can use as a baseline when we are evaluate GPU algorithms in the following chapters.
We will therefore try to identify any problems which limit the algorithms’ performance and
look for ways to avoid them. Where necessary, we will outline background information
algorithmic or hardware issues along the way. We will start out by explaining the trivial
sequential algorithms for our main algorithms.

2.1 Naive approaches

All of the operations which we have defined in the last chapter share a very simple common
structure. It is therefore not surprising that there are very simple algorithms for calculating
all of them, which we will discuss in this section. As a simple example, we will first consider
the scatter (see Algorithm [2.1]).

The inputs are two vectors indices and values of length n. walues may contain arbitrary
values of arbitrary type (we will call the type M throughout the thesis), whereas indices may
contain unsigned integers in the range [0...m — 1]. The result is a vector of the same type as
values of length m.

In order to perform the scatter, the values and indices vectors are traversed simultaneously,
and for each index-value-pair, the value is copied to its corresponding index in the result
vector. If several values have the same index, the value that occurs last in values will be
the one found in the result. If, for some indices, there are no values, those will be left at an
initial value to which we assume the result vector was initialized beforehand. Alternatively,
if no initialization is performed, those values will just be undefined.

function scatter(int n, int m, int indices[n], M values[n], M result[m]) :
fort=0ton—1do
| result[indices[i]] = valuesli];
end
end
Algorithm 2.1: Sequential scatter algorithm

Virtually all of the operations defined in Section have very similar sequential implementa-
tions. By just adding new values to the current value of the result vector instead of replacing
it (or performing any other operation ®, as mentioned before), a scatter algorithm can be
turned into a sequential multireduce algorithm, as shown in Algorithm [2.2] Since the values
are now reduced up according to their indices, we called the resulting array buckets to bet-
ter capture their function as containing the reduction of the values put into them. For the

11
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multireduce, the initial values in buckets will always influence the final result, even if there
are values added to each bucket; it is therefore advisable and common to initialize them to
some value beforehand (often the neutral element e).

function multiReduce(int n, int m, int indices[n], M values[n], M buckets[m]) :
fori:=0tom —1do

| buckets[i] = e;

end

fort=0ton—1do

| buckets[indices|i]] ©®= values]i];

end

end
Algorithm 2.2: Sequential multireduce algorithm

In order to turn this multireduce algorithm into a multiscan, one only needs to store the
intermediate values of the current bucket at every step. For an exclusive multiscan, the
current bucket’s value is stored in the result before the current value is included into the
reduction; for an inclusive scan operator is applied to the current bucket value and the new
value first. For the complete algorithm for an exclusive multiscan, see Algorithm

function multiScan(int n, int m, int indices[n], M values[n], M result[n]) :
M buckets[m)];
for:=0tom —1do
| buckets[i] = e;
end
fort=0ton—1do
resultli] = buckets|indices|i]];
bucketslindices|i]] ©®= values]i];
end

end
Algorithm 2.3: Sequential exclusive multiscan algorithm

Not only are these algorithms very simple, they also seem to be optimal (at least if one
only considers sequential algorithms). If one takes into account simple optimizations that
compilers typically make, like recognizing indices|i] to be available after fetching it from
memory once and reusing the available value, these algorithms do not waste computational
power on unnecessary operations and solve the problem in a straightforward way. They
fetch each input value only once, which is necessary because every input value does actually
influence the result, perform only the necessary addition, and write each result value exactly
once, which is obviously necessary as well. We therefore have algorithms with linear runtime
and can assume the constant to be quite low.

2.2 Measuring algorithm performance

When benchmarking different algorithms throughout this thesis, we will always choose ad-
dition as the operation to be performed by the multireduce and multiscan. If the number
n of inputs is not stated separately, we will always choose n = 226 for both CPU and GPU
benchmarks. This number is large enough to utilize the full capacities of both CPUs and
GPUs, but small enough to comfortably fit into main memory and GPU memory, even when
additional temporary buffers of length n are needed.

Unless noted otherwise, CPU measurements will be performed on an AMD Opteron 6274
with a maximum clock frequency of 2.2 GHz, 16 kB L1 cache, 2048 kB L2 cache and 6144
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Figure 2.1: Runtime of sequential multireduce, multiscan and scatter
kB L3 cache.

Throughout this thesis, we will measure performance in nanoseconds per input, where a
key-value pair constitutes an input for a multireduce or multiscan, whereas an input for a
histogramming algorithm would only be one key. This measure is therefore not simply the
inverse of the bandwidth per second value, which is often used in GPU benchmarking. We
decided to use the time per input measure precisely because it allows us to directly state how
much time one algorithm takes per input unit compared to another one, without having to
take into account the number of inputs and outputs needed by any such algorithm.

If we run the aforementioned algorithm on this system, we make some interesting observations
(see Figure for the results). The performance of all three algorithms is generally very
similar, however, for low values of m, the multiscan takes more than twice as much time as
the scatter and multireduce. We will explain this phenomenon later, for the moment, there is
another, more important observation. While the runtime of all three algorithms is relatively
low and almost constant for configurations with low values of m, it increases rapidly when
m surpasses 2'°. This behaviour should not occur if the RAM model was accurate, and it
needs to be explained.

Since the pattern is the same for multireduce, multiscan and scatter, we will focus on exam-
ining only one of them, the multireduce. We will also use a different (older and less powerful)
machine for this purpose for technical reasons (full administrative rights, which are needed
for some measurements and for one of the solutions we will propose). This machine has an
Intel Core2 Duo CPU, model number T7300, with 2 GHz. Figure shows the multireduce
algorithm’s runtime for a constant number n = 226 of inputs, but with an increasing number
m of buckets on the older machine. As before, the indices are evenly distributed between 0
and m — 1.

While the algorithm performs quite well for a low m (i.e. a small number of buckets), it
quickly gets much slower when m gets bigger. More precisely, there seem to be three distinct
steps where the algorithm gets significantly slower:

1. The first such step occurs between 2'2 and 2! buckets; the runtime per integer rises
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Figure 2.2: Runtime of sequential multireduce algorithm for different numbers of buckets

from slightly above 2 ns to 3.5-4 ns.

2. In the second step, between 2'8 and 223 buckets, the runtime quickly rises from about
4.5 ns to about 40 ns per integer.

3. While there seems to be a plateau between 223 and 22 buckets, the runtime starts

rising very soon again and goes up to 62 ns per integer for 227 buckets.

These three steps together result in a runtime that is more than 30x worse for high numbers of
buckets than for low ones, which is a very significant lowering of the algorithm’s performance.
Note that very high numbers of buckets are not at all artificial for some of the mentioned
algorithms. While it is true that, for example, histograms usually use a number of buckets
significantly lower than those which lead to problems with this algorithin, others, like scatter
(and the closely related gather), have very natural applications where m = n, which can
result in a very high m because n can, of course, be very large.

Since the RAM model does not predict any of these three distinct slowdowns, the reasons
for them must lie in in an area where actual hardware differs from the RAM model in a
fundamental way. This is the case for memory access times: while the RAM model assumes
constant access time independently of the access patterns, modern computers are optimized
to perform well for typical access patterns, at the cost of performing worse for less typical
ones. The most important tool used to achieve this goal are caches, which come in many
forms. The ones that are the most relevant to our discussion are the caches used to speed up
memory accesses in general, and the transaction-lookaside buffer (TLB), a cache used within
the virtual address translation system. Since our goal in this chapter is to optimize the
performance of the sequential algorithms for multireduce, multiscan and related operations,
we must understand where their obvious performance problems stem from. We will therefore
discuss the relevant parts of the memory subsystem of current computers, so that we can
identify and solve the specific problems which lead to the bad performance of our algorithms.
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2.3 CPU memory subsystem

In this section, we will sketch the architecture of the memory subsystem of current computers.
We will, however, only explain the parts of the memory subsystem relevant for our problem,
i.e. caches in general and the TLB as part of the virtual address translation system in par-
ticular. Unless stated otherwise, we will be summarizing the relevant information presented
in [36].

2.3.1 Caches

Current computers typically employ a hierarchy of different types of memory with varying size
and speed. The goal such a hierarchy is supposed to achieve is to create the illusion of a single,
large pool of memory with very high speed. The necessity to design complex hierarchies to
create this illusion arises from the fact that faster memory tends to be more expensive (per
amount of storage) than slower memory, which means that it is not economically realistic
to use large amounts of the fastest available memory in most cases. Additionally, there are
some technological considerations: For processors, for example, it makes sense to place some
memory on chip, where the access latency can be kept to a minimum. Naturally, this is only
an option for very small amounts of memory, which can therefore only be used to speed up
execution, not to store significant amounts of data.

For these reasons, current PCs and servers typically use several levels of memory, with the
largest having relatively high access latencies, and each level being smaller and faster than
the one above. The main reason why this architecture can result in the illusion of one very
fast, very large memory in many cases is that memory accesses usually follow a pattern called
the principle of locality, of which there are two types:

e Spatial locality is the principle that if one memory location is accessed, nearby locations
will tend to be accessed soon.

e Temporal locality is the principle that if one memory location is accessed, the same
location will likely be accessed again soon.

One can exploit these principles to accelerate access to a memory M; by using a second layer
of memory My, which is faster and smaller than M7, and storing those locations of M in
My which are expected to be referenced in the near future. My is the called a cache for M,
and it is of course possible to create several layers of caches such that M; caches accesses to
M1, which in turn caches accesses to M; 9 etc. Current PCs and server computers usually
have at least two, often three levels of cache to speed up accesses to main memory.

My checks if it currently contains a copy of I. Caches always store data in fixed-sized blocks
starting at fixed offsets, called cache lines, and can store a fixed number of these blocks.
Therefore My actually needs to check whether it currently has the cache line which contains
[. If a cache is direct mapped, then there is exactly one place in the cache where any specific
cache line can be stored, meaning that the cache only has to check for entry if it contains the
currently requested block. If so, it can directly answer the incoming request. This is called
a cache hit.

The alternative to direct mapped caches are set associative or fully associative caches. An n-
way set associative cache allows any block to be stored in one of n different locations, meaning
that n locations may have to be checked to determine if a requested block is currently cached.
Usually some kind of simple hash function is used to map memory addresses to locations; a
popular option is to simply take a certain range of bits from the address. In a fully associative
cache, any block may be stored at any location in the cache, and therefore all locations have
to be checked when a request comes in. This check can generally be done in parallel for all
relevant locations, but that does, of course, require more complex hardware.
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Figure 2.3: Example implementation of a direct mapped cache (adapted from [36])

A possible implementation of a direct mapped cache is shown in Figure The requested
address is stripped off the bits denoting the position of the requested word within a cache
line. A part of the remaining address is then used as the index at which the requested block
of data is to be stored in cache. If this part consists of ten bits, as in the example, the cache
must therefore be able to hold 2!° blocks at once. The rest of the address is used as a tag
which is stored along with the cached data. For each request, the tag of the requested address
is compared to the tag saved at the given index, and if they are equal, the cache contains the
requested location.

If the check determines that the requested location is currently not cached (i.e. a cache miss),
it sends a request to the M; (which may be another cache or main memory, but is in any
case slower than My). When it gets the requested cache line, it has to determine where to
store it. In case of a direct mapped cache, there is only one possibility; for set-associative
and fully associative caches, there are several, from which one has to be chosen. A commonly
used scheme for selecting a cache line is LRU (least recently used), which selects the entry
which whose last access is the least recent one, but there are other schemes, including many
fast approximations of LRU. After selecting a location, the incoming data is stored at said
position and the original request is answered.

It may also be necessary to store the data which was previously occupying the selected
location in higher level memory depending on the used write policy: A write through cache
will forward all write requests to higher level memory in addition to writing the value in
cache as well, meaning that the data in held in cache and that in higher level memory are
always consistent. In contrast to that, a write back cache will only perform writes in cache.
This means that, when a cache line is evicted from cache because another block of data takes
its place, data which has been changed in cache needs to be written back to higher level
memory, which in turn means that cache needs to store an additional bit for every location
which indicates if the data at this location has been changed and needs to be stored again
on eviction of the cache line.

Current caches have some additional functionality in addition to the ones mentioned so far.
An important aspect is that they try to detect simple memory access patterns in order to
predict which locations will be accessed next, and speculatively prefetch those locations to
cache. This presupposes, of course, that data accesses indeed follow certain patterns and
that these are simple enough for the cache to detect. Techniques for doing this exist both
for sequential accesses as well as for strided accesses (see for example [46] for an overview),
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but more complicated access patterns will likely not be prefetched (correctly) on current
hardware.

2.3.2 Virtual address translation

An additional task of the memory subsystem is the translation between virtual and physical
memory addresses. Current computers use virtual address spaces which are usually larger
(but can also be smaller) than the address spaces of the used hardware. Their main purposes
are to prevent different processes from interfering with each other’s memory by giving each
process its own address space, and to allow them to address more memory than is physically
available in main memory.

In order to do this, virtual memory is divided into pages. Each page may either be in main
memory or stored to some other medium like a harddrive at any time. Virtual memory
addresses then consist of a page number and a page offset. Each process uses its virtual
memory address space as if it were actual physical memory. When a page is accessed, the
memory management unit needs to translate the virtual address to a physical one. For this
purpose, each running process has its own page table, which stores the physical address for
each page currently in memory. If a requested page is not in main memory, but stored on
disk, a page foult is generated and the page is loaded into memory. The page table for each
process is stored in main memory.

Since this translation has to occur for every single memory access, quick access to the page
table is vital for good performance. It therefore makes sense to cache the physical addresses
of the most recently accessed pages. This is done by the transaction-lookaside buffer (TLB),
which works just like a cache for main memory in most ways. Again, there are various pos-
sibilities for the associativity of a TLB, and the address-to-cache-location mapping outlined
above can also be used with page numbers in the TLB. Another similarity of main memory
caches and TLBs is that current systems often have several levels of them. A request for a
certain page’s address can then either result in a TLB hit or a TLB miss. In the latter case,
the page’s physical address (if any) must be retrieved either from the next level TLB or, if
there is no next level, from the page table in a process called a page walk.

There are various ways to implement the page walk and, in fact, many ways to design the
page tables themselves (e.g. in form of multiple levels [3]), which we will not discuss here as
they are not relevant to our further course of action. More information on both caches and
virtual memory can for example be found in [36].

The main point to take away from this is that there is another level, in addition to main
memory caches, which makes use of locality to accelerate memory accesses, meaning that
violating the locality principle can entail a performance penalty. There are therefore at
least two significant differences between real hardware and the RAM model, which assumes
constant access time to any memory location at all times.

2.4 Improving the naive algorithm

Knowing this, we can hypothesize that the first two performance drops are the results of L1
and L2 cache misses. This is a very common phenomenon, and we will verify if this is indeed
the problem and then try to solve it at a later time.

First, we will deal with the third drop in performance, which is much more mysterious,
since it starts to have a large impact when m > 22° and therefore 227 bytes are needed for
storing buckets in memory, a size which is too large to fit into any currently used cache. We
hypothesize that this drop stems from an increasing number of TLB misses.

On the test system, a normal page has a size of 4 kB and can therefore hold 1024 4-byte
integer values. This means that the buckets placed in main memory by the multireduce
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logy m | Miss rate
16 0.027%
18 0.356%
20 14.163%
22 18.858%
24 20.697%
26 27.252%
28 26.902%

Table 2.1: TLB load miss rate for simple multireduce for different numbers of buckets (m)

algorithm are distributed over at least | 55| pages. For m = 225 this means that the page
table contains 2!° entries just for the buckets. Reliable information about the details of
current processor’s TLB sizes is rare, however, one source [22] suggests that the data TLB
of the test system can hold 256 entries. Based on this, we would expect a performance drop
starting around m = 2'8, since at this point the buckets would be distributed over 256 pages
and would therefore completely fill the TLB. For higher choices of m, there will likely be a
TLB miss for every bucket access.

Since each iteration of the loop requires fetching a label, a value and the current value of a
bucket, and one of these requires a random access, we would expect a TLB load miss rate of
one third. There is one store per iteration, but it is to a location which has just been fetched,
so that TLB misses for stores should not be a problem for this algorithm.

If we measure the data TLB load miss rate for different values of m, we get the data in
Table 2.1] Miss rates do indeed rise to almost one third of all loads above m = 226 which
suggests that third drop in performance really does stem from TLB misses. While our
prediction that the miss rate should rise rapidly for m > 2!8 is confirmed by the data, there
is one curiosity: The miss rate remains around 27% even for higher numbers of buckets, but
we have observed that performance keeps dropping for higher numbers of m. A possible
explanation for this is that the cost of a page walk increases when even more pages are used.
Since modern CPUs use additional caches for storing page table entries in addition to L2
cache [3], the reason for this may well be more internal cache misses during the page walk.
Since there is little to no official information on the specifications of such caches in actual
hardware, however, we cannot test this assumption.

A way to avoid TLB misses is the use of larger pages (called huge pages in Linux-based
operating systems), which have a size of 2048 kB instead of the normal 4 kB and therefore
reduce the number of necessary page table and TLB entries for a given amount of data.
Figure shows that the third performance drop disappears when huge pages are used,
which both confirms that TLB misses are the reason for said drop, and shows a way to avoid
this problem.

Since we have explained the third drop in performance, we will now go back to the first
two drops. Increasing m means increasing the number of buckets that may potentially be
accessed during each step of the algorithm. A natural hypothesis is therefore that a drop
in performance occurs each time a cache is no longer big enough to fit all the needed data,
which means that data has to be stored in or retrieved from the next level of memory, which
has higher access latency. Additionally, a miss in one cache means that an entire cache line
needs to be fetched from the next level, not just the value that was actually requested. If, for
very large choices of m, a lot of accesses result in cache misses, this means that the available
memory bandwidth is not used efficiently to fetch the data that is needed, but is mostly
wasted for data which will not be used.

Note that this problem of overflowing caches only occurs when we increase m, but not when
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Figure 2.4: Runtime of sequential multireduce algorithm with and without huge pages

we increase n: The vectors of length n, no matter how large they are, are always accessed
sequentially. The cache therefore only ever needs to prefetch the next value of all such
vectors, no matter how large the actual vectors are. The buckets, however, are not accessed
sequentially. At every iteration of each of the algorithms, any one of m buckets can be read
from and/or written to.

The machine on which the performance data was gathered has an L1 data cache of 32 kB,
or 2'3 32-bit integers. If we take into account that the buckets are not everything that needs
to be kept in cache (the next indices and values need to be prefetched into L1 cache as well,
for example), we would expect that all buckets fit into L1 cache up until 2'2 buckets, and
that performance drops from that point onwards. This is, indeed, where the first drop in
performance occurs.

The L2 cache on the employed machine, which is used as both data and instruction cache,
has a size of 4096 kB. It could, in theory, contain 22 32-bit integers. However, again, the
buckets are not everything that needs to be cached. In this case, we also need to keep in
mind that this cache is used for instructions as well, and since the cache is, of course, not
fully associative, the available space may not always be perfectly used. So it seems sensible
that the L2 cache would work fine up until 2!® buckets, but be too small for bigger values of
m, as we observe in the actual data.

We would then expect a noticable, but relatively small difference in performance between
the sizes that fit into L1 and L2 cache, respectively, and a much bigger difference between
sizes that fit into L2 cache and those that don’t, since for the latter, the algorithm would
constantly have to access completely uncached main memory, which is much slower than both
caches.

We can test the hypothesis that cache misses are the main cause for the performance decrease
for high choices of m by testing the same algorithm with non-random data (see Figure
for results). As we predicted, the performance in this case stays almost constant, regardless
of the choice of m. The first two drops in performance completely disappear with sequential
input data, and so does, in fact, the third one (even without using huge pages).

We will try to solve the problem of cache misses by using a sorting approach to make the
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Figure 2.5: Runtime of sequential multireduce with random and sequential input labels

input to the actual multireduce algorithm more closely resemble sequential input data, which,
as shown before, leads to optimal performance. The idea of sorting data in order to avoid
slow random access is not new and has been used in other areas before. One example are
disk scheduling algorithms, which try to minimize the time needed to serve disk reading and
writing requests. The elevator algorithm achieves this by sorting incoming requests by their
locations, and then serving them all in a single sweep over the disk [9].

For our algorithm, we will use radix sort, a stable sorting algorithm with a runtime complexity
of O(dn) for n inputs consisting of d bits. In contrast to comparison-based sorting algorithms,
radix sort can only be used to sort values stored in positional notation, which is the case for
the binary representation typically used for (unsigned) integer values. The idea behind it is
that a vector of numbers can be sorted by first sorting it according to the least significant
digits, then repeating the process on the resulting vector for each of the remaining digits
from least significant to most significant. While radix sort has slightly worse locality than
other sorting algorithms [24], it allows us to sort the input data only partially, thereby saving
computation time compared to a full sort. This is significant because the sorting process
must, of course, take less time than is gained through the subsequent avoidance of cache
misses in order to be useful.

Radix sort allows us to partly sort the input labels and values by the labels, resulting in
partly ordered input vectors: If the input has m = 2% buckets, we choose some number b < d
of bits by which we sort. We then calculate an offset o = d — b, and sort by b bits, starting
with the oth least significant bit. This will save computation time compared to doing a full
sort of all 32 bits of an integer, but it saves even more, by not completely sorting the input
labels. Instead, this approach will result in continuous sections of labels which differ at most
by 2°. More formally, for every segment s there exists a value ks such that for every label I;
in s, ks <l; < ks + 2°. If we choose b in such a way that 2° buckets fit in cache, then all
buckets needed by a specific segment can be fetched to cache once the segment starts, and
all subsequent update of buckets in the segment will very likely hit the cache. A simple radix
sort algorithm is shown in Algorithm an illustration of a first round of a radix sort can
be seen in Figure [2.6
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function getOffsets(int n, int base, int keys[n], int buckets[base], int offset, int run) :
for : =0 to base — 1 do
| buckets[i] = 0;
end
fori=0ton—1do
int current Bucket — keys[i]/(run x base x 2°0%¢t) mod base;
buckets|current Bucket|++;
end
// scan bucket values
int sum = 0;
for : =0 to base — 1 do
int currentValue = bucketsli];
buckets[i] = sum;
sum += currentValue;
end

end

function radix(int base, int n, int buckets[base], int keys[n|, int offset, int run, int
resultKeys[n], M values[n], M resultValues[n]) :
fort:=0ton—1do
int current Bucket = keysli]/(run x base x 2°0%¢*) mod base;
int index = buckets[current Bucket];
result Keys[index| = keysli];
resultValues[index] = values][il;
buckets|current Bucket]++;
end
nd

== 0

unction radixSort(int indices[n|, M values|n], int runs, int base, int o, int n) :
int resultKeys[nl;
M resultValues[n];
for run =0 to runs — 1 do
if run > 1 then
resultKeys := keys;
resultValues := values;
end
M buckets[basel;
getOffsets(n, base, keys, buckets, offset, run);
radix(base, n, buckets, keys, offset, run, resultKeys, values, resultValues);
end

end
Algorithm 2.4: Radix sort algorithm which sorts by b bits in runs rounds if runs x base = 2°,
with an offset of o bits
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Figure 2.6: Illustration of the first round of radix sort with a base of 2 and an offset o of zero

In order to speed up the multireduce algorithm using a radix sort, all we have to do is find
an appropriate number of bits to sort by, sort the input labels and values, and then apply
the multireduce function to the partially sorted labels and values. For scatter, the procedure
is exactly the same, since it is a special case of the multireduce. For the multiscan and the
gather operation, however, the algorithm needs to be a little more complicated as shown in

Algorithm [2.5] and [2.6]

struct IndexValue {
int index;
M value;

}s

function sortMultiScan(int indices[n], M values[n], M result[n], int runs, int base, int n)

IndexValue ivalues[n];
fori=0ton—1do
ivaluesli].index = i;
ivalues[i].value = valuesli];
end
int resultKeysn];
IndexValue resultValues[n|;
for run =0 to runs — 1 do
if run > 1 then
resultKeys := keys;

resultValues := values;
end
M buckets[basel];
radixSort(indices, values[n], runs, base, n)
end
multiScan(result Keys, resultValues, result, n);
end

Algorithm 2.5: Sorting algorithm for multiscan

The performance of a sort-based multireduce compared to the simple implementation ob-
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function sortGather(int indices|m|, M values[n|, int runs, int base, int n, int

resultKeys[n], M resultValues[n]) :

M buckets[base];

M bucketsCopylbasel;

int temp[n];

getOffsets(n, base, keys, buckets, offset, run);

buckets := bucketsCopy;

radix(buckets, keys, o, run, n, resultKeys, values, resultValues);

fori=0ton—1do

| templi] = values[templi]];

end

fort=0ton—1do
int currentBucket = keysli]/(run x base x 2°05¢%) mod base;
result[i] = templbucketsCopy|current Bucket]];
bucketsCopy|current Bucket]+-+;

end

end
Algorithm 2.6: Gather with one-run radix sort

viously depends to a great degree on the properties of the memory subsystem of the used
hardware, especially the size and latency of caches and the main memory. In order to eval-
uate its applicability for various hardware configurations, we implemented a simulator for
cache and memory behaviour, which can be configured to simulate arbitrarily large hierar-
chies of write-back caches with different sizes and associativities, given the access times for
each one of them. It uses a simple approximated LRU replacement mechanism and performs
rudimentary prefetching.

For the test system, we created a pool of pointers, each pointing to a random pointer in
the pool, and measured the average time needed for following one pointer to another (after a
warmup period which allows the pool to be cached). If the pool fits in L1 cache, this measures
the latency of L1 cache; if it is far larger than L1 cache but fits into L2, it will measure the
latency of the latter, and so on.

The results of the simulation, as well as the actual performance of both the original approach
and the sorting approach, can be seen in Figure We configured the sorting algorithm
to sort the input data if m < 22!, and sort by logy,m — 18 bits. These parameters were
empirically chosen and result in the best performance on the test hardware; for lower choices
of m, the time needed for sorting cancels out all gains made in the subsequent multireduce
computation.

In terms of actual performance, the results show that the sorting approach does indeed result
in better performance for many buckets. The difference, however, is not a qualitative one, as
the general pattern of the curve remains the same. At its best, the sorting algorithm needs
two thirds of the time of the original algorithm.

The simulation results, however, obviously do not agree with the real life performance, apart
from the most basic pattern. The simulation predicts that both the simple algorithm and
the sorting algorithm should perform much worse than they actually do. It also predicts
a non-monotonic performance curve of the sorting algorithm: According to the simulator,
the sorting algorithm should perform better for m = 22! (the lowest m for which sorting is
performed) than for m = 2%° (the highest m without sorting). That means that according to
the simulator, we should already sort for m = 22°, whereas in reality, this actually reduces
performance. We will have to find out if the simulator is simply inaccurate or if something
unexpected is happening in the CPU or in memory.

A sign that suggests that the latter might be the case is the fact that even in the worst case,
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Figure 2.7: Actual runtime vs. simulation results of simple and sorting multireduce

the runtime of the simple multireduce algorithm per input is lower than the time needed for a
single uncached main memory access (63 ns vs. 111 ns). Since we expect one uncached main
memory read for almost every loop iteration for high values of m, this should be impossible,
and we would in fact expect the runtime to rise over 111 ns per input, as the simulator
predicts.

We found that the most likely reason for this behaviour is that, on real hardware, memory
accesses are not performed completely sequentially, but are pipelined. This means that while
the CPU is still waiting for the bucket value in one loop iteration, it already requests the value
of the next one, thus reducing the average latency. Since we gathered the input latencies using
pointer jumping, which is necessarily sequential, this would explain the difference. In order
to test this assumption, we have manipulated the multireduce algorithm to force sequential
execution of the bucket reads. We do this by letting the choice of bucket in each iteration
depend on the value of the bucket read in the previous iteration, so that it is impossible for
the CPU to request the next bucket while it is still waiting for the value of the previous one.
Figure shows that this change does indeed affect performance in a major way.

The simulation is now much closer to the real performance. The main difference is that the
simulated performance drops more abruptly when L2 cache can no longer hold all buckets. A
possible explanation for this is that the cache line replacement algorithm or the prefetching
algorithm used by the real CPU are different from the relatively simple ones used by the
simulator. Since LRU leads to bad cache hit rates for some very common access patterns,
current CPUs usually utilize more sophisticated replacement policies [38], so that we should
expect small differences between real performance and a simulation using LRU.

Note that with enforced sequential data fetching, the real performance of the sorting algorithm
also has a bend at m = 2%°, meaning that if data fetching was indeed sequential, we should
in fact sort for m = 220 instead of m = 22!, as the simulation suggests. This shows that the
simulator works accurately enough to find optimal configurations for the sorting algorithms
if the hardware it simulates does not violate the simulator’s assumption that all memory
accesses are carried out sequentially.

We can now go back to our primary goal for this chapter, which is to find an optimized
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Figure 2.8: Actual runtime vs. simulation results of simple and sorting multireduce when
sequential data fetching is enforced

sequential algorithm for multiscan and multireduce. We have shown that the sorting approach
can lead to a speedup for the multireduce on our older test system. However, we also expect
the relative performance of the simple and the sorting approach to vary between systems
with different cache hierarchies, and the system we have used for testing so far is too old to
serve as a good representative of current CPUs. We have therefore benchmarked the sorting
approach on the newer Opteron system as well. The results showed that on this system,
which has more and bigger caches, the sorting approach does not actually result in a speedup
for any configuration, neither for the multireduce nor for any of the related operations. While
we have shown that the sorting approach can be useful on certain CPUs, we must conclude
that its usefulness will always depend on the employed system.

In terms of our search for an optimal algorithm for the multireduce and multiscan, this means
that the simple algorithm we started out with is indeed the fastest algorithm on our best
system, and we will use this algorithm to evaluate the performance of GPU algorithms in the
next chapters.

When first benchmarking the performance of multireduce, multiscan and scatter, we noticed
that the best-case time for calculating the multiscan is almost twice as long as that needed
for the multireduce, which performs exactly the same calculations but fewer memory trans-
actions. Since, as we now know, all buckets fit into L1 cache in the best case, and sequential
reads from the input arrays can be assumed to be cached in L1 as well, the reason for this
cannot be cache behaviour. This leads us to conclude that memory bandwidth is the limiting
factor for the sequential performance of both algorithms; an assumption which we confirmed
by other benchmarks.

As a result of this, multi-core algorithms for the same problems cannot lead to a significant
performance increase, as long as the available bandwidth does not increase when several cores
are used, which is only the case if the different cores are physically placed on different sockets,
which is not the case for most CPUs. Since any multi-core CPU algorithm would therefore
never result in an improvement based on actual algorithmic differences, we will not consider
parallel CPU algorithms in this thesis.
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2.5 Conclusion

We have shown that multireduce and similar algorithms suffer from poor cache hit rates and
TLB misses for large numbers of buckets. While using huge pages can prevent the latter,
a more general solution is to partially sort the input data to make it more closely resemble
sequential input data. Our benchmark shows that sorting can, in fact, lead to an increase in
performance on certain systems with small caches, but the improvement is highly dependent
on the used CPU. One can easily imagine scenarios where the expected improvement of such
an approach is much larger, e.g. when working on external media, or in fact any other data
source which has significantly lower latencies for sequential access patterns and/or frequently
used data. For these cases, the existing simulator can be used to estimate if and how much
a sorting approach can improve performance.

In addition to being useful for performance reasons, the algorithm can also be used to increase
the lifetime of certain types of external media: SSDs, which can only handle a limited number
of writes to each cell, suffer much more from random access writes than from sequential ones.
A natural topic for follow-on work would be to extend the simulator to account for the
superior possibilities offered by modern memory and CPUs, i.e. to properly model pipelined
main memory reads and writes, and to use more sophisticated cache management routines.
Such a simulator should be suitably parameterized in order to be able to accurately simulate
both current and older memory architectures as well as special cases like disks.

Since we concluded that memory bandwidth is the main factor limiting the performance
of multireduce and related algorithms, no improvement can be expected from parallel CPU
algorithms, and we will therefore not pursue them in this thesis.

Concerning our search for the optimal sequential algorithm for multireduce and multiscan,
our conclusion is that the simple algorithms are in fact the fastest ones for current CPUs
with large caches. These will therefore be the algorithms to which we will compare the GPU
algorithms to be developed throughout the next chapters.
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Chapter 3

GPU Fundamentals

The remaining chapters of this thesis will be devoted to developing fast algorithms for multi-
reduce and multiscan for GPUs. Compared to algorithm design for CPUs, GPU performance
depends on special hardware characteristics to a much larger degree. In order to have an
informed discussion of specific algorithms in the following chapters, it is therefore vital to
first introduce the main concepts used in GPU programming, and then elaborate on the
preconditions for efficient use of GPU resources. This is the main focus of this chapter.

3.1 Modern GPU architecture and the CUDA programming
model

The general idea behind the design of GPUs has already been highlighted in Section but
a more in-depth knowledge of the actual hardware is necessary in order to understand the
conditions under which code can be executed efficiently on GPUs. While explaining these
details, and in fact throughout the remainder of this thesis, we will be using the terminol-
ogy that is generally employed in CUDA programming as opposed to other frameworks like
OpenCL. However, since they are both intended to be able to be used on the same hard-
ware, most of the core concepts are identical or at least very similar, and are simply named
differently. We will try to keep the hardware descriptions as general as possible, but some
digressions about specifics of the current generation of GPUs may be necessary. In these
cases, we will presuppose the traits of current NVIDIA GPUs, but we will make it clear to
the reader that these things may change in the future. Additionally, we will only discuss the
features of CUDA relevant to our later algorithm discussion. A more complete overview can
be found in the CUDA C Programming Guide [13], which the following discussion is based
on.

Each CUDA GPU consists of several streaming multiprocessors (SMs) (see Figure [3.1). An
SM, in turn, contains a number of scalar processors (SPs). As mentioned before, groups
of these processors share a common control logic and can therefore only execute the same
instruction at the same time. An SM also contains registers for the SPs to work with. Each
SM has a small amount of shared memory which can be used cooperatively by the SMs’
SPs and can also be used as L1 cache, as well as a constant cache (abbreviated to CC in
Figure and a read-only data cache. The functions of the L1 cache will be discussed in
detail at a later point; the constant cache and read-only data cache do not play a role for
our purposes and are only mentioned for completeness. All streaming multiprocessors have
access to the global DRAM, which is cached by a shared L2 cache. L1 cache does not cache
global memory reads and writes, since it is private to each SM and would have to handle
cache inconsistencies otherwise.

The structures offered by CUDA on a programming level generally mirror the structure of
the hardware. In Figure [3.2] each of the main structures has the same color as the part of
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Figure 3.1: Structure of modern CUDA-enabled GPUs (adapted from [41])
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Figure 3.2: CUDA programming model
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the GPU hardware it corresponds to in Figure 3.1

On the lowest level, there are single threads, each with a specific ID, which execute instruc-
tions as specified by the programmer. A thread has two ways to store its private data during
execution. The first one are registers, which are allocated to threads according to their needs.
Registers are the fastest type of memory available, with very low latency, although there is
a certain latency after storing a value in a register before said value can be read again. If a
thread needs more private space than the available registers can offer, local memory is used
instead. Local memory is physically placed in the GPU’s DRAM and therefore has a high
latency. Local memory accesses are, however, cached in L1 cache; since the data is private to
each thread, there is no problem with cache incoherences. Another case where local memory
is used instead of registers is for arrays which are indirectly addressed, i.e. arrays which
cannot be transformed into a number of normal variables by the compiler due to indirect
addressing.

CUDA code is written on a thread level. A function written for execution on a GPU is
called a kernel, and on invocation of a kernel, all threads execute the same kernel function.
The behaviour of different threads can be distinguished based on their thread ID, which is
privately known to each thread.

Threads are organized in blocks. All threads in a block have access to a shared memory.
From a hardware point of view, L1 cache and shared memory are identical (and simply called
shared memory in Figure , they have identical performance which is not much worse
than that of registers, though the official documentation makes no guarantees in terms of
latency times. The programmer can specify the amount of said memory that should be used
as shared memory as opposed to L1 cache for each kernel before it is called.

While shared memory allows threads of the same block to cooperate, variables in global
memory can be accessed by threads of all blocks. They are stored in off-chip DRAM. As
mentioned before, this DRAM has high latency, but it also has high throughput. Accesses
to global memory are cached in L2 cache only. There is even less information about the
performance of L2 cache than in the case of L1/shared memory. Since there is only one
global L2 cache, as opposed to dedicated L1/shared memory for every SM, one can expect
the L2 performance to be a lot worse than L1, although it must still be a lot faster than
DRAM, since there would be no reason for it to exist otherwise. Global memory is where
the input data for each kernel is initially found, and it is where any results must be written
if they are supposed to be used after the kernel has finished. Since global memory is the only
means of communication between the GPU and the host, CUDA offers special functions for
copying data between the computer’s main RAM and the GPU’s DRAM, which can then be
accessed through loads from global memory.

When writing CUDA code, the programmer has to write the kernel code (e.g. the code every
thread should execute) and, in the kernel launch call, specify the number of blocks to be
executed, as well as the number of threads in each block. During execution, blocks are then
allocated to SMs. This means that all the threads of the blocks allocated to a given SM need
to share the registers available on that SM. The state of each thread is maintained on an
SM for the entire lifetime of its block, which allows for fast switching between threads. The
number of registers used by the threads of a block therefore limits the number of resident
blocks on any SM at any given moment. The same is true for shared memory: If blocks use
an amount s of shared memory, then only [%} blocks can be resident on an SM at
any time, where sharedgys is the amount of shared memory per SM. When the execution of
a block has finished, a new block can then take its place.

In terms of actual execution, blocks are further divided into warps. On current hardware, a
warp consists of 32 threads of the same block. The assignment of threads to warps is based on
the thread ID, and since the latter does not change, each thread will belong to the same warp
during its entire lifetime. During each cycle, an SM’s scheduler will select one (or, on modern
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hardware, several) active warps to be executed. A warp is active if its next instruction can
be executed during the current cycle, meaning that the warp is not, for example, waiting for
data from DRAM to come in. The SPs of an SM will then concurrently execute the same
instruction for all the threads of a warp. On a warp level, GPUs are therefore strictly SIMD
machines. Different warps, however, may execute different instructions (e.g. by branching on
the thread ID). The same is, of course, true for different blocks. As a whole, GPUs therefore
do not adhere to the SIMD principle. Instead, NVIDIA calls the model of parallelism used
by GPUs SIMT (single instruction, multiple threads).

The SIMT model has direct consequences for the performance of branch execution. Different
warps can execute different branches without any loss of performance. If, however, different
branches are executed within a warp (a phenomenon called branch divergence), only one
branch can be executed at a time. The SPs responsible for executing threads that do not
take part in the current branch will then be deactivated, and the remaining SPs execute the
branch. The execution of different branches is serialized. This obviously has consequences
for performance: Not only does a number of the available SPs necessarily lay idle for some
time if there is branch divergence within a warp, but the total execution time will be the
time needed for executing all all branches taken by at least one thread sequentially.

As we have seen, the number of threads which can actually be executed at once by an SM
is only a small multiple of the warp size. Nevertheless, programmers should strive to place
several hundred threads on each SM at once (either by using many blocks, or by using
blocks with many threads). The reason for this is a central concept called latency hiding.
As mentioned before, the latency of global memory accesses is hundreds of cycles (again,
detailed information is unavailable) and cannot be completely hidden by caches. Instead,
CUDA GPUs achieve maximum performance by having a high number of resident threads,
and therefore a high likelihood that enough warps will be active at the start of every cycle.
Since all resident threads keep their data stored in the SM’s registers during the lifetime of
a block, switching between different warps has no additional costs.

The order in which warps are scheduled to be executed is generally undefined, as is the order
in which blocks are allocated to be executed on SMs. If a kernel’s correctness depends on some
instruction having been executed by all threads in a block at some point, this block’s threads
need to be synchronized, for which CUDA offers a primitive. Note that synchronization is
only necessary and possible on a block level: On a warp level, there is no need to synchronize,
since warps are strictly SIMD. On a global level, however, synchronization may be desirable
in many cases, but CUDA does not offer any way to synchronize execution between more
than one block.

For cases where several threads or blocks need to cooperate on the same data, CUDA offers
atomic updates for both global and shared memory. If there are conflicting atomic updates
to the same location, these updates will be serialized in an undefined order. While atomic
updates are slower than normal writes, their performance has improved dramatically on
recent GPUs, thus making them viable for use even for high performance algorithms [33].
On current GPUs, atomic operations are also available in shared memory.

3.1.1 GPU performance requirements

The aforementioned information usually suffices to be able to write correct code. In order
to maximally utilize the GPU’s performance, however, some additional aspects need to be
taken into consideration. Again, we will only give an overview of the information needed for
the discussion of our algorithms; a more complete overview can be found in [34]. The first
is that the limiting factor for GPU algorithm performance is often a different one than for
corresponding CPU algorithms. While GPUs currently have a significantly higher memory
bandwidth than CPUs (see Figure, the difference is not as big as it is for pure computing
power (a factor of about seven for memory bandwidth, 10-20 for computing power). The
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relation of available computing power to available memory bandwidth is therefore different,
as shown by Figure GPUs can perform about twice as many floating point operations for
every byte they can transfer (again, assuming that all CPU cores are used and performing SSE
instructions). This is significant because, as we have already seen, the memory bandwidth
available on CPUs is not always enough to keep even one core working continuously. GPU
algorithms will therefore tend to work more instead of storing intermediate results.

Note, however, that the memory bandwidth shown in Figures and is the maximal
theoretically achievable bandwidth. Our discussion of the performance problems of the se-
quential algorithms has shown that achieving or even getting close to this bandwidth is not
always trivial even in the CPU case. For GPUs, different types of memory require additional
conditions to be fulfilled in order to optimally access the memory. These conditions are:

e Accesses to DRAM (i.e. global memory) should be coalesced. This means that consecu-
tive threads of the same warp should access consecutive 4-byte-words of global memory,
i.e. if thread ¢ accesses word j, then thread ¢ 4+ 1 should access word j + 1, assuming
threads ¢ and ¢ 4+ 1 belong to the same warp. If they are not in the same warp, their
memory accesses will usually not be performed at the same time anyway and therefore
cannot influence each other’s performance. Memory transactions are always carried
out in blocks of 32, 64 or 128 bytes, meaning that access patterns fetching smaller
blocks will always waste bandwidth. For optimal performance, the block of consecutive
memory locations that is accessed should also be aligned with its size, i.e. the start
address of the block should be a multiple of its size. If this condition is fulfilled, the
entire block can be transferred from DRAM to the SM in one (or few, for bigger blocks)
transaction. Otherwise, more transactions will be necessary, in the worst case one for
each requesting thread, and most of the transferred data will be unused.

Recent GPUs have relaxed the conditions for optimal access to some degree, but they
changed only in some details, and discussing the changes here would be too specific to
the current architecture of NVIDIA GPUs.

While local memory is also physically stored in DRAM, the CUDA runtime auto-
matically arranges local memory variables in such a way that the same variable for
consecutive threads is placed in consecutive memory locations, so that accesses are
automatically coalesced if different threads access the same local variable.

e Shared memory consists of several banks (currently 32, meaning there is one bank
for every thread of a warp). During each cycle, each bank can execute one memory
transaction. Shared memory can therefore be used optimally if all threads in a warp
access different memory banks in every instruction, because every bank can handle one
request. Another optimal case is several threads accessing the exact same location:
While there are several requests to the same bank, only one value is actually read and
can be broadcast to all requesting threads. Problems occur if several threads of a warp
access different locations from the same bank at once. This is called an n-way bank
conflict, where n is the number of different locations on the same bank accessed at
once. In this case, n transaction have to be serialized, increasing the cost of the overall
transaction by a factor of n. In the worst case, n can be the number of threads in
a warp, so that bank conflicts can increase the cost of a shared memory access by a
factor of 32 on current GPUs. Since all threads of a warp generally execute at once,
this means that the entire warp has to wait until all transactions have been executed.

Successive 4-byte-words in shared memory belong to successive memory banks. Bank
conflicts can therefore be avoided by using the same access pattern as for coalesced
global memory accesses, i.e. thread ¢ accessing word j, thread ¢ + 1 accessing word
j + 1 etc. More generally, any access pattern will avoid bank conflicts if [%
mod nBanks is different for each thread of a warp.
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In principle, the same problem could occur for global memory, which also consists of
several physical parts called partitions. The equivalent of bank conflicts for DRAM
partitions is called partition camping. On modern GPUs, however, a pseudo-random
permutation is used to map global memory sections to different partitions. One can
therefore expect partition accesses to be randomly distributed in the average case, so
that partition camping should not be a problem. On the other hand, it is of course
always possible to just have bad luck and consistently hit the same partition. Unless
programmers find out the nature of the used hash function, there is no way to actively
avoid this possibility.

The other reason that partition camping is usually not a big problem, whereas bank
conflicts can be, is that accesses to global memory are expected to take hundreds of
cycles. There is therefore very little impact if they need a few cycles more for some
requests. Shared memory, on the other hand, is expected to be a fast alternative to
global memory and used for exactly that reason, which is why shared memory bank
conflicts typically do matter.

To summarize, a modern GPU differs in many important ways from any kind of PRAM. The
main differences are:

1. The memory hierarchy: While CUDA devices do offer a global memory accessible by all
threads, this memory has high latency. In order to create a fast kernel, one therefore
tends to use shared memory, which is only accessible by threads of the same block.
This is a concept that is usually not found in PRAM models. The size of the shared
memory is very limited, which forces programmers to use algorithms that only use small
amounts of memory repeatedly. The use of shared memory (and, for that matter, local
memory or registers) also limits the ability of an SM to execute several blocks at once:
The number of concurrently executed blocks is limited by the demand of each block of
each of these resources; if one block uses all the shared memory an SM possesses, only
one block at a time can be run on each SM.

The assumption used in PRAMs that memory accesses generally have unit cost, which
is of course invalid in GPUs because of the wildly different latencies of global and shared
memory and the existence of a cache for global memory (which reduces cost for recently
accessed parts of DRAM), is further shattered by the fact that different memory access
patterns lead to vastly different performance. An example is coalescing global memory
accesses: if all threads of a warp access a continuous area of memory in a certain order,
this can reduce the number of necessary memory transactions by a factor of 32.

While global memory access patterns can often be predicted directly from a high level
description of an algorithm, a similar problem is much harder to spot. As mentioned
before, simultaneous accesses to the same bank in shared memory results in a bank
conflict (except in some special cases), which again means that the requests have to be
served sequentially. This means that the worst case step complexity of n shared memory
accesses is n for both writes and reads. Determining whether parallel reads or writes
can potentially access the same memory bank, however, requires knowledge of the size
and structure of the used data types, their positioning in memory, and the number and
structure of the memory banks in the used hardware (which has changed in the past
and may well change again). Any algorithm designed to run on a PRAM that does not
specifically account for all of these things (which is basically any algorithm designed to
run on a PRAM), even if it uses the cache well and can fit its data into shared memory,
can potentially see all its concurrent memory accesses getting serialized.

2. The understanding of SIMD: PRAMSs are generally expected to run in a SIMD fashion.
While GPUs follow the SIMD paradigm more strictly than PRAMs in some ways (e.g.
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branch divergence; only one branch of execution can be run at a time, so different
branches are executed sequentially, which of course prolongs the runtime), they are
less strictly SIMD in other ways: All blocks of threads may execute independently of
each other in any order, with their execution being interleaved or not. CUDA does
not support synchronization between blocks. If an algorithm depends on a certain step
being done before another one on a global level (i.e. more than one block is needed),
one therefore has to run several distinct kernels in order to enforce synchronization,
which causes additional overhead for dispatching the kernels and causes other problems,
e.g. because of the fact that shared memory contents cannot be reused across several
consecutively executed kernels.

Writing one’s own global synchronization methods is in most cases impossible and in
all cases bad for performance: If several blocks wait for another block, which is not
currently being executed on any SM, the program may wait indefinitely because the
waiting blocks currently running prevent the other block from ever being executed.
Even if one could guarantee that all blocks can be dispatched to the SMs concurrently,
the waiting blocks would spend valuable computing time (and possibly memory band-
width) in waiting loops, since there is no way to mark a block as being idle until some
event happens [48§].

Even within blocks, the order in which different warps are executed is arbitrary. While
there is a possibility to synchronize all threads of one block, this synchronization comes
with a performance penalty. Perhaps more importantly, it may cause warps to stay
inactive while waiting for other warps to arrive at a synchronization barrier. This
reduces the number of warps that can be executed at any given time and therefore
restricts the SM’s ability to hide memory latency by switching between different warps,
in effect causing an SM to be idle while waiting for certain warps.

Essentially, GPUs’ inability to execute several branches at once, along with the un-
defined order of execution on a block and warp level, which can be fought to some
degree but not without performance overhead, may strongly affect the performance
of PRAM algorithms that depend heavily on branching and/or all operations being
globally executed in a specific order.

3.2 Fundamental GPU algorithms

In the following discussion of algorithms for multireduce and multiscan, we will repeatedly
make use of other algorithms fundamental to GPU computing. While we will discuss parallel
algorithms for scan and reduce in the respective chapters of their generalized versions, we
will briefly sketch two algorithms here: GPU radix sorting as well as a multi-pass scheme for
gather and scatter.

3.2.1 Radix sort

As many other algorithms, GPU radix sort is based on scans. There are several implemen-
tations which differ in algorithmic details, like the radix sort offered in the CUDA SDK [41],
SRTS radix sort [30], which is the fastest published GPU radix sort algorithm, and GRS [2],
which is optimized for key-value-sorting with large values. The main idea behind the al-
gorithm, however, is always the same, and is shown in Algorithm [3.1] and illustrated in
Figure [3.5

For every round of sorting n inputs by b bits at once, 2° integer flag vectors of length n are
created. For each element of the input, the corresponding flag in flag vector Vj is set if the
selected radix bits have the value i. A simple example: If b = 4, and the second round of
sorting is running, the currently selected bits of a binary number 0100 1001 0010 are 1001,
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Figure 3.5: First round of GPU radix sort with b = 1 (adapted from [30])

function radixRun(int in[n], int out[n], int n, int run, int b) :
int flagVectors[2® x n;
parfor : =0ton—1do
for j=0to2°—1do
| flagVectors[j x n+i] = 0;
end
end
parfor : =0ton—1do
int currentBits = in[i]/(2° x run) mod 2°;
flagVectors[current Bits x n+i] = 1;
end
int scannedFlags[2® x n);
Scan(flagVectors, scannedFlags, +);
parfor i =0ton —1do
int currentBits = in[i]/(2° x run) mod 2°;
int offset = scannedFlags|currentBits x n + il;
out|offset] = inlil;
end

end
Algorithm 3.1: Parallel radix sort algorithm for a single run sort by b bits
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which is 9 in decimal. Therefore the flag corresponding to said number in the 9th flag vector
is set to one, and to zero in all other vectors. All flag vectors concatenated into one vector
are then scanned (exclusively). In the last step, the final offset is calculated for each input
number. For input ¢, this is done by selecting index ¢ in the flag vector where the ith flag
was set in the first step. The input is then scattered to this location. Most of the work done
by this algorithm is done in the scan of an array of length n x 2°, leading to an overall work
complexity of O(n x 2°).

We will use this opportunity to introduce our notation for GPU algorithms, which we will use
for all GPU-specific parallel algorithms; for the description of generally applicable parallel
algorithmic concepts, we will still use the parfor notation as above.

As mentioned before, GPU code is written in the form of kernels, which are then executed
concurrently by a number of threads, which are organized into blocks. The number nBlocks
of blocks and the number nT'hreads of threads per block have to be specified for every kernel
call. This means that GPU functions necessarily consist of at least one kernel as well as a
host function which calls the kernel. We will generally define the host function first and the
kernel(s) afterwards. The syntax we will use for a kernel call is as follows:
kernelName«nBlocks, nThreads» (argo, argy, ..., argg—1);

This will start a kernel execution with nBlocks blocks, each consisting of nThreads threads,
each of which executes the kernel function kernelName. Each executing thread can then
refer to its ID threadld as an implicit parameter anywhere in its code which is in the range
[0...nThreads —1]. Likewise, the identifier blockId denotes the ID of each thread’s block, and
the identifiers nBlocks and nThreads can be accessed within the kernel code as well. This
is necessary because the function parameters argg, ..., argi_1 of the actual kernel function
are identical for all threads.

Arrays handed to kernel functions as arguments are assumed to be located in global memory.
Shared memory variables are declared within kernels and have the modifier "shared" in front
of the variable declaration. All variables declared within kernels which are not shared are
local to each thread. Occasionally, we will use an additional modifier "local" if it makes the
code more intelligible.

Since we want to demonstrate general algorithmic ideas, not write runnable code, we will
generally assume that the number of input elements can be evenly divided between threads
or blocks; more specifically, we assume that all divisions which have the purpose of dividing
input data between entities result in integer values. For the same reason, we will not explicitly
state synchronization statements. Instead, we will assume an implicit synchronization after
every statement, meaning any thread in a block can only execute statement ¢+ 1 if statement
1 has been executed by all threads in the same block.

If we transfer the radix sort algorithm sketched above to the kernel format, the result is
Algorithm Where before there were parfor statements working on n items at once, we
now have n threads which all work in one block for simplicity. Since the scan may be carried
out by any number of threads which is not necessarily equal to n, it is necessary to split the
algorithm into three parts.

3.2.2 Gather and scatter

The optimal PRAM algorithm for gather is obvious. For gathering n values, n processors can
fetch their respective labels in parallel, fetch the values that belong to it, and store it in their
output locations. Every processor does linear work, and the algorithm has constant depth.
A similarly obvious algorithm can do the scatter with the same work and step complexity
on an CRCW PRAM; a PRIORITY PRAM could even prioritize some indices over others in
cases where several values are scattered to the same location.

For the gather, the PRAM algorithm transfers relatively well to GPUs at least in principle.
Current GPUs can broadcast values that are requested by several threads (meaning that
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function radizRun(int infn/, int out[n], int n, int run, int b) :

int flagVector[2 x nl;

setFlags«1, n»(in, flagVector, run, b);

int scannedFlags[2® x nl;

// choose scanBlocks and scanThreads for optimal performance Scan«scanBlocks,
scanThreads» (flagV ector, scannedFlags, n);

scatter«1, n»(in, out, scannedFlags, run, b);

end

kernel setFlags(int in[n], int flagVector[2® x n], int run, int b) :
fori=0to 2" —1do

| flagVector[i x n + threadld] = 0;
end
int currentBits = in[threadld)/(2° x run) mod 2°;
flagVector[currentBits x n + threadld] = 1;
end

kernel scatter(int in[n], int out[n], int scannedFlags[2® x n], int run, int b) :
int currentBits = in[threadld)/(2° x run) mod 2°;

int offset = scannedFlags|currentBits x n + threadld);

out|offset] = in[threadld];

end

Algorithm 3.2: Parallel radix sort algorithm for n threads

the cost of such concurrent accesses does not increase), so there is no problem with several
threads that have the same label reading the same corresponding value. One would make
a few sensible changes to the algorithm: Since GPUs can only execute a limited number of
instructions at any time anyway, there is no benefit in creating a thread for each input label.
Instead, one should process a number of values, resulting in an algorithm like Algorithm

function gather(int n, int m, int labelsn|, M values|m|, M result[n]) :
// choose nBlocks and nThreads for best performance
gatherKernel«nBlocks, nThreads» (n, m, labels, values, results);
end
kernel gatherKernel(int n, int m, int labels[n], M values[m|, M resultin]) :
int blockWork = n/nBlocks;
int *blockLabels = &labels[blockId x blockW ork);
int *blockResult = &result[blockId x blockW ork];
for i = threadld to blockWork step nThreads do
int currentLabel = block Labels][il;

block Result[i] = values|[current Label];
end

end
Algorithm 3.3: Simple GPU gather algorithm

Every thread fetches one label at a time in a strided manner to coalesce the memory accesses.
Then every thread fetches the corresponding value and, again coalesced, stores them in
their output location. Every block does this for a range of input labels, thereby fetching a
contiguous part of the input label vector sequentially.

This algorithm seems reasonably efficient, but it has one weakness. The load of the values
is not coalesced (unless the input assigns consecutive labels to consecutive threads). Even
worse, there is also no pattern in the access of the values. In cases with many input values
(a large m in terms of the definitions used before), when not all of them fit in cache, there

37



CHAPTER 3. GPU FUNDAMENTALS

will therefore be uncoalesced reads from uncached global memory.

The situation is similar for the scatter, except in this case there are uncoalesced, uncached
writes. There are two additional problems here: The resulting value in any location scattered
to by several threads is arbitrary; all that is certain is than one of the values that was supposed
to be scattered to a specific location will end up there. This algorithm therefore cannot be
used if there are any requirements concerning which value 'wins’ if several are written to one
location.

He et al. [I9] have proposed an algorithm that partly overcomes the primary weakness of
the simple scatter and gather algorithms discussed above, the fact that there are uncoalesced
accesses to potentially uncached memory if the number m of buckets is large. While they
do not address the coalescing problem, they propose a multi-pass scheme to achieve a higher
cache hit rate. While they never describe their parallel algorithm in detail, their approach
is essentially as follows: If not all buckets fit into cache at once, traverse the input several
times instead of only once. During each traversal, only read and write values for a subset of
all labels that fits into cache. Thereby the cache hit rate is increased at the cost of having to
traverse the input more than once. They also present a formula for estimating which number
of passes will deliver the highest performance.

The multi-pass approach has its merits if one can reasonably expect the distribution of labels
to be about even, and if m is only a little larger than the number of buckets that would fit
into cache. If the first condition is not fulfilled and only a small number of labels is actually
used, the single-pass algorithm already uses the cache well, and doing multiple passes is just
a waste of time. If the second condition is not fulfilled, the number of passes necessary to
achieve a high percentage of cache hits will be so high that the overhead for traversing the
input many times will cancel out any performance gains due to better cache utilization.

3.3 Expectations for a GPU implementation

Expectations for the speedup of GPU algorithms over their CPU-based counterpart are often
high, since several publications have published speedups of one, two or even three orders
of magnitude for different problems. Lee et al. [25] have, however, concluded that even for
problems with large amounts of data parallelism, GPUs are only 2.5x faster than optimized
CPU implementation on average.

Since we use a completely sequential CPU implementation as our baseline, whereas the opti-
mized CPU algorithms used by Lee make use of several cores and, wherever possible, modern
CPUs’ vector instructions, we should be able to achieve more than a 2.5x speedup. Our
hope is to find algorithms which are at least five times faster than the CPU implementation,
since at this point, the speedup is large enough to justify the added effort of performing
computation on the GPU.

While we noted that the sequential CPU algorithm seems to be limited by memory bandwidth,
and that current GPUs only offer seven times as much memory bandwidth than high end
CPUs, these high end CPUs often use more than one socket, each of which has only a fraction
of the officially stated memory bandwidth. Since a sequential algorithm can naturally only
take advantage of the memory bandwidth provided by one socket, the memory bandwidth
available to a GPU algorithm is likely more than seven times as big as that available to a
sequential CPU algorithm.

We can turn to existing GPU implementations for related problems to get an idea of the
speedup for the specific problems we are working on. The problems most closely related
to multireduce and multiscan for which there are existing algorithms are reduce-by-key and
scan-by-key. Both are variations of segmented reduce and segmented scan, respectively, which
take labels instead of flags as inputs in addition to the values, and where the start of the
next segment is denoted through a change of the label. Both Thrust and Modern GPU offer
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Figure 3.6: Performance of existing algorithms for reduce by key and scan by key

implementations of reduce-by-key, whereas only Thrust offers a scan-by-key function. The
performance of both algorithms for different average segment lengths is shown in Figure [3.6
The performance of Thrust’s reduce-by-key is basically constant for different segment lengths
and never slower than 0.3 ns per input. The scan-by-key, in contrast, takes around 0.75 ns
per input for any segment length. Compared to the 2.5 ns per input and the 6 ns per input
which the sequential algorithms for multireduce and multiscan need even in the best case, the
GPU by-key-algorithms are about eight times faster in both cases. While the reduce-by-key
implementation provided by the Modern GPU library needs less than 0.1 ns per input for
large segments, this implementation makes some additional assumptions about the inputs
and is therefore not a completely generally applicable algorithm.

Since both multireduce and multiscan are more general versions of the by-key-algorithms
benchmarked here, we could confidently call any multireduce or multiscan algorithm fast if
it performs as well or better than these two existing implementations.

3.3.1 Using libraries

In the next part of this thesis, we will discuss and implement different approaches to imple-
menting multireduce and multiscan, some of which build upon existing algorithms.

To implement all of these combinations, a lot of different helper functions will be needed
(e.g. segmented reduce and radix sort on a global and block level). Implementations for
all of them exist in various libraries like CUDPP [I], Thrust [20], Modern GPU [12] and
CUB [28], some of which use well-documented algorithms, whereas others simply provide a
black box function without providing any information on what it does internally. However,
all of them are optimized functions, often developed by NVIDIA researchers, which is why
it makes sense to use them wherever possible (which also saves a lot of time). The downside
of this is that they might not be perfectly suited for the context we will use them in for a
number of reasons:

e The format in which they expect their inputs or return their outputs might not be the

39



CHAPTER 3. GPU FUNDAMENTALS

one we would use, so that a conversion is necessary.

e Since they work as black boxes, it might be difficult to intertwine several such functions
in cases where this would save work.

e They might not offer features we would optimally like to use.

In spite of this, the amount of work necessary to implement even one of these functions and
optimize it to a degree where it could compete with the performance of existing implemen-
tations is unreasonable high for the scope of this thesis. We will therefore adapt existing
libraries if the expected result is worth the effort, and otherwise use the existing functions as
they are and suggest what could be done differently.

The results of our benchmarks will be useful as an indication which algorithm should be used
in what scenario, but will probably not reflect the best performance that could possibly be
achieved with the given approach. The same attitude will be used for the parts not taken
from libraries: We will optimize them to a reasonable degree, trying to avoid obvious pitfalls
like bank conflicts, branch divergence and uncoalesced memory accesses, but the goal is not
to get the best possible implementation in each case.

3.4 Measurements

All measurements of GPU performance throughout this thesis are performed on a Geforce
GTX 690, which is a dual card in the sense that it contains two actual GPUs. Using multiple
GPUs at once in CUDA is possible, but requires additional programming effort and may give
rise to performance phenomenons only seen in multi-GPU configurations. Since we wanted to
measure algorithm performance for the more standard case of one GPU, we therefore did not
take advantage of the second GPU core. When using only one GPU, the GTX 690 performs
almost exactly like a GTX 680, with the only difference being a slightly lower clock frequency.
The GTX 690 is based on the Kepler architecture and supports Compute Capability 3.0. It
has eight SMs with up to 48 kB of shared memory each, and a theoretical memory bandwidth
of 192 GB/s. We use version 5.0 of CUDA, and the most recent available versions of all
referenced libraries.
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Multireduce on GPUs

4.1 Adapting ordinary reduce

A natural starting point when looking for an efficient algorithm for the multireduce problem
are the existing algorithms for the ordinary reduce, which we will therefore describe here.
The general idea of parallel reduction is very simple. Assuming that the number n of input
elements is a power of two, the algorithm works as described in Algorithm and illustrated
in Figure 4.1}

function reduce(M in|n], int n) :
for i =1 to logyn do
parfor j =0 to 5 — 1 do
| inlj] = inl2j]® inf2j + 1)
end
end
return in[0];
end

Algorithm 4.1: Parallel reduce

This algorithm, which can be easily extended to handle different input lengths, has a depth
of O(logn) and a work complexity of O(n) and is therefore work-efficient.

The reduction algorithm provided in the CUDA SDK is an adaptation by Harris [I7] of this
algorithm. Harris shows how to implement this algorithm on GPUs with good performance,
i.e. how to avoid branch divergence and bank conflicts and unroll loops where possible. In
more recent work, Martin et al. [26] further improve on the existing algorithm with an opti-
mized work distribution between different blocks and warps, but do not change the algorithm
itself.

There is, of course, one obvious way to adapt the traditional algorithm to perform a multi-
reduce, but it is just as obvious why this approach is not always an efficient one. Instead of
scalar values, one could let the algorithm run on vectors of these values with length nBuckets.
Input elements could be converted to this format by starting out with a vector a consisting
only of zeroes, and then setting a;, = v;. If the input operator is ®, the modified @ would
be defined such that a ©' b = [ag ® by, a1 ® by, ...]T. The result of the traditional algorithms
would then be a vector ¢ containing the results for each label for the multireduce. In order
to get the actual result r; for each input value v;, one would have to select the value ¢,
corresponding to the label for each element, which could, again, be done in parallel.

While this algorithm has the same depth as the original elements (since all additional work can
be done in parallel), the work performed by it would be of the order O(n x nBuckets), which
is undesirable since nBuckets may potentially be quite large. Unless nBuckets is regarded as

41



CHAPTER 4. MULTIREDUCE ON GPUS

log(n) steps

Figure 4.1: Parallel reduce algorithm, illustrated for addition on integers

fixed, this algorithm is therefore not work-efficient, since the sequential algorithm has a work
complexity of O(n), no matter how large m is. While it may well be the fastest multireduce
algorithm if nBuckets is very low, it will not perform well in general, which is why we will
have to look for alternative approaches.

4.2 Overview of possible solutions

Since adapting the traditional reduce algorithm does not seem to be an option, other ap-
proaches must be found in order to implement multireduce efficiently.

Assume for a moment that a multireduce algorithm is given. Then the obvious way to
compute the multireduce of a given vector of label-value-pairs is to apply the algorithm
to the entire vectors and return the result. There is, however, a different possibility: The
algorithm could be applied to several segments of the input in parallel, resulting in several
partial results. These results could then be accumulated into the final results. A scheme for
doing this is shown in Figure

The input arrays are partitioned into nSegments parts of equal length. A multireduce
algorithm is then applied to each part in parallel, which writes the partial results back to
global memory. If the labels in the input data are in the range [0...nBuckets—1], each segment
will write nBuckets to global memory. We will call the nBuckets buckets containing the
partial reductions for one input segment a bucket set, although it is not necessarily a set in
the mathematical sense. nSegments bucket sets (or nSegments x nBuckets total buckets)
are therefore written to global memory after the first step. These can then be combined into
the final result in a second step, using a normal reduction for each bucket. Since we assume
the operation ® to be associative, this will always compute the correct result if each SM
works on a continuous segment of the input, and the final reduction is carried out in the
correct order.

This simple approach, which we will refer to as partitioning, has two main advantages:

1. It introduces an additional level of parallelism. Even if the algorithm used for each part
is completely sequential, several parts can be worked on concurrently, which is why this

approach would be the first choice when implementing a parallel multireduce on the
CPU.

The potential amount of additional parallelism is quite large, since the input can, in
principle, be divided into arbitrarily short segments. The downside of having a large
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Figure 4.2: Partitioning scheme for multireduce

number of segments is that a large amount of space is needed to store the results for
each block, and that reducing the partial results to the final result takes longer the
more segments there are: nBuckets reductions of nSegments elements each have to be
carried out in the final step.

2. It allows the algorithm used internally to use resources that are only available on a block-
level, like synchronization or shared memory. The former is actually a precondition for
many algorithms to work correctly, while the latter can be helpful to speed up the
execution of many algorithmns.

There are often advantages as well as disadvantages to performing an algorithm exclusively
within shared memory: While it is much faster than global memory, its size is also very
limited, which is a problem for some algorithms. Therefore there seem to be three sensible
ways to implement almost any given multireduce algorithm on GPUs:

1. Without partitioning, meaning that the algorithm is applied to the entire input at once.
2. With partitioning, where the algorithm uses global memory to work on each block.

3. With partitioning, where the algorithm uses shared memory to work on each block.

We should therefore evaluate each algorithm we can find on these three levels, but we still
need algorithms to do the actual work.

As mentioned before, working with several segments at once is a way to introduce parallelism
even for sequential algorithms. One can therefore take the simple, sequential multireduce
algorithm as a basis, and try to further adapt it to the capabilities of GPUs.

Alternatively, one could attempt to convert the multireduce problem to a different one for
which there are existing efficient GPU algorithms. Ordinary scan and reduce are closely
related to the multireduce and, as we have seen before, can be implemented very efficiently
on GPUs, so it would be sensible to try and convert a multireduce to a combination of
these problems. As it turns out, this is possible: By sorting the input keys and values, a
multireduce can be turned into a segmented reduce.
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In the final reduction step of the partitioning approach, we need to perform an ordinary
reduction of the partial results of each bucket. In order to achieve good performance, we
would obviously like to perform the reductions for all buckets in parallel. Since there seems to
be no library which offers a function to reduce several vectors at once, we will use a segmented
reduce function instead, and simply mark the start of a new bucket as a new segment. We
will choose the segmented reduce function provided by the Modern GPU library, which seems
to be the fastest of its kind [12].

In the first step, the multireduce algorithm used on a block level stores its result for each
bucket in an array as shown in the second step of Figure [£.2] Since nBuckets reductions of
nSegments elements are necessary, we then create a flag vector [fo, f1, ..., fn—1] where f; is set
iff 3k.2 = k x nSegments, and feed this along with the partial results array to ModernGPU’s
segmented reduction function. The results of said function are then the final reductions of
each bucket.

Now that the framework in which we will use our algorithms is defined, we will discuss the
algorithms themselves, starting with adaptations of the sequential algorithm.

4.3 Adaptation of sequential algorithm

In this section, we will discuss different ways to adapt the sequential multireduce algorithm
to the GPU. We will start out by giving an overview of the work that has been done in this
area. While there are no publications on adapting the multireduce itself for GPUs, there have
been a number of publications on the special case of histograms, all of which use an approach
one might call an adaptation of the sequential histogram algorithm. In the remainder of this
section, we will then try to apply the core concepts of the discussed histogram algorithms to
our multireduce implementation.

4.3.1 Related work

The first proposals for GPU histogramming (for example Scheuermann and Hensley [42]),
written before the introduction of CUDA, still describe algorithms in terms of using textures
and shaders with OpenGL, and have significantly worse performance than later CUDA imple-
mentations; we will not discuss them here. The first two implementations that used CUDA
were proposed by Podlozhnyuk [37]. Like all of the other algorithms we will discuss in this
section, their general idea is to create several partial histograms for parts of the input data in
parallel and later combine them into one. The algorithms differ, next to some minor details,
in the number of partial histograms, the number and distribution of threads and blocks, the
way they are stored in memory, and the different kinds of collisions that can occur as a result
of this setup. All proposals are, of course, also a product of their time: When CUDA was first
introduced, the capacities of GPUs in terms of shared memory and their ability to perform
atomic operations was very limited compared to their modern equivalents, which of course
affects the algorithms that can be developed for them.

Both of Podlozhnyuk’s proposals were designed for CUDA devices with 16 kB of shared
memory per SM, which offer atomic operations for global memory, but not for shared memory.
The number of memory banks was assumed to be 16, and memory accesses were assumed to
be performed per half-warp, meaning that a maximum of 16 threads at a time would access
shared memory distributed among 16 banks.

The first approach targets histograms with 64 bins. It creates one private partial histogram
for every thread in shared memory, with 192 threads in one block. In order to save space, each
bucket uses only eight bits, meaning that every thread can only process a maximum of 255
inputs before one of the buckets can potentially overflow. Like all other published histogram
algorithms with the exception of Shams and Kennedy [44], inputs are also assumed to be byte
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sized (which is possible because all labels can only be values between 0 and 63 anyway) and
each thread fetches four of them (i.e. one word) at once. Additionally, global memory reads
are coalesced between the threads of a warp. Because each thread works on its own partial
histogram, there can be no write conflicts, and atomic operations are not needed. In order
to avoid bank conflicts, the partial histograms are placed in memory in such a way that each
thread’s histogram is placed entirely on one bank, and the threads in every half-warp use
different banks. There are therefore no bank conflicts, independently of the input data. In
the last step, the partial histograms are reduced to a global histogram using atomic addition
operations in global memory.

In this algorithm as in all others, the partial histograms are combined in the end using
hardware atomics.

Podlozhnyuk’s second approach targets histograms with 256 bins, again stored in shared
memory. Since Podlozhnyuk assumes that 192 threads are necessary to make good use of the
GPU’s resources, but shared memory is not big enough to store 256-bin histograms for 192
threads (unless the number of bits per bin is very low), this approach only creates one partial
histogram for every warp. Writing to the same histogram with all threads of a half-warp
at once means that there can be write conflicts between the threads, and every such write
conflict is also a bank conflict. As mentioned before, CUDA devices did not support atomic
updates of shared memory at the time Podlozhnyuk’s paper was written, so an atomic update
process was developed in software. This causes some overhead even in cases without write
conflicts, as each thread has to check whether its value has been successfully written, and
it causes writes to be serialized if several of them target the same bin, meaning that in the
worst case, when every thread in a half-warp gets the same index, 16 updates are executed
sequentially, leading to very bad performance in the worst case. In the best case, however,
this algorithm utilized the full capacities of the GPU, and is therefore to this day the fastest
algorithm for randomly distributed inputs.

Podlozhnyuk’s algorithms were later generalized by Shams and Kennedy. In contrast to
all other algorithms discussed here, they do not necessarily expect their histogram to be
performed on image data and therefore also support more than 256 bins. This also means
that they expect input data in the form of 32 bit integers instead of byte sized inputs, since
more bits are needed to address higher numbers of bins. Both of the two algorithms they
present are loosely based on Podlozhnyuk’s.

Their first algorithm essentially combines the concepts of Podlozhnyuk’s 256-bin algorithm
and the multi-pass scatter/gather algorithm discussed before. Like the former, it stores one
partial histogram for each warp in shared memory and sequentializes updates to the same
location in software. In order to support more than 256 bins, the total number of bins
is divided into several partitions if necessary; the algorithm then runs over the input data
several times and ignores the bins not belonging to the current partition. A tradeoff needs
to be made between the number of warps that are run concurrently on each SM and the
number of partitions: More concurrent warps means a better utilization of the hardware, but
it also means that each warp has less space for storing its partial histogram, thus requiring
more partitions and consequently more passes over the input data. Shams and Kennedy
also provide a formula to estimate which configuration is optimal. The performance of this
approach is obviously data dependent. While it is able to deal with any number of bins in
theory, performance gets very bad for very large numbers of bins simply because the input
data has to be traversed a large number of times.

Their second approach is loosely analogous to Podlozhnyuk’s 64-bin algorithm, with one
important change. Again, each thread has its own private partial histogram. Since shared
memory is only large enough for 64 bins per thread for a reasonably high number of threads,
Shams and Kennedy place the partial histograms in global memory, using 32 bits for each
bin and thus removing the restriction of having each thread process only a limited number of
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input elements. As a result, there are no write conflicts and, since bank conflicts are only a
problem in shared memory, no bank conflicts either. This method is therefore completely data
independent. It does, however, have the obvious problem that it performs many uncoalesced
writes to global memory. Shams and Kennedy address this problem by trying to reduce the
amount of memory accesses by buffering writes in shared memory. Essentially, they store
a thread-private mini-histogram in shared memory, using a very small number b of bits for
each bin. How many bits can be used is, again, dependent on the number of bins (which
is therefore not unlimited with this algorithm), the number of threads per block and the
amount of shared memory that is available. Writes to global memory are only performed
when a bin in shared memory overflows, thus reducing the number of total global memory
writes by a factor of 2°. Again, there is a tradeoff between the number of bits per bin and the
number of threads per block; more threads and therefore more parallelism better utilize the
GPU’s resources, but also mean that less bits can be used and the number of global memory
accesses increases.

Nugteren et al. [32] improved on these approaches with two algorithms, one of which is data
independent. They regard image processing as the primary use cage for histogramming, and
therefore only support 256 bins. They also assume a high correlation between the values of
adjacent pixels, as images tend to have. Since their paper was written later than the ones
discussed so far, they assume a modern GPU architecture with 48 kB of shared memory,
distributed among 32 banks, execution of all memory accesses for a full warp at once (not only
for a half-warp, as before), and hardware support for atomic operations on shared memory.
Nevertheless, their first algorithm does not depend on these features and is designed to work
on older GPUs as well.

For said first proposal, they take Podlozhnyuk’s 256 bin approach with per warp partial
histograms as a baseline and suggest three ways to improve on it. The first two approaches
exploit the assumption that adjacent input values are often the same if the input data is an
image. Since identical adjacent values will lead to write conflicts in Podlozhnyuk’s approach,
so that writes must be serialized, this is a major weakness of the algorithm. Nugteren et al.
therefore suggest different methods for shuffling the input data before applying Podlozhnyuk’s
algorithm. They also suggest using the now available atomic operations on shared memory
instead of the software-based approach in the original algorithm. The actual structure of
Podlozhnyuk’s algorithm, however, remains untouched.

Their second algorithm is a variation of Podlozhnyuk’s 64 bin approach adapted to work with
256 bins. It uses per thread histograms in shared memory, with each bin using 16 bits of
space. Each block consists of one warp (32 threads). One block therefore needs 32 x 256 x 2
bytes, or 16 kB, so three such blocks fit into a current GPU’s SM’s shared memory at once.
They compare several ways to distribute the histograms across shared memory and choose
one that results in completely data independent performance.

Fach thread in a warp is assigned its own bank. The thread’s private histogram is then
placed exclusively on this bank, so that bank conflicts between the threads in one warp
can never occur. The distribution of buckets among banks in shared memory is illustrated
in Figure This distribution is the main contribution of Nugteren’s proposal, since the
underlying algorithm is still very simple, as demonstrated by Algorithm [£.2} The algorithm’s
complexity stems mainly from complicated address calculations; from a more high level point
of view, all it does is fetching and binning data.

Since this approach not only avoids bank conflicts, but any write conflicts between different
threads, no atomic operations on shared memory are needed, and the performance is com-
pletely independent of the input data. The downside is that this algorithm only allows for
very limited parallelism (96 threads per SM), and therefore performs worse than Podlozh-
nyuk’s algorithm in many cases. In terms of worst case performance, it is nevertheless a big
improvement over previous algorithms.
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function histogram(int n, int indices[n], int result[256]) :
// let nSMs be the number of the GPU’s SMs

int nBlocks = nSMs x 3;

int nThreads = 32;

int partial Results[256 x nBlocks];

int threadWork — n/(nBlocks x nThreads);

nugterenHistogram«nBlocks, nThreads» (indices, partial Results, threadW ork);

Accumulate all partial results in partial Results to result using a second kernel
end

kernel nugterenHistogram (int indices[n|, int output[nBlocks x 256|, int threadWork) :
shared int16 histograms[256 x nThreads];

int *blockIndices = &indices[blockld x nThreads x threadW ork];

char currentBytes[4];

int *currentWord = (int*) &currentBytes|0];

for i = 0 to threadWork — 1 do

// load one word

currentWord = blockIndicesinT hreads X i + threadld;

// bin it as four separate values

for j =0 to 3 do
byte current = currentBytes[j;
int address = 2 x (threadld + nThreads x (current/2)) + (current mod 2);
histograms|address]+-+;

end

end

for i = threadld to 256 step nThreads do
int bin = 0;

for j =0 to nThreads — 1 do
| bin += histograms[2 x j x nThreads x (i/2) + (i mod 2)];
end
output[blockId x 256 + i] = bin;
end

end
Algorithm 4.2: Main kernel of Nugteren’s histogram algorithm
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Figure 4.3: Memory layout of Nugteren’s histogram algorithm

The most recent attempt to improve histogram performance on the GPU by Brown and
Snoeyink [8] is called TRISH (Threaded Registers Independent Strided Histogram). It is
somewhat similar to Nugteren’s second proposal and, like the latter, is designed to work with
256 bins and used per-thread-histograms in shared memory. TRISH is an attempt to use
more parallelism on several levels in order to improve on Nugteren’s performance. Firstly, it
allows more threads to be executing at once by only using 8 bits per bucket in shared memory
with 64 threads per block, thus using 16 kB per block, so that 192 threads in three blocks
can reside on every SM at once on current GPUs, twice as many as in Nugteren’s algorithm.
Like Nugteren, TRISH arranges the buckets in such a way that there cannot be any bank
conflicts within a warp. A high level view of the algorithm can be found in Algorithm
Each thread fetches a word of input data, which represents four byte-sized input labels. It
then bins these input labels using its own private histogram in shared memory. Up to this
point, TRISH is virtually identical to Nugteren’s algorithm. Because TRISH uses only eight
bits per bucket in shared memory, an overflow can occur after binning 256 labels. Since labels
are fetched in blocks of four, this means that only 63 words can be fetched and processed
before an overflow is possible. After 63 input words, the buckets in shared memory are
therefore accumulated and the results are stored in private registers. Since there are 64
threads in a block, and TRISH uses 256 buckets, this means that each thread needs four
registers so that all buckets can be stored. For each of those four buckets, each thread then
iterates over all partial results for that bucket in shared memory, accumulates their values
into its private register bucket and resets the shared memory buckets to zero. When this
process has finished, 63 new words can be fetched etc., until the input has been processed
completely.

Throughout the algorithm, Brown and Snoeyink try to improve instruction level parallelism,
thus giving the compiler the possibility to rearrange instructions for better performance. In
order to achieve this, they unroll loops when the total number of iterations is known, and
they batch instructions, e.g. by first fetching several input words from global memory at once
and subsequently binning them all. The main advantage of the latter is that the latency for
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function histogram(int n, int indices[n], int result[256]) :

e

// let nSMs be the number of the GPU’s SMs
int nBlocks = nSMs x 3;

int nThreads = 64;

int partial Results[256 x nBlocks];

int threadWork = n/(nBlocks x nThreads);

trishHistogram«nBlocks, nThreads» (indices, partial Results, threadW ork);

Accumulate all partial results in partial Results to result using a second kernel

nd
kernel trishHistogram(int indices[n], int output[nBlocks x 256], int threadWork) :

int *blockIndices = &indices[blockld x nThreads x threadW ork];
shared byte histograms[nThreads x 256];

// local buckets stored in registers

// local bucket i is used to store bucket ¢ x nThreads + threadld
local int buckets[4];

Initialize buckets to all zeros

for i = 0 to threadWork do

for i € [0...62] do
Read 4-byte-word of data from blockIndices[i x nThreads + threadld]

for j =0to 3 do
| Bin byte j of fetched data to histograms

end
nd

or j =0 to 3 do
int currentBucket = j x nThreads + threadld;

Accumulate values of bucket currentBucket in shared memory histograms to
local buckets|j]

Set bucket currentBucket to zero for all histograms in shared memory

end

= 0

end

for i =0 to 3 do
int currentBucket = i x nThreads + threadld;

output[blockId x 256 + current Bucket] = buckets]i]
end

end

Algorithm 4.3: Main kernel of TRISH histogram algorithm
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Figure 4.4: Performance comparison of Podlozhnyuk, Nugteren and TRISH

fetching four words at once is not nearly as high as the added latencies for fetching one word,
processing its content, and then fetching the next one four times. A disadvantage is that this
increases register usage for storing several inputs at once. Since the amount of concurrent
threads is already severely limited by the amount of available shared memory, however, this
does not actually affect performance.

When accumulating buckets into local registers, TRISH uses vector parallelism to add two
16-bit values at once in a single 32-bit addition. This helps save computation throughout
the algorithm. Some other optimizations like using bit shifting instead of multiplication and
division are nothing new and do not change the actual algorithm, so we will not discuss them
here.

The respective performance of the three main approaches can be seen in Figure f.4] Pod-
lozhnyuk’ algorithm performs best for random input data, but worst for degenerate data.
Nugteren managed to improve the worst case, but is far away from Podlozhnyuk’s best case,
whereas TRISH performs almost as well as Podlozhnyuk’s best case for any input data and
is therefore a massive improvement over the previous approaches.

The main conclusions we can take from these proposals are the following:

e Adaptations of the sequential algorithm are the predominant approach to computing
histograms on GPUs, which suggests that it is also a reasonable way to approach a
multireduce algorithm.

e As with most GPU algorithms, one of the main goals is to create as much parallelism
as possible.

e For low numbers of buckets, approaches using shared memory have the best perfor-
mance.

e Algorithms which work on global memory can handle higher numbers of buckets and
can achieve reasonable performance as well.
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e When using shared memory, avoiding bank conflicts should be a main concern and can
be sensible even if the amount of parallelism is lowered in the process.

e Serialized writes can lead to disastrous performance for degenerate input data and
should therefore be avoided at all costs.

We will use these general conclusions as well as concrete ideas from the mentioned histogram-
ming algorithms while searching for an optimal multireduce algorithm throughout the next
sections.

4.3.2 Multireduce with non-commutative operators

function multiReduce(int n, int m, int labels[n|, M values|n|, M buckets[m]) :
// choose nBlocks and nThreads for best performance
miniMultiReduce«nBlocks, nThreads» (n, m, labels, values, buckets, n/nBlocks);
end

kernel miniMultiReduce(int n, int m, int labels[n], M values[n], M buckets[m], int

blockWork) :
int *blockLabels = &labels[blockId x blockW ork];

M *blockV alues = &values[blockId x blockW ork];
shared int currentLabelsnThreads];
shared M currentValuesnThreads];

for i = 0 to blockWork step nThreads do
int offset = ¢ x nThreads + threadld;

current Labels[threadld] = block Labels|offset];
currentValues[threadId] = blockV alues|offset];
// only thread 0 performs the actual multireduce
if threadld == 0 then
for j =0 to nThreads — 1 do
| buckets[currentLabels[j] x nBlocks + blockId] += currentV alues|[jl;

end
end

end

Write buckets to global memory
end
Algorithm 4.4: Minimal multireduce kernel

The simplest possible approach for implementing multireduce for GPUs is an adaptation of
the sequential algorithm with minimal changes, as shown in Algorithm In each block, a
number nThreads of threads cooperatively fetch input labels and values to shared memory
with coalesced memory accesses. Once the data is fetched, all threads but one go inactive.
The only active thread then processes the input data stored in shared memory using the
sequential multireduce algorithm discussed in Section

This algorithm is obviously not optimal. Since all but one thread stay idle while the actual
work is performed, only m of the available processing power can be used during the
actual computation. It also offers no parallelism within a block, meaning that this algorithm
can only be used within the partitioning scheme discussed before; otherwise, only a single
thread on the entire GPU would perform the entire calculation. The only advantage this
approach has is that the amount of work it does is minimal, not just asymptotically, but
absolutely.
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Figure 4.5: Baxter’s transposition algorithm with nltems = 3 and nThreads = 4

Obviously, it would be desirable to let the remaining threads in each block participate in the
actual work as well, as is the case in all histogram algorithms discussed before. If, however,
the operator used is not commutative, then the input elements of a segment have to be
processed in the order in which they occur in the input vector, which means that there is no
trivial way to let several threads work on one segment. The solution to this problem would
be to let every thread in a block work on a different segment (basically using the partitioning
trick again, this time on a block level).

1. In order to achieve coalesced memory access, adjacent threads need to request adjacent
words. A solution where every thread loads data from its own segment will therefore
necessarily have uncoalesced access.

2. Each thread works on its segment completely independently from the other threads,
meaning that it also needs its own bucket set. Since a block optimally has a very
high number of threads, this would result in a very large number of intermediate sets of
buckets, which all have to be reduced in the end and which have to be stored somewhere
in the meantime.

A variation of the first problem which is common to many GPU algorithms is this: nThreads
threads need to fetch a contiguous block of nThreads x nltems words of data in such a way
that thread ¢ has the words i x nltems to @ x nltems+nltems—1, meaning that thread zero
has the first nltems words, thread one has the second nltems words and so on. In other
words, the input data is needed in a blocked fashion, but can only be efficiently fetched in a
strided (i.e. coalesced) fashion.

This is obviously similar to our problem, in the sense that every thread in a block needs to
fetch a contiguous block of memory, but doing so in a naive way would result in uncoalesced
memory accesses. The only difference is that in our case, the blocks of memory for all threads
do not form a contiguous block, since the length of a segment will generally be larger than
nltems. We will examine how the more common problem is typically solved and then try to
adapt the solution to our scenario.

The general solution to this common problem is to transpose the input data through shared
memory. We will examine the algorithm proposed by Baxter [4] shown in Algorithm and
illustrated in Figure 4.5
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// threadId is between 0 and nThreads — 1
// each thread needs to fetch a block of nItems words from global array blockData

shared M sharedValues[nltems x nThreads];
local M values[nItems];

for i =0 to nltems — 1 do
int index = nThreads X i + threadld,

values[i] = blockDatalindex];

end
for : =0 to nltems — 1 do

| sharedValues[nThreads x i+ threadld)] = valuesil;
end
for : =0 to nltems — 1 do

| wvalues[i] = sharedValuesnltems x threadld + i
end

// do something with values
Algorithm 4.5: Data transposition algorithm by Baxter [4]

In a first step, nThreads threads load nThreads words from every segment cooperatively,
interleaving the reads to have coalesced access. The results are stored in shared memory in
their original order. This is done nltems times, using nT hreads x nltems words of shared
memory in total. Fach thread can then fetch its nltems words of data from shared memory,
which does not require coalesced access for optimal performance. Bank conflicts can occur
at this stage if nltems and the number of banks (currently 32) are not relatively prime.
Assuming, for example, that nltems = 8 and that the fetch for values[0] from thread zero
hits bank zero, then thread one will hit bank eight, thread two will hit bank 16, etc., and
threads four, eight, twelve, 16, 20, 24 and 28 will also hit bank zero, thus resulting in an
eight-way bank conflict. This can be prevented by simply choosing nltems relatively prime
to the number of banks.

This algorithm works well for transposing contiguous blocks of input data. However, in our
case, we do not need to fetch a contiguous block. Instead, every thread needs to fetch a block
of nltems elements from its own segment. We have adapted Baxter’s algorithm to account
for this; the result is shown in Algorithm

Fach thread still fetches one word from memory. To do this, it first calculates which segment
it should fetch data from (currentSegment), which of the nitems words for this thread it
should fetch in the current iteration (offset) and how many words from this segment have
already been fetched in previous iterations (segmentOffset). It then fetches the right word
and stores it directly in shared memory; the intermediate storing in a local array in Baxter’s
algorithm is not actually necessary. This is done iteratively for segmentLength/nltems
iterations, i.e. until the whole segment has been fetched and processed.

The problem of bank conflicts is the same in this case as in Baxter’s original algorithm. If,
however, we choose nltems relatively prime to 32, a different problem occurs. Global memory
transfers on CUDA GPUs always occur in blocks of 32, 64 or 128 bytes. Memory bandwidth
is therefore always wasted if nltems is not a multiple of eight. This problem is magnified by
the fact that the offset from which a block of nltems words is fetched from every segment
is a multiple of nltems. If nltems is not a multiple of eight, the block fetched in each new
iteration is therefore probably not aligned to 32-byte-boundaries, which may result in even
more necessary transactions, and therefore even more wasted bandwidth. Multiples of eight,
however, are obviously never relatively prime to 32. With the current algorithm, we therefore
have a choice between bank conflicts and wasted memory bandwidth.

We therefore improved the previous algorithm so that nltems can be chosen to be a multiple
of eight without causing bank conflicts; Algorithm is the result and is illustrated in
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// threadId is between 0 and nThreads — 1
// each thread needs to fetch a block of nItems words from global array blockData
shared M sharedV alues[nltems x nThreads];
local M values[nItems];
int segmentOffset = 0;
for segmentOffset = 0 to segmentLength step nltems do
for i = threadldto nltems x nThreads step nThreads do
int currentSegment = i/nltems;
int offset = ¢ mod niltems;
int index = currentSegment x segmentLength + segmentOffset + offset;
sharedV alues|i] = blockDatalindezx];
end

for 1 = 0 to nltems — 1 do
| wvalues[i| = sharedValuesnltems x threadld + i);
end
// do something with values
end
Algorithm 4.6: Adaptation of Baxter’s transposition algorithm for fetching from different
segments

Figure 4.6

// threadld is between 0 and nThreads — 1
// each thread needs to fetch a block of nltems words from global array blockData
shared M sharedValues[(nltems + 1) x nThreads];
local M values[nltems];
int segmentOffset = 0;
for segmentOffset = 0 to segmentLength step nltems do
for i = threadld to nltems x nThreads step nThreads do
int currentSegment = i/nltems;
int offset = ¢ mod nltems;
int index = currentSegment x segmentLength + segmentOffset + offset;
sharedV alues|(i/nltems) x (nltems + 1) + (i mod nltems)] = blockDatalindex];
end
for i = 0 to nltems — 1 do
| walues[i] = sharedValues[(nItems + 1) X threadld + i]
end
// do something with values
end
Algorithm 4.7: Improved transposition algorithm for fetching from different segments

The data intended for thread 7 is now stored in shared memory at the offset i x (nltems+1)
instead of ¢ X nltems. This way nltems can be chosen to be k x 8, but in terms of shared
memory accesses, the algorithm behaves as if nltems = k x 8 + 1 in the previous algorithm,
thus resulting in optimal bandwidth utilization without bank conflicts in the last step. The
downside is that nThreads additional words of shared memory are needed for each thread,
which can potentially limit the amount of possible parallelism. For our purposes, however,
the improved algorithm was always faster than the original one.

Our baseline for a multireduce algorithm for non-commutative operators is therefore an al-
gorithm which uses Algorithm to fetch both labels and values from global memory. In
the following sections, we will discuss the histogramming process itself, i.e. we will replace
the "do something with values" line in the aforementioned algorithm.
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Figure 4.6: Transposition scheme for non-contiguous segments with nltems = 2, nThreads =
4 and a segment length of 4

4.3.3 Commutative operator

The problem becomes much simpler if the operator in question is commutative as well as
agsociative. In this case the order in which inputs are processed does not matter, meaning
that threads do not have to work on contiguous segments of the input, but can fetch data in
any order. There is therefore no need to transpose inputs before using them. Additionally,
one does not necessarily need to use a different set of buckets for every thread. It might,
of course, still be advantageous to use several such sets for performance reasons, but in
principle, all threads can work on the same set of buckets if we can ensure that their writes
do not interfere with each other (e.g. using atomic updates). The very bad performance of
Podlozhnyuk’s 256-bin algorithm in the worst case suggests, however, that we should avoid
a scenario where a great number of threads need to update the same memory location at the
same time.

We will now discuss several ways to implement this algorithm.

4.3.4 No partitioning

At the beginning of this chapter we stated that any multireduce algorithm can be used either
directly on the entire input, or on a smaller segment after partitioning the input. While
this remains true in principle, the situation is somewhat complicated for this algorithm: Our
adaptation of the sequential algorithm partitions the input data on a block level and thus
essentially plays the same trick again which we have used on a global level before. There is
therefore no meaningful definition of using this algorithm "without partitioning". Addition-
ally, we have assumed throughout the previous sections that the results of the multireduce
for single segments will be combined into a global result in a second step. This, however, is
only the case if we use a partitioning scheme. It is therefore not possible to use this algorithm
without a partitioning scheme.
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4.3.5 Partitioning in global memory
Non-commutative operators

For non-commutative operators, each thread works on its own input segment using its own
set of buckets. This has the advantage that there is no need for atomic operations, since
there can never be any write conflicts. When searching for the best configuration for this
algorithm, the only parameters that can be influenced are the number of blocks (nBlocks),
the number of threads per block (nThreads), and the number of items processed by a thread
in each run (nltems). nltems and nThreads are limited by the amount of available shared
memory (of which nThreads x (nltems + 1) words are used per block for transposing the
input). nThreads is additionally limited by the amount of available DRAM, since nBlocks x
nT'hreads x nBuckets words are needed for storing intermediate results. For high numbers of
buckets, this means that nThreads has to be very low, and the possible amount of parallelism
drops.

Since every thread can update any of its buckets in every step, bucket updates will necessary
be uncoalesced most of the time. The arrangement of bucket sets in global memory that
is required for the final reduction of all partial results does, however, have the effect that
consecutive threads updating identical labels will lead to coalesced access. This algorithm
may therefore perform slightly better for degenerate input data.

In their global memory histogram algorithm, Shams and Kennedy try to reduce the number of
writes to global memory buckets by keeping mini-buckets of only a few bits in shared memory,
and only writing to global memory when a mini-bucket overflows. This approach cannot be
used for a multireduce, however, since it presupposes that the values written to a bucket can
be kept in very few bits. While this is the case in histogramming, where every update just
increments a bucket’s value, multireduce deals with 32-bit values throughout, so that this
improvement cannot be applied to a multireduce. We therefore have a very simple algorithm
as shown in Algorithm [4.8 which is simply the sequential algorithm which stores its results in
such a way that they can be reduced by the final step of our partitioning scheme. Note that
this algorithm assumes that it runs within the main loop of the transposition algorithm
and therefore works with two local arrays labels and values of length nltems.

// int labels[nItems] is a local array of labels fetched by the transposition algorithm
// M values|nltems] is a local array of the corresponding values
// M bucketsnBuckets x nThreads x nBlocks] is an array in global memory

for i =0 to nltems do
int offset = labels|i] x nThreads x nBlocks;
buckets[offset] ©= values|il;
end
Algorithm 4.8: Multireduce algorithm to be used inside the main loop of a transposition
algorithm

Since we cannot fully utilize the available memory bandwidth due to uncoalesced accesses,
a high cache hit rate would be particularly helpful. The cache hit rate of this algorithm,
however, can be problematic. Both with large numbers of buckets and with large numbers
of blocks or threads, not all buckets will fit into cache. Finding an optimal configuration for
this algorithm is therefore non-trivial and best done empirically. We will make the following
assumptions:

o We will assume that the distribution of threads among blocks does not have a major
influence on the overall performance, as long as there is at least one block for each SM.

e We will also assume that a random distribution of inputs among buckets is the worst
case for this algorithm, since there are no write conflicts that could impact performance
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Figure 4.7: Performance for random data with different combinations of nBuckets and nSets.
The red part denotes the time used for reducing the partial results of all blocks.

negatively for degenerate, and the cache hit rate will necessarily be lower if all buckets
from each bucket set are accessed randomly.

o We also assume that a larger nltems is generally good for the algorithm’s performance
if it does not impact the amount of parallelism, as it means that more data is fetched
at once, and more data can be processed by each thread at once.

All of these assumptions have been confirmed through small experiments for different param-
eter combinations.

We will therefore test the algorithm with a constant number of inputs, with a varying number
of buckets and a varying total number of threads, and the largest possible nltems in each
case. The results for random input data can be seen in Figure 4.7

The overall performance is disappointing. The single best result is 0.758 ns per key-value-
pair, with 6144 threads distributed among 16 blocks (and therefore 6144 bucket sets) and
only 16 buckets. Generally, lower numbers of buckets result in better performance, as does
a higher number of threads for up to 6144 threads. The final reduce phase takes roughly
constant time in all cases, but the main phase contributes far more to the algorithm’s cost.
This pattern is what we expect if the cache hit rate is the most important limiting factor for
the main algorithm’s performance, as soon as a certain amount of parallelism is reached. We
can confirm this by running the same configurations with a degenerate input distribution. In
this case, the number of buckets is irrelevant to the performance, so we can just set it to 256
in all cases. We will not measure the final reduce phase this time, since its cost is almost
constant. If cache misses are indeed the main limiting factor for the algorithm’s performance,
we expect much better performance for degenerate data. The result can be seen in Figure 4.8
While the performance is still not optimal, it is a major improvement over the previous case.
The most likely explanation for this behaviour is that the cache hit rate is indeed a major
problem, although the coalescing of updates to the same bucket may also play a role. There
are several possible ways to increase the cache hit rate for non-degenerate input data:
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Figure 4.8: Performance of the main computation for degenerate input data

1. One could reduce the amount of parallelism even further, thus having less overall bucket
sets which need to be cached.

2. One could employ a multi-pass scheme as seen before in the gather/scatter algorithm.

3. One could sort the input data by its labels in order to ensure that adjacent key-value
pairs very likely use the same bucket, which should bring the performance closer to the
degenerate case, at the cost of additional sorting.

The first idea does not seem promising in this case, since the previous benchmarks have
shown that a large number of threads is actually necessary to achieve good performance.
The second approach may well result in an improvement, but a multi-pass algorithm whose
number of passes depends linearly on the number of buckets is not work-efficient, and will
not yield good results for very large numbers of buckets.

We will therefore follow the third approach. Since the slowdown for random data compared
to the degenerate case is massive (a factor of two even for only 16 buckets), we expect that
the input data needs to be almost completely sorted in order to profit from improved cache
hit rate. Performance seems to be optimal in both cases with 3072 threads, so we will use
this number of threads and sort the input completely for a first try.

We will use SRTS sort for this purpose, and we will exploit the fact that we know the total
number nBuckets of buckets, by only sorting by the first logy nBuckets bits of the labels
(since we know that all other bits are always zero). This way, we can save computing time
compared to a sort by all 32 bits, while still getting fully sorted output. We have adapted
STRS sort to support partial sorting for this purpose. The input data is completely sorted
on a global level, and the sorted data is then fetched and processed by the transposition
algorithm.

Figure 4.9 shows the result. Even with fully sorted inputs, the performance is much worse for
random data than for degenerate input data. A possible explanation for this is that coalesced
updates, not cache usage, is the main factor improving performance in the degenerate case.
Another possible reason is closely related: If a cache line is fetched which contains bucket
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Figure 4.9: Performance of the main computation for sorted input data

i for some thread, the space before and/or after that cache line contains bucket ¢ for other
threads, meaning that one cache line will serve several threads if they all write to the same
bucket. Sorted input, however, only guarantees that the buckets which single threads write
to in subsequent iterations will likely be identical; different threads still very likely work on
different buckets, thus potentially needing an entire cache line for themselves.

The absolute performance, while better than in the unsorted case, is also disappointing; the
algorithm needs more than 2.5 ns per input for more than 4096 buckets and is therefore only
twice as fast as the CPU implementation; this marginal speedup is not enough to justify the
additional effort needed for moving the computation to the GPU. We will therefore no longer
pursue this approach for non-commutative operators.

Commutative operators

If the used operator is also commutative, the number nSets of bucket sets that are kept in
global memory can be arbitrarily chosen without compromising the algorithm’s correctness.
There is, however, a tradeoff: If more than one thread works on a bucket set, all updates have
to be atomic, which results in additional cost for every update, even if there are no actual
write conflicts. It can also result in bad performance for degenerate input data, similar to
Podlozhnyuk’s 256-bin algorithm: If many or all indices hit the same bucket, and several
threads have to share a bucket, then updates likely have to be serialized and performance
suffers. On the other hand, less total bucket sets mean that there is more cache space for
every bucket set, which is likely to increase cache hit rate. This is especially important if
the indices in the input data are roughly equally distributed, whereas it does not play a big
role in degenerate cases, since only one or very few buckets from each set have to be kept in
cache in these cases.

The distribution of bucket sets among threads is simple: Since all updates of a warp are
executed at once, the write conflicts between them should be kept to a minimum. Threads
are assigned to warps by their thread ID, so a simple way to find the right bucket set for each
thread is to calculate threadld mod nSets. This distribution performs far better than, for
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example, using one set of buckets for each block. The latter would result in a 32-way write
conflict for ewvery write if the input data is degenerate. The resulting algorithm is shown in

Algorithm [£.9]

func multiReduce(int n, int indices[n], M values[n], int nSets, int nBuckets, M
buckets[nBuckets x nSets]) :
// choose nBlocks, nThreads and nSets for best performance

int threadWork = n/(nThreads x nBlocks);
globalMultiReduce«nBlocks, nThreads» (n, indices, values, nSets, nBuckets, buckets,
threadWork);

end

kernel globalMultiReduce(int n, int indices[n|, M values|n], int nSets, int nBuckets, M
buckets[nBuckets x nSets|, int threadWork) :
int *blockIndices = &indices[blockld x nThreads x threadW ork];
M *blockV alues = &values[blockId x nThreads x threadW ork];
M myBuckets = &buckets[threadld mod nSets];
for i = threadld to threadWork x nThreads step nThreads do
| atomicAdd(myBuckets[blockIndices[i] x nSets], blockV alues]i]);
end

end
Algorithm 4.9: Main kernel for commutative algorithm using partitioning in global memory

For non-degenerate cases, we expect the performance to be worse because of lower cache hit
rates, just like in the non-commutative case.

The results for degenerate and random input data can be found in Figures and
respectively.

For degenerate input data, the algorithm performs badly (ca. 1 ns per input) if all threads
work on the same set of buckets, as expected, and improves if more bucket sets are used.
The best performance (0.17 ns per input) is reached with eight bucket sets shared across all
threads. The number of threads has no impact on the performance in this case.

For random data, the performance for low numbers of buckets is relatively high (0.10 ns per
input in the best case). Using more bucket sets has no positive effect in this case. From a
certain point on, the performance gets radically worse and quickly drops to 1 ns per input
and worse. This is expected to be the result of a dropping cache hit rate. The used GPU
has 512 kB of L2 cache, which suffices to store 217 4-byte integers, so we would expect the
cache hit rate to drop if 2'7 or, since not only the buckets will be caches, more likely 2'6
buckets are accessed frequently. Note that the total number of buckets in global memory is
the product nSets x nBuckets.

Table shows the data in more detail; parameter combinations which result in 2'6 or more
total buckets in global memory are shaded red. These are, in fact, the configurations which
need 0.5 ns and more per input, whereas smaller numbers of total buckets need a maximum
of 24 ns.

Since the bad cache hit rate significantly diminishes the algorithm’s performance for high
numbers of buckets, we will try to use a sorting approach in this case as well. We cannot
make many reasonable assumptions about the performance with different numbers of buckets,
bucket sets, and different amounts of sorting, since all those factors work together in a
very complex way. Additionally, we do not just want to optimize the algorithm for random
distributions, but we have to consider the degenerate case as well, which will not profit at all
from sorting and will simply take longer than without sorting.

We have therefore tested the algorithm for any number of buckets greater than 14, with 1,
2, 4 or 8 bucket sets (since more than eight no longer improve performance in any case),
and for any number of sorting bits. The results are far to extensive to show here in detail,
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Buckets

28 210 212 214 216 218 220

Sets

20 0.126174 | 0.157151 | 0.18861 0.195116 | 0.227656 1.148403 | 1.881422
2! 0.144953 | 0.175636 | 0.201207 | 0.213474 0.527933 | 1.636045 | 2.020782
22 0.167653 | 0.191249 | 0.203438 | 0.241097 1.159856 | 1.886282 | 2.07879
23 0.177879 | 0.203151 | 0.206308 0.527598 | 1.636025 | 2.018021 | 2.111483
24 0.190973 | 0.206772 | 0.238288 1.160555 | 1.885561 | 2.078099 | 2.132013
25 0.199893 | 0.207527 | 0.524508 | 1.636431 | 2.014978 | 2.115052 | 2.148898

Table 4.1: Performance for commutative operators with different numbers of bucket sets and
buckets

logy nBuckets | logynSets | logy tBuckets | sortBits | Rest comp. | Random | Degenerate
14 2 16 0 16 0.241097 | 0.288879
16 1 17 2 15 0.791643 | 0.778114
18 3 21 15 6 1.095509 | 0.983847
20 2 22 15 7 1.188077 | 1.107018
22 1 23 15 8 1.31336 | 1.359951
24 2 26 20 6 1.618827 | 1.431664

Table 4.2: Best case performance with previous sorting

but the best case for each number of buckets is shown in Table By best case, we mean
the configuration with the best worst-case performance, meaning that a configuration which
performs decently for both random and degenerate data will win over one that performs well
for random data but badly for degenerate input. tBuckets refers to the total number of
buckets, i.e. nBuckets x nSets. The times for both random and degenerate data are given
in ns per key-value-pair. 'Rest complexity’ denotes log, t Buckets — sortBits.

While these results seem almost random, there is a pattern which becomes more obvious
when looking at the complete data set. Generally, a rest complexity of around seven seems
to deliver good performance, and other combinations of n Buckets, nSets and sort Bits which
result in a similar rest complexity tend to have good results as well (as long as nSets is larger
than one; otherwise, the degenerate case performs badly). The fluctuation in the actual rest
complexity can by explained by the sorting algorithm, which works fastest if sortBits is a
multiple of five.

The rest complexity can therefore be used as a measure to choose a good value for sortBits
and nSets for a given number nBuckets. There is, however, some amount of unpredictability
in the algorithms performance for different parameter combinations, which of course limits
its general usability; an algorithm whose optimal parameters have to be determined empiri-
cally for each system can hardly be recommended for general use. Nevertheless, if properly
configured, the performance of this algorithm is much higher than that of the sequential CPU
implementation, particularly for high numbers of buckets, where cache misses diminish the
CPU’s performance.

4.3.6 Partitioning in shared memory

We have seen that an adaptation of the sequential algorithm can deliver relatively high
performance when implemented in global memory, even though it uses a lot of uncoalesced
global memory accesses. We will not try to achieve even better performance by using shared
memory instead. Since most of the histogramming algorithms presented in this chapter work
in shared memory, it seems reasonable to choose one of them as a starting point.
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We have seen that the TRISH algorithm, which has the best performance of all histogram
algorithms, builds on the memory layout of Nugteren’s second algorithm. We have also seen
that almost all of TRISH’s improvements depend on the ability to store buckets as 8 bit
integers. For a multireduce, this is not possible: The buckets’ values are not incremented by
one, as is the case with histograms; instead, a value from the input is added to it. This value
can be any 32 bit integer, which obviously will not fit into anything but a 32 bit bucket.
It is true that we assume the multireduce’s output to be an array of 32 bit integers, which
means that most input values should not use all of their 32 bits. Otherwise an overflow would
likely occur, making the result useless for most purposes. Nevertheless, any single value may
still be arbitrarily big, as long as the other values added to the same bucket are sufficiently
few or small. Additionally, one should not forget that multireduce is a framework for many
operations, not just addition, and for operations like min or max, there is absolutely no
problem with large input values. The same is true for floating point values, whose space
requirement remains constant even if they are added up.

Since Nugteren’s algorithm is essentially TRISH without the modifications that do not apply
to multireduce anyway, and beats every other presented algorithm in terms of worst-case
performance, it seems sensible to use Nugteren’s algorithm as a baseline and try to adapt it
to perform a multireduce instead.

We will, unlike Nugteren, generally assume that input labels are 32 bit integers, as we have
before. Since the multireduce does not generally work on image data, there is no reason to
restrict oneself to addressing only 256 buckets. While 16 bits would likely suffice for most
applications (and any algorithm that places multiple histograms in shared memory cannot
handle more buckets anyway), using 32 bit integers in all cases keeps the input format general,
so that this algorithm could easily be used in combination with different ones which support
even higher numbers of buckets without changing the input format.

Our baseline is therefore an algorithm which takes 32-bit input labels and values, stores
one bucket set of up to 256 buckets in shared memory, and does so in such a way that the
buckets for every thread in a warp uses a different bank. Since each bucket uses 32 bits
of storage, and adjacent 32-bit words of shared memory belong to different banks, this is
trivial (see Figure ; a block consisting of nT'hreads threads uses nThreads x nBuckets
words of shared memory and the bucket with label b for thread threadld is located at offset
b x nThreads + threadld.

As before, we can make different improvements to this baseline depending on the commuta-
tivity of the used operator.

Non-commutative operators

As stated before, a non-commutative operator requires that each thread keeps its own his-
togram, and that input data is transposed in shared memory in order to have coalesced global
memory reads. If we choose the method discussed in Section [4.3.2]to do this as we did before,
we have to choose a number niltems of items to be processed per iteration per thread again,
and nltems x nThreads additional words of shared memory will be needed for transposing.
There is very little opportunity for improvement in this case. Apart from loop unrolling, which
is done by the compiler anyway, none of TRISH’s improvements of Nugteren’s algorithm can
be applied to this case. The performance of this algorithm for different choices of nltems
can be seen in Figure [£.13]

The result shows that more buckets result in worse performance, which is expected, because
more buckets mean more shared memory use per thread, and therefore less parallelism. A
low choice of nltems seems to be preferable in general, as this allows more parallelism, with
one exception: In the case of 256 buckets, only one block of 32 threads can run on each SM
in all cases because of the space requirement of the bucket sets; in this case, the amount of
parallelism is the same for all configurations, and the one with nltems = 32 performs best
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because it processes more data at once than the others.

More importantly, the performance of this multireduce algorithm is much worse than that
of Nugteren’s original algorithm, in the sense that performing the multireduce takes a much
longer amount of time per label-value-pair than it takes to perform the histogram per input
value. The cost per input with 256 buckets, for example, is 0.27 ns in Nugteren’s algorithm,
and 2.46 ns in our case.

Three main reasons are likely the reason for the bad performance:

1. Additional shared memory space required for transposing inputs limits parallelism,
though the impact of this should be relatively low for small choices of nltems.

2. Limited parallelisn because of higher space requirements for buckets in shared mem-
ory. This is very likely a main factor, since the fact that we use 32-bit buckets where
Nugteren uses 16 bits means that we can only have half as many resident threads at
most, and probably less because of the extra space requirement for transposing.

3. Using 32-bit labels and additional values. While Nugteren’s algorithm is not even close
to using the full bandwidth of current GPUs, fetching eight times as much data from
global memory as Nugteren’s algorithm for every processed labels will necessarily result
in much worse performance.

Since there seems to be no way to improve this algorithm any further, we have to conclude
that this approach will not lead to a fast multireduce algorithm.

Commutative operators

If the used operator is commutative, there are more opportunities for optimization. Since
there is no need for transposing the input, one can apply TRISH’s improvement of batch
fetching labels and values to registers. Because of this, and because the entire shared memory
can be used for storing buckets, a simple implementation of this takes 1.53 ns per input for
nBuckets = 256, which is better than in the non-commutative case (2.46 ns), but still much
worse than Nugteren’s algorithm (0.27 ns).

One thing we should note when evaluating both Nugteren’s performance and the one of our
simple multireduce is that both underutilize the hardware’s capabilities. Since they both use
one complete bucket set per thread, with 16 bits per bucket in Nugteren’s case and 32 bits
in the multireduce case, the number of threads that can run on a single multiprocessor is
severely limited. A single one of Nugteren’s histograms with 256 16-bit buckets takes up 512
bytes of shared memory. 48 kB of shared memory would therefore be enough to contain 96
such threads, or three warps. This is not nearly enough to fully exploit the capabilities of
a current GPU, which needs hundreds of concurrent threads per SM to be fully utilized. In
the case of the multireduce with 32 bit buckets, the situation is even worse. We either need
to limit the number of buckets to 128, or reduce the number of warps to one. The former
would make the algorithm less usable, while the limits parallelism and therefore performance
performance, as we have seen.

We can also observe that the primary change in TRISH, using 8 bit buckets, is designed specif-
ically to allow for more concurrent warps and thus better utilize the hardware. While this
obviously works to some degree, as TRISH consistently outperforms Nugteren, the authors
of TRISH report a GPU hardware utilization of 12.5%, which is still far from optimal.

Per Bank Bucket Sets We propose an alternative model with the following properties:

e There is one bucket set for each shared memory bank. The buckets are placed in shared
mermory in such a way that each bucket set lies occupies only one bank, meaning that
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Figure 4.14: Memory layout of per-bank-multireduce algorithm

accesses to different bucket sets will be served by different banks. This is also the case
in Nugteren’s algorithm as well as in TRISH.

e Instead of using one thread per bucket set, as TRISH and Nugteren do, we use several.
This means that multiple threads have to work on the same bucket set.

o We distribute the bucket sets among threads such that thread ¢ uses bucket set number
i mod nBanks, where nBanks is the number of shared memory banks (i.e. 32 on
current hardware).

The resulting shared memory layout is illustrated in Figure This approach has the
following consequences:

1. There are no conflicts (neither actual write conflicts nor bank conflicts) between the
writes of one warp, since threadld mod nBanks is distinct for each thread in a warp.
This presupposes that the number of memory banks is identical to the number of threads
per warp, which is the case on current hardware and is unlikely to change.

2. There may be write conflicts between threads that belong to the same block, but to
different warps. In order to prevent threads from interfering with each other’s updates,
we need to use atomic updates on our shared memory bucket sets. This comes with a
performance penalty even if there are no actual write conflicts. However, the number
of writes that has to be sequentialized is at most the number of warps per block, not
the number of threads per warp, as was in Podlozhnyuk’s algorithm.

3. Several threads can work on the same part of shared memory. This is significant because
for every value they write to shared memory, each thread has to fetch two values from
global memory. During the latency of this memory access, the thread would otherwise
be idle and the part of shared memory assigned to it would be unused.

4. Per bank bucket sets therefore increase the amount of possible thread level parallelism
per unit of shared memory.
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The main point here, and the reason why this seems to be a better approach than other
algorithms where several threads share a histogram and can therefore generate write conflicts,
is this: Threads of one warp are guaranteed to execute their memory accesses at the same
time. It is therefore important to avoid potential conflicts between them, as those conflicts
will necessarily impact performance. Threads of different warps, on the other hand, may be
active concurrently or they may not. In fact, only a limited number (usually four on current
NVIDIA GPUs) of warps can ever be active at the same time on each SM. Additionally, it
is guaranteed that every warp spends a significant amount of its runtime waiting for data
from global memory. During this time, another warp can work on the same data without
generating any write conflicts.

In contrast to Nugteren and TRISH, this approach is obviously data dependent, since write
conflicts are possible. However, we expect an improvement over the simple multireduce
approach described earlier even in the worst case of all labels being equal. The reason for
this is that each thread will be idle for a significant part of its lifetime, meaning that, even if all
writes go to the exact same location, several threads updating the same bucket concurrently
will result in higher throughput than only one thread doing so.

In a better scenario where all labels are used about equally often and the distribution is
random, we would expect write conflicts to be rare even if two warps write to the same
bucket set at the same time. Write conflicts will obviously be less likely the more buckets
there are, which means that we can increase the number of warps per block even more for
larger numbers of buckets. This increased parallelism can help counter the fact that larger
bucket sets mean less histograms fit in shared memory, and therefore less blocks can reside in
an SM. Because of this balancing effect, we would expect to find almost constant performance
for different numbers of buckets, as long as at least one bucket set fits into shared memory.
The problem of possibly bad performance for degenerate input data can be solved by aggre-
gating requests to the same bucket. Since we already fetch several labels and values at once,
only a small adaptation is needed to compare pairs of them and, if they are equal, update
the corresponding bucket only once. This has has very little impact on the performance for
random data, but can completely remove the performance disadvantage for degenerate input.
We will make one final optimization. We have so far written the results for each segment to
separate locations in global memory, as laid out in our partitioning scheme. This is necessary
if the used operator is commutative, since in this case the order of the final reduction is
important. It also makes sense if our main kernel works directly on global memory and there
are good reasons for using more than one bucket set, as was the case in the previous section.
Here, however, none of these conditions apply. Instead of using a second step to reduce the
partial results, we will therefore use atomic updates to write the results for each segment
directly to global memory.

The complete algorithm resulting from these considerations is shown in Algorithm
Figure compares the performance of multireduce with per-bank bucket sets (our solu-
tion) and per-thread bucket sets (the choice Nugteren and TRISH made for their histogram
algorithms). For more than 16 buckets, the per-bank version performs a lot better, even
though the primary change is very simple; in fact, its performance stays virtually constant
around 0.08 ns, which is much better than Nugteren’s algorithm and even slightly better than
TRISH, which takes around 0.89 ns per byte on the same GPU. Note that this is despite
both Nugteren and TRISH exploiting special attributes of histogramming.

We therefore have a very competitive multireduce algorithm for up to 256 buckets if the used
operator is commutative.

Extension for more than 256 buckets The limited size of shared memory prevents it
from being used for any number of buckets, not in the sense that performance would suffer
too much, but in the sense that it simply cannot be run. Nevertheless, we would like to
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func multiReduce(int n, int nBuckets, int nBanks, int indices[n], M values[n], M
buckets[nBuckets]) :
// choose nBlocks for best performance

// nThreads can be chosen arbitrarily, but this choice is fastest

int nThreads = nBuckets x 4;

int threadWork = n/(nThreads x nBlocks);

perBankMR(n, nBuckets, nBanks, indices, values, buckets, threadW ork);
end

kernel perBankMR(int n, int nBuckets, int nBanks, int indices[n], M values[n], M
buckets[nBuckets|, int threadWork) :

shared M block BucketsnBanks x nBuckets];

int *blockIndices = &indices[blockld x nThreads x threadW ork];

M *blockV alues = &values[blockId x nThreads x threadW ork];

M myBuckets = &blockBuckets[threadld mod nBanks];

for i = threadld to (threadWork x nThreads) step (2 x nThreads) do
// fetch two labels and values at once

int indexl = blockIndicesli];
int valuel = blockV aluesli];
int index2 = blockIndices|i + nThreads];
int value2 = blockV alues|i + nThreads];
// check if labels are equal
bool equal = indexl == index2;
valuel = valuel ® (value2 X equal);
value2 = value2 x (lequal);
// if so, perform only one update
atomicOp(myBuckets[indexl x nBanks|, valuel, ®);
if value2 then
| atomicOp(myBuckets[index2 x nBanks], value2, ®);
end

end
// accumulate partial results and write them to global memory

for i = threadld to nBuckets step nThreads do

int reduction = e;

int j = threadld,

do
reduction ®= blockBuckets[i x nBanks + j|;
j =7+ 1 mod nThreads;

while (j /= threadld) ;

atomicOp(buckets[i|, reduction, ®);

end

end
Algorithm 4.10: Kernel for per-bank-bucket-set multireduce
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Figure 4.15: Performance of per-bank buckets vs. per-thread buckets multireduce

exploit this algorithm’s good performance for higher numbers of buckets as well. One way
to do this is the multi-pass scheme used by the scatter/gather approach described earlier:
One could run over the input data several times, each time only processing the values whose
label is in the current 256-bucket range. In addition to the obvious advantages (more buckets
can be used) and disadvantages (many runs cost time; not useful if the number of buckets
is much higher than 256, as the time needed for the many runs is too high), there are a few
considerations that apply especially if the multi-pass approach is chosen for this particular
algorithm:

e Since the single-pass algorithm still does not fully exploit the GPU’s theoretical memory
bandwidth, the concurrent (atomic) writes to shared memory seem to be the bottleneck
that prevents even better performance, even in the case of random data distribution.
In the multi-pass scheme, less such writes are performed. To some degree, this should
accelerate every single run through the data, so that a two-pass multireduce with 512
buckets should take less than twice the time needed to do a 256 single-pass multireduce.
If the concurrent writes are the only factor that is preventing better performance, and
if the number of writes that is actually performed can be kept about equal to the
256-bin case (maybe by increasing the number of warps per block even further), the
performance difference between 256 buckets and 512 buckets may actually be quite
small. At some point, though, the additional cost for performing multiple passes will
lead to significantly worse performance.

e With degenerate input data, one pass actually does all the work and should perform
exactly as in the single-pass case or only slightly worse, since it has to check if the
current label is within the current partition for every input. All other passes, however,
simply read the input data, check if it belongs in the current partition, and then discard
it. Since this should not take very long, the performance for a (small) number of
passes should not be significantly worse than the single pass performance in cases with
degenerate input data.
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The other natural idea to extend the algorithm to more than 256 buckets is to partially
sort the input data, so that it consists of segments which contain only values within a 256-
bucket range. A block can then run over (a part of) the input and every time the data
switches to a new segment, write the current bucket values to global memory, set the buckets
in shared memory back to zero, and start working on the next segment. Compared to
the original algorithm, this has the overhead of resetting buckets in shared memory, which
probably cannot be avoided, and of constantly checking if the segment has switched. The
latter is actually a slightly bigger problem, since we would prefer to fetch a number of labels
and values from global value at once in several threads. Including a mechanism to check the
segment and abort if necessary between processing several elements would nullify many of the
advantages of a partly unrolled loop and make the implementation unnecessarily complicated.
We have therefore decided to include a first step, which determines the offsets of each segment
before the main algorithm is run. The main kernel, sketched in Algorithm can then use
this information and will know how many elements it has to process, so that it can process
batches of input without performing constant checks.

The resulting algorithm executes the following steps:

1. It sorts the input data, again using SRT'S sort.

2. It calls an additional kernel to calculate the offsets of each segment. The result is a
vector [o0g, 01, ..., 0p] such that p = ”B#dgets, and o; denotes the offset of the segment

with the labels between ¢ x 256 and (7 + 1) x 256.

3. It then calls an adapted version of the multireduce kernel to calculate the multireduce
for every segment

This results in a lot of additional work compared to the original algorithm, but the amount
of additional work is almost constant with respect to the number of buckets in the input
data. The only significant change for more buckets are that the sorting algorithm has to sort
by more bits, and that segments tend to change more often, so that the buckets in shared
memory have to be reset more often. We therefore expect the sort-based extension perform
worse than the multi-pass version for (relatively) low numbers of buckets, and better for
higher ones.

The actual performance is shown in Figure [4.16] and is just what we expected. The multi-
pass extension needs slightly less than twice the original time for twice as many buckets,
while the performance of the sort-extension is almost constant, and does not surpass one ns
per input. While the sorting extension is faster than the CPU implementation, the algorithm
running in global memory performs better in all cases.

4.4 Sort-based approach

We have now discussed several ways to adapt the sequential multireduce algorithm for GPUs.
Alternatively, a multireduce can also be performed using a sort-based approach, which we
will discuss in this section. This approach consists of three main steps:

1. Sort all label-value-pairs by their labels.

2. Transform the sorted labels into segment start flags. A change of labels encodes the
start of a new segment.

3. Perform a segmented reduction of the sorted values using the segment start flags. The
result is the multireduce of the initial input.
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func multiReduce(int n, int indices[n], M values[n], int nBuckets) :
// choose nBlocksl, nBlocks2, nThreadsl, nThreads2 for best performance
int offsets[nBuckets/256]; getOffsets«nBlocksl, nThreadsl»(n, indices, offsets);
int threadWork = n/(nBlocks2 x nThreads2);
sortExtensionMR«nBlocks2, nThreads2» (n, nBuckets, indices, values, offsets,
threadW ork);

end

kernel sortExtensionMR(int n, int nBuckets, int indices[n|, M values|n], int
offsets[nBuckets/256], int threadWork) :
int blockOffset = blockId x nThreads x threadW ork int *blockIndices =

&indices[blockOffset];
M *blockV alues = &values|[blockOffset];

shared int block Buckets[nBanks x nBuckets];

int curSegment = blockIndices|0]/256;

int processed = 0;

int offset = blockOffset;

int segLength;

for processed = 0 to threadWork step segLength do
int segLength = offsets[curSegment + 1] — offset;
Set all block Buckets to zero

Fetch and process segLength input labels and values
Atomically add block Buckets values to global buckets

curSegment++;
offset += curSegment;
end

end
Algorithm 4.11: High-level view of the kernel for the sort-extension
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Figure 4.16: Performance of multi-pass vs. sort-based extension of per-bank multireduce

71



CHAPTER 4. MULTIREDUCE ON GPUS

Input labels - 2 2 1
Input values n 1 0 4 n

Sort

Transform labels
to flags

Segmented reduce E

Figure 4.17: Multireduce by sort and segmented reduction, illustrated for addition on integers

function sortMultiReduce(int n, int nBuckets, int indices[n], M values[n|, M
results[nBuckets]) :
stableSort(indices, values);
bool flags[n];
parfor i =0 ton — 2 do
| flagsli] = indices[i]! = indices[i + 1];
end
flagsin — 1] = 0;
segmentedReduce( flags, values, result, ®);
end

Algorithm 4.12: Sort-based multireduce algorithm
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This algorithm is expressed slightly more formally in Algorithm and illustrated in Fig-
ure @17

In order for this algorithm to deliver correct results with non-commutative operators, the
used sorting algorithm needs to be stable, meaning that the order of values with the same
key is not changed during the sort. Fortunately, this is always the case with radix sort. In
theory it would be possible to use a non-stable sort algorithm for commutative operators if
that were more efficient. However, since radix sort is the fastest sort algorithm available on
GPUs, this is not the case. One can conceive of a case where the labels are not integers
and therefore radix sort (which assumes that labels are stored in positional notation) cannot
be used. In this case commutative operators might result in an advantage, but even that is
doubtful, since the best comparison-based GPU sorting routines (e.g. Modern GPU’s merge
sort [12]) are also stable.

We will, however, assume the labels to be unsigned integers in any case, and will therefore
not make a general distinction between commutative and non-commutative operators.

As before, there are different ways to implement this general algorithm based on the parti-
tioning scheme, which we will discuss in the following sections.

4.4.1 No partitioning

In order to use this algorithm without partitioning, one only has to perform a radix sort of
the entire input, followed by a transformation applied to every pair of adjacent indices, which
computes the beginnings of segments, followed by a segmented reduction. Highly optimized
implementations of all these operations are available in existing libraries.

The fastest published sorting algorithm, SRTS sort, has been discussed before. Both the
Thrust library and Modern GPU offer a reduce-by-key functionality which already combines
the last two steps. The Modern GPU implementation outperforms Thrust by a large margin,
which is why we will use their implementation.

A natural approach to improving this algorithm would be to avoid writing intermediate results
to global memory. Between the second and third step, this can be easily implemented: Where
the segmented reduce would otherwise fetch a flag, it can simply fetch two labels, compare
them, and proceed with the flag. Since data is fetched in blocks, and one of these two labels is
also needed by another thread, this can be implemented with next to no overhead if threads
share labels, e.g. by using shared memory. In fact, Modern GPU’s implementation already
does this.

Between the first and second step, leaving out the global store is not really feasible. Since
(SRTS) radix sort ends with a scatter operation, adjacent labels cannot be easily and effi-
ciently identified until the scatter is completed and the labels are in global memory. At this
point, there is no opportunity to save memory bandwidth any more.

The performance of this algorithm for different numbers of buckets and for both randomly
distributed and degenerate input data is shown in Figures and 18] respectively.
Performance is slightly better for degenerate data. For only 16 buckets, the algorithm needs
only 0.5 ns per input, but performance worsens for more buckets, again in steps determined
by the used sort function, and is already over 1 ns per input for 4096 buckets. This algorithm
is therefore clearly outperformed by variations of the sequential adaptation for commutative
operators. Since those algorithms performed much worse for non-commutative operators,
however, this sorting algorithm may well be the best option for those cases.

4.4.2 Partitioning in global memory

While the sorting algorithm can, of course, be implemented as part of the partitioning scheme
and working in global memory, it seems unlikely that this would result in a performance
advantage over either the shared memory version or the one without partitioning. The
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Figure 4.18: Performance of global sort & segmented reduce for random inputs
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Figure 4.19: Performance of global sort & segmented reduce for degenerate inputs
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radix sort, the transformation to flags and the subsequent segmented reduce are already
highly parallelized algorithms, which would not benefit from additional parallelism. If it
were advantageous to perform either the sort or the segmented reduce on a block level and
combine the results later, existing library functions for sorting and segmented reduce would
already do that.

The partitioning approach has some overhead in its final reduction step, and this overhead
is only worth having if one can reasonably expect improved performance of the main com-
putation in exchange. Since the latter is not the case here, we will not consider this option
any further.

4.4.3 Partitioning in shared memory

The situation is different for a partitioning approach which is implemented exclusively in
shared memory. Shared memory can be used to store the intermediate results after the sort
and after the transformation from labels to segment start flags. In contrast to the global
approach, which writes the results of the sort to global memory, which then have to be read
again for the subsequent reduce-by-key, a shared memory implementation can calculate a
multireduce while reading each key and value only once, and only writing the final results to
global memory.

This, however, means that all data and intermediate results have to be stored in either shared
memory or in registers for the entire runtime of each block. Efficient use of these resources
is therefore vital, so we must first evaluate how much space is needed for each step, which
again requires that we know the components we are going to use.

In this case, the range of available library implementations is very small. CUB offers a block-
level radix sort, and Modern GPU has a block-level segmented reduce. The latter internally
uses Modern GPU’s segmented scan to compute a segmented reduce. Since the input-output
behaviour of Modern GPU’s segmented reduce algorithm is not optimal for our purposes, we
will implement our own version of the segmented reduce which more closely fits our needs. We
will, however, generally follow the pattern used in Modern GPU’s segmented reduce function,
meaning that we also use Modern GPU’s segmented scan function in our algorithm.

Both the sorting function and the segmented scan need temporary storage in shared memory,
and both accept inputs as function parameters, meaning that the input data does not have
to be stored in shared memory. Both libraries are explicitly high-performance libraries which
have been released in 2013, so we expect their performance to be close the best that is
currently achievable.

To understand what is necessary to combine these two functions, we need to take a closer
look at their input and output and their space requirements:

e CUB’s radix sort can process several inputs per thread. It needs shared memory for
storing temporary data; the required amount depends on the number of threads in
the block and the number of bits sorted by in one step. Input labels and values must
be stored in local arrays, which are given to the function as parameters. The radix
sort does not address these arrays indirectly, which means that they can be stored in
registers, and slow local memory is not needed (unless register usage is generally too
high). When the sorting algorithm has completed, the local arrays of thread ¢ will
contain the key-value pairs which belong between those of thread ¢ — 1 and ¢ + 1.

More formally: If threads [to, 1, ..., tnThreads—1] simultaneously call the sort function,
with thread ¢ handing it a local vector labels;[nItems] as an argument, this can be
interpreted as a single vector allLabels[nThreads x nltems|, where allLabels|i] =
labels__i _[i mod nItems]. This vector is then sorted, so that after the sort all Labels[i] <

allLabelsli + 1] for all . When the sorting has completed, labels; = [all Labels[i x
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Figure 4.20: Parallel segmented reduce using segmented scan

nltems)|, all Labels[i x nltems], ..., all Labels[i x nItems+nItems — 1]]. The procedure
for the vector of values is equivalent.

e Modern GPU’s segmented scan processes one flag-value-pair per thread. It also requires
shared memory as temporary storage. Inputs are accepted as function arguments,
meaning that thread i calls the function with value v; and flag f; as arguments, and
will get the corresponding result of the segmented scan, r;, as a return value. For
segment starts (whose segmented scan result value is necessarily zero in the exclusive
case), the returned value is the reduction of the previous segment. The reduction of
the last segment is written to a local variable through a pointer.

More formally: If threads [to, 1, ..., tnThreads—1] Simultaneously call the segmented scan
function, and thread ¢ hands it a value v; and a flag f;, this can be interpreted as a
value vector [vg, V1, ..., UnThreads—1) and a flag vector [ fo, f1, .-, faThreads—1], on which an
exclusive segmented scan is the computed, resulting in a vector [ro, 71, ..., "nThreads—1)
which contains the segmented scan of the input vectors. For each thread 4, the function
then returns a value x; such that x; = r; if f; =0, and x; = r;_1 ® v;_1 otherwise.

Since both of these functions have to be executed by the same block, they both have to use
the same number nT hreads of threads. The radix sort works most effectively if it processes
several elements per thread (the default value is four). This means that in order to use the
available resources efficiently, each block has to process several inputs per thread. While the
segmented scan processes only one element per thread, the algorithm we will use to compute
the segmented reduce can process several.

The entire algorithm is shown in Algorithm [£.13] Note that the calls to both library functions
may look as if they were executed locally and independently by every thread, or alternatively
as if they started a new kernel. Neither is the case. In both cases, all existing threads call a
function which cooperatively performs a task across all threads in the block, i.e. the sorting
and the segmented scan, respectively.

The complete algorithm works as follows: First, each thread fetches nltems labels and values
form the input data, which are then sorted across threads using the CUB function. Once
labels and values are sorted, all threads write their new first label to shared memory, so that
thread ¢ —1 can fetch the first label of thread . This is needed later for the segmented reduce.
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Input : int blockIndicesn|, M blockV alues|n]
Output: M resultsinBuckets x nBlocks]

local int indices[nItems];

local int values[nltems];

Fetch nltems indices from blockIndices to indices
Fetch nitems values from blockV alues to values
cub::sort(indices, values);

// exchange first labels shared int nextValues[nThreads];
nextValues[threadld] = threadld == 0 7 nBuckets : labels|0];
int myNext = nextValues|threadld +1 mod nThreads];

// first phase of segmented reduce int x;
bool f = false;
int localScan[nltems]; int next = indices|0];
for i € [0...nItems — 1] do
x =17 op(x,values[i]) : values|il;
localScan|i] = x;
int current = next;
next = i = nltems — 1 7 myNext : indices[i + 1];
bool flag = current # next;
valuesli] = flag;
if flag then

| x = identity;
end

f=f1 flag;

end

// second phase
int y = mgpu::segmentedScan(x, f);

// third phase
for i € [0...nItems — 1] do
localScanli] += y;
if values[i] then
result[indices[i] x nBlocks + blockId] = localScanlil;
y=0;
end
end
Algorithm 4.13: Complete sort-based multireduce algorithm in shared memory
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The segmented reduce algorithm has three phases (illustrated in Figure [£.20)). The first phase
computes a local inclusive scan of the local values, and simultaneously computes the input
for the second phase, the segmented scan. x is essentially the value which is carried over to
the next part, i.e. that the reduction of the last segment within the current thread’s data. f
denotes if a new segment starts inside the current thread’s data. z is used as the value and f
as the flag that is given to the segmented scan. The flags for each single element are stored
in the array values to save register space, and to avoid recomputing all flags in the second
phase. An if-statement is used in this part and again later, but since there is no else-branch,
this is simply a case of predicated execution, and not real branch divergence.

In the third phase, the result y of the segmented scan is added to all elements of localScan
which have the same label as the first element of the current thread. If the current element
is the last of a segment, the new value of localScan is the reduction of the current segment
and is written to global memory.

One problem is finding the optimal value for nitems: A higher choice for nltems will mean
that each thread can process more data in one run, at the cost of higher register usage. One
approach to doing this is to calculate the number of registers each thread can use without
lowering the amount of parallelism. Since there are 48 kB of available shared memory, and the
temporary storage used about 36 bytes per thread, an SM can hold up to 1365 threads based
on shared memory consumption. Since an SM has 65,536 registers, this leaves 48 registers for
every thread. We reach 48 registers per thread if we set nltems = 8. In practice, however,
using more registers always pays off in this case, possibly because the sorting algorithm gets
more efficient the larger nltems is, as is suggested in the CUB documentation. The highest
setting for nltems that does not lead to register spilling to slow local memory is nltems = 12,
and the algorithm consistently performs best with this setting, so this is what we will choose
for our benchmarks.

If we run the algorithm with different numbers nThreads of threads per block and different
numbers nBucket of buckets, we get the results shown in Figure The algorithm takes
less than 0.2 ns per input for up to 2% buckets, which is close to the best algorithms we have
seen so far, and under 0.5 ns per input for up to 2'2 buckets for random input data. With
more buckets, the performance for degenerate data remains acceptable, while it drops off
sharply for random data.

The main reason for this is that, assuming random data, if nBuckets is larger than the
product nThreads X nltems, it becomes likely that all or most labels in any given segment
are distinct. In this case, neither the sorting nor the segmented reduce actually contribute
to solving the multireduce problem, and the actual work is done during the final step, the
reduction of partial results. In this case, the algorithm essentially degenerates to the multire-
duce performed as a reduction of vectors as outlined at the beginning of this chapter, which
is already a bad algorithm for large numbers of buckets. To make matters worse, there is a
significant overhead for the sort and segmented reduction of each segment without any real
benefits.

Another issue prevents the algorithm from being used for very large numbers of buckets
altogether: Lower numbers of threads per block as well as more buckets mean that more
global memory space is needed to store the bucket sets for all threads. At some point, there
is simply not enough memory to store all needed buckets, which results in an allocation
error, meaning that there are strict limits within which the algorithm can be used that are
not related to its performance.

At the start of this section, we mentioned that this method can be used for both commutative
and non-commutative operators. This is true in principle, however, for non-commutative
operators, we need to transpose the input data using Baxter’s algorithm as we did before.
The reason for this is that the radix sort, which is stable, will preserve the order of elements
with the same label during the sorting process, and if the order in the input is wrong because
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Figure 4.21: Performance of the sort and segmented reduce algorithm in shared memory for
different numbers of threads per block

of strided fetching, the result can be wrong as well. Luckily, we can simply insert Baxter’s
algorithm for the lines which fetch the labels and values. Figure shows that this does
not seem to affect the algorithm’s performance at all, so that this algorithm can be used for
non-commutative operators without any additional limitations.

4.5 Application to related problems

4.5.1 Scatter with sorting

During our discussion of the adaptation of the sequential multireduce algorithm in global
memory, we have seen that partially sorting input data for a multireduce can result in a
performance improvement for large numbers of buckets. It seems natural to try to speed up
scatter algorithms using the same method, since scattering to a large number of locations is
a relatively common task on GPUs. This is evidenced by fact that He et al. [I9] published a
paper to specifically address the problem of cache misses in GPU scattering. Their multi-pass
solution, however, is not work efficient and can therefore not be recommended for use with
very large numbers of buckets. We have therefore tested if sorting can be used as a more
generally applicable method to speed up scattering on GPUs.

The performance of a naive GPU scatter algorithm for random inputs with different numbers
of buckets is shown in Table For up to nBuckets = 2'6 buckets, it needs between 0.15
and 0.25 ns per second; if nBuckets grows larger, slightly more than one ns per input is
needed. The most likely explanation for this is that for nBuckets > 26, the buckets no
longer fit into L2 cache.

We have tested the sort-scatter algorithm with different combinations of sortBits and nBuckets
and concluded that the performance of the actual scatter phase for high numbers of buckets
can be brought back down to the range of 0.1 to 0.2 ns per input if log, n Buckets—sort Bits <
8. This is valid for a simple scatter algorithm where every block works on a different, con-
tiguous segment of the input. The reason why we have to sort by a relatively large number of

79



CHAPTER 4. MULTIREDUCE ON GPUS

nThreads = 256 threads, random data —+—
1.4 + nThreads = 256, degenerate data ——
nThreads = 1024, random data —*—
nThreads = 1024, degenerate data —&—
1.2
1
5
e
3
= 0.8
>
>
Q
X
> 06
f
0.4
0.2 %
B
0 | | | | | |

log2(number of buckets)

Figure 4.22: Performance of the sort and segmented reduce algorithm in shared memory with
transposed input data

log, nBuckets | ns per input
8 0.112742
10 0.154659
12 0.185251
14 0.200674
16 0.218198
18 0.590086
20 0.917882
22 1.007348
24 1.029998
26 1.063898

Table 4.3: Scatter performance for different numbers of buckets
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bits is that different threads are working on different segments of the input at the same time,
so that the buckets for the current segments of all threads have to be in cache for optimal
performance, as opposed to only one set of buckets before. Therefore the range of buckets in
every segment must be very small in order for the cache to be able to hold all current buckets
for all threads.

We have tried to mitigate this problem by letting the threads of all blocks access the entire
input data in a strided fashion instead of letting each block have its own segment. We hoped
that the resulting access pattern is closer to a sequential traversal. However, the scheduling
hardware ultimately controls which warps or blocks execute at what time, so that there is
no way to guarantee that the input data is in fact accessed in a nearly sequential manner.
Nevertheless, this approach, helped to raise the limit for an acceptable speed of the actual
scatter phase to log, nBuckets — sortBits < 9.

We have mentioned before that SRT'S sorting is fastest if sortBits is a multiple of five. In
fact, sorting by any number sortBits of bits which is not a multiple of five is generally not
significantly faster than sorting by the next higher multiple of five. Sorting by five bits takes
about 0.4 ns per key-value-pair.

Sorting could improve performance if, for some number of buckets, the tine needed by the
naive scatter algorithm is longer than that needed to sort by sufficiently many bits to bring
the performance of the scatter phase back to a low level. More precisely, sorting can help if
for some nBuckets = 2°, scatterTime,guckets > 0.2+ 0.4 x [(b—9)/5] (where scatterTime,,
is the time needed per input by a naive scatter to n buckets).

This is not the case, and we therefore have to conclude that sorting cannot help to speed up
the scatter at least on our GPU.

4.5.2 Histograms

We have shown before that existing histogram algorithms can be adapted to perform a mul-
tireduce, but that many possible optimizations which can speed up histogram calculations
cannot be applied to the more general multireduce. Nevertheless, our best multireduce al-
gorithm slightly outperforms the best published histogram algorithm in terms of time per
input, and does so for any input data distribution. It therefore seems obvious to try and
transfer the ideas which helped us develop a fast multireduce algorithm back to the special
problem of histograms.

We adapted the best histogram algorithm TRISH to make use of the two main concepts which
make our multireduce algorithm fast, while leaving the structure of the algorithm unchanged.
In particular, this means:

e We increased the number of threads per block from 64 to 512. Since there are still
only 64 histograms in shared memory, we needed to make sure that for shared memory
accesses, each thread behaves as if it were one of only 64. Since the behaviour of single
threads can be differentiated only through use of the thread ID, this could be achieved by
a simple trick: Wherever accesses to shared memory are concerned, threadld mod 64
is used instead of the actual thread ID; for all other purposes each thread uses its actual
thread ID as before.

e To prevent data corruption through conflicting writes, we made bucket updates atomic.

e To prevent bad performance for degenerate input data, we made use of the fact that
four inputs are always processed at once, and bundle updates if several inputs target
the same bucket.

The latter is even more effective when applied to histogramming in general and TRISH in
particular than for the general multireduce, for two closely related reasons:
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Figure 4.23: Runtime of original TRISH compared to BankTRISH with factor 2-8

1. TRISH (like most other histogram algorithms) fetches input data in words of four
bytes. For image data, this means that each thread has the color values for a row of
four adjacent pixels. Neighboring pixels, however, have a high correlation and are likely
to have the same value in normal image data. While bundling updates mostly improves
performance for completely degenerate input data in the case of the multireduce and
leads to a minimal slowdown for input data distributions, we expect it to actually
improve histogramming performance for normal image data as well.

2. The fact that buckets stored in shared memory are also byte sized, but updates to
them always write an entire word, means that updates cannot only be bundled if they
actually target the exact same bucket, but even when they target the same group of
four buckets.

The resulting performance for random and degenerate input data as well as two actual images
(we used two images used by Nugteren et al. to evaluate their algorithm), compared to the
original TRISH implementation, can be seen in Figure [£.23] The line for "BankTRISH n"
denotes our optimized version of TRISH (which lets several threads work on the same shared
memory bank, hence the name) running with n x 64 threads per block. Our implementation
performs best for n = 8, and outperforms TRISH by 33% in the worst case and 40% on
average in this configuration. Our implementation also outperforms both Nugteren’s and
Podlozhnyuk’s implementations for both random and degenerate inputs; a comparison of all
three algorithms in terms of performance can be found in Appendix [A]

Our adaptation of the TRISH algorithm is therefore faster than any published histogram
algorithm for all inputs. This is despite the fact that we made only the most basic changes to
TRISH and did not make any attempts to increase the algorithm’s performance aside from
a basic transfer of two core ideas.
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Figure 4.24: Comparison of multireduce algorithms for non-commutative operators

4.6 Conclusion

We have evaluated a number of different approaches for computing the multireduce on GPUs.
In particular, we used two main algorithms, an adaptation of the sequential multireduce
algorithm, and a sort-based approach. We combined both of these algorithms with different
variations of a partitioning scheme, which allows work to be distributed on different levels of
the GPU structure.

Our overall conclusion has to be a positive one: For all configurations, we found algorithms
which perform three times better than our baseline CPU implementation in the worst case,
and nine times better on average. The precise speedup for any given configuration depends
to a large degree on the commutativity of the operator.

Figure shows the performance of different algorithms with non-commutative operators
for random input data. The speedup of the best GPU based algorithm over the CPU varies
between a factor of three and a factor of twelve; the average speedup for any number of
buckets is a factor of six. Sort-based algorithms outperform adaptations of the sequential
algorithm by a large margin. The reason for this is that an enforced one-to-one relationship
of threads to bucket sets hurts the cache hit rate (in global memory) and the amount of
parallelism (in shared memory) of implementations based on the sequential algorithm. While
we made some non-trivial algorithmic improvements by generalizing a data fetching algorithm
by Baxter and transferring the partial sorting approach we used on the CPU to the GPU,
these improvements could not overcome the structural problems of the algorithm for non-
commutative operators.

The sorting algorithms, on the other hand, perform well independently of the used operator.
The approach using shared memory in particular performs on the level of Thrust’s reduce-
by-key operation for up to 1024 buckets, needing only a third of a nanosecond per input,
compared to 1.5 ns for the CPU algorithm. For larger numbers of buckets, the sorting
algorithm without partitioning performs best. This is a general pattern: Due to the limited
size, shared memory algorithms can often only be used for a limited number of buckets, but
deliver great performance for those cases. Algorithms using global memory, on the other
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Figure 4.25: Comparison of multireduce algorithms for commutative operators

hand, have inferior peak performance, but scale better with the number of buckets. The
absolute performance of the global sorting algorithm, for example, is not stellar (more than 2
ns per input for 22° buckets), but it is a great improvement over the CPU algorithm especially
for large numbers of buckets, since the CPU’s performance drops to over 20 ns per input in
these cases.

If the used operator is commutative, the adaptations of the sequential algorithm perform
much better, while the performance of the sorting based approaches remains the same (see
Figure. As soon as the ratio of threads and buckets sets can be varied at will, sequential-
based algorithms are no longer hindered by low amounts of parallelism and cache misses, and
outperform sort-based algorithms due to their simplicity. The average speedup over the CPU
in this case is a factor of eleven; for different numbers of buckets, it varies between four and
17.

Our most convincing implementation is an adaptation of the sequential algorithm which uses
a partitioning approach and works in shared memory (Section . We used an existing
histogramming algorithm as a basis and extended it with a superior mapping between threads
and shared memory, which results in a much higher possible amount of parallelism. As a
result, this algorithm performs on par with or even better than the fastest published histogram
algorithm, while being much more generally applicable. With an effective memory bandwidth
of 100 GB/s, the algorithm does not completely utilize the theoretical memory bandwidth
of 192 GB/s of a single GPU of the Geforce GTX 690, but any further improvements will
necessarily stay under a factor of 2. The numbers may well be even better on different GPUs,
as the GTX 690 has significantly less SMs (and therefore shared memory) than previous and
subsequent GPUs, which directly affects this algorithm’s performance.

For the adaptation of the sequential algorithm working in global memory, the partial sorting
algorithm, which did not result in a significant improvement for non-commutative operators,
significantly increased performance for large numbers of buckets.

We applied two of the improvements we made to multireduce algorithms to two of its special
cases, the scatter and the histogram. While we had to conclude that a sorting algorithm
cannot improve the performance of scattering on a GPU, we successfully applied the core idea
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behind our best multireduce algorithm to the best existing histogram algorithm, resulting in
a speedup of 30-40 % for all inputs. Our approach is therefore the fastest currently published
histogramming algorithm for GPUs.

85



Chapter 5

Multiscan on GPUs

5.1 Adapting ordinary scan

function Scan(M dataln]) :
for i =0 to logyn — 1 do
parfor j =0 ton — 1 step 2! do
| data[j + 2! — 1] = data[j + 2! — 1] © data[j + 27! — 1];
end
end
data[n — 1] = 0;
for : =logyn —1 to 0 do
parfor j =0 ton — 1 step 2° + 1 do
M temp = datalj + 2 — 1];
datalj + 2! — 1] = data[j + 271 — 1];
datalj + 21t — 1] = temp © data[j + 271 — 1];
end
end

end
Algorithm 5.1: Parallel scan algorithm (adapted from [1§])

The basis for the most-used parallel scan algorithms is Blelloch’s tree-based algorithm from
1990 [6], a variation of which is shown in Algorithm and illustrated in Figure The
algorithm is divided into two phases, the upsweep and the downsweep. The upsweep is
essentially a reduction which uses the algorithm presented in Section and keeps some of

A AN
e
XL X XL X

Figure 5.1: Work-efficient parallel scan algorithm as described by Blelloch (adapted from [I8])

86



CHAPTER 5. MULTISCAN ON GPUS

its intermediate results, and the downsweep uses these intermediate results to compute the
scan. Like the parallel reduction, this algorithm has a work complexity of O(n) and a depth
of O(logn) and is therefore work efficient.

For GPUs, Horn [2I] proposed the first scan algorithm in 2005, which, however, was not
work-efficient. In 2007, Harris et al. [18] and Sengupta et al. [43] both proposed work-efficient
CUDA implementations based on Blelloch’s algorithm. Dotsenko [I5] further improved on
their implementation, but the algorithm still remained fundamentally the same. Merrill and
Grimshaw [29] presented an overview of all existing scan algorithms in 2009 and further
improved on the previous results.

In the previous chapter, we briefly described a way to use an ordinary reduce algorithm to
perform a multireduce using vectors of the original elements. The same approach can be used
to perform a multiscan with a scan algorithm, and the adaptations are completely analogous.
The drawback of such an approach is identical, too: while it is a good algorithm for small
(single digit) numbers of buckets, it gets very inefficient as the number of buckets gets larger.

5.2 Overview of possible solutions

The multiscan has been proposed as a fundamental primitive by a number of publications.
It may therefore seem surprising that actual PRAM algorithms for the multiscan are quite
rare. Here we will briefly discuss the main proposals and why most of them fail to present
an algorithm which is usable today.

Ranade [39] proposed an abstract machine called the Fluent abstract machine, intended to
avoid many of the pitfalls that come with coordinating large numbers of processors on tra-
ditional machine models. The purpose of said machine is to completely hide interprocessor
communication and the corresponding complexity from the programmer. In order to accom-
plish this, it offers only a very limited set of instructions:

e The multiprefix instruction MP(A, v, ®), where A is a location in shared memory, v is a
value of type T and ® is a binary associative operator of type T'xT — T'. If the previous
value of A was Voriginai,, this call will return voriginai, and set A to Voriginai, © v.

If, however, each processor P; € {Py, P, ..., Pp—1} calls MP(4;,v;, ®) simultaneously,
and for each Pj, in a subset {Pj,, P, ..., Pj,_, } of these processors A;, = C, and jy <
J1 < ... < jn—1, then the final value of location C' will be voriginaio ©Vj, OVj; ©...OV;,_,,

and the value returned to Pj, is Voriginaic © Vjo © ... © vj, -

This multiprefix instruction working on registers is closely related to the multiscan
function working on vectors which we want to implement on GPUs. Assume that
[vo, V1, ..., Un—1] is a vector of values, [lo,l1,...,l,—1] is a vector of labels in the range
{0,1,...,m — 1} as in the definition above, and A is an array of length m, initialized to
contain all zeros. If processor P; calls MP(A[l;],v;, ®), the returned value will be equal
to r; as in the above definition for the exclusive multiscan.

e Convenience functions for memory manipulations, READ and WRITE, which are defined
in terms of multiscan operations.

e Primitive set functions, including basic functions like inserting elements into sets and
deleting them from it as well as membership tests, unions and intersections, but also
including an APPLY function, which applies a unary function to all elements of a set.

While the fact that this instruction set suffices to perform general computations shows that
the multiprefix is very powerful as a language primitive, Ranade’s proposal offers little help in
finding an efficient parallel algorithm for the multiscan. His proposed implementation requires
special purpose hardware whose structure, a network of independent nodes with a complex
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message passing and routing system, does not resemble GPU hardware or even PRAMs at all.
In a different proposal, Cohn [10] proposes an implementation of the multiprefix instruction
for a hypercube, which is also not applicable to current hardware.

Blelloch and Maggs [7] seem to suggest that a work-efficient PRAM algorithm for the multi-
scan exists, and refer to a paper by Matias and Vishkin [27]. Said paper, however, only seems
to show that a fetch-and-add operation can be implemented efficiently on a PRAM using a
probabilistic algorithm.

The fetch-and-add is a non-deterministic variation of the multiprefix. The MP instruction
of the Fluent abstract machine which we just discussed can be turned into a fetch-and-add
operation by dropping the condition that jo < j1 < ... < jp—1. Without this condition, all
values written to the same location can be added up (or more generally, reduced) in any
order. The fetch-and-add can also be defined as relation (not a function, since it is non-
deterministic) on vectors. Analogously to the way we used the MP instruction to implement
a multiscan of a vector above, the same can be done for a fetch-and-add.

Fetch-and-add is therefore not identical to the multiprefix (although Matias an Vishkin use
the two terms interchangably, which may explain the confusion), and it cannot be used for
the most prominent applications of the multiscan (e.g. radix sorting or sparse matrix vector
multiplication). Moreover, it is inherently deterministic. Since our main goal is to create
a primitive multiscan function which can be used by other algorithms without considering
(or even knowing about) the underlying parallel implementation, non-determinism is exactly
what we want to avoid, and we will not consider the fetch-and-add-algorithm any further.
The only existing work-efficient multiscan algorithm for PRAMs is therefore the one published
by Sheffler [45], which we will present later in this chapter and discuss its applicability
to current hardware. Like for the multireduce, we will also consider algorithms based on
adapting the sequential multiscan algorithm as well as a sort-based approach.

For the sort-based approach and the adaptations of sequential algorithm, many of the oc-
curring problems and solutions will resemble the ones which have been encountered for the
multireduce, and discussing them again in full detail would be redundant. Wherever this is
the case, we will therefore refer to the corresponding discussion in the multireduce chapter
and only point out the adaptations that have to be made to perform a multireduce instead.
As before, there are three main ways to use any of these algorithmic approaches: Applying it
directly to the entire input, or partitioning the input into several segments and applying the
algorithm to all of these segments in parallel, which can be done using either global or shared
memory. The structure of the latter approach for the multiscan is shown in Algorithm
and illustrated in Figure [5.2]

The input data is partitioned into nSegments segments. The multiscan for each segment
is then computed in parallel, and the partial bucket values for each segment are written to
global memory. The nSegments partial results for each of the nBuckets buckets are then
scanned in the order of the segments they belong to, thus calculating the reductions for all
buckets up to every segment start. In the final step, the results of the original multiscan for
each segment are iterated through again, and the value of the corresponding scanned bucket
is added to each result.

In the previous section, we have seen that the multireduce can be performed faster if it works
with commutative operators. If this is the case, data can be fetched in strided order, which
optimally exploits the available memory bandwidth, and can be processed directly without
being redistributed among threads. More importantly, a commutative operator allows sev-
eral threads or even blocks to work on a common bucket set, whereas a non-commutative
operator enforces the use of a separate bucket set for every input segment. For these reasons,
multireduce algorithms which use non-commutative operators are significantly slower.

For the multiscan, there is no distinction between commutative and non-commutative op-
erators. Here, we always need to process data in a specific order and use dedicated bucket
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Figure 5.2: Parallel multiscan algorithm using partitioning with n = 16, nSegments = 4 and
nBuckets = 2

function partMultiScan(int labels[n], M values[n], M result[n]) :
// int nSegments is chosen for best performance
int segLength = m;
M buckets[nSegments x nBuckets];
parfor i = 0 to nSegments — 1 do
int offset = i x segLength;
multiScan(&labels|offset], &values|offset], &result[offset], &buckets[i], ®);
end
shared M scannedBuckets[nSegments x nBuckets];
parfor i = 0 to nBuckets — 1 do
| scan(&buckets[i x nSegments], &scanned Buckets[i x nSegments], ®);
end
parfor i = 0 to nSegments — 1 do
parfor j =0 to segLength — 1 do
int offset = i x segLength + j;
result[offset] = scanned Buckets[labels|offset] x nSegments + i| © result[offset];
end

end

end
Algorithm 5.2: Parallel partitioning strategy for multiscan
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sets for each segment, meaning that we will generally expect the resulting performance to
resemble that of multireduce for non-commutative operators, even if the multiscan itself uses
a commutative operator. The reason for this lies in the nature of the multiscan, which cal-
culates a result for every prefix of the input data. A partial result which has been obtained
by processing, for example, every kth element up to index ¢ of the input can therefore be
used used for a multireduce with a commutative operator without any problems; several such
partial results only need to be combined in the end. For the multiscan, the same partial
result would be much less useful, as it cannot be used at all to calculate a result for any index
before i, and the same is true for partial results which have been acquired in the process (i.e.
the results after processing every kth element up to index i — k, i — 2k etc.). In other words,
where for the multireduce with a commutative operator every thread can fetch and process
elements of the input data in a strided order, and the results can simply be accumulated in
the end, we would need to accumulate temporary results for all threads after every processed
element for the multiscan, which would obviously ruin any performance advantage gained
through strided data fetching.

If the idea of the underlying algorithm is similar, a multiscan algorithm will therefore gen-
erally closely resemble a multireduce algorithm which works for non-commutative operators
following the same principle, independently of the operator used by the multiscan.

When implementing and benchmarking the partitioning scheme for different algorithms, we
will use a function from the CUDPP library to scan the bucket values. This function is
ironically called "multiscan", but it simply performs several ordinary scans in parallel. We
use it to scan the partial results for all buckets in parallel.

The last step, which adds the results of the scan to the results of the multiscan in the first
phase, is trivial to implement with reasonable performance. The only major design decision
one has to make is whether a block should fetch all scanned bucket values to shared memory
so that it has quick access to them, which might limit the amount of parallelism because of
the shared memory demand of each block, or if they should be fetched from global memory for
each element. In practice, we found that the shared memory version has better performance
if nBuckets < 219 and the global memory version is faster otherwise, so we will use this
configuration during the following benchmarks.

5.3 Adaptation of sequential algorithm

The simple sequential algorithm for multiscan differs from the one for the multireduce in
only one detail: Before adding a new input value to the current bucket, the bucket’s current
value is written to the output vector. As a result, the options for adapting the sequential
multiscan algorithm for GPUs are virtually identical to those for the multireduce, which we
discussed in Section The only exception is that we cannot make any improvements for
commutative operators for the reasons outlined in the previous section.

The algorithms in this section would therefore be identical to those for the multireduce with
non-commutative operators, only with an additional step writing out the current bucket
values. This means, however, that the performance of these algorithms would be on the
level of their multireduce counterparts at best, and probably slightly worse because of the
additional writes. Since the performance of the non-commutative multireduce algorithms
was already worse than any algorithm that could be recommended for general use, and the
algorithm’s implementation is trivial, we will not discuss it or its performance in detail here.
Plots showing the algorithm using partitioning in both global and shared memory can be
found in Appendix [B]
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5.4 Adapting Shefller’s algorithm for GPUs

The only existing parallel algorithm for multiscan designed for PRAMs is the one published
by Sheffler in 1993 [45], which has a work complexity of O(n) and a step complexity of
O(y/n). We will use Sheffler’s terminology, which assumes a plus-multiscan, in our algorithm
description. The algorithm does, however, work for any associative operator and also does
not assume commutativity.

struct spinerec {
int rowsum;
int spinesum;
int multisum ;
spinerec* spine
};

Listing 5.1: Spinerec structure as used by Sheffler’s multiscan algorithm

For an input of length n x n, and a multiscan using m buckets, we allocate an array of
spinerecs (see Listing of length m called buckets, and one of length n x n called nodes.
We assume that the input labels are stored in an array called labels and the values in an
array called values. First, we initialize all nodes and buckets in parallel.
parfor i = 0 to n? — 1 do

nodesli].rowsum = e;

nodesli].spine = &buckets[labels|i]];

buckets[labels|i]].spine = &buckets]i];

buckets[labels|i]].rowsum = e;
end

After this, the spine pointer of all buckets are pointing to themselves, and the spine pointers
of all nodes point to the bucket belonging to their label. From now on, we will imagine the
nodes to be arranged in a square of n X n spinerecs, ordered from left to right and from
bottom to top as depicted in Figure for n = 3. In the first phase, a spinetree is built for
each label, the spine pointers of the nodes of each label are arranged into a tree structure.
The following steps are followed for the nodes of every row in parallel, starting at the top
and moving down from there:
// spinetree phase
for r =n to 1 step -1 do
parfori=(r—1)xnto (nxr)—1do
nodesli].spine = &buckets[labels|i]].spine;
buckets|labels[i]].spine = &nodes]i];
end
end

Note that in this phase, all threads perform potentially conflicting updates on the spine
pointer of the buckets. The algorithm therefore presupposes a CRCW-PRAM. Since no
assumption is made about the result of such a write, however, except that one of the writes
succeeds, an ARBITRARY CRCW PRAM suffices.

If m = 2 and all labels of even nodes are equal to zero, whereas labels of odd nodes are
one, the spine pointers could look as depicted in Figure after this phase. The spineree is
created in order to allow conflict free updates in the following phases.
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buckets[m]

nodes[n * n]

Figure 5.3: Spinetree for n = 3, m = 2 and all labels [; = ¢ mod 2

In the rowsum phase, the following steps are executed for the nodes of every column in
parallel, starting with the left one and progressing to the right.
// rowsum phase
forc=1tondo
parfor i =c—1 to n?> — 1 step n do
| nodes[i].spine — rowsum ©= values|i];
end
end

After this, the rowsum each spine element will contain the sum of the values of all nodes
that share its label in the row below (or several rows below, if there is no node with the
same label in the row directly below). Now, we do the following for the nodes of every row
in parallel, starting at the bottom:
// spinesum phase
for r =n to 1 step -1 do
parfori=(r—1)xnto (nxr)—1do
if nodesli].rowsum != e then
| nodesli].spine — spinesum = nodes[i].spinesum + nodes[i|.rowsum;
end
end
end

The spinesum of each spine element should now contain the sum of the values in all rows
below that have the same label. In the final step, the following steps are executed for every
row in parallel, starting with the bottom row:
forc=1tondo
// multisum phase
parfor i = ¢ — 1 to n? — 1 step n do
result[i] = nodes[i].spine — spinesum;
nodesli].spine — spinesum ©= values[il;
end
end

While it seems reasonable in general that this algorithm will compute a multiscan, there is
one detail which deserves some additional attention. The if-clause in the spinesum phase
seems somewhat suspect. Its purpose is to prevent nodes which are not spine elements from
overwriting their spine element’s spinesum, and it achieves this goal, since rowsum has been
initialized to the neutral element for all nodes, and has only been changed in later steps
for spine elements. The purpose of the statement is therefore not related to the algorithm’s
performance, it is necessary to ensure the algorithm’s correctness.
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However, if the condition is stated the way it is in ShefHler’s algorithm, it has an unintended
side effect. While non-spine elements are guaranteed to have a rowsum equal to e, spine
elements are not guaranteed to have a rowsum different from e. If all values which are
summed up to be the rowsum of a certain spine element are equal to the neutral element,
then this spine element will not update it’s spine elements spinesum in this step. This is a
problem because its own spinesum may not be equal to the neutral element, but it would
not make its way up the spine in this iteration. The algorithm as stated by Sheffler therefore
works correctly only if all values are distinct from the neutral element. Nevertheless, we will
continue to evaluate its applicability to GPUs.

Some general observations:

The algorithm depends strongly on the use of pointers that make up the spine for each bucket.
Following pointers frequently means a lot of memory accesses. It also features a very small
amount of arithmetic operations, meaning that there is very few computation to be done
between the memory accesses. This is especially important because, as mentioned before,
this algorithm is intended for PRAMs, and therefore assumes SIMD execution, which has to
be enforced through block-level synchronization on GPUs. In fact, its correctness depends
on synchronization of all threads after each step, i.e. after each iteration of the sequential
loops in each phase except for the initialization. This need for very frequent synchronization
means that there will be little freedom to schedule another warp of the same block while a
given warp is waiting for data from memory, and memory access latency therefore cannot
be hidden effectively. Because of the large number of memory accesses, this will necessarily
reduce the maximum achievable performance.

In addition to frequently accessing spine elements, the algorithm uses both the label and the
value for each node twice. This means that they either have to be fetched from DRAM twice,
obviously resulting in additional cost, or they have to be stored somewhere in the meantime.
Storing them in private registers is problematic because the access pattern is not the same
for the value accesses; in one phase, they are done by row, in the other phase by column, so a
natural algorithm would have different threads needing the same value. For the same reason
of different access patterns, it is impossible to have coalesced reads for the values both times.
It therefore seems sensible to store both labels and values in shared memory after fetching
them once, unless shared memory is needed for other purposes, in which case using more
shared memory than absolutely necessary may limit parallelism.

The main problems, frequent memory accesses and synchronizations, lie at the core of the
algorithm and cannot be avoided without basically abandoning the algorithm altogether, and
we will therefore not try to do so. Instead, we will implement the algorithm for GPUs making
only minor adaptations wherever they can obviously lead to better performance. While we
do not expect it to perform very well, the alternatives discussed so far do not fully exploit
the GPU’s capabilities either, so Sheffler’s algorithm may still be a valuable contribution.
As for all other algorithms we have discussed, we will now discuss if and how this algorithm
can be implemented either with or without the partitioning scheme we have used throughout.

5.4.1 No partitioning

We have alread mentioned that, during each of the four main phases (excluding the initial-
ization), the algorithm’s correctness depends on the fact that steps are executed for one row
or column after they have been executed for all nodes of the previous row or column. But
on GPUs, this is impossible on a device level. As a result, this algorithm can only be imple-
mented for GPUs if all threads are in the same block. That, however, means that only one
of the GPU’s SMs can be used, which prevents the algorithm from achieving good optimal
performance to begin with.

It is therefore much more reasonable to let several blocks use the algorithm in parallel by
using the partitioning scheme.
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Figure 5.4: Performance of Shefller’'s multiscan algorithm in global memory for different
numbers of threads per block

5.4.2 Partitioning in global memory

Every instance of the algorithm, i.e. every block of threads if a partitioning scheme is used,
needs to store its own vector of spinerecs. Since each spinerec used 12 bytes of memory
(assuming 32-bit pointers), and each block processing segLength input elements requires
n + nBuckets spinerecs, a large amount of memory may be needed for this data structure.
This suggests that it may be best placed in global memory. It is not possible to store either
only the spinerecs for the input elements or only the spinerecs for the buckets in global
memory and the others in shared memory, since this would mean that the spine pointer of
every node could in principle refer to either global or shared memory. This is impossible,
since the compiler needs to be able to determine which level of memory is accessed by any
instruction at compile time.

Memory accesses to each nodes’s spine pointer are frequent, and the pointer may refer to any
element in a higher row than the current one. Spine accesses are therefore unpredictable and
cannot possibly be coalesced. This will necessarily affect performance negatively if nodes and
buckets are stored in global memory. The point made before (that threads have very little
to do between memory reads and writes) further amplifies this fact.

Apart from storing labels and values in shared memory, there are no further obvious improve-
ments which could be made to the algorithm when implemented in global memory. Finding
the best configuration for the algorithm, however, is not completely trivial. Each block can
in principle work on any number of inputs, meaning that we can partition the input data
into arbitrarily many segments, as long as the segment length is a square of a natural num-
ber. The length of each segment directly determines the number of threads per block (or the
other way around): If a block works on segLength inputs, then nThreads = \/segLength,
or equivalently segLength = nThreads®. Figure shows the algorithm’s performance for
different choices of nThreads for nBuckets = 256.

We can see that performance is best for very low numbers of threads and therefore few
elements per segment; the best configuration seems to be nT'hreads = 16 and therefore
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segLength = 256. The algorithm did not run successfully for even shorter segments, since
shorter segments mean more partial results, and the amount of global memory does not suffice
to store all partial results for even smaller segment sizes.

The fact that the algorithm performs better with fewer threads per block can be explained
from two perspectives. First of all, small segments mean few threads per block and low
shared memory usage per block, which means that many blocks can run in parallel on each
SM. This may be advantageous because, as mentioned before, the frequent synchronization
prevents the warp scheduler from hiding latency efficiently. Synchronization, however, affects
only the warps of one block, meaning that with more blocks per SM, the warp scheduler has
more freedom.

A more likely explanation for the performance pattern is the following: At 256 inputs per
segment with 256 buckets, each bucket will likely have one element in each segment. This
means that most of the actual work is not performed by Sheffler’s algorithm, but by the
subsequent two phases of the partitioning algorithm; Sheffler’s algorithm mostly serves to
rearrange the inputs for each segment into a pattern which the subsequent two phases can
work with (and does so in a very inefficient fashion). In effect, this means that this algorithm
performs best when it is not really used and others do most of the work. This, and the fact
that it needs more than 4 ns per input even with few buckets, should lead us to abandon this
approach and consider alternatives.

5.4.3 Partitioning in shared memory

In order to reduce the waiting time between memory accesses, it would make sense to store
nodes and buckets in shared memory. As mentioned before, a spinerec uses 12 bytes of
memory, so the 48 kB of shared memory on each SM are enough to contain 4096 spinerecs.
Since the length of nodes needs to be a square, and one would want to avoid to have warps
consisting of much less than 32 threads (since that would automatically mean that a number
of SPs will remain unused a lot of the time), one would prefer to either have nThreads = 32,
and have three blocks per SM, or have nThreads = 62, which would leavejust enough space
for 256 buckets, and have one block per SM. More than 62 threads per block would not leave
enough empty space for realistic numbers of buckets.

Both cases not be optimal for different reasons. In the case of nThreads = 62, there are
only 62 threads running on every SM. That is not nearly enough to fully exploit the SM’s
capabilities, which is built to host hundreds of threads at once. The fact that there is not
much freedom in the warp scheduling choices is a theoretical problem here, since there can
only be two total warps on each SM, so that there will not be any kind of latency hiding
anyway.

In the case of nThreads = 32, there can be three warps per SM, which can be scheduled
independently. This is obviously better than the other scenario, but only by a small margin.
In addition the algorithm itself becomes suspect for small choices of nT'hreads. We have
already seen that in this case, other phases to most of the work. But apart from that, there
is another problem: Since the algorithm’s depth is the square root of the length of the input,
one could achieve a factor nThreads speedup at most over the sequential algorithm for every
single segment. For this potential speedup, the Sheffler algorithm performs a lot of additional
work, with a lot of additional initialization and four phases, each of which requires at least as
much work as one step of a simple sequential algorithm. This additional work is very likely
to compensate for the theoretical speedup if nThreads is small.

In addition to all this, the algorithm also has memory access problems. There does not seem
to be a possibility for it to avoid a potentially large number of bank conflicts. Spines can
point to any node above the current one, making it impossible to design a memory layout
that definitely avoids bank conflicts in the accessed spine elements. Furthermore, the nodes
are accessed both per-row and per-column, thus making any layout that puts different rows or
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Figure 5.5: Performance of Shefller’s multiscan algorithm in shared memory

columns in different banks and thereby avoids bank conflicts for one access pattern a definite
worst, case for the other one.

In spite of these problems, we have implemented the algorithm for shared memory as well.
The resulting performance is shown in Figure [5.5] The performance is even worse than
the best case of the global memory implementation, most likely due to the severely limited
parallelism. It also performs slightly worse than the sequential implementation in all cases
and cannot be used at all for large numbers of buckets because of shared memory limitations.
We will therefore not consider this approach any further.

5.5 Sort-based approach

Just like sorting can convert a multireduce problem to a segmented reduce problem, it can
also reduce multiscan to segmented scan. The procedure for this is slightly more complex
for the multiscan and described in Algorithm [5.3] and illustrated in Figure First, a new
vector of pairs is created, which stores the value and the index of each position. These pairs
are then sorted by their labels. Without the index information in each pair, the original index
of each value (which is needed in the last step) would be lost at this point. Subsequently, the
labels are converted to segment start flags, and the values are extracted from the index-value
pairs, so that a segmented scan can be performed on the values using the flags. The scanned
values are then scattered back to their original locations as specified by the index field of the
index-value-pairs.

struct IndexValue {
int index;
M value;
¥
Using index-value pairs is a general way to solve the problem of remembering original indices;

however, there are others. If both the values and the indices are known to only use a certain
number of bits, then the two can be packed into one integer using some bit level encoding.
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Figure 5.6: Illustration of sort-based multiscan

function multiScan(int labels/n], M values[n], M results/n], int n) :

IndexValue iValues[n];

parfor i =0 ton—1do
iValues[i].index = 1i;
iValues[i].value = valuesli];

end

stableSort(labels, iValues);

bool flags[n|;

parfor i =0 ton—1do

| wvalues[i] = iValues[i].value;

end

parfor i =0 ton — 2 do

end
flags[n — 1] = 0;
M scannedV alues|n];

parfor i =0 ton—1do

end

end

| flags[i] = labels[i]! = labels[i + 1];

segmentedScan(values, flags, scannedV alues, n, ®);

| result[iValues[i].index] = scannedV alues]i]

Algorithm 5.3: Sort-based multiscan algorithm

97



CHAPTER 5. MULTISCAN ON GPUS

45 -

Random input data —+—
Degenerate input data —o—

ns / key-value-pair

0 i i i i i i i i j
8 10 12 14 16 18 20 22 24 26

log2(average segment length)

Figure 5.7: Performance of global sorting multiscan algorithm

Before or during the segmented scan, however, the original values would need to be extracted
again.
It is also possible to perform the segmented scan directly on the index-value-pairs using a
suitable operator, but only if the multiscan to be performed (and therefore the segmented
scan) is inclusive, since otherwise the first and last indices in each segment are lost in the
result.

5.5.1 No partitioning

For the version without partitioning, we have implemented the sort-based approach using
SRTS radix sort, sorting only by as many bits as necessary, and Thrust’s scan-by-key-function,
which converts the labels to flags and performs the segmented scan in a single step. The
resulting performance is shown in Figure

Compared to the same approach for the multireduce, this multiscan algorithm performs
comparatively bad for very low numbers of buckets, needing more then 2.5 ns per input for
256 buckets. This is likely due to the large amount of work necessary for converting values
to index-value-pairs and back, as well as the overhead for scattering results in the last step.
However, similarly to the multireduce case, the algorithm only gets gradually slower for large
numbers of buckets. Since many other algorithms do not perform well, or work at all, for
very many buckets, this algorithm may therefore well be the first choice for many buckets.
It is interesting that the algorithm needs about 1 ns more per input if the input is random
than if it is degenerate. For the multireduce, a similar difference existed, but it was not
nearly as large. The most likely reason for this is that both the sort step and the scatter
step make much better use of caches if all labels are identical, since both essentially just copy
large, contiguous blocks of data from one location to another in this case.

We did not try using bit-level encoding instead of explicit index-value-pairs, since we assume
that the algorithm will generally be used for large input vectors and using full 32-bit integers.
We did, in fact, implement a version of this which performs the scan directly on the index-
value-pairs, thus saving one conversion at the expense of additional calculations during the
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scan, but this resulted in worse performance than the original approach.

One possible improvement which we did not implement is converting the values to index-
value-pairs during the first run of the radix sort. This would save one run over all input
values, and it would mean that the radix sort algorithm only has to fetch values instead of
index-value-pairs for the first run. This would, however, require a significant alteration of
the existing code and would likely only result in a minor speedup, which is why we did not
attempt to implement this modification.

5.5.2 Partitioning in global memory

As was the case for the multireduce, we reasoned that any partitioning strategy using a sort-
based algorithm would necessarily be faster in shared memory, and that using global memory
offers no significant advantages over either the partitioning version in shared memory or the
global implementation.

5.5.3 Partitioning in shared memory

As for the multireduce, we will again implement our algorithm using the sort and segmented
scan functions of the CUB and Modern GPU libraries, respectively.

For the reasons discussed before, we will transpose input data before using it, just like we do
for the multireduce for non-commutative operators.

In this case, however, we need to perform a segmented scan instead of a segmented reduce
in the second step of the algorithm. This can be done with only a few adaptations to
the multireduce algorithm, which uses Modern GPU’s segmented scan function to compute
a segmented reduction. The problem with the segmented scan function is, however, that
it computes the segmented scan for nThreads inputs per block, but each block actually
has nThreads x nltems input elements and needs a segmented scan of all of them. We
will therefore use a similar method as in the multireduce algorithm to use a segmented
scan function for nThreads elements to compute a segmented scan of nThreads x nltems
elements.

The algorithm to accompligh this is shown in Algorithm where the sort and segmented
scan functions are still defined like in Section 4.3

We first fetch and transpose the input data for the current block using Baxter’s algorithm.
Instead of having a local array of values, we need an array of index-value-pairs for the mul-
tiscan. We then sort the index-value-pairs by their labels.

Now the segmented scan algorithm begins, as before by first letting each thread fetch the first
label of the next thread through shared memory. We then perform a local exclusive scan of
the thread’s values. The input to the second phase, Modern GPU’s segmented scan function,
is calculated exactly as it is for the multireduce.

In the last phase, we have to combine the results of the local exclusive segmented scan with
the result of the second phase. Single results are obtained by adding the results of the local
scan to the segmented scan result. In the multireduce algorithm, we obtain the values of
buckets by adding the result of the segmented scan to the result of the inclusive local scan
at the end of each segment. Here, the local scan is exclusive, so we also have to add the last
value of the segment in order to get the same result.

This means that we still need the intitial values in the last phase of the computation, which
in turn means that we cannot use the local value array to store flags inbetween, and flags
therefore need to be computed twice.

Compared to the non-commutative multireduce algorithm, this one has to spend additional
work writing results for every element to global memory, and a small amount of extra work
for recomputing labels. We therefore expect it to show performance slightly worse than, but
comparable to that of said algorithm. Figure [5.8| shows this algorithm’s performance.
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kernel sortMultiScan(int inLabels[nf, M inValues[n], M results/n], M

bucketsin Buckets x nThreads]/, int n) :
int block Labels[nThreads x nltems];
M blockV aluesnThreads x nltems];

// transpose input data shared int transposeSpace[nitems x nThreads];
local int indices[nItems];
local IndexValue values[nltems];

for i =0 to nltems — 1] do
int index = nThreads X © + threadld;

transposeSpacelindex| = blockV alues|index];
end

or i € [0..nItems — 1] do
int index = nltems X threadld + i;

values[i].value = transposeSpacelindex];
valuesli].indexr = index;
end

—y

Fetch labels in the same fashion
cub::sort(indices, values);

// exchange first labels

shared int nextValues[nThreads],

nextValues[threadld) = threadld == 0 ? nBuckets : labels|0];
int nextLabel = nextValues[(threadld + 1) mod nThreads];

// first phase of segmented scan int x;
bool f = false;

int localScan[nltems];

int next = indices|0];

for i € [0...nItems — 1] do

localScanli] = x;
xr =17 x ®valuesli].value : values|i].value;
int current = next;
next = i == nltems — 1 7 nextLabel : indices[i + 1];
bool flag = current! = next;
if flag then
| x = identity;
end
f =11l flag;
end

// second phase
int y = mgpu::segmentedScan(x, f);

// third phase

next = labels|0];

for i =0 to nltems — 1 do

int first = next;

next = i == nltems — 1 7 nextLabel : indices[i + 1];

M y2 = y ® local Scanli];

result[values[i].index] = y2;

if first! = next then
buckets[indices[i] x nBlocks + blockld] = y2 ® valuesli].value;
y = 0;

end

end

end 100
Algorithm 5.4: Complete sort-based multiscan kernel working in shared memory
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Figure 5.8: Performance of sorting multiscan algorithm in shared memory

For nBuckets < 28, the algorithm needs less than 0.75 ns per input and is therefore on
par with Thrust’s scan-by-key function and the fastest of our multiscan algorithms. While
performance for degenerate input data remains good even for more buckets, it deteriorates
quickly for random input data. Compared to the corresponding multireduce algorithm, this
one has slightly lower performance throughout, which is expected because of the extra work
necessary for performing a scan. In addition, the multiscan implementation used a lower
nltems, which may explain part of the generally lower performance, and definitely explains
why the performance starts to drop faster as nBuckets grows than it does for the multireduce.

5.6 Conclusion

Figure [5.9|shows the the worst case performance of all multiscan algorithms we implemented
in this chapter.

Compared to the very good results we achieved for the multireduce, the performance of our
multiscan algorithms is disappointing. Sheffler’s PRAM algorithm is obviously not a good fit
for GPUs. Among many other problems, it suffers from a lack of parallelism, a high memory
demand, frequent synchronizations and frequent, unpredictable memory access, all of which
are unproblematic on a PRAM, but seriously hinder performance on a GPU. As a result, it
is clearly outperformed even by the sequential CPU implementation.

While the sorting approaches outperform all other algorithms by some margin, they, too,
perform much worse than they do for the multireduce. The reason for this is that the sorting
algorithm itself is much more complicated for the multiscan than it is for the multireduce.
The version without partitioning requires a number of additional steps, each of which reads
and writes large amounts of data. When implemented using the partitioning scheme in
shared memory, the performance it somewhat similar to the multireduce, but higher demand
for registers limits the amount of parallelism. Nevertheless, the sorting algorithm in shared
memory delivers performance on par with Thrust’s scan-by-key function for low numbers of
buckets, and the approach without partitioning clearly outperforms the CPU algorithm as
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Figure 5.9: Performance comparison of different multiscan algorithms

soon as the latter starts to suffer from cache misses.

We did not discuss the adaptations of the sequential algorithm in detail, since they are
virtually identical to the non-commutative case of the multireduce algorithms, which performs
bad compared to other multireduce algorithms. Compared to other multiscan algorithms,
however, this approach looks relatively competitive.

All in all, we have to admit that none of our multiscan algorithms outperforms the CPU
implementation by a large enough factor to warrant the effort for moving the computation
to the GPU. We also have to conclude that, with these algorithmic options, the multireduce
operation is too slow to be used as a general building block for other algorithims.
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Chapter 6

Conclusions and future work

6.1 Summary and conclusion

In this thesis, we have discussed algorithmic approaches to implementing the multireduce
and multiscan operations, both of which have a number of widespread applications that
could make them useful building blocks for more complicated algorithms. We have seen
that an entire family of closely related problems exists around these two general operations,
and that all of them can be solved by similar algorithmic approaches, which have similar
performance bottlenecks.

Our examination of the sequential algorithms revealed that the performance of all of these
operations suffers from cache and TLB misses for large numbers of buckets. As a result, the
simple algorithms which are optimal according to the RAM model can actually be improved
on for some hardware configurations. We showed that the use of huge pages can alleviate the
problem of TLB misses and, more importantly, that partial radix sorting of the input data
can avoid cache misses on all levels and therefore improve overall performance.

However, we also had to conclude that the usefulness of sorting depends entirely on the used
hardware, and that especially high-end systems with many and large caches are unlikely
to profit from this approach. This makes the ability to predict the benefit of the sorting
approach for any given system especially valuable.

We therefore provide a cache simulator which, given the access latencies for the existing layers
of memory, calculates the expected runtimes of both approaches. In its current state, this
simulator does not take into account memory pipelining and therefore does not give perfect
results for RAM access times, but it can still be useful for cases where the expected speedup
of the sorting approach is much higher, e.g. gathering and scattering data to or from disk.
Subsequently, we attempted to find efficient algorithms for the aforementioned operations for
modern GPUs in order to capitalize on their superior computing power. We first discussed
the structure of GPUs and the requirements which algorithms must fulfill in order to fully
exploit the GPU’s capabilities, pointing out the differences between GPUs and the PRAM
model in particular.

While there is a way to use the existing (very efficient) parallel implementations of reduce and
scan to compute a multireduce and multiscan, we argued that that approach is only sensible
for very low numbers of buckets and will result in bad performance otherwise, meaning that
different algorithmic approaches are needed.

For the multireduce, we evaluated adaptations of the sequential algorithm as well as a sort-
based conversion of the multireduce problem to a segmented reduce problem. We pointed out
the possibility of implementing either of these approaches on several levels in the CUDA mem-
ory hierarchy, and implemented and compared all sensible combinations for both approaches.
We surveyed the literature on related algorithms (most prominently histogramming) and
transferred successful concepts to our implementations wherever possible.
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While we achieved significant speedups over the CPU implementation for all configurations,
a central insight we gained concerning the multireduce is that commutative operators allow
for a much wider range of optimizations than non-commutative ones. As a result, we have
created a separate range of algorithms which specifically exploit commutativity, and thereby
reach an order of magnitude speedup over the sequential implementation on average, whereas
the average speedup for non-commutative operators is a factor of six.

The most convincing multireduce algorithm we found is an adaptation of the sequential
algorithm which exploits commutativity. Based on the general idea of an existing histogram
algorithm, we used a superior distribution of shared memory between threads which vastly
increases the amount of parallelism. As a result, our multireduce algorithm performs as
well as, or slightly better than, the best existing histogramming algorithm, even though
the latter uses a number of histogram-specific optimizations which cannot be applied to the
general multireduce problem. It works around 18 faster than the sequential implementation.
We showed that this algorithm can be extended to work on any number of buckets with
acceptable, but significantly diminished performance.

A number of other approaches show good results for some input configurations; in particular,
an algorithm which works with both commutative and non-commutative operators outper-
forms existing library functions for related but simpler problems for up to 1024 buckets.
Generally however, performance gradually decreases for all approaches as the number of
buckets grows.

A significant insight gained while evaluating different multireduce algorithms is that partial
radix sorting with the aim of raising the cache hit rate can lead to performance improvements
on GPUs as well as on CPUs. This result would have been even more significant if it could
have been extended to the scatter operation, where large numbers of buckets are very frequent,
but it did not result in a speedup in that case.

Histogramming is another related problem which can benefot from our work on the mul-
tireduce. While our general multireduce is already slightly faster than the fastest existing
histogram algorithm, we also created a version of the multireduce algorithin optimized for
histogramming. The result is consistently around 40% faster than the currently fastest pub-
lished histogram algorithm.

The algorithms we found for the multiscan have been altogether less convincing than those
for the multireduce. The main problem here is that the order in which elements have to
be reduced is fixed for the multiscan, which is the same problem that also prevents further
speedup of the multireduce for non-associative operators. This problem remains in spite of a
sophisticated fetching mechanism, which we generalized from an existing proposal.

The only existing work-efficient PRAM algorithm for the multiscan, while adaptable to GPU
hardware in principle, shows bad performance compared to all other approaches (consistently
worse than the CPU). The main problem is that two main assumptions of the PRAM model,
random memory access at constant, low cost and general SIMD execution, do not generally
hold for GPUs, resulting in a lot of idle time for each thread and a need for frequent, costly
synchronizations.

We therefore conclude that the multireduce can be recommended for use as a primitive
operations and as a building block for other algorithms, especially if the number of buckets
is relatively low and if the used operator is commutative. The latter is the case for all of the
most typical operators used in scans and reductions. The multiscan, however, does not have
a sufficiently fast implementation to be recommended for general use.

6.2 Future work

We suggest the following areas for possible further research:

e The main objective of this thesis was to evaluate different algorithmic approaches, not
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to optimize a specific one. As a result, most algorithms presented here can almost cer-
tainly be sped up further through low-level improvements or improved work distribution
between blocks and threads. This is especially true for the fast histogram algorithm,
since histogramming is not the main topic of this thesis and less effort has therefore
been spent on optimizing it. Nevertheless, histogram calculation is an important topic
in GPU computing, as the large number of publications on this topic shows, which is
why it seems worthwhile to further optimize this algorithm in particular.

e Since it is now certain that the multireduce can be calculated very efficiently on modern
hardware, it seems sensible to try to apply it to different problems than the ones
mentioned in this thesis. The field of (sparse) matrix and vector operations seems like
an especially promising field in this regard.

e Gathering and scattering data from non-sequential locations on disk or similarly slow
media is common in many applications, yet there seems to be little to no literature
on accelerating such accesses on a software level. We have shown that even a simple
approach like partial sorting can lead to speedups. Considering the ubiquity of this use
case, further research should try to find more sophisticated ways to exploit caching in
these scenarios.

e As mentioned before, the cache simulator used to predict the relative performance
of traditional and sort-based scattering and gathering does not yet simulate modern
memory with complete accuracy. The simulator could be extended to properly simulate
memory pipelining and virtual address translation.

o While both the multireduce and the multiscan are probably best distributed as a library
function in a CUDA context, other programming languages like NESL would demand
for a different integration into the language. Since we have shown that a multireduce
can be implemented efficiently on GPUs, different options for making the operations
available in different language contexts should be developed.
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Appendix A

Comparison of histogram algorithms

Figures[A.T]and [A.2show the performance of our histogram algorithm (called "BankTRISH")
compared to that of other existing histogram algorithms for 256 bins.
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APPENDIX A. COMPARISON OF HISTOGRAM ALGORITHMS
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Figure A.1: Comparison of histogram algorithms for 256 bins, random inputs
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Figure A.2: Comparison of histogram algorithms for 256 bins, degenerate inputs
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Appendix B

Adaptation of the sequential
algorithm for multireduce

Since the adaptation of the sequential algorithm for the multireduce does not differ in any
fundamental way from the equivalent multireduce implementation and promised poor perfor-
mance, we did not discuss it in detail in the main part. Nevertheless, we still implemented and
benchmarked it both for global and for shared memory. The results are shown in Figures|B.1

and [B.2] respectively.

113



APPENDIX B. ADAPTATION OF THE SEQUENTIAL ALGORITHM FOR
MULTIREDUCE
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Figure B.1: Runtime of multiscan in global memory
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Figure B.2: Runtime of multiscan in shared memory
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