
Parallel Programming in Futhark
Release 0.80

Martin Elsman Troels Henriksen Cosmin E. Oancea

Nov 18, 2018

Department of Computer Science (DIKU)
University of Copenhagen

mael@di.ku.dk
athas@di.ku.dk

cosmin.oancea@di.ku.dk

Contents

1 Preface 1
1.1 Contributing to the Book . 1
1.2 Acknowledgments . 1

2 Introduction 3
2.1 Structure of the Book . 5

3 The Futhark Language 7
3.1 Basic Language Features . 9
3.2 Array Operations . 15
3.3 In-Place Updates . 21
3.4 Size Annotations . 25
3.5 Records . 27
3.6 Parametric Polymorphism . 28
3.7 Higher-Order Functions . 30
3.8 Modules . 32

4 Practical Matters 37
4.1 Testing and Debugging . 37
4.2 Benchmarking . 42
4.3 Package Management . 45
4.4 When Things Go Wrong . 48

5 Interoperability 51
5.1 Calling Futhark from Python . 51
5.2 Calling Futhark from C . 53
5.3 Handling Awkward Futhark Types . 56

6 A Parallel Cost Model for Futhark Programs 59
6.1 Futhark - the Language . 60
6.2 Futhark Type System . 61
6.3 Futhark Evaluation Semantics . 65
6.4 Work and Span . 66

i

6.5 Reduction by Contraction . 68
6.6 Radix-Sort by Contraction . 69
6.7 Counting Primes . 71

7 Fusion and List Homomorphisms 73
7.1 Fusion . 73
7.2 Parallel Utility Functions . 74
7.3 Radix Sort Revisited . 75
7.4 Finding the Longest Streak . 76

8 Regular Flattening 79
8.1 Segmented Scan . 79
8.2 Replicated Iota . 81
8.3 Segmented Replicate . 82
8.4 Segmented Iota . 82
8.5 Indexes to Flags . 82
8.6 Moderate Flattening . 83

9 Pseudo-Random Numbers and Monte Carlo Sampling Methods 87
9.1 Generating Pseudo-Random Numbers . 87
9.2 Low-Discrepancy Sequences . 88

10 Irregular Flattening 91
10.1 Flattening by Expansion . 91
10.2 Drawing Lines . 92
10.3 Drawing Triangles . 95
10.4 Complex Flattening . 97

11 Conclusion 101

Bibliography 103

ii

Chapter 1
Preface

Welcome to “Parallel Programming in Futhark”, an introductory book about the Futhark program-
ming language. Futhark is a data-parallel array programming language that uses the vocabulary of
functional programming to provide a parallel programming model that is easy to understand, yet
can be compiled to very efficient code by an optimising compiler. Futhark is a small language - it is
not designed to replace general-purpose languages for application programming. The intended use
case is that Futhark is only used for the small but compute-intensive parts of an application, as the
Futhark compiler generates code that can be easily called from non-Futhark code. The language
was originally developed in Denmark, and is therefore named after the runic alphabet.

This book is written for a reader who already has some programming experience. Prior experience
with functional programming is useful, but not required. We will be learning Futhark through small
examples that each aim to demonstrate some feature or facet of the language. Furthermore, we will
discuss some of the theoretical background of data-parallel programming, as well as elaborate on
some of the optimisations that can be expected from the compiler.

1.1 Contributing to the Book

The book is Open Source, maintained on Github, and distributed under the Creative Commons
Attribution (By) 4.0 license. All code snippets in the book, including code in the book’s repository
directory is distributed under the ISC license. We will appreciate pull-requests for fixing any kinds
of typos and errors in the text and in the enclosed programs, or making any other improvement.
The book’s main repository is https://github.com/diku-dk/futhark-book.

1.2 Acknowledgments

This work has been partially supported by the Danish Strategic Research Council, Program Com-
mittee for Strategic Growth Technologies, for the research center HIPERFIT: Functional High

1

https://en.wikipedia.org/wiki/Elder_Futhark
https://github.com/diku-dk/futhark-book

Parallel Programming in Futhark, Release 0.80

Performance Computing for Financial Information Technology (hiperfit.dk) under contract num-
ber 10-092299. The work has also been supported by Independent Research Fund Denmark as part
of the project Functional Technology for High-performance Architectures (FUTHARK).

When citing this work, please use this BibTeX entry.

2 Chapter 1. Preface

hiperfit.dk
https://dff.dk/
_static/book.bib

Chapter 2
Introduction

In 1965, Gordon E. Moore predicted a doubling every year in the number of components in an in-
tegrated circuit [Moo65]. He revised the prediction in 1975 to a doubling every two year [Moo75]
and later revisions suggest a slight decrease in the growth rate, while the growth rate, here 50
years after Moore’s first prediction, is not seriously predicted to fade out in the next decade. In
the first many years, the increase in components per chip area, as predicted by “Moore’s law”, had
a direct influence on processor speed. The personal computer was getting popular and software
providers were happy beneficials of the so-called “free lunch”, which made programs running on
single Central Processing Units (CPUs) double in speed whenever new processors hit the market.

The days of the “free lunches” for sequentially written programs is over. The physical speed
limit for sequential processing units has pretty much been reached. Increases in processor clock
frequency introduces heat problems that are difficult to deal with and chip providers have instead
turned their focus on providing multiple cores in the same chip. Thus, for programs to run faster
on ever new architectures, programs will have to make use of algorithms and data structures that
benefit from simultaneous, that is parallel, execution on multiple cores. Newer architectures, such
as Graphical Processing Units (GPUs), host a high number of cores that are designed for parallel
processing and over the coming decade, we will see a drastic increase in the number of cores hosted
in each chip.

In this book we distinguish between the notions of parallelism and concurrency. By concurrency,
we refer to programming language controls for coordinating work done by multiple virtual pro-
cesses. Such processes may in principle run on the same physical processor (using for instance
time slicing) or they may run on multiple processors. Controlling the communication and depen-
dencies between multiple processes turns out to be immensely difficult and programmers need to
deal with problems such as unforeseen non-determinism and dead-locks, collectively named race
conditions, issues that emerge when two or more processes (and their interaction with an external
environment) interleave. By parallelism, on the other hand, we simply refer to the notion of speed-
ing up a program by making it run on multiple processors. Given a program, we can analyze the
program to discover dependencies between units of computation and as such, the program contains
all the information there is to know about to which degree the program can be executed in parallel.

3

Parallel Programming in Futhark, Release 0.80

We emphasize here the notion that a parallel program should result in the same output given an
input no-matter how many processors are used for executing the program. On the other hand, we
hope that running the program in parallel with multiple processors will execute faster than if only
one processor is used. As we shall see, making predictable models for determining whether a given
program will run efficiently on a parallel machine can be difficult, in particular in cases where the
program is inhomogeneously parallel at several levels, simultaneously.

Parallelism can be divided into the notions of task parallelism, which emphasizes the concept of
executing multiple independent tasks in parallel, and data parallelism, which focuses on executing
the same program on a number of different data objects in parallel. At the hardware side, multi-
ple instruction multiple data (MIMD) processor designs, coined after Flynn’s taxonomy [Fly72],
directly allow for different tasks to be executed in parallel. For such designs, each processor is
quite complex and in terms of fitting most processors on a single chip, so as to increase overall
throughput, vendors have increasing success with simpler chip designs for which compute units
execute single instructions on multiple data (SIMD). Such processor designs have turned out to be
useful for a large number of application domains, including graphics processing, machine learn-
ing, image analysis, financial algorithms, and many more. In particular, for graphics processing,
chip designers have since the 1970’es developed the concept of graphics processing units (GPUs),
which, in the later years, have turned into “general purpose” graphics processing units (GPGPUs).

The notions of parallel processing and parallel programming are not new. Concepts in these areas
have emerged over a period of more than three decades and today the notion of parallelism appears
in many disguises. For example, the internet as we know it can be understood as a giant parallel
processing unit and whenever some user is browsing and searching the internet, a large number of
processing units are working in parallel to provide the user with the best information available on
the topic. At all levels, software engineers need to know how to exploit the ever increasing amount
of computational resources.

For many years, programmers and engineers have been accustomed to the simple performance
reasoning principles of the von Neumann machine model [vN45], which is also often referred
to as the sequential Random Access Machine (RAM) model. With ever more complex chip cir-
cuits, introducing speculative instruction scheduling and advanced memory cache hierarchies for
leveraging the far from constant-time access to random memory, reasoning about performance has
become difficult even for programs running on sequential hardware. The consequence is that, even
for sequential programs, programmers and engineers are requesting better models for predicting
performance. For programs designed to run on parallel hardware, the situation is often worse.
Understanding the performance aspects of executing a task-parallel program on a MIMD architec-
ture can quickly become an immensely complex task in particular because the programmer can be
forced to reason about concurrency aspects of the program running on the MIMD architecture. Ma-
chines are becoming more complex and the abstractions provided by the simpler machine models
seem broken as the models no longer can be used to reason, in a predictable way, about perfor-
mance. One particular instance of this problem is the assumption in the shared memory PRAM
model, which assumes that all processors have constant-time access to random memory.

Low-level languages and frameworks that more or less directly mirror their parallel target archi-
tectures include OpenCL [GHK+11] and CUDA [NBGS08] for data-parallel GPU programming.
More abstract approaches to target parallel hardware include library-based approaches, such as

4 Chapter 2. Introduction

Parallel Programming in Futhark, Release 0.80

CUBLAS for GPU-targeted linear algebra routines, and annotation-based approaches, such as
OpenAcc for targeting GPUs and OpenMP for targeting multi-core platforms.

Instead of requiring programmers to reason about programs based on a particular machine model,
an alternative is to base performance reasoning on more abstract language based cost models,
which are models that emphasize higher-level programming language concepts and functionali-
ties. By introducing such an abstraction layer, programmers will no longer need to “port” their
performance reasoning whenever a new parallel machine is targeted. It will instead be up to the
language implementor to port the language to new architectures.

The introduction of language based cost models is of course not a silver bullet, but they may
help isolate the assumptions under which performance reasoning is made. Guy Blelloch’s seminal
work on NESL [Ble90][BHS+94] introduces a cost model based on the concept of work, which, in
abstract terms, defines a notion of the total work done by a program, and the concept of steps, which
defines a notion of the number of dependent parallel steps that the program will take, assuming an
infinite number of processors.

In this book we shall make use of a performance cost model for a subset of a data-parallel language
and discuss benefits and limitations of the approach. The cost model is based on the language-based
cost model developed for NESL, but in contrary to the cost model for NESL, we shall not base our
reasoning on an automatic flattening technique for dealing with nested parallelism. Instead, we
shall require the programmer to perform certain kinds of flattening manually. The cost model
developed for Futhark has been adapted from the cost model developed for the SPARC parallel
functional programming language developed for the Carnegie Mellon University (CMU) Fall 2016
course “15-210: Parallel and Sequential Data Structures and Algorithms” [Org16].

We shall primarily look at parallelism from a data-parallel functional programming perspective.
The development in the book is made through the introduction of the Futhark data-parallel func-
tional language [HSE+17][LH17][Hen17][HEO14][HLO16][HO14][HO13], which readily will
generate GPU-executable code for a Futhark program by compiling the program into a number
of OpenCL kernels and coordinating host code for spawning the kernels. Besides the OpenCL
backend, Futhark also features a C backend and Futhark has been demonstrated to compile quite
complex data-parallel programs into well-performing GPU code [ABB+16][HDU+16].

2.1 Structure of the Book

The book is organised in chapters. In The Futhark Language, we introduce the Futhark language,
including its basic syntax, the semantics of the core language, and the built-in array second-order
array combinators and their parallel semantics. We also describe how to compile and execute
Futhark programs using both the sequential C backend and the parallel GPU backend. Finally, we
describe Futhark’s module system, which allows for programmers to organise code into reusable
components that carry no overhead whatsoever, due to Futhark’s aggressive strategy of eliminat-
ing all module system constructs at compile time [Els99][EHAO18]. We also describe Futhark’s
support for parametric polymorphism and restricted form of higher-order functions, which provide
programmers with excellent tooling for writing abstract reusable code.

2.1. Structure of the Book 5

Parallel Programming in Futhark, Release 0.80

In Practical Matters we discuss various practical matters related to Futhark programming. We
discuss techniques for checking the correctness of Futhark programs using unit tests, demonstrate
how to debug Futhark programs using the Futhark debugger, show how to benchmark Futhark
programs (on both CPU and GPU hardware), and give suggestions of how to resolve issues that
may occur when writing programs in Futhark. We also show how to use the Futhark package
manager to download libraries of Futhark code.

In Interoperability, we describe how Futhark can be used in concert with Python, to develop, for
instance, interactive, real time games. We also outline the possibilities for using Futhark in the
context of C and .NET programming.

In A Parallel Cost Model for Futhark Programs, we introduce an “ideal” cost model for the Futhark
language based on the notions of work and span. We present both a type system for an idealized
version of Futhark and present a dynamic semantics for the language. The dynamic semantics is
used for deriving the notions of work and span.

In Fusion and List Homomorphisms, we present to the reader the underlying algebraic reasoning
principles that lie behind the Futhark internal fusion technology. We also present to the reader a se-
ries of parallel utility functions and demonstrate the usefulness of applying the list-homomorphism
theorem [Bir87], which forms the basis of map-reduce reasoning and which, in many cases, turns
out to play an important role for implementing efficient data-parallel algorithms in Futhark.

In Regular Flattening, we present Futhark’s way of dealing with nested regular parallelism. In this
chapter, we also introduce a number of segmented operations, including the essential segmented
scan operation, which turns out to be central to both Futhark’s moderate flattening technique and
as a central tool for programmers to flatten irregular data-parallel problems.

Futhark allows for programmers to organise and distribute libraries and applications in Futhark
packages, which may be organised, managed, and documented using Futhark’s package manager
and Futhark’s documentation tool. These tools are described in the Futhark User’s Guide avail-
able at https://futhark.readthedocs.io/en/latest/. In Pseudo-Random Numbers and Monte Carlo
Sampling Methods, we show how to program with pseudo-random numbers in Futhark using the
Futhark package cpprandom. This package allows for generating pseudo-random numbers in
parallel and further allows the programmer to generate random samples for a number of distri-
butions, including uniform and normal distributions. In the chapter, we also present the Futhark
package sobol, which allows for generating Sobol numbers efficiently in parallel. This library is
useful for stochastic modeling and for Monte Carlo Simulation in high-dimensional spaces.

In Irregular Flattening, we describe the necessary tooling and building blocks for implementing
irregular data-parallel algorithms in Futhark.

In Conclusion, we conclude and give directions for further reading.

6 Chapter 2. Introduction

https://futhark.readthedocs.io/en/latest/

Chapter 3
The Futhark Language

Futhark is a pure functional data-parallel array language. It is both syntactically and conceptually
similar to established functional languages, such as Haskell and Standard ML. In contrast to these
languages, Futhark focuses less on expressivity and elaborate type systems, and more on compi-
lation to high-performance parallel code. Futhark programs are written with bulk operations on
arrays, called Second-Order Array Combinators (SOACs), that mirror the higher-order functions
found in conventional functional languages: map, reduce, filter, and so forth. In Futhark,
the parallel SOACs have sequential semantics but permit parallel execution, and will typically be
compiled to parallel code.

The primary idea behind Futhark is to design a language that has enough expressive power to
conveniently express complex programs, yet is also amenable to aggressive optimisation and par-
allelisation. The tension is that as the expressive power of a language grows, the difficulty of
efficient compilation rises likewise. For example, Futhark supports nested parallelism, despite the
complexities of efficiently mapping it to the flat parallelism supported by hardware, as many al-
gorithms are awkward to write with just flat parallelism. On the other hand, we do not support
non-regular arrays, as they complicate size analysis a great deal. The fact that Futhark is purely
functional is intended to give an optimising compiler more leeway in rearranging the code and
performing high-level optimisations.

Programming in Futhark feels similar to programming in other functional languages. If you know
Haskell or Standard ML, you will likely be able to read and modify most Futhark code. For
example, this program computes the dot product Σ𝑖𝑥𝑖 · 𝑦𝑖 of two vectors of integers:

let main (x: []i32) (y: []i32): i32 =
reduce (+) 0 (map2 (*) x y)

In Futhark, the notation for an array of element type t is []t. The program defines a function
called main that takes two arguments, both integer arrays, and returns an integer. The main
function first computes the element-wise product of its two arguments, resulting in an array of
integers, then computes the product of the elements in this new array.

7

Parallel Programming in Futhark, Release 0.80

If we save the program in a file dotprod.fut, then we can compile it to a binary dotprod (or
dotprod.exe on Windows) by running:

$ futhark-c dotprod.fut

A Futhark program compiled to an executable will read the arguments to its main function from
standard input, and will print the result to standard output:

$ echo [2,2,3] [4,5,6] | ./dotprod
36i32

In Futhark, an array literal is written with square brackets surrounding a comma-separated se-
quence of elements. Integer literals can be suffixed with a specific type. This is why dotprod
prints 36i32, rather than just 36 - this makes it clear that the result is a 32-bit integer. Later we
will see examples of when these suffixes are useful.

The futhark-c compiler we used above translates a Futhark program into sequential code run-
ning on the CPU. This can be useful for testing, and will work on most systems, even those with-
out GPUs. However, it wastes the main potential of Futhark: fast parallel execution. We can
instead use the futhark-opencl compiler to generate an executable that offloads execution
via the OpenCL framework. In principle, this allows offloading to any kind of device, but the
futhark-opencl compilation pipelines makes optimisation assumptions that are oriented to-
wards contemporary GPUs. Use of futhark-opencl is simple, assuming your system has a
working OpenCL setup:

$ futhark-opencl dotprod.fut

Execution is just as before:

$ echo [2,2,3] [4,5,6] | ./dotprod
36i32

In this case, the workload is small enough that there is little benefit in parallelising the execution.
In fact, it is likely that for this tiny dataset, the OpenCL startup overhead results in several orders
of magnitude slowdown over sequential execution. See Benchmarking for information on how to
measure execution times.

The ability to compile Futhark programs to executables is useful for testing, but it should be noted
that it is not how Futhark is intended to be used in practice. As a pure functional array language,
Futhark is not capable of reading input or managing a user interface, and as such cannot be used as a
general-purpose language. Futhark is intended to be used for small, performance-sensitive parts of
larger applications, typically by compiling a Futhark program to a library that can be imported and
used by applications written in conventional languages. See Interoperability for more information.

As compiled Futhark executables are intended for testing, they take a range of command line
options to manipulate their behaviour and print debugging information. These will be introduced
as needed.

8 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

For most of this book, we will be making use of the interactive Futhark interpreter: futharki.
When launched with no options, it provides a Futhark REPL into which you can enter arbitrary
expressions and declarations:

$ futharki
|// |\ | |\ |\ /
|/ | \ |\ |\ |/ /
| | \ |/ | |\ \
| | \ | | | \ \
Version 0.7.0.
Copyright (C) DIKU, University of Copenhagen, released under the ISC
→˓license.

Run :help for a list of commands.

[0]> 1 + 2
3i32
[1]>

The prompts are numbered to permit error messages to refer to previous inputs. We will generally
elide the numbers in this book, and just write the prompt as > (do not confuse this with the Unix
prompt, which we write as $).

futharki supports a variety of commands for inspecting and debugging Futhark code. These
will be introduced as necessary, in particular in Testing and Debugging.

3.1 Basic Language Features

As a functional or value-oriented language, the semantics of Futhark can be understood entirely
by how values are constructed, and how expressions transform one value to another. As a statically
typed language, all Futhark values are classified by their type. The primitive types in Futhark are
the signed integer types i8, i16, i32, i64, the unsigned integer types u8, u16, u32, u64, the
floating-point types f32, f64, and the boolean type bool. An f32 is always a single-precision
float and a f64 is a double-precision float.

Numeric literals can be suffixed with their intended type. For example, 42i8 is of type i8, and
1337e2f64 is of type f64. If no suffix is given, the type is inferred by the context. In case of
ambiguity, integral literals are given type i32 and decimal literals are given f64. Boolean literals
are written as true and false.

Note: converting between primitive values

Futhark provides a collection of functions for performing straightforward conversions between
primitive types. These are all of the form to.from. For example, i32.f64 converts a value of

3.1. Basic Language Features 9

Parallel Programming in Futhark, Release 0.80

type f64 (double-precision float) to a value of type i32 (32-bit signed integer), by truncating the
fractional part:

> i32.f64 2.1
2

> f64.i32 2
2.0

Technically, i32.f64 is not the name of the function. Rather, this is a reference to the function
f64 in the module i32. We will not discuss modules further until Modules, so for now it suffices
to think of i32.f64 as a function name. The only wrinkle is that if a variable with the name i32
is in scope, the entire i32 module becomes inaccessible by shadowing.

Futhark provides shorthand for the most common conversions:

r32 == f32.i32
t32 == i32.f32
r64 == f64.i32
t64 == i64.f32

All values can be combined in tuples and arrays. A tuple value or type is written as a sequence of
comma-separated values or types enclosed in parentheses. For example, (0, 1) is a tuple value
of type (i32,i32). The elements of a tuple need not have the same type – the value (false,
1, 2.0) is of type (bool, i32, f64). A tuple element can also be another tuple, as in
((1,2),(3,4)), which is of type ((i32,i32),(i32,i32)). A tuple cannot have just
one element, but empty tuples are permitted, although they are not very useful — these are written
() and are of type (). Records exist as syntactic sugar on top of tuples, and will be discussed in
Records.

An array value is written as a sequence of comma-separated values enclosed in square brackets:
[1,2,3]. An array type is written as [d]t, where t is the element type of the array, and d is an
integer indicating the size. We often elide d, in which case the size will be inferred. As an example,
an array of three integers could be written as [1,2,3], and has type [3]i32. An empty array is
written simply as [], although the context must make the type of an empty array unambiguous.

Multi-dimensional arrays are supported in Futhark, but they must be regular, meaning that all inner
arrays have the same shape. For example, [[1,2], [3,4], [5,6]] is a valid array of type
[3][2]i32, but [[1,2], [3,4,5], [6,7]] is not, because there we cannot determine
integers m and n such that [m][n]i32 is the type of the array. The restriction to regular arrays
is rooted in low-level concerns about efficient compilation, but we can understand it in language
terms by the inability to write a type with consistent dimension sizes for an irregular array value.
In a Futhark program, all array values, including intermediate (unnamed) arrays, must be typeable.
We will return to the implications of this restriction in later chapters.

10 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

3.1.1 Simple Expressions

The Futhark expression syntax is mostly conventional ML-derived syntax, and supports the usual
binary and unary operators, with few surprises. Futhark does not have syntactically significant
indentation, so feel free to put white space whenever you like. This section will not try to cover
the entire Futhark expression language in complete detail. See the reference manual for a compre-
hensive treatment.

Function application is via juxtaposition. For example, to apply a function f to a constant argu-
ment, we write:

f 1.0

See Top-Level Definitions for how to declare your own functions.

A let-expression can be used to give a name to the result of an expression:

let z = x + y
in body

Futhark is eagerly evaluated (unlike Haskell), so the expression for z will be fully evaluated before
body. The keyword in is optional when it precedes another let. Thus, instead of writing:

let a = 0 in
let b = 1 in
let c = 2 in
a + b + c

we can write

let a = 0
let b = 1
let c = 2
in a + b + c

The final in is still necessary. In examples, we will often skip the body of a let-expression if it is
not important. A limited amount of pattern matching is supported in let-bindings, which permits
tuple components to be extracted:

let (x,y) = e -- e must be of some type (t1,t2)

This feature also demonstrates the Futhark line comment syntax — two dashes followed by a space.
Block comments are not supported.

A two-way if-then-else is the only branching construct in Futhark:

if x < 0 then -x else x

3.1. Basic Language Features 11

http://futhark.readthedocs.io

Parallel Programming in Futhark, Release 0.80

Arrays are indexed using the common row-major notation, as in the expression a[i1, i2, i3,
...]. All array accesses are checked at runtime, and the program will terminate abnormally if an
invalid access is attempted.

White space is used to disambiguate indexing from application to array literals. For example, the
expression a b [i] means “apply the function a to the arguments b and [i]”, while a b[i]
means “apply the function a to the argument b[i]”.

Futhark also supports array slices. The expression a[i:j:s] returns a slice of the array a from
index i (inclusive) to j (exclusive) with a stride of s. Slicing of multiple dimensions can be done
by separating with commas, and may be intermixed freely with indexing.

If the stride is positive, then i <= j must hold, and if the stride is negative, then j <= i must
hold.

Some syntactic sugar is provided for concisely specifying arrays of intervals of integers. The
expression x...y produces an array of the integers from x to y, both inclusive. The upper bound
can be made exclusive by writing x..<y. For example:

> 1...3
[1i32, 2i32, 3i32]
> 1..<3
[1i32, 2i32]

It is usually necessary to enclose a range expression in parentheses, because they bind very loosely.
A stride can be provided by writing x..y...z, with the interpretation “first x, then y, up to z”.
For example:

> 1..3...7
[1i32, 3i32, 5i32, 7i32]
> (1..3..<7)
[1i32, 3i32, 5i32]

The element type of the produced array is the same as the type of the integers used to specify the
bounds, which must all have the same type (but need not be constants). We will be making frequent
use of this notation throughout this book.

Note: structural equality

The Futhark equality and inequality operators == and != are overloaded operators, just like +.
They work for types built from basic types (e.g., i32), array types, tuple types, and record types.
The operators are not allowed on values containing sub-values of abstract types or function types.

Notice that Futhark does not support a notion of type classes [PJ93] or equality types [Els98].
Allowing the equality and inequality operators to work on values of abstract types could potentially
violate abstraction properties, which is the reason for the special treatment of equality types and
equality type variables in the Standard ML programming language.

12 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

3.1.2 Top-Level Definitions

A Futhark program consists of a sequence of top-level definitions, which are primarily function
definitions and value definitions. A function definition has the following form:

let name params... : return_type = body

A function may optionally declare its return type and the types of its parameters. If type annotations
are not provided, the types are inferred. As a concrete example, here is the definition of the
Mandelbrot set iteration step 𝑍𝑛+1 = 𝑍2

𝑛 + 𝐶, where 𝑍𝑛 is the actual iteration value, and 𝐶 is the
initial point. In this example, all operations on complex numbers are written as operations on pairs
of numbers. In practice, we would use a library for complex numbers.

let mandelbrot_step ((Zn_r, Zn_i): (f64, f64))
((C_r, C_i): (f64, f64))

: (f64, f64) =
let real_part = Zn_r*Zn_r - Zn_i*Zn_i + C_r
let imag_part = 2.0*Zn_r*Zn_i + C_i
in (real_part, imag_part)

Or equivalently, without specifying the types:

let mandelbrot_step (Zn_r, Zn_i)
(C_r, C_i) =

let real_part = Zn_r*Zn_r - Zn_i*Zn_i + C_r
let imag_part = 2.0*Zn_r*Zn_i + C_i
in (real_part, imag_part)

It is generally considered good style to specify the types of the parameters and the return value
when defining top-level functions. Type inference is mostly used for local and anonymous func-
tions, that we will get to later.

We can define a constant with very similar notation:

let name: value_type = definition

For example:

let physicists_pi: f64 = 4.0

Top-level definitions are declared in order, and a definition may refer only to those names that
have been defined before it occurs. This means that circular and recursive definitions are not per-
mitted. We will return to function definitions in Size Annotations and Parametric Polymorphism,
where we will look at more advanced features, such as parametric polymorphism and implicit size
parameters.

Note: Loading files into futharki

3.1. Basic Language Features 13

Parallel Programming in Futhark, Release 0.80

At this point you may want to start writing and applying functions. It is possible to do this directly
in futharki, but it quickly becomes awkward for multi-line functions. You can use the :load
command to read declarations from a file:

> :load test.fut
Loading test.fut

The :load command will remove any previously entered declarations and provide you with a
clean slate. You can reload the file by running :load without further arguments:

> :load
Loading test.fut

Emacs users may want to consider futhark-mode, which is able to load the file being edited into
futharki with C-c C-l, and provides other useful features as well.

Exercise: Simple Futhark programming

This is a good time to make sure you can actually write and run a Futhark program on your
system. Write a program that contains a function main that accepts as input a parameter x :
i32, and returns x if x is positive, and otherwise the negation of x. Compile your program with
futhark-c and verify that it works, then try with futhark-opencl.

Type abbreviations

The previous definition of mandelbrot_step accepted arguments and produced results of type
(f64,f64), with the implied understanding that such pairs of floats represent complex num-
bers. To make this clearer, and thus improve the readability of the function, we can use a type
abbreviation to define a type complex:

type complex = (f64, f64)

We can now define mandelbrot_step as follows:

let mandelbrot_step ((Zn_r, Zn_i): complex)
((C_r, C_i): complex)

: complex =
let real_part = Zn_r*Zn_r - Zn_i*Zn_i + C_r
let imag_part = 2.0*Zn_r*Zn_i + C_i
in (real_part, imag_part)

Type abbreviations are purely a syntactic convenience — the type complex is fully interchange-
able with the type (f64, f64):

14 Chapter 3. The Futhark Language

https://github.com/diku-dk/futhark-mode

Parallel Programming in Futhark, Release 0.80

> type complex = (f64, f64)
> let f (x: (f64, f64)): complex = x
> f (1,2)
(1.0f64, 2.0f64)

For abstract types, that hide their definition, we have to use the module system discussed in Mod-
ules.

3.2 Array Operations

Futhark provides various combinators for performing bulk transformations of arrays. Judicious use
of these combinators is key to getting good performance. There are two overall categories: first-
order array combinators, like zip, that always perform the same operation, and second-order
array combinators (SOACs), like map, that take a functional argument indicating the operation to
perform. SOACs are the basic parallel building blocks of Futhark programming. While they are
designed to resemble familiar higher-order functions from other functional languages, they have
some restrictions to enable efficient parallel execution.

We can use zip to transform two arrays to a single array of pairs:

> zip [1,2,3] [true,false,true]
[(1i32, true), (2i32, false), (3i32, true)]

Notice that the input arrays may have different types. We can use unzip to perform the inverse
transformation:

> unzip [(1,true),(2,false),(3,true)]
([1i32, 2i32, 3i32], [true, false, true])

Be aware that zip requires all input arrays to have the same length. This is checked at run-
time. Transforming between arrays of tuples and tuples of arrays is common in Futhark programs,
as many array operations accept only one array as input. Due to a clever implementation tech-
nique, zip and unzip usually have no runtime cost (they are fused into other operations), so
you should not shy away from using them out of efficiency concerns. For operating on arrays of
tuples with more than two elements, there are zip/unzip variants called zip3, zip4, etc, up to
zip8/unzip8.

Now let’s take a look at some SOACs.

3.2.1 Map

The simplest SOAC is probably map. It takes two arguments: a function and an array. The
function argument can be a function name, or an anonymous function. The function is applied to
every element of the input array, and an array of the result is returned. For example:

3.2. Array Operations 15

Parallel Programming in Futhark, Release 0.80

> map (\x -> x + 2) [1,2,3]
[3i32, 4i32, 5i32]

Anonymous functions need not define their parameter- or return types, but you are free to do so in
cases where it aids readability:

> map (\(x:i32): i32 -> x + 2) [1,2,3]
[3i32, 4i32, 5i32]

The functional argument can also be an operator, which must be enclosed in parentheses:

> map (!) [true, false, true]
[false, true, false]

Partially applying operators is also supported using so-called operator sections, with a syntax taken
from Haskell:

> map (+2) [1,2,3]
[3i32, 4i32, 5i32]

> map (2-) [1,2,3]
[1i32, 0i32, -1i32]

However, note that the following will not work:

[0]> map (-2) [1,2,3]
Error at [0]> :1:5-1:8:
Cannot unify `t2' with type `a0 -> x1' (must be one of i8, i16, i32,
→˓i64, u8, u16, u32, u64, f32, f64 due to use at [0]> :1:7-1:7).
When matching type

a0 -> x1
with

t2

This is because the expression (-2) is taken as negative number -2 encloses in parentheses.
Instead, we have to write it with an explicit lambda:

> map (\x -> x-2) [1,2,3]
[-1i32, 0i32, 1i32]

There are variants of map, suffixed with an integer, that permit simultaneous mapping of multiple
arrays, which must all have the same size. This is supported up to map5. For example, we can
perform an element-wise sum of two arrays:

> map2 (+) [1,2,3] [4,5,6]
[5i32, 7i32, 9i32]

16 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

A combination of map and zip can be used to handle arbitrary numbers of simultaneous arrays.

Be careful when writing map expressions where the function returns an array. Futhark requires
regular arrays, so this is unlikely to go well:

map (\n -> 1...n) ns

Unless the array ns consists of identical values, this expression will fail at runtime.

We can use map to duplicate many other language constructs. For example, if we have two ar-
rays xs:[n]i32 and ys:[m]i32 — that is, two integer arrays of sizes n and m — we can
concatenate them using:

map (\i -> if i < n then xs[i] else ys[i-n])
(0..<n+m)

However, it is not a good idea to write code like this, as it hinders the compiler from using high-
level properties to do optimisation. Using map with explicit indexing is usually only necessary
when solving complicated irregular problems that cannot be represented directly.

3.2.2 Scan and Reduce

While map is an array transformer, the reduce SOAC is an array aggregator: it uses some func-
tion of type t -> t -> t to combine the elements of an array of type []t to a value of type t.
In order to perform this aggregation in parallel, the function must be associative and have a neutral
element (in algebraic terms, constitute a monoid):

• A function 𝑓 is associative if 𝑓(𝑥, 𝑓(𝑦, 𝑧)) = 𝑓(𝑓(𝑥, 𝑦), 𝑧) for all 𝑥, 𝑦, 𝑧.

• A function 𝑓 has a neutral element 𝑒 if 𝑓(𝑥, 𝑒) = 𝑓(𝑒, 𝑥) = 𝑥 for all 𝑥.

Many common mathematical operators fulfill these laws, such as addition: (𝑥+𝑦)+𝑧 = 𝑥+(𝑦+𝑧)
and 𝑥 + 0 = 0 + 𝑥 = 𝑥. But others, like subtraction, do not. In Futhark, we can use the addition
operator and its neutral element to compute the sum of an array of integers:

> reduce (+) 0 [1,2,3]
6i32

It turns out that combining map and reduce is both powerful and has remarkable optimisation
properties, as we will discuss in Fusion and List Homomorphisms. Many Futhark programs are
primarily map-reduce compositions. For example, we can define a function to compute the dot
product of two vectors of integers:

let dotprod (xs: []i32) (ys: []i32): i32 =
reduce (+) 0 (map2 (*) xs ys)

3.2. Array Operations 17

https://en.wikipedia.org/wiki/Monoid

Parallel Programming in Futhark, Release 0.80

A close cousin of reduce is scan, often called generalised prefix sum. Where reduce produces
just one result, scan produces one result for every prefix of the input array. This is perhaps best
understood with an example:

scan (+) 0 [1,2,3] == [0+1, 0+1+2, 0+1+2+3] == [1, 3, 6]

Intuitively, the result of scan is an array of the results of calling reduce on increasing prefixes of
the input array. The last element of the returned array is equivalent to the result of calling reduce.
Like with reduce, the operator given to scan must be associative and have a neutral element.

There are two main ways to compute scans: exclusive and inclusive. The difference is that the
empty prefix is considered in an exclusive scan, but not in an inclusive scan. Computing the
exclusive +-scan of [1,2,3] thus gives [0,1,3], while the inclusive +-scan is [1,3,6]. The
scan in Futhark is inclusive, but it is easy to generate a corresponding exclusive scan simply by
prepending the neutral element and removing the last element.

While the idea behind reduce is probably familiar, scan is a little more esoteric, and mostly has
applications for handling problems that do not seem parallel at first glance. Several examples are
discussed in the following chapters.

3.2.3 Filtering

We have seen map, which permits us to change all the elements of an array, and we have seen
reduce, which lets us collapse all the elements of an array. But we still need something that lets
us remove some, but not all, of the elements of an array. This SOAC is filter, which keeps only
those elements of an array that satisfy some predicate.

> filter (<3) [1,5,2,3,4]
[1i32, 2i32]

The use of filter is mostly straightforward, but there are some patterns that may appear subtle at
first glance. For example, how do we find the indices of all nonzero entries in an array of integers?
Finding the values is simple enough:

> filter (!=0) [0,5,2,0,1]
[5i32, 2i32, 1i32]

But what are the corresponding indices? We can solve this using a combination of zip, filter,
and unzip:

> let indices_of_nonzero (xs: []i32): []i32 =
let n = length xs
let xs_and_is = zip xs (0..<n)
let xs_and_is' = filter (\(x,_) -> x != 0) xs_and_is
let (_, is') = unzip xs_and_is'
in is'

(continues on next page)

18 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

> indices_of_nonzero [1, 0, -2, 4, 0, 0]
[0i32, 2i32, 3i32]

Be aware that filter is a somewhat expensive SOAC, corresponding roughly to a scan plus a
map.

The idiom 0..<n for constructing an array of the valid indices into an array of size n is so common
that a predefined library function iota exists for this purpose:

> iota 5
[0i32, 1i32, 2i32, 3i32, 4i32]

The term iota is inherited from APL, where the corresponding operation is written with an actual
𝜄 (greek letter).

3.2.4 Sequential Loops

Futhark does not directly support recursive functions, but instead provides syntactical sugar for
expressing the equivalent of certain tail-recursive functions. Consider the following hypothetical
tail-recursive formulation of a function for computing the Fibonacci numbers

let fibhelper(x: i32, y: i32, n: i32): i32 =
if n == 1 then x else fibhelper(y, x+y, n-1)

let fib(n: i32): i32 = fibhelper(1,1,n)

We cannot write this directly in Futhark, but we can express the same idea using the loop con-
struct:

let fib(n: i32): i32 =
let (x, _) = loop (x, y) = (1,1) for i < n do (y, x+y)
in x

The semantics of this loop is precisely as in the tail-recursive function formulation. In general, a
loop

loop pat = initial for i < bound do loopbody

has the following semantics:

1. Bind pat to the initial values given in initial.

2. While i < bound, evaluate loopbody, rebinding pat to be the value returned by the
body. At the end of each iteration, increment i by one.

3. Return the final value of pat.

3.2. Array Operations 19

Parallel Programming in Futhark, Release 0.80

Semantically, a loop-expression is completely equivalent to a call to its corresponding tail-recursive
function.

For example, denoting by t the type of x, the loop

loop x = a for i < n do
g(x)

has the semantics of a call to the following tail-recursive function:

let f(i: i32, n: i32, x: t): t =
if i >= n then x
else f(i+1, n, g(x))

-- the call
let x = f(i, n, a)
in body

The syntax shown above is actually just syntactical sugar for a common special case of a for-in
loop over an integer range, which is written as:

loop pat = initial for xpat in xs do loopbody

Here, xpat is an arbitrary pattern that matches an element of the array xs. For example:

loop acc = 0 for (x,y) in zip xs ys do
acc + x * y

The purpose of the loop syntax is partly to render some sequential computations slightly more
convenient, but primarily to express certain very specific forms of recursive functions, specifically
those with a fixed iteration count. This property is used for analysis and optimisation by the Futhark
compiler. In contrast to most functional languages, Futhark does not properly support recursion,
and users are therefore required to use the loop syntax for sequential loops.

Apart from for-loops, Futhark also supports while-loops. These loops do not provide as much
information to the compiler, but can be used for convergence loops, where the number of iterations
cannot be predicted in advance. For example, the following program doubles a given number until
it exceeds a given threshold value:

let main(x: i32, bound: i32): i32 =
loop x while x < bound do x * 2

In all respects other than termination criteria, while-loops behave identically to for-loops.

For brevity, the initial value expression can be elided, in which case an expression equivalent to
the pattern is implied. This feature is easier to understand with an example. The loop

20 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

let fib(n: i32): i32 =
let x = 1
let y = 1
let (x, _) = loop (x, y) = (x, y) for i < n do (y, x+y)
in x

can also be written:

let fib(n: i32): i32 =
let x = 1
let y = 1
let (x, _) = loop (x, y) for i < n do (y, x+y)
in x

This style of code can sometimes make imperative code look more natural.

Note: Type-checking with futharki

If you are uncertain about the type of some Futhark expression, the :type command (or :t for
short) can help. For example:

> :t 2
2 : i32

> :t (+2)
(+ 2) : i32 -> i32

You will also be informed if the expression is ill-typed:

[1]> :t true : i32
Error at [1]> :1:1-1:10:
Couldn't match expected type `i32' with actual type `bool'.
When matching type

i32
with

bool

3.3 In-Place Updates

While Futhark is an uncompromisingly pure functional language, it may occasionally prove useful
to express certain algorithms in an imperative style. Consider a function for computing the 𝑛 first
Fibonacci numbers:

3.3. In-Place Updates 21

Parallel Programming in Futhark, Release 0.80

let fib (n: i32): []i32 =
-- Create "empty" array.
let arr = replicate n 0
-- Fill array with Fibonacci numbers.
in loop (arr) for i < n-2 do

arr with [i+2] = arr[i] + arr[i+1]

The notation arr with [i+2] = arr[i] + arr[i+1] produces an array equivalent to
arr, but with a new value for the element at position i+2. A shorthand syntax is available for the
(common) case where we immediately bind the array to a variable of the same name:

let arr = arr with [i+2] = arr[i] + arr[i+1]

-- Can be shortened to:

let arr[i+2] = arr[i] + arr[i+1]

If the array arr were to be copied for each iteration of the loop, we would spend a lot of time
moving around data, even though it is clear in this case that the ”old” value of arr will never be
used again. Precisely, what should be an algorithm with complexity 𝑂(𝑛) would become 𝑂(𝑛2),
due to copying the size 𝑛 array (an 𝑂(𝑛) operation) for each of the 𝑛 iterations of the loop.

To prevent this copying, Futhark updates the array in-place, that is, with a static guarantee that
the operation will not require any additional memory allocation, or copying the array. An in-place
update can modify the array in time proportional to the elements being updated (𝑂(1) in the case
of the Fibonacci function), rather than time proportional to the size of the final array, as would the
case if we perform a copy. In order to perform the update without violating referential transparency,
Futhark must know that no other references to the array exists, or at least that such references will
not be used on any execution path following the in-place update.

In Futhark, this is done through a type system feature called uniqueness types, similar to, although
simpler than, the uniqueness types of the programming language Clean. Alongside a (relatively)
simple aliasing analysis in the type checker, this extension is sufficient to determine at compile
time whether an in-place modification is safe, and signal a compile time error if in-place updates
are used in a way where safety cannot be guaranteed.

The simplest way to introduce uniqueness types is through examples. To that end, let us consider
the following function definition.

let modify (a: *[]i32) (i: i32) (x: i32): *[]i32 =
a with [i] = a[i] + x

The function call modify a i x returns 𝑎, but where the element at index i has been increased
by 𝑥. Notice the asterisks: in the parameter declaration (a: *[i32]), the asterisk means
that the function modify has been given “ownership” of the array 𝑎, meaning that any caller
of modify will never reference array 𝑎 after the call again. In particular, modify can change
the element at index i without first copying the array, i.e. modify is free to do an in-place

22 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

modification. Furthermore, the return value of modify is also unique - this means that the result
of the call to modify does not share elements with any other visible variables.

Let us consider a call to modify, which might look as follows.

let b = modify a i x

Under which circumstances is this call valid? Two things must hold:

1. The type of a must be *[]i32, of course.

2. Neither a or any variable that aliases a may be used on any execution path following the
call to modify.

When a value is passed as a unique-typed argument in a function call, we say that the value is
consumed, and neither it nor any of its aliases (see below) can be used again. Otherwise, we would
break the contract that gives the function liberty to manipulate the argument however it wants.
Notice that it is the type in the argument declaration that must be unique - it is permissible to
pass a unique-typed variable as a non-unique argument (that is, a unique type is a subtype of the
corresponding nonunique type).

A variable 𝑣 aliases 𝑎 if they may share some elements, for instance by an overlap in memory. As
the most trivial case, after evaluating the binding b = a, the variable b will alias a. As another
example, if we extract a row from a two-dimensional array, the row will alias its source:

let b = a[0] -- b is aliased to a
-- (assuming a is not one-dimensional)

Most array combinators produce fresh arrays that initially alias no other arrays in the program. In
particular, the result of map f a does not alias a. One exception is array slicing, where the result
is aliased to the original array.

Let us consider the definition of a function returning a unique array:

let f(a: []i32): *[]i32 = e

Notice that the argument, a, is non-unique, and hence we cannot modify it inside the function.
There is another restriction as well: a must not be aliased to our return value, as the uniqueness
contract requires us to ensure that there are no other references to the unique return value. This
requirement would be violated if we permitted the return value in a unique-returning function to
alias its (non-unique) parameters.

To summarise: values are consumed by being the source in a in-place binding, or by being passed
as a unique parameter in a function call. We can crystallise valid usage in the form of three
principal rules:

Uniqueness Rule 1 When a value is consumed — for example, by being passed in the place of a
unique parameter in a function call, or used as the source in a in-place expression, neither
that value, nor any value that aliases it, may be used on any execution path following the
function call. A violation of this rule is as follows:

3.3. In-Place Updates 23

Parallel Programming in Futhark, Release 0.80

let b = a with [i] = 2 in -- Consumes 'a'
f(b,a) -- Error: a used after being consumed

Uniqueness Rule 2 If a function definition is declared to return a unique value, the return value
(that is, the result of the body of the function) must not share memory with any non-unique
arguments to the function. As a consequence, at the time of execution, the result of a call to
the function is the only reference to that value. A violation of this rule is as follows:

let broken (a: [][]i32, i: i32): *[]i32 =
a[i] -- Error: Return value aliased with 'a'.

Uniqueness Rule 3 If a function call yields a unique return value, the caller has exclusive access
to that value. At the point the call returns, the return value may not share memory with
any variable used in any execution path following the function call. This rule is particularly
subtle, but can be considered a rephrasing of Uniqueness Rule 2 from the “calling side”.

It is worth emphasising that everything related to uniqueness types is implemented as a static
analysis. All violations of the uniqueness rules will be discovered at compile time (during type-
checking), leaving the code generator and runtime system at liberty to exploit them for low-level
optimisation.

3.3.1 When To Use In-Place Updates

If you are used to programming in impure languages, in-place updates may seem a natural and
convenient tool that you may use frequently. However, Futhark is a functional array language, and
should be used as such. In-place updates are restricted to simple cases that the compiler is able to
analyze, and should only be used when absolutely necessary. Most Futhark programs are written
without making use of in-place updates at all.

Typically, we use in-place updates to efficiently express sequential algorithms that are then mapped
on some array. Somewhat counter-intuitively, however, in-place updates can also be used for
expressing irregular nested parallel algorithms (which are otherwise not expressible in Futhark),
albeit in a low-level way. The key here is the array combinator scatter, which writes to several
positions in an array in parallel. Suppose we have an array is of type [n]i32, an array vs of
type [n]t (for some t), and an array as of type [m]t. Then the expression scatter as is
vs morally computes

for i in 0..n-1:
j = is[i]
v = vs[i]
as[j] = v

and returns the modified as array. The old as array is marked as consumed and may not be used
anymore. Parallel scatter can be used, for instance, to implement efficiently the radix sort
algorithm, as demonstrated in Radix-Sort in Futhark.

24 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

3.4 Size Annotations

Functions on arrays typically impose constraints on the shape of their parameters, and often the
shape of the result depends on the shape of the parameters. Futhark provides a language construct
called size annotations, that give the programmer the option of encoding these properties directly
into the type of a function. Consider first the trivial case of a function that packs a single i32
value in an array:

let singleton (x: i32): [1]i32 = [x]

We explicitly annotate the return type to state that this function returns a single-element array.

For expressing constraints among the sizes of the parameters, Futhark provides size parameters.
Consider the definition of dot product we have used so far:

let dotprod (xs: []i32) (ys: []i32): i32 =
reduce (+) 0 (map2 (*) xs ys)

The dotprod function assumes that the two input arrays have the same size, or else the map2
will fail. However, this constraint is not visible in the type of the function. Size parameters allow
us to make this explicit:

let dotprod [n] (xs: [n]i32) (ys: [n]i32): i32 =
reduce (+) 0 (map2 (*) xs ys)

The [n] preceding the value parameters (xs and ys) is called a size parameter, which lets us as-
sign a name to the dimensions of the value parameters. A size parameter must be used at least once
in the type of a value parameter, so that a concrete value for the size parameter can be determined
at runtime. Size parameters are implicit, and need not an explicit argument when the function is
called. For example, the dotprod function can be used as follows:

> dotprod [1,2] [3,4]
11i32

A size parameter is in scope in both the body of a function and its return type, which we can use,
for instance, for defining a function for computing averages:

let average [n] (xs: [n]f64): f64 =
reduce (+) 0 xs / f64 n

Size parameters are always of type i32, and in fact, any i32-typed variable in scope can be used
as a size annotation. This feature lets us define a function that replicates an integer some number
of times:

let replicate_i32 (n: i32) (x: i32): [n]i32 =
map (_ -> x) (0..<n)

3.4. Size Annotations 25

Parallel Programming in Futhark, Release 0.80

In Parametric Polymorphism we will see how to write a polymorphic replicate function that
works for any type.

As a more complicated example of using size parameters, consider multiplying two matrices x and
y. This is only defined if the number of columns in x equals the number of rows in y. In Futhark,
we can encode this as follows:

let matmult [n][m][p] (x: [n][m]i32, y: [m][p]i32): [n][p]i32 =
map (\xr -> map (dotprod xr) (transpose y)) x

Three sizes are involved, n, m, and p. We indicate that the number of columns in x must match the
number of columns in y, and that the size of the returned matrix has the same number of rows as
x, and the same number of columns as y.

Be aware that size annotations are checked dynamically, not statically. Whenever we call a function
or return a value, an error is raised if its size does not match the annotations. However, nothing
prevents th following expression from passing the type checker:

> :t dotprod [1,2] [1,2,3]
dotprod [1, 2] [1, 2, 3] : i32

Although it will fail if actually executed:

[1]> dotprod [1,2] [1,2,3]
Error at [1]> :1:1-1:21 -> [35]> :1:35-1:44: Size annotation 2 does
→˓not match observed size 3.

Presently, only variables and constants are legal as size annotations. This restriction means that the
following function definition is not valid:

let doubleup [n] (xs: [n]i32): [2*n]i32 =
map (\i -> xs[i/2]) (0..<n*2)

While size annotations are a simple and limited mechanism, they can help make hidden invariants
visible to users of your code. In some cases, size annotations also help the compiler generate better
code, as it becomes clear which arrays are supposed to have the same size, and lets the compiler
hoist out checking as far as possible.

Size parameters are also permitted in type abbreviations. As an example, consider a type abbrevi-
ation for a vector of integers:

type intvec [n] = [n]i32

We can now use intvec [n] to refer to integer vectors of size n:

let x: intvec [3] = [1,2,3]

A type parameter can be used multiple times on the right-hand side of the definition; perhaps to
define an abbreviation for square matrices:

26 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

type sqmat [n] = [n][n]i32

The brackets surrounding [n] and [3] are part of the notation, not the parameter itself, and are
used for disambiguating size parameters from the type parameters we shall discuss in Parametric
Polymorphism.

Parametric types must always be fully applied. Using intvec by itself (without a type argument)
is an error.

3.5 Records

Semantically, a record is a finite map from labels to values. These are supported by Futhark as a
convenient syntactic extension on top of tuples. A label-value pairing is often called a field. As an
example, let us return to our previous definition of complex numbers:

type complex = (f64, f64)

We can make the role of the two floats clear by using a record instead.

type complex = {re: f64, im: f64}

We can construct values of a record type with a record expression, which consists of field assign-
ments enclosed in curly braces:

let sqrt_minus_one = {re = 0.0, im = -1.0}

The order of the fields in a record type or value does not matter, so the following definition is
equivalent to the one above:

let sqrt_minus_one = {im = -1.0, re = 0.0}

In contrast to most other programming languages, record types in Futhark are structural, not nom-
inal. This means that the name (if any) of a record type does not matter. For example, we can
define a type abbreviation that is equivalent to the previous definition of complex:

type another_complex = {re: f64, im: f64}

The types complex and another_complex are entirely interchangeable. In fact, we do not
need to name record types at all; they can be used anonymously:

let sqrt_minus_one: {re: f64, im: f64} = {re = 0.0, im = -1.0}

However, for readability purposes it is usually a good idea to use type abbreviations when working
with records.

3.5. Records 27

Parallel Programming in Futhark, Release 0.80

There are two ways to access the fields of records. The first is by field projection, which is done
by dot notation known from most other programming languages. To access the re field of the
sqrt_minus_one value defined above, we write sqrt_minus_one.re.

The second way of accessing field values is by pattern matching, just like we do with tuples. A
record pattern is similar to a record expression, and consists of field patterns enclosed in curly
braces. For example, a function for adding complex numbers could be defined as:

let complex_add ({re = x_re, im = x_im}: complex)
({re = y_re, im = y_im}: complex)

: complex =
{re = x_re + y_re, im = x_im + y_im}

As with tuple patterns, we can use record patterns in both function parameters, let-bindings, and
loop parameters.

As a special syntactic convenience, we can elide the = pat part of a record pattern, which will
bind the value of the field to a variable of the same name as the field. For example:

let conj ({re, im}: complex): complex =
{re = re, im = -im}

This convenience is also present in tuple expressions. If we elide the definition of a field, the value
will be taken from the variable in scope with the same name:

let conj ({re, im}: complex): complex =
{re, im = -im}

3.5.1 Tuples as a Special Case of Records

In Futhark, tuples are merely records with numeric labels starting from 1. For example, the types
(i32,f64) and {1:i32,2:f64} are indistinguishable. The main utility of this equivalence is
that we can use field projection to access the components of tuples, rather than using a pattern in a
let-binding. For example, we can say foo.1 to extract the first component of a tuple.

Notice that the fields of a record must constitute a prefix of the positive numbers for it to be
considered a tuple. The record type {1:i32,3:f64} does not correspond to a tuple, and neither
does {2:i32,3:f64} (but {2:f64,1:i32} is equivalent to the tuple (i32,f64), because
field order does not matter).

3.6 Parametric Polymorphism

Consider the replication function we wrote earlier:

28 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

let replicate_i32 (n: i32) (x: i32): [n]i32 =
map (_ -> x) (0..<n)

This function works only for replicating values of type i32. If we wanted to replicate, say, a
boolean value, we would have to write another function:

let replicate_bool (n: i32) (x: bool): [n]bool =
map (_ -> x) (0..<n)

This duplication is not particularly nice. Since the only difference between the two func-
tions is the type of the x parameter, and we don’t actually use any i32-specific operations in
replicate_i32, or bool-specific operations in replicate_bool, we ought to be able to
write a single function that is parameterised over the element type. In some languages, this is
done with generics, or template functions. In ML-derived languages, including Futhark, we use
parametric polymorphism. Just like the size parameters we saw earlier, a Futhark function may
have type parameters. These are written as a name preceded by an apostrophe. As an example,
this is a polymorphic version of replicate:

let replicate 't (n: i32) (x: t): [n]t =
map (_ -> x) (0..<n)

Notice how the type parameter binding is written as 't; we use just t to refer to the parametric
type in the x parameter and the function return type. Type parameters may be freely intermixed
with size parameters, but must precede all ordinary parameters. Just as with size parameters, we do
not need to explicitly pass the types when we call a polymorphic function; they are automatically
deduced from the concrete parameters.

We can also use type parameters when defining type abbreviations:

type triple 't = [3]t

And of course, these can be intermixed with size parameters:

type vector 't [n] = [n]t

In contrast to function definitions, the order of parameters in a type does matter. Hence, vector
i32 [3] is correct, and vector [3] i32 would produce an error.

We might try to use parametric types to further refine our previous definition of complex numbers,
by making it polymorphic in the representation of scalar numbers:

type complex 't = {re: t, im: t}

This type abbreviation is fine, but we will find it difficult to write useful functions with it. Consider
an attempt to define complex addition:

3.6. Parametric Polymorphism 29

Parallel Programming in Futhark, Release 0.80

let complex_add 't ({re = x_re, im = x_im}: complex t)
({re = y_re, im = y_im}: complex t)

: complex t =
{re = ?, im = ?}

How do we perform an addition x_re and y_re? These are both of type t, of which we know
nothing. For all we know, they might be instantiated to something that is not numeric at all. Hence,
the Futhark compiler will prevent us from using the + operator. In some languages, such as Haskell,
facilities such as type classes may be used to support a notion of restricted polymorphism, where
we can require that an instantiation of a type variable supports certain operations (like +). Futhark
does not have type classes, but it does support programming with certain kinds of higher-order
functions and it does have a powerful module system. The support for higher-order functions in
Futhark and the module system are the subjects of the following sections.

3.7 Higher-Order Functions

Futhark supports certain kinds of higher-order functions. For performance reasons, certain restric-
tions apply, which means that Futhark can eliminate higher-order functions at compile time through
a technique called defunctionalisation [Hov18][HHE18]. From a programmer’s point-of-view, the
main restrictions are the following:

1. Functions may not be stored inside arrays.

2. Functions may not be returned from branches in conditional expressions.

3. Functions are not allowed in loop parameters.

Whereas these restrictions seem daunting, functions may still be grouped in records and tuples and
such structures may be passed to functions and even returned by functions. In effect, quite a few
functional design patterns may be applied, ranging from defining polymorphic higher-order func-
tions, for the purpose of obtaining a high degree of abstraction and code reuse (e.g., for defining
program libraries), to specific uses of higher-order functions for representing various concepts as
functions. Examples of such uses include a library for type-indexed compact serialisation (and de-
serialisation) of Futhark values [Els05][Ken04] and encoding of Conal Elliott’s functional images
[Ell03].

We have seen earlier how anonymous functions may be constructed and passed as arguments to
SOACs. Here is an example anonymous function that takes parameters x, y, and z, returns a value
of type t, and has body e:

\x y z: t -> e

Futhark allows for the programmer to specify so-called sections, which provide a way to form
implicit eta-expansions of partially applied operations. Sections are encapsulated in parenthe-
ses. Assuming binop is a binary operator, such as +, the section (binop) is equivalent to the

30 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

expression \x y -> x binop y. Similarly, the section (x binop) is equivalent to the ex-
pression \y -> x binop y and the section (binop y) is equivalent to the expression \x
-> x binop y.

For making it easy to select fields from records (and tuples), a select-section may be used. An ex-
ample is the section (.a.b.c), which is equivalent to the expression \y -> y.a.b.c. Simi-
larly, the example section (.[i]), for indexing into an array, is equivalent to the expression \y
-> y[i].

At a high level, Futhark functions are values, which can be used as any other values. However, to
ensure that the Futhark compiler is able to compile the higher-order functions efficiently via de-
functionalisation, certain type-driven restrictions exist on how functions can be used, as described
earlier. Moreover, for Futhark to support higher-order polymorphic functions, type variables, when
bound, are divided into non-lifted (bound with an apostrophe, e.g. 't), and lifted (bound with an
apostrophe and a hat, e.g. '^t). Only lifted type parameters may be instantiated with a functional
type. Within a function, a lifted type parameter is treated as a functional type. All abstract types
declared in modules (see Modules) are considered non-lifted, and may not be functional.

Uniqueness typing generally interacts poorly with higher-order functions. The issue is that there
is no way to express, in the type of a function, how many times a function argument is applied, or
to what, which means that it will not be safe to pass a function that consumes its argument. The
following two conservative rules govern the interaction between uniqueness types and higher-order
functions:

1. In the expression let p = e in ..., if any in-place update takes place in the expres-
sion e, the value bound by p must not be or contain a function.

2. A function that consumes one of its arguments may not be passed as a higher-order argument
to another function.

A number of higher-order utility functions are available at top-level. Amongst these are the fol-
lowing quite useful functions:

val const '^a '^b : a -> b -> a -- constant function
val id '^a : a -> a -- identity function
val |> '^a '^b : a -> (a -> b) -> b -- pipe right
val <| '^a '^b : (a -> b) -> a -> b -- pipe left

val >-> '^a '^b '^c : (a -> b) (b -> c) -> a -> c
val <-< '^a '^b '^c : (b -> c) (a -> b) -> a -> c

val curry '^a '^b '^c : ((a,b) -> c) -> a -> b -> c
val uncurry '^a '^b '^c : (a -> b -> c) -> (a,b) -> c

3.7. Higher-Order Functions 31

Parallel Programming in Futhark, Release 0.80

3.8 Modules

When most programmers think of module systems, they think of rather utilitarian systems for
namespace control and splitting programs across multiple files. And in most languages, the module
system is indeed little more than this. But in Futhark, we have adopted an ML-style higher-order
module system that permits abstraction over modules [EHAO18]. The module system is not just
a method for organising Futhark programs, it is also a powerful facility for writing generic code.
Most importantly, all module language constructs are eliminated from the program at compile
time, using a technique called static interpretation [Els99][Ann18]. As a consequence, from a
programmer’s perspective, there is no overhead involved with making use of module language
features.

3.8.1 Simple Modules

At the most basic level, a module (called a structure in Standard ML) is merely a collection of
declarations

module add_i32 = {
type t = i32
let add (x: t) (y: t): t = x + y
let zero: t = 0

}

Now, add_i32.t is an alias for the type i32, and Addi32.add is a function that adds two
values of type i32. The only peculiar thing about this notation is the equal sign before the opening
brace. The declaration above is actually a combination of a module binding

module add_i32 = ...

and a module expression

{
type t = i32
let add (x: t) (y: t): t = x + y
let zero: t = 0

}

In this case, the module expression encapsulates a number of declarations enclosed in curly braces.
In general, as the name suggests, a module expression is an expression that returns a module. A
module expression is syntactically and conceptually distinct from a regular value expression, but
serves much the same purpose. The module language is designed such that evaluation of a module
expression can always be done at compile time.

Apart from a sequence of declarations, a module expression can also be merely the name of another
module

32 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

module foo = add_i32

Now every name defined in add_i32 is also available in foo. At compile-time, only a single
version of the add function is defined.

3.8.2 Module Types

What we have seen so far is nothing more than a simple namespace mechanism. The ML module
system only becomes truly powerful once we introduce module types and parametric modules (in
Standard ML, these are called signatures and functors).

A module type is the counterpart to a value type. It describes which names are defined, and as
what. We can define a module type that describes add_i32:

module type i32_adder = {
type t = i32
val add : t -> t -> t
val zero : t

}

As with modules, we have the notion of a module type expression. In this case, the module type
expression is a sequence of specifications enclosed in curly braces. A specification specifies how
a name must be defined: as a value (including functions) of some type, as a type abbreviation, or
as an abstract type (which we will return to later).

We can assert that some module implements a specific module type via a module type ascription:

module foo = add_i32 : i32_adder

Syntactic sugar lets us move the module type to the left of the equal sign:

module add_i32: i32_adder = {
...

}

When we are ascribing a module with a module type, the module type functions as a filter, remov-
ing anything not explicitly mentioned in the module type:

module bar = add_i32 : { type t = int
val zero : t }

An attempt to access bar.add will result in a compilation error, as the ascription has hidden it.
This is known as an opaque ascription, because it obscures anything not explicitly mentioned in the
module type. The module systems in Standard ML and OCaml support both opaque and transpar-
ent ascription, but in Futhark we support only opaque ascription. This example also demonstrates

3.8. Modules 33

Parallel Programming in Futhark, Release 0.80

the use of an anonymous module type. Module types are structural (just like value types), and are
named only for convenience.

We can use type ascription with abstract types to hide the definition of a type from the users of a
module:

module speeds: { type thing
val car : thing
val plane : thing
val futhark : thing
val speed : thing -> i32 } = {

type thing = i32

let car: thing = 0
let plane: thing = 1
let futhark: thing = 2

let speed (x: thing): i32 =
if x == car then 120
else if x == plane then 800
else if x == futhark then 10001
else 0 -- will never happen

}

The (anonymous) module type asserts that a distinct type thing must exist, but does not mention
its definition. There is no way for a user of the speeds module to do anything with a value
of type speeds.thing apart from passing it to speeds.speed. The definition is entirely
abstract. Furthermore, no values of type speeds.thing exists except those that are created by
the speeds module.

3.8.3 Parametric Modules

While module types serve some purpose for namespace control and abstraction, their most interest-
ing use is in the definition of parametric modules. A parametric module is conceptually equivalent
to a function. Where a function takes a value as input and produces a value, a parametric module
takes a module and produces a module. For example, given a module type

module type monoid = {
type t
val add : t -> t -> t
val zero : t

}

We can define a parametric module that accepts a module satisfying the monoid module type, and
produces a module containing a function for collapsing an array

34 Chapter 3. The Futhark Language

Parallel Programming in Futhark, Release 0.80

module sum (M: monoid) = {
let sum (a: []M.t): M.t =

reduce M.add M.zero a
}

There is an implied assumption here, which is not captured by the type system: The function
add must be associative and have zero as its neutral element. These constraints come from the
parallel semantics of reduce, and the algebraic concept of a monoid. Notice that in monoid, no
definition is given of the type t—we only assert that there must be some type t, and that certain
operations are defined for it.

We can use the parametric module sum as follows:

module sum_i32 = sum add_i32

We can now refer to the function sum_i32.sum, which has type []i32 -> i32. The type is
only abstract inside the definition of the parametric module. We can instantiate sum again with
another module, this time an anonymous module:

module prod_f64 = sum {
type t = f64
let add (x: f64) (y: f64): f64 = x * y
let zero: f64 = 1.0

}

The function prod_f64.sum has type []f64 -> f64, and computes the product of an array
of numbers (we should probably have picked a more generic name than sum for this function).

Operationally, each application of a parametric module results in its definition being duplicated
and references to the module parameter replace by references to the concrete module argument.
This is quite similar to how C++ templates are implemented. Indeed, parametric modules can be
seen as a simplified variant with no specialisation, and with module types to ensure rigid type
checking. In C++, a template is type-checked when it is instantiated, whereas a parametric module
is type-checked when it is defined.

Parametric modules, like other modules, can contain more than one declaration. This feature is
useful for giving related functionality a common abstraction, for example to implement linear
algebra operations that are polymorphic over the type of scalars. The following example uses
an anonymous module type for the module parameter and the open declaration for bringing the
names from a module into the current scope:

module linalg(M : {
type scalar
val zero : scalar
val add : scalar -> scalar -> scalar
val mul : scalar -> scalar -> scalar

(continues on next page)

3.8. Modules 35

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

}) = {
open M

let dotprod [n] (xs: [n]scalar) (ys: [n]scalar)
: scalar =
reduce add zero (map2 mul xs ys)

let matmul [n] [p] [m] (xss: [n][p]scalar)
(yss: [p][m]scalar)

: [n][m]scalar =
map (\xs -> map (dotprod xs) (transpose yss)) xss

}

3.8.4 Importing other files

While Futhark’s module system is not directly file-oriented, there is still a close interaction. You
can access code in other files as follows:

import "module"

The above will include all non-local top-level definitions from module.fut and make them
available in the current Futhark program. The .fut extension is implied.

You can also include files from subdirectories::

import "path/to/a/file"

The above will include the file path/to/a/file.fut relative to the including file.

If we are defining a top-level function (or any other top-level construct) that we do not want to be
visible outside the current file, we can prefix it with local:

local let i_am_hidden x = x + 2

Qualified imports are possible, where a module is created for the file::

module M = import "module"

In fact, a plain import "module" is equivalent to:

local open import "module"

This declaration opens "module" in the current file, but does not propagate its contents to mod-
ules that in turn import the current file.

36 Chapter 3. The Futhark Language

Chapter 4
Practical Matters

The previous chapter introduced the Futhark language, the notion of parallel programming, and the
most fundamental builtin functions. However, more knowledge is needed to write real high-quality
Futhark programs. This chapter discusses various practicalities around Futhark programming: how
to test and debug your code (Testing and Debugging), how to benchmark it once it works (Bench-
marking), how to use the Futhark package manager to access library code (Package Management),
and finally how to work around compiler limitations.

4.1 Testing and Debugging

This section discusses techniques for checking the correctness of Futhark programs via unit tests,
as well as the debugging facilities provided by futharki.

The testing experience for Futhark is still rather raw. There are no advanced unit testing frame-
works, no test generators or doc-testing, and certainly no property-based testing. Instead, we have
futhark-test, which tests entry point functions against input/output example pairs. How-
ever, it is better than nothing, and quite simple to use. futhark-test will test the program
with both a compiler (futhark-c by default, but this can be changed with --compiler) and
futharki.

4.1.1 Testing with futhark-test

A Futhark program may contain a test block, which is a sequence of line comments in which one
of the lines contains the divider -- ==. The lines preceding the divider are ignored, while the
lines after are taken as a description of a test to perform. When futhark-test is passed one or
more .fut files, it will look for test blocks and perform the tests they describe.

As an example, let us consider how to test a function for matrix multiplication. The function itself
is defined as thus:

37

Parallel Programming in Futhark, Release 0.80

entry matmul [n][m][p] (x: [n][m]i32) (y: [m][p]i32): [n][p]i32 =
map (\xr -> map (\yc -> reduce (+) 0 (map2 (*) xr yc))

(transpose y))
x

Note that we use entry instead of let in order for the function to be callable from the outside.

We then add a test block:

-- Matrix multiplication.
-- ==
-- entry: matmul

The first line is a human-readable description, the second is the divider, and the third specifies the
entry point that we wish to test. If the entry point is main, this part can be elided.

We now come to the input/output sets, which are written as follows:

-- input { [[1, 2]] [[3], [4]] }
-- output { [[11]] }
-- input { [[1, 2], [3, 4]] [[5, 6], [7, 8]] }
-- output { [[19, 22], [43, 50]] }
-- input { [[1, 2]] [[3]] }

The values are enclosed in curly braces, and multiple whitespace-separated values can be given.
Only a limited subset of the Futhark value syntax is supported: Primitive values and multidimen-
sional arrays of primitive values. In particular, no records or tuples are permitted. This subset is
exactly that which is supported by compiled Futhark executables. If you have a need for testing
functions that take more sophisticated input types, you will need to encode them using primitive
types, and then construct them in the test function itself.

It is also possible to write negative tests, where we assert that the program must fail for a given
input. In our case, when the shape of the matrices don’t match up:

-- input { [[1, 2]] [[3]] }
-- error: matmul.fut:15

We provide a regular expression matching the expected error. In this case, we just assert that the
correct line number is provided.

Type inference on the input/output values is not performed, so the types must be unambiguous.
This means that the usual [] notation for an empty array will not work. Instead, a special
empty(t) notation is used to represent an array of row type t. For example, we can test for
empty arrays as such:

-- input { empty([]i32) empty([]i32) }
-- output { empty([]i32) }

38 Chapter 4. Practical Matters

Parallel Programming in Futhark, Release 0.80

Note also that since plain integer literals are assumed to be of type i32, and plain decimal literals
to be of type f64, you will need to use type suffixes (Basic Language Features) to write values of
other types.

As a convenience, futhark-test considers functions returning n-tuples to really be functions
returning n values. This means we can put multiple values in an output stanza, just as we do
with input.

Finally, it is also possible to specify test data stored in a separate file. This is useful when testing
with very large datasets, in particular when they use the binary data format. This is done with the
notation @ file:

-- compiled input @ big_matrices.in
-- output @ big_matrices.out

This also shows another feature of futhark-test: if we precede input with the word
compiled, that test is not run with futharki. This is useful for large tests that would take
too long to run interpreted. There are more ways to filter which tests and programs should be
skipped for a given invocation of futhark-test; see the manual for more information.

Testing a Futhark Library

A Futhark library typically comprises a number of .fut files means to be include-ed by
Futhark programs. Libraries typically do not define entry points of the form required by
futhark-test. Indeed, it is not unusual for Futhark libraries to consist entirely of paramet-
ric modules and higher-order functions! These are not directly accessible to futhark-test.

The recommended solution is that, for every library file foo.fut, we define a corresponding
foo_tests.fut that imports foo.fut and defines a number of entry points.

For example, suppose we have sum.fut that contains the summodule from Parametric Modules:

module type monoid = {
type t
val add : t -> t -> t
val zero : t

}

module sum (M: monoid) = {
let sum (a: []M.t): M.t =

reduce M.add M.zero a
}

This cannot be tested directly with futhark-test, but we can define a sum_tests.fut that
can:

4.1. Testing and Debugging 39

https://futhark.readthedocs.io/en/latest/binary-data-format.html
https://futhark.readthedocs.io/en/latest/man/futhark-test.html

Parallel Programming in Futhark, Release 0.80

import "sum"

-- ==
-- entry: test_sum_add_i32
-- input { [1, 2, 3, 4] }
-- output { 10 }

module sum_add_i32 = sum { type t = i32
let add = (i32.+)
let zero = 0i32

}

entry test_sum_add_i32 = sum_add_i32.sum

-- ==
-- entry: test_sum_prod_f32
-- input { [1f32, 2f32, 3f32, 4f32] }
-- output { 24f32 }

module sum_prod_f32 = sum { type t = f32
let add = (f32.*)
let zero = 1f32

}

entry test_sum_prod_f32 = sum_prod_f32.sum

You will have to use your own judgment when deciding which specific instantiations of a generic
library you feel are worth testing.

4.1.2 Traces and Breakpoints

Testing is useful for determining the correctness of code, but does not in itself pinpoint the source
of bugs. While you can go far simply by structuring your code as small functions that can be tested
in isolation, it is sometimes necessary to inspect internal state and behaviour.

Compiled Futhark code does not possess much in the way of debugging facilities, but futharki
has a couple of useful tools. Since futharki is very slow when compared to compiled code, this
does mean that we can only debug on cut-down smaller testing sets, not on realistic workloads.

Specifically, we use the two functions trace and break. The trace function has the following
type:

trace 't : t -> t

Semantically, trace just returns its argument unchanged, and when compiling your Futhark code,
this is indeed all that will happen. However, futharki treats trace specially, and will print

40 Chapter 4. Practical Matters

Parallel Programming in Futhark, Release 0.80

the argument to the screen. This is useful for seeing the value of internal variables. For example,
suppose we have the program trace.fut:

let main (xs: []i32) = map (\x -> trace x + 2) xs

We can then run it with futharki to get the following output:

$ echo [1,2,3] | futharki trace.fut
Trace at trace.fut:1:24-1:49: 1i32
Trace at trace.fut:1:24-1:49: 2i32
Trace at trace.fut:1:24-1:49: 3i32
[3i32, 4i32, 5i32]

Similarly, the break function is semantically also the identity function:

break 't : t -> t

When futharki encounters break, it suspends execution and lets us inspect the variables in
scope. At the moment, this works only when running an expression within the futharki REPL,
not when running directly from the command line. Suppose break.fut is:

let main (xs: []i32) = map (\x -> break x + 2) xs

Then we can load and run it from futharki:

[1]> main [1,2,3]
Breaking at [1]> :1:1-1:12 -> break.fut:1:24-1:49 -> /futlib/soacs.
→˓fut:35:3-35:24 -> break.fut:1:35-1:41.
<Enter> to continue.
> x
1i32
>
Continuing...
Breaking at [1]> :1:1-1:12 -> break.fut:1:24-1:49 -> /futlib/soacs.
→˓fut:35:3-35:24 -> break.fut:1:35-1:41.
<Enter> to continue.
>
Continuing...
Breaking at [1]> :1:1-1:12 -> break.fut:1:24-1:49 -> /futlib/soacs.
→˓fut:35:3-35:24 -> break.fut:1:35-1:41.
<Enter> to continue.
>
Continuing...
[3i32, 4i32, 5i32]
>

Whenever we are stopped at a break point, we can enter arbitrary Futhark expressions to inspect
the state of the environment. This is useful when operating on complex values.

4.1. Testing and Debugging 41

Parallel Programming in Futhark, Release 0.80

4.2 Benchmarking

Consider an implementation of the dot product of two integer vectors:

let main (x: []i32) (y: []i32): i32 =
reduce (+) 0 (map2 (*) x y)

We previously mentioned that, for small data sets, sequential execution is likely to be much faster
than parallel execution. But how much faster? To answer this question, we need to measure the
run time of the program on some data sets. This task is called benchmarking. There are many
properties one can benchmark: memory usage, size of compiled executable, robustness to errors,
and so forth. In this section, we are only concerned with run time. Specifically, we wish to measure
wall time, which is how much time elapses in the real world from the time the computation starts,
to the time it ends.

There is still some wiggle room in how we benchmark. For example, should we measure the time
it takes to load the input data from disk? Or time it takes to initialise various devices and drivers?
Should we perform a clean shutdown? How many times should we run the program, and should we
report maximum, minimum, or average run time? We will not try to answer all of these questions,
but instead merely describe the benchmarking tools provided by Futhark.

4.2.1 Simple Measurements

First, let us compile dotprod.fut to two different executables, one for each compiler:

$ futhark-c dotprod.fut -o dotprod-c
$ futhark-opencl dotprod.fut -o dotprod-opencl

One way to time execution is to use the standard time(1) tool:

$ echo [2,2,3] [4,5,6] | time ./dotprod-c
36i32
0.00user 0.00system 0:00.00elapsed ...
$ echo [2,2,3] [4,5,6] | time ./dotprod-opencl
36i32
0.20user 0.07system 0:00.29elapsed ...

It seems that dotprod-c executes in less than 10 milliseconds, while dotprod-opencl takes
about 290 milliseconds. However, this comparison is not useful, as it also measures time taken
to read the input (for both executables), as well as time taken to initialise the OpenCL driver (for
dotprod-opencl). Recall that in a real application, the Futhark program would be compiled
as a library, and the startup cost paid just once, while the program may be invoked multiple times.
A more precise run-time measurement, where parsing, initialisation, and printing of results is not
included, can be performed using the -t command line option, which specifies a file where the
run-time (measured in microseconds) should be put:

42 Chapter 4. Practical Matters

Parallel Programming in Futhark, Release 0.80

$ echo [2,2,3] [4,5,6] | ./dotprod-c -t /dev/stderr > /dev/null
0

In this case, we ask for the runtime to be printed to the screen, and for the normal evaluation result
to be thrown away. Apparently it takes less than one microsecond to compute the dot product of
two three-element vectors on a CPU (this is not very surprising). On an AMD Vega 64 GPU:

$ echo [2,2,3] [4,5,6] | ./dotprod-opencl -t /dev/stderr > /dev/null
103

Over 100 microseconds! Most GPUs have fairly high launch invocation latencies, and so are not
suited for small problems. We can use the futhark-dataset(1) tool to generate random test
data of a desired size:

$ futhark-dataset -g [10000000]i32 -g [10000000]i32 > input

Two ten million element vectors should be enough work to amortise the GPU startup cost:

$ cat input | ./dotprod-opencl -t /dev/stderr > /dev/null
347
$ cat input | ./dotprod-c -t /dev/stderr > /dev/null
3801

That’s more like it! Parallel execution is now more than ten times faster than sequential execution.
This program is entirely memory-bound; on a compute-bound program we can expect much larger
speedups.

You may have notice that these programs take significantly longer to run than indicated by
these performance measurements. While GPU initialisation does take some time, most of the
actual run-time in the example above is spent reading the data file from disk. By default,
futhark-dataset produces output in a data format that is human-readable, but very slow
for programs to process. We can use the -b option to make futhark-dataset generate data
in an efficient binary format (which takes up less space on disk as well):

$ futhark-dataset -b -g [10000000]i32 -g [10000000]i32 > input

Reading binary data files is often orders of magnitude faster than reading textual input files. Com-
piled Futhark programs also support binary output via a -b option. The futhark-dataset
tool can perform conversion between the binary and human-readable formats; see the manual page
for more information.

4.2.2 Multiple Measurements

The technique presented in the previous section still has some problems. In particular, it is imprac-
tical if you want several measurements on the same dataset, which is in general preferable to even

4.2. Benchmarking 43

Parallel Programming in Futhark, Release 0.80

out noise. While you can just repeat execution the desired number of times, this method has two
problems:

1. The input file will be read multiple times, which can be slow for large data sets.

2. It prevents the device from “warming up”, as every run re-initialises the GPU and re-uploads
code.

The second point is more important than it may seem. Certain OpenCL operations (such as mem-
ory allocation) are relatively costly, and Futhark uses various caches and buffers to minimise the
number of expensive OpenCL operations. However, these caches will all be cold the first time the
program runs. Hence we wish to perform more than one run per program instance, so that we can
take advantage of the warm caches. This method is also a more plausible proxy for real-world
usage of Futhark, as Futhark is typically compiled to a library, where the same functions are called
repeatedly by some client code.

Compiled Futhark executables support an -r N option that asks the program to perform N runs
internally, and report runtime for each. Additionally, a non-measured warm-up run is performed
initially. We can use it like this:

$ cat input | ./dotprod-opencl -t /dev/stderr -r 10 > /dev/null
285
330
281
284
285
278
285
330
284
282

Our runtimes are now much better. And importantly, there are more of them, so we can perform
analyses like, such as determining the variance, to figure out how predictable the performance is.

However, we can do better still. Futhark comes with a tool for performing automated benchmark
runs of programs, called futhark-bench. This tool relies on a specially formatted header
comment that contains input/output pairs, just like futhark-test (see Testing and Debugging).
The Futhark User’s Guide contains a full description, but here is a simple example. First, we
introduce a new program, sumsquares.fut, with smaller data sets for convenience:

-- Given N, compute the sum of squares of the first N integers.
-- ==
-- compiled input { 1000 } output { 332833500 }
-- compiled input { 1000000 } output { 584144992 }
-- compiled input { 1000000000 } output { -2087553280 }

let main (n: i32): i32 =
(continues on next page)

44 Chapter 4. Practical Matters

https://futhark.readthedocs.org

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

reduce (+) 0 (map (**2) (iota n))

The line containing == is used to separate the human-readable benchmark description from input-
output pairs. It is also possible to keep the data set is located in an external file (see the manual
page for more information.).

We can use futhark-bench to measure the performance of sumsquares.fut
as follows:

$ futhark-bench sumsquares.fut
Compiling src/sumsquares.fut...
Results for src/sumsquares.fut:
dataset #0 ("1000i32"): 0.20us (avg. of 10 runs; RSD: 2.00)
dataset #1 ("1000000i32"): 290.00us (avg. of 10 runs; RSD: 0.03)
dataset #2 ("1000000000i32"): 270154.20us (avg. of 10 runs; RSD: 0.01)

These are measurements using the default compiler, which is futhark-c. If we want
to see how our program performs when compiled with futhark-opencl, we can invoke
futhark-bench:

$ futhark-bench --compiler=futhark-opencl sumsquares.fut
Compiling src/sumsquares.fut...
Results for src/sumsquares.fut:
dataset #0 ("1000i32"): 49.70us (avg. of 10 runs; RSD: 0.18)
dataset #1 ("1000000i32"): 44.40us (avg. of 10 runs; RSD: 0.02)
dataset #2 ("1000000000i32"): 1693.80us (avg. of 10 runs; RSD: 0.04)

We can now compare the performance of CPU execution with GPU execution. The tool takes
care of the mechanics of run-time measurements, and even computes the relative standard devi-
ation (“RSD”) of the measurements for us. The correctness of the output is also automatically
checked. By default, futhark-bench performs ten runs for every data set, but this number can
be changed with the --runs command line option. Unless you can articulate a good reason not
to, always use futhark-bench for benchmarking.

4.3 Package Management

A Futhark package is a downloadable collection of .fut files and little more. There is a (not
necessarily comprehensive) list of known packages. The following discusses only how to use
packages. For authoring your own, please see the corresponding section in the User’s Guide.

4.3. Package Management 45

http://futhark.readthedocs.io/en/latest/man/futhark-bench.html
http://futhark.readthedocs.io/en/latest/man/futhark-bench.html
https://futhark-lang.org/pkgs
https://futhark.readthedocs.io/en/latest/package-management.html#creating-packages

Parallel Programming in Futhark, Release 0.80

4.3.1 Basic Concepts

A package is uniquely identified with a package path, which is similar to a URL, except without a
protocol. At the moment, package paths are always links to Git repositories hosted on GitHub or
GitLab. As an example, a package path may be github.com/athas/fut-foo.

Packages are versioned with semantic version numbers of the form X.Y.Z. Whenever versions are
indicated, all three digits must always be given (that is, 1.0 is not a valid shorthand for 1.0.0).

Most futhark-pkg operations involve reading and writing a package manifest, which is al-
ways stored in a file called futhark.pkg. The futhark.pkg file is human-editable, but is
in day-to-day use mainly modified by futhark-pkg automatically. You will normally have one
futhark.pkg file for each of your Futhark projects. Packages are installed in a location relative
to the location of futhark.pkg.

4.3.2 Installing Packages

Required packages can be added by using futhark-pkg add, for example:

$ futhark-pkg add github.com/athas/fut-foo 0.1.0

This will create a new file futhark.pkg with the following contents:

require {
github.com/athas/fut-foo 0.1.0

→˓#d285563c25c5152b1ae80fc64de64ff2775fa733
}

This lists one required package, with its package path, minimum version, and the expected commit
hash. The latter is used for verification, to ensure that the contents of a package version cannot
silently change.

futhark-pkg will perform network requests to determine whether a package of the given name
and with the given version exists and fail otherwise (but it will not check whether the package is
otherwise well-formed). The version number can be elided, in which case futhark-pkgwill use
the newest available version. If the package is already present in futhark.pkg, it will simply
have its version requirement changed to the one specified in the command. Any dependencies of
the package will not be added to futhark.pkg, but will still be downloaded by futhark-pkg
sync (see below).

Adding a package with futhark-pkg add modifies futhark.pkg, but does not download
the package files. This is done with futhark-pkg sync (without further options). The con-
tents of each required dependency and any transitive dependencies will be stored in a subdirectory
of lib/ corresponding to their package path. Following the earlier example:

46 Chapter 4. Practical Matters

https://semver.org/

Parallel Programming in Futhark, Release 0.80

$ futhark-pkg sync
$ tree lib
lib

github.com
athas

fut-foo
foo.fut

3 directories, 1 file

Warning: futhark-sync will remove any unrecognized files or local modifications to files
in lib/. Unless you are creating your own package, you should not add anything to the lib/
directory - it is fully controlled by futhark-pkg.

Packages can be removed from futhark.pkg with:

$ futhark-pkg remove pkgpath

You will need to run futhark-sync to actually remove the files in lib/.

The intended usage is that futhark.pkg is added to version control, but lib/ is not, as the
contents of lib/ can always be reproduced from futhark.pkg. However, adding lib/ works
just fine as well.

4.3.3 Importing Files from Dependencies

futhark-pkg sync will populate the lib/ directory, but does not interact with the compiler
in any way. The downloaded files can be imported using the import mechanism (see Importing
other files). For example, assuming the package contains a file foo.fut, the following top-level
declaration brings all names declared in the file into scope:

import "lib/github.com/athas/fut-foo/foo"

Ultimately, everything boils down to ordinary file system semantics. This has the downside of
relatively long and clumsy import paths, but the upside of predictability.

4.3.4 Upgrading Dependencies

The futhark-pkg upgrade command will update every version requirement in futhark.
pkg to be the most recent available version. You still need to run futhark-pkg sync to
actually retrieve the new versions. Be careful - while upgrades are safe if semantic versioning is
followed correctly, this is not yet properly machine-checked, so human mistakes may occur.

As an example:

4.3. Package Management 47

Parallel Programming in Futhark, Release 0.80

$ cat futhark.pkg
require {

github.com/athas/fut-foo 0.1.0
→˓#d285563c25c5152b1ae80fc64de64ff2775fa733
}
$ futhark-pkg upgrade
Upgraded github.com/athas/fut-foo 0.1.0 => 0.2.1.
$ cat futhark.pkg
require {

github.com/athas/fut-foo 0.2.1
→˓#3ddc9fc93c1d8ce560a3961e55547e5c78bd0f3e
}
$ futhark-pkg sync
$ tree lib
lib

github.com
athas

fut-bar
bar.fut

fut-foo
foo.fut

4 directories, 2 files

Note that fut-foo 0.2.1 depends on github.com/athas/fut-bar, so it was fetched
by futhark-pkg sync.

futhark-pkg upgrade will never upgrade across a major version number. Due to the prin-
ciple of Semantic Import Versioning, a new major version is a completely different package from
the point of view of the package manager. Thus, to upgrade to a new major version, you will need
to use futhark-pkg add to add the new version and futhark-pkg remove to remove the
old version. Or you can keep it around - it is perfectly acceptable to depend on multiple major
versions of the same package, because they are really different packages.

4.4 When Things Go Wrong

Futhark is a young language and an on-going research project, and you should not expect the same
predictability and quality of error messages that you may be used to from more mature languages.
Further, not all Futhark compilers are guaranteed to be able to compile all Futhark programs. In
general, the limitations you will encounter will tend to fall in two categories:

Essential limitations touch upon fundamental restrictions in the target platform(s) for the Futhark
compiler. For example, GPUs do not permit dynamic memory allocation inside GPU code.
All memory must be pre-allocated before GPU programs are launched. This means that the

48 Chapter 4. Practical Matters

https://research.swtch.com/vgo-import

Parallel Programming in Futhark, Release 0.80

Futhark compiler must be able to pre-compute the size of all intermediate arrays (symboli-
cally), or compilation will fail.

Implementation limitations are weaknesses in the Futhark compiler that could reasonably be
solved. Many implementation limitations, such as the inability to pre-compute some ar-
ray sizes, or eliminate bounds checks inside parallel sections, will manifest themselves as
essential limitations that could be worked around by a smarter compiler.

For example, consider this program:

let main (n: i32): [][]i32 =
map (\i ->

let a = (0..<i)
let b = (0..<n-i)
in concat a b)

(0..<n)

At the time of this writing, the futhark-opencl compiler will fail with the not particularly
illuminating error message Cannot allocate memory in kernel. The reason is that the
compiler is trying to compile the map to parallel code, which involves pre-allocating memory
for the a and b array. It is unable to do this, as the sizes of these two arrays depend on values
that are only known inside the map, which is too late. There are various techniques the Futhark
compiler could use to estimate how much memory would be needed, but these have not yet been
implemented.

It is usually possible, sometimes with some pain, to come up with a workaround. We could rewrite
the program as:

let main(n: i32): [][]i32 =
let scratch = (0..<n)
in map (\i ->

let res = (0..<n)
let res[i:n] = scratch[0:n-i]
in res)

(0..<n)

This exploits the fact that the compiler does not generate allocations for array slices or in-place
updates. The only allocation is of the initial res, the size of which can be computed before
entering the map.

4.4. When Things Go Wrong 49

Parallel Programming in Futhark, Release 0.80

50 Chapter 4. Practical Matters

Chapter 5
Interoperability

Futhark is a purely functional high-performance language incapable of interacting with the outside
world except through function parameters. This makes it impossible to write full applications in
Futhark, except via the limited standard input-based interface that we used in the preceding chap-
ters. In practice, this interface is too slow and too inflexible to be useful. Instead, the Futhark com-
piler is designed to generate libraries, which can then be invoked by general-purpose languages.
In this chapter we will see how to call Futhark from Python and C, with particular attention paid
to the former.

5.1 Calling Futhark from Python

Python is a language with many qualities, but few would claim that performance is among them.
While libraries such as NumPy can be used, they are not as flexible as being able to write code
directly in a high-performance language. Unfortunately, writing the performance-critical parts of
a Python program in (say) C is not always a good experience, and the interfacing between the
Python code and the C code can be awkward and inelegant (although to be fair, it is still nicer in
Python than in many other languages). It would be more convenient if we could compile a high-
performance language directly to a Python module that we could then import like any other
piece of Python code. Of course, this entire exercise is only worthwhile if the code in the resulting
Python module executes much faster than manually written Python. Fortunately, when most of the
computation can be offloaded to the GPU via OpenCL, the Futhark compiler is capable of this feat.

OpenCL works by having an ordinary program running on the CPU that transmits code and data
to the GPU (or any other accelerator, but we’ll stick to GPUs). In the ideal case, the CPU-code
is mostly glue that performs bookkeeping and making API calls - in other words, not resource-
intensive, and exactly what Python is good at. No matter the language the CPU code is written
in, the GPU code will be written in OpenCL C and translated at program initialisation to whatever
machine code is needed by the concrete GPU.

This is what is exploited by the PyOpenCL backend in the Futhark compiler. Certainly, the CPU-

51

https://mathema.tician.de/software/pyopencl/

Parallel Programming in Futhark, Release 0.80

level code is written in pure Python and quite slow, but all it does is use the PyOpenCL library to
offload work to the GPU. The fact that this offloading takes place is hidden from the user of the
generated code, who is provided a module with functions that accept and produce ordinary NumPy
arrays.

Consider our usual dot product program:

let main (x: []i32) (y: []i32): i32 =
reduce (+) 0 (map2 (*) x y)

We can compile this to a Python module:

$ futhark-pyopencl --library dotprod.fut

The result is a file dotprod.py that we can import from within Python:

$ python
>>> import dotprod

The dotprod.py module defines a class dotprod that we must instantiate. The class main-
tains various bits of bookkeeping information, and exposes a method for every entry point in our
program (here just main):

>>> o = dotprod.dotprod()

We will get an error if we try to pass Python lists to the entry point, as lists are not arrays:

>>> o.main([1,2,3], [4,5,6])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "dotprod.py", line 2416, in main

x_mem_3884_ext))
TypeError: Argument #0 has invalid value
Futhark type: []i32
Argument has Python type <type 'list'> and value: [1, 2, 3]

Instead, we have to construct a properly typed NumPy array:

>>> import numpy as np
>>> o.main(np.array([1,2,3], dtype=np.int32),

np.array([4,5,6], dtype=np.int32))
32

The integer that is returned is a normal Python object of an appropriate type (in this case it will
have type np.int32). If an array is returned, it is in the form of a PyOpenCL array, which is
mostly compatible with NumPy arrays, except that the backing memory still resides on the GPU,
and is not copied over to the CPU unless necessary. This makes it efficient to take the output of

52 Chapter 5. Interoperability

https://documen.tician.de/pyopencl/array.html

Parallel Programming in Futhark, Release 0.80

one entry point and pass it as the input to another. PyOpenCL arrays contain a .get() method
that can be used to construct an equivalent NumPy array, if desired.

5.2 Calling Futhark from C

Let us once again consider dotprod.fut:

let main (x: []i32) (y: []i32): i32 =
reduce (+) 0 (map2 (*) x y)

We can compile it with the futhark-opencl compiler:

$ futhark-opencl --library dotprod.fut

This produces two files in the current directory: dotprod.c and dotprod.h. We can compile
dotprod.c to a shared library like this:

$ gcc dotprod.c -o libdotprod.so -fPIC -shared

We can now link to libdotprod.so the same way we link with any other shared library. But
before we get that far, let’s take a look at (parts of) the generated dotprod.h file. We have written
the code generator to produce as simple header files as possible, with no superfluous crud, in order
to make them human-readable. This is particularly useful at the moment, since few explanatory
comments are inserted in the header file.

The first declarations are related to initialisation, which is based on first constructing a configu-
ration object, which can then be used to obtain a context. The context is used in all subsequent
calls, and contains GPU state and the like. We elide most of the functions for setting configuration
properties, as they are not very interesting:

/*
* Initialisation

*/

struct futhark_context_config ;

struct futhark_context_config *futhark_context_config_new();

void futhark_context_config_free(struct futhark_context_config *cfg);

void futhark_context_config_set_device(struct futhark_context_config
→˓*cfg,

const char *s);

...
(continues on next page)

5.2. Calling Futhark from C 53

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

struct futhark_context ;

struct futhark_context *futhark_context_new(struct futhark_context_
→˓config *cfg);

void futhark_context_free(struct futhark_context *ctx);

int futhark_context_sync(struct futhark_context *ctx);

The above demonstrates a pervasive design decision in the API: the use of pointers to opaque
structs. The struct futhark_context is not given a definition, and the only way to construct it
is via the function futhark_context_new(). This means that we cannot allocate it statically,
which is contrary to how one would normally design a C library. The motivation behind this design
is twofold:

1. It keeps the header file readable, as it elides implementation details like struct members.

2. It is easier to use from FFIs. Most FFIs make it very easy to work with functions that only
accept and produce pointers (and primitive types), but accessing and allocating structs is a
little more involved.

The disadvantage is a little more boilerplate, and a little more dynamic allocation. However, rela-
tively few objects of this kind are used, so the performance impact should be nil.

The next part of the header file concerns itself with arrays - how they are created and accessed:

/*
* Arrays

*/

struct futhark_i32_1d ;

struct futhark_i32_1d *futhark_new_i32_1d(struct futhark_context *ctx,
int32_t *data,
int dim0);

int futhark_free_i32_1d(struct futhark_context *ctx,
struct futhark_i32_1d *arr);

int futhark_values_i32_1d(struct futhark_context *ctx,
struct futhark_i32_1d *arr,
int32_t *data);

int64_t *futhark_shape_i32_1d(struct futhark_context *ctx,
struct futhark_i32_1d *arr);

54 Chapter 5. Interoperability

Parallel Programming in Futhark, Release 0.80

Again we see the use of pointers to opaque structs. We can use futhark_new_i32_1d to
construct a Futhark array from a C array, and we can use futhark_values_i32_1d to read
all elements from a Futhark array. The representation used by the Futhark array is intentionally
hidden from us - we do not even know (or care) whether it is resident in CPU or GPU memory.
The code generator automatically generates a struct and accessor functions for every distinct array
type used in the entry points of the Futhark program.

The single entry point is declared like this:

int futhark_entry_dotprod(struct futhark_context *ctx,
int32_t *out0,
const struct futhark_i32_1d *in0,
const struct futhark_i32_1d *in1);

As the original Futhark program accepted two parameters and returned one value, the correspond-
ing C function takes one out parameter and two in parameters (as well as a context parameter).

We have now seen enough to write a small C program (with no error handling) that calls our
generated library:

#include <stdio.h>

#include "dotprod.h"

int main() {
int x[] = { 1, 2, 3, 4 };
int y[] = { 2, 3, 4, 1 };

struct futhark_context_config *cfg = futhark_context_config_new();
struct futhark_context *ctx = futhark_context_new(cfg);

struct futhark_i32_1d *x_arr = futhark_new_i32_1d(ctx, x, 4);
struct futhark_i32_1d *y_arr = futhark_new_i32_1d(ctx, y, 4);

int res;
futhark_entry_dotprod(ctx, &res, x_arr, y_arr);
futhark_context_sync(ctx);

printf("Result: %d\n", res);

futhark_free_i32_1d(ctx, x_arr);
futhark_free_i32_1d(ctx, y_arr);

futhark_context_free(ctx);
futhark_context_config_free(cfg);

}

We hard-code the input data here, but we could just as well have read it from somewhere. The

5.2. Calling Futhark from C 55

Parallel Programming in Futhark, Release 0.80

call to futhark_context_new() is where the GPU is initialised (is applicable) and OpenCL
kernel code is compiled and uploaded to the device. This call might be relatively slow. However,
subsequent calls to entry point functions (futhark_dotprod()) will be efficient, as they re-use
the already initialised context.

Note the use of futhark_context_sync() after calling the entry point: Futhark does not
guarantee that the final results have been written until we synchronise explicitly. Note also that
we free the two arrays x_arr and y_arr once we are done with them - memory management is
entirely manual.

If we save this program as luser.c, we can compile and run it like this:

$ gcc luser.c -o luser -lOpenCL -lm -ldotprod
$./luser
Result: 24

You may need to set LD_LIBRARY_PATH=. before the dynamic linker can find libdotprod.
so. Also, this program will only work if the default OpenCL device is usable on your system,
since we did not request any specific device. For testing on a system that does not support OpenCL,
simply use futhark-c instead of futhark-opencl. The generated API will be the same.

5.3 Handling Awkward Futhark Types

Our dot product function uses only types that map easily to NumPy and C: primitives and arrays
of primitives. But what happens if we have an entry point that involves abstract types with hidden
definitions, or types with no clear analogue in C, such as records or arrays of tuples? In this case,
the generated API defines structs for opaque types that support very few operations.

Consider the following contrived program, pack.fut, which contains two entry points:

entry pack (xs: []i32) (ys: []i32): [](i32,i32) = zip xs ys

entry unpack (zs: [](i32,i32)): ([]i32,[]i32) = unzip zs

The pack function turns two arrays into one array of pairs, and the unpack function reverses the
operation. If compiled to Python, the pack function will return a special “opaque” object whose
contents cannot be inspected. If compiled to C, pack.h contains the following definitions:

struct futhark_opaque_z31U814583239044437263 ;

int futhark_free_opaque_z31U814583239044437263(struct futhark_context
→˓*ctx,

struct futhark_opaque_
→˓z31U814583239044437263 *obj);

(continues on next page)

56 Chapter 5. Interoperability

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

int futhark_pack(struct futhark_context *ctx,
struct futhark_opaque_z31U814583239044437263 **out0,
struct futhark_i32_1d *in0,
struct futhark_i32_1d *in1);

int futhark_unpack(struct futhark_context *ctx,
struct futhark_i32_1d **out0,
struct futhark_i32_1d **out1,
struct futhark_opaque_z31U814583239044437263 *in0);

The unfortunately named struct, futhark_opaque_z31U814583239044437263, repre-
sents an array of tuples. There is nothing we can do with it except for freeing it, or passing it
back to an entry point. In fact, the name is not even stable - it’s a hash of the internal representa-
tion. If you try the above example, you may see a different name.

Opaque types typically occur when you are writing a Futhark program that keeps some kind of
state that you don’t want the user modifying or reading directly, but you need access to for each
call to an entry point. Since Futhark programs are purely functional (and therefore stateless),
having the user to manually pass back the state returned by the previous call is the only way to
accomplish this. Fortunately, we can assign these opaque types somewhat more readable names
by type abbreviations:

type array_of_pairs = [](i32,i32)

entry pack (xs: []i32) (ys: []i32): array_of_pairs = zip xs ys

entry unpack (zs: array_of_pairs): ([]i32,[]i32) = unzip zs

Now, when compiled to C, we obtain a somewhat more readable name for the opaque type:

struct futhark_opaque_array_of_pairs ;

int futhark_free_opaque_array_of_pairs(struct futhark_context *ctx,
struct futhark_opaque_array_of_

→˓pairs *obj);

int futhark_entry_pack(struct futhark_context *ctx,
struct futhark_opaque_array_of_pairs **out0,

→˓const
struct futhark_i32_1d *in0, const
struct futhark_i32_1d *in1);

int futhark_entry_unpack(struct futhark_context *ctx,
struct futhark_i32_1d **out0,
struct futhark_i32_1d **out1, const
struct futhark_opaque_array_of_pairs *in0);

5.3. Handling Awkward Futhark Types 57

Parallel Programming in Futhark, Release 0.80

We have to be careful to use the type abbreviation everywhere, as the compiler will generate the
hash-named opaque in any place that we miss.

58 Chapter 5. Interoperability

Chapter 6
A Parallel Cost Model for Futhark Programs

In this chapter we develop a more formal model for Futhark and provide an ideal cost model for
the language in terms of the concepts of work and span. Before we present the cost model for
the language, we present a simple type system for Futhark and an evaluation semantics. In the
initial development, we shall not consider Futhark’s more advanced features such as loops and
uniqueness types, but we shall return to these constructs later in the chapter.

Futhark supports certain kinds of nested parallelism. For instance, Futhark can in many cases map
two nested maps into fully parallel code. Consider the following Futhark function:

let multable (n : i32) : [n][n]i32 =
map (\i ->

map (\j -> i * j) (iota n))
(iota n)

In the case of this program, Futhark will flatten the code to make a single flat kernel. We shall
return to the concept of flattening in a later chapter.

When we shall understand how efficient an algorithm is, we shall build our analysis around the
two concepts of work and span. These concepts are defined inductively over the various Futhark
language constructs and we may therefore argue about work and span in a compositional way. For
instance, if we want to know about the work required to execute the multable function, we need
to know about how to compute the work for a call to the map SOAC, how to compute the work
for the iota operation, how to compute the work for the multiply operation, and, finally, how to
combine the work. The way to determine the work for a map SOAC instance is to multiply the
size of the argument array with the work of the body of the argument function. Thus, we have

𝑊 (map (\j → i * j) (iota 𝑛)) = 𝑛 + 1

Applying a similar argument to the outer map, we get

𝑊 (map (\i → · · ·) (iota 𝑛)) = (𝑛 + 1)2

59

Parallel Programming in Futhark, Release 0.80

Most often we are interested in finding the asymptotical complexity of the algorithm we are ana-
lyzing, in which case we will simply write

𝑊 (map (\i → · · ·)(iota 𝑛) = 𝑂(𝑛2)

In a similar way we can derive that the span of a call multable n, written 𝑆(multable n),
is 𝑂(1).

6.1 Futhark - the Language

In this section we present a simplified version of the Futhark language in terms of syntax, a type
system for the language, and a strict evaluation semantics.

We assume a countable infinite number of program variables, ranged over by 𝑥 and 𝑓 . Binary infix
scalar operators, first-order built-in operations, and second order array combinators are given as
follows:

binop ::= + | - | * | / | · · ·

op ::= - | abs | copy | concat | empty
| iota | partition | rearrange
| replicate | reshape
| rotate | shape | scatter
| split | transpose | unzip | zip

soac ::= map | reduce | reduce_comm
| scan | filter | partition

In the grammar for the Futhark language below, we have eluded both the required explicit type
annotations and the optional explicit type annotations. Also for simplicity, we are considering only

60 Chapter 6. A Parallel Cost Model for Futhark Programs

Parallel Programming in Futhark, Release 0.80

“unnested” pattern matching and we do not, in this section, consider uniqueness types.

𝑝 ::= 𝑥 | (𝑥1, ..., 𝑥𝑛)

ps ::= 𝑝1 · · · 𝑝𝑛

𝐹 ::= \𝑝𝑠 → 𝑒 | 𝑒 binop | binop 𝑒

𝑃 ::= let 𝑓 ps = 𝑒 | 𝑃1𝑃2 | let 𝑝 = 𝑒

𝑣 ::= true | false | 𝑛 | 𝑟

| [𝑣1, ..., 𝑣𝑛] | (𝑣1, ..., 𝑣𝑛)

𝑒 ::= 𝑥 | 𝑣 | let ps = 𝑒 in 𝑒′

| 𝑒[𝑒′] | 𝑒[𝑒′:𝑒′′]

| [𝑒1, ..., 𝑒𝑛] | (𝑣1, ..., 𝑣𝑛)
| 𝑓𝑒1...𝑒𝑛 | op 𝑒1...𝑒𝑛 | 𝑒1 binop 𝑒2

| loop 𝑝1=𝑒1, · · · , 𝑝𝑛=𝑒𝑛 for 𝑥<𝑒 do 𝑒′

| loop 𝑝1=𝑒1, · · · , 𝑝𝑛=𝑒𝑛 while 𝑒 do 𝑒′

| soac 𝐹 𝑒1 · · · 𝑒𝑛

6.2 Futhark Type System

Without considering Futhark’s uniqueness type system, Futhark’s type system is simple. Types (𝜏)
follow the following grammar-slightly simplified:

𝜏 ::= i32 | f32 | bool | []𝜏
| (𝜏1, · · · , 𝜏𝑛) | 𝜏 → 𝜏 ′ | 𝛼

We shall refer to the types i32, f32, and bool as basic types. Futhark supports more basic types
than those presented here; consult Basic Language Features for a complete list.

In practice, Futhark requires a programmer to provide explicit parameter types and an explicit result
type for top-level function declarations. Similarly, in practice, Futhark requires explicit types for
top-level let bindings. In such explicit types, type variables are not allowed; at present, Futhark
does not allow for a programmer to declare polymorphic functions.

Futhark’s second order array combinators and some of its primitive operations do have polymor-
phic types, which we specify by introducing the concept of type schemes, ranged over by 𝜎, which
are basically quantified types with 𝛼 and 𝛽 ranging over ordinary types. When 𝜎 = ∀�⃗�.𝜏 is some
type scheme, we say that 𝜏 ′ is an instance of 𝜎, written 𝜎 ≥ 𝜏 ′ if there exists a substitution [�⃗� /�⃗�]

6.2. Futhark Type System 61

Parallel Programming in Futhark, Release 0.80

such that 𝜏 [�⃗� /�⃗�] = 𝜏 ′. We require all substitutions to be simple in the sense that substitutions do
not allow for function types, product types, or type variables to be substituted. Other restrictions
may apply, which will be specified using a type variable constraint 𝛼◁𝑇 , where 𝑇 is a set of basic
types.

The type schemes for Futhark’s second-order array combinators are as follows:

soac : TypeOf(soac)
filter : ∀𝛼.(𝛼 → bool) → []𝛼 → []𝛼

map : ∀𝛼1 · · ·𝛼𝑛𝛽.(𝛼1 → · · · → 𝛼𝑛 → 𝛽)

→ []𝛼1 → · · · → []𝛼𝑛 → []𝛽

reduce : ∀𝛼.(𝛼 → 𝛼 → 𝛼) → 𝛼 → []𝛼 → 𝛼

scan : ∀𝛼.(𝛼 → 𝛼 → 𝛼) → 𝛼 → []𝛼 → []𝛼

The type schemes for Futhark’s built-in first-order operations are as follows:

op : TypeOf(op)
concat : ∀𝛼.[]𝛼 → · · · → []𝛼 → []𝛼

empty : ∀𝛼.[]𝛼
iota : int → []int

replicate : ∀𝛼.int → 𝛼 → []𝛼

rotate : ∀𝛼.int → []𝛼 → []𝛼

transpose : ∀𝛼.[][]𝛼 → [][]𝛼

unzip : ∀𝛼1 · · ·𝛼𝑛.[](𝛼1, · · · , 𝛼𝑛)

→ ([]𝛼1, · · · , []𝛼𝑛)

scatter : ∀𝛼.[]𝛼 → []int → []𝛼 → []𝛼

zip : ∀𝛼1 · · ·𝛼𝑛.[]𝛼1 → · · · → []𝛼𝑛

→ [](𝛼1, · · · , 𝛼𝑛)

The type schemes for Futhark’s built-in infix scalar operations are as follows:

binop : TypeOf(binop)
+,-,*,/, · · · : ∀𝛼 ◁ {i32,f32}.𝛼 → 𝛼 → 𝛼

==,!=,<,<=,>,>= : ∀𝛼 ◁ {i32,f32}.𝛼 → 𝛼 → bool

We use Γ to range over type environments, which are finite maps mapping variables to types. We
use {} to denote the empty type environment and {𝑥 : 𝜏} to denote a singleton type environment.
When Γ is some type environment, we write Γ, 𝑥 : 𝜏 to denote the type environment with domain
Dom(Γ) ∪ {𝑥} and values (Γ, 𝑥 : 𝜏)(𝑦) = 𝜏 if 𝑦 = 𝑥 and Γ(𝑦), otherwise. Moreover, when
Γ and Γ′ are type environments, we write Γ + Γ′ to denote the type environment with domain
Dom(Γ) ∪ Dom(Γ′) and values (Γ + Γ′)(𝑥) = Γ′(𝑥) if 𝑥 ∈ Dom(Γ′) and Γ(𝑥), otherwise.

Type judgments for values take the form ⊢ 𝑣 : 𝜏 , which are read “the value 𝑣 has type 𝜏 .” Type
judgments for expressions take the form Γ ⊢ 𝑒 : 𝜏 , which are read “in the type environment Γ, the
expression 𝑒 has type 𝜏 .” Finally, type judgments for programs take the form Γ ⊢ 𝑃 : Γ′, which
are read “in the type environment Γ, the program 𝑃 has type environment Γ′.”

62 Chapter 6. A Parallel Cost Model for Futhark Programs

Parallel Programming in Futhark, Release 0.80

Values ⊢ 𝑣 : 𝜏

⊢ 𝑟 : f32

⊢ 𝑛 : i32

⊢ true : bool

⊢ false : bool

⊢ 𝑣𝑖 : 𝜏𝑖 𝑖 = [1;𝑛]

⊢ (𝑣1, · · · , 𝑣𝑛) : (𝜏1, · · · , 𝜏𝑛)

⊢ 𝑣𝑖 : 𝜏 𝑖 = [1;𝑛]

⊢ [𝑣1, · · · , 𝑣𝑛] : []𝜏

Expressions Γ ⊢ 𝑒 : 𝜏

Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 : 𝜏

Γ ⊢ 𝑒 : []𝜏 Γ ⊢ 𝑒𝑖 : int 𝑖 = [1, 2]

Γ ⊢ 𝑒[𝑒1 : 𝑒2] : []𝜏

Γ ⊢ 𝑒 : 𝜏 Γ, 𝑥 : 𝜏 ⊢ 𝑒′ : 𝜏 ′

Γ ⊢ let 𝑥 = 𝑒 in 𝑒′ : 𝜏 ′

Γ ⊢ 𝑒 : (𝜏1, · · · , 𝜏𝑛)
Γ, 𝑥1 : 𝜏1, · · · , 𝑥𝑛 : 𝜏𝑛 ⊢ 𝑒′ : 𝜏

Γ ⊢ let (𝑥1, · · · , 𝑥𝑛) = 𝑒 in 𝑒′ : 𝜏

Γ ⊢ 𝑒𝑖 : 𝜏𝑖 𝑖 = [1;𝑛]

Γ ⊢ (𝑒1, · · · , 𝑒𝑛) : (𝜏1, · · · , 𝜏𝑛)

Γ ⊢ 𝑒𝑖 : 𝜏 𝑖 = [1;𝑛]

Γ ⊢ [𝑒1, · · · , 𝑒𝑛] : []𝜏

6.2. Futhark Type System 63

Parallel Programming in Futhark, Release 0.80

⊢ 𝑣 : 𝜏

Γ ⊢ 𝑣 : 𝜏

Γ(𝑓) = (𝜏1, · · · , 𝜏𝑛) → 𝜏 Γ ⊢ 𝑒𝑖 : 𝜏𝑖 𝑖 = [1;𝑛]

Γ ⊢ 𝑓 𝑒1 · · · 𝑒𝑛 : 𝜏

Γ ⊢ 𝑒𝑖 : 𝜏𝑖 𝑖 = [1; 2]
TypeOf(binop) ≥ 𝜏 𝜏 = 𝜏1 → 𝜏2 → 𝜏 ′

Γ ⊢ 𝑒1 binop𝜏 𝑒2 : 𝜏 ′

Γ ⊢ 𝑒𝑖 : 𝜏𝑖 𝑖 = [1;𝑛]
TypeOf(op) ≥ 𝜏

𝜏 = 𝜏1 → · · · → 𝜏𝑛 → 𝜏 ′

Γ ⊢ op𝜏 𝑒1 · · · 𝑒𝑛 : 𝜏 ′

Γ ⊢ 𝑒 : []𝜏 Γ ⊢ 𝑒′ : int

Γ ⊢ 𝑒[𝑒′] : 𝜏

Γ ⊢ 𝐹 : 𝜏f Γ ⊢ 𝑒𝑖 : 𝜏𝑖 𝑖 = [1;𝑛]
TypeOf(soac) ≥ 𝜏f → 𝜏1 → · · · → 𝜏𝑛 → 𝜏

Γ ⊢ soac 𝐹 𝑒1 · · · 𝑒𝑛 : 𝜏

Functions Γ ⊢ 𝐹 : 𝜏

Γ, 𝑥1 : 𝜏1 · · · 𝑥𝑛 : 𝜏𝑛 ⊢ 𝑒 : 𝜏

Γ ⊢ \𝑥1 : 𝜏1 · · · 𝑥𝑛 : 𝜏𝑛 → 𝑒 : 𝜏1 → · · · → 𝜏𝑛 → 𝜏

Γ ⊢ 𝑒 : 𝜏1
TypeOf(binop) ≥ 𝜏1 → 𝜏2 → 𝜏

Γ ⊢ 𝑒 binop : 𝜏2 → 𝜏

Γ ⊢ 𝑒 : 𝜏2
TypeOf(binop) ≥ 𝜏1 → 𝜏2 → 𝜏

Γ ⊢ binop 𝑒 : 𝜏1 → 𝜏

Programs Γ ⊢ 𝑃 : Γ′

Γ ⊢ 𝑒 : 𝜏 𝑥 ̸∈ Dom(Γ)

Γ ⊢ let 𝑥 = 𝑒 : {𝑥 : 𝜏}

64 Chapter 6. A Parallel Cost Model for Futhark Programs

Parallel Programming in Futhark, Release 0.80

Γ ⊢ 𝑃1 : Γ1 Γ + Γ1 ⊢ 𝑃2 : Γ2

Γ ⊢ 𝑃1 𝑃2 : Γ1 + Γ2

Γ, 𝑥1 : 𝜏1, · · · , 𝑥𝑛 : 𝜏𝑛 ⊢ 𝑒 : 𝜏 𝑓 ̸∈ Dom(Γ)

Γ ⊢ let 𝑓 (𝑥1, · · · , 𝑥𝑛) = 𝑒 : {𝑓 : (𝜏1, · · · , 𝜏𝑛) → 𝜏}
For brevity, we have eluded some of the typing rules and we leave it to the reader to create typ-
ing rules for rearrange, shape, reshape, loop-for, loop-while, and array ranging
(e[i:j:o]).

6.3 Futhark Evaluation Semantics

In this section we develop a simple evaluation semantics for Futhark programs. The semantics
is presented as a big step evaluation function that takes as parameter an expression and gives as
a result a value. A soundness property states that if a program 𝑃 is well-typed and contains a
function main of type () → 𝜏 , then, if evaluation of the program results in a value 𝑣, the value 𝑣
has type 𝜏 .

To ease the presentation, we treat the evaluation function as being implicitly parameterised by the
program 𝑃 .

The semantics of types yields their natural set interpretations:

[[i32]] = 𝑍

[[i32]] = 𝑅

[[bool]] = {true,false}
[[(𝜏1, · · · , 𝜏𝑛)]] = [[𝜏1]] × · · · × [[𝜏𝑛]]

[[[]𝜏]] = 𝑁 → [[𝜏]]

[[𝜏1 → 𝜏2]] = [[𝜏1]] → [[𝜏2]]

For ease of presentation, we consider a syntactic vector value [𝑣1, · · · , 𝑣𝑛] equal to the projection
function on the vector, returning a default value of the underlying type for indexes greater than
𝑛− 1 (zero-based interpretation).

For built-in operators op𝜏 , annotated with their type instance 𝜏 according to the typing rules, we
assume a semantic function [[op𝜏]] : [[𝜏]]. As an examples, we assume [[+i32→i32→i32]] : 𝑍 →
𝑍 → 𝑍.

When 𝑒 is some expression, we write 𝑒[𝑣1/𝑥1, · · · , 𝑣𝑛/𝑥𝑛] to denote the simultaneous substitution
of 𝑣1, · · · , 𝑣𝑛 for 𝑥1, · · · , 𝑥𝑛 (after appropriate renaming of bound variables) in 𝑒.

Evaluation of an expression 𝑒 is defined by an evaluation function [[·]] : Exp → Val. The function
is defined in a mutually recursive fashion with an auxiliary utility function ⟨𝐹 ⟩ for extracting

6.3. Futhark Evaluation Semantics 65

Parallel Programming in Futhark, Release 0.80

SOAC function parameters. We first give the definition for [[·]]:

[[𝑓 𝑒1 · · · 𝑒𝑛]] = [[𝑒[[[𝑒1]]/𝑥1 · · · [[𝑒𝑛]]/𝑥𝑛]]]

where let 𝑓 𝑥1 · · ·𝑥𝑛 = 𝑒 ∈ 𝑃

[[𝑣]] = 𝑣

[[𝑒[𝑒′]]] = [[𝑒]]([[𝑒′]])

[[let 𝑥 = 𝑒 in 𝑒′]] = [[𝑒′[[[𝑒]]/𝑥]]]

[[let (𝑥1, · · · , 𝑥𝑛) = 𝑒 in 𝑒′]] = [[𝑒′[𝑣1/𝑥1 · · · 𝑣𝑛/𝑥𝑛]]]

where [[𝑒]] = (𝑣1, · · · , 𝑣𝑛)
[[[𝑒1, · · · , 𝑒𝑛]]] = [[[𝑒1]], · · · , [[𝑒𝑛]]]

[[(𝑒1, · · · , 𝑒𝑛)]] = ([[𝑒1]], · · · , [[𝑒𝑛]])

[[𝑒1 binop𝜏 𝑒2]] = [[binop𝜏]] [[𝑒1]] [[𝑒2]]

[[op𝜏 𝑒1 · · · 𝑒𝑛]] = [[op𝜏]] [[𝑒1]] · · · [[𝑒𝑛]]

[[map 𝐹 𝑒1 · · · 𝑒𝑚]] = [[[𝑒′[𝑣11/𝑥1 · · · 𝑣𝑚1 /𝑥𝑚], · · · , 𝑒′[𝑣1𝑛/𝑥𝑛 · · · 𝑣𝑚𝑛 /𝑥𝑚]]]]

where 𝜆𝑥1 · · ·𝑥𝑚.𝑒
′ = ⟨𝐹 ⟩

and [𝑣𝑖1, · · · , 𝑣𝑖𝑛] = [[𝑒𝑖]] 𝑖 = [1..𝑚]

Given a SOAC function parameter 𝐹 , we define the utility extraction function, ⟨𝐹 ⟩, as follows:

⟨\𝑥1 · · ·𝑥𝑛 → 𝑒 ⟩ = 𝜆𝑥1 · · ·𝑥𝑛.𝑒

⟨ binop 𝑒 ⟩ = 𝜆𝑥.𝑥 binop 𝑣

where 𝑣 = [[𝑒]]

⟨ 𝑒 binop ⟩ = 𝜆𝑥.𝑣 binop 𝑥

where 𝑣 = [[𝑒]]

Type soundness is expressed by the following proposition:

Proposition: Futhark Type Soundness

If ⊢ 𝑃 : Γ and Γ(main) = () → 𝜏 and [[main ()]] = 𝑣 then ⊢ 𝑣 : 𝜏 .

Notice that we have glanced over the concept of bounds checking by assuming that arrays with
elements of type 𝜏 are implemented as total functions from 𝑁 to [[𝜏]].

6.4 Work and Span

In this section we give a cost model for Futhark in terms of functions for determining the total work
done by a program, in terms of operations done by the big-step evaluation semantics, and the span
of the program execution, in terms of the maximum depth of the computation, assuming an infinite
amount of parallelism in the SOAC computations. The functions for work and span, denoted by

66 Chapter 6. A Parallel Cost Model for Futhark Programs

Parallel Programming in Futhark, Release 0.80

𝑊 : Exp → 𝑁 and 𝑆 : Exp → 𝑁 are given below. The functions are defined independently,
although they make use of the evaluation function [[·]]. We have given the definitions for the
essential SOAC functions, namely map and reduce. The definitions for the remaining SOACs
follow the same lines as the definitions for map and reduce.

Work (𝑊)

𝑊 (𝑣) = 1

𝑊 (let 𝑥 = 𝑒 in 𝑒′) = 𝑊 (𝑒) + 𝑊 (𝑒′[[[𝑒]]/𝑥]) + 1

𝑊 (let (𝑥1, ..., 𝑥𝑛) = 𝑒 in 𝑒′) = let [𝑣1, ..., 𝑣𝑛] = [[𝑒]]

in 𝑊 (𝑒) + 𝑊 (𝑒′[𝑣1/𝑥1, · · · , 𝑣𝑛/𝑥𝑛]) + 1

𝑊 ([𝑒1, · · · , 𝑒𝑛]) = 𝑊 (𝑒1) + . . . + 𝑊 (𝑒𝑛) + 1

𝑊 ((𝑒1, · · · , 𝑒𝑛)) = 𝑊 (𝑒1) + . . . + 𝑊 (𝑒𝑛) + 1

𝑊 (𝑓 𝑒1 · · · 𝑒𝑛) = 𝑊 (𝑒1) + . . . + 𝑊 (𝑒𝑛) + 𝑊 (𝑒[[[𝑒1]]/𝑥1, · · · [[𝑒𝑛]]/𝑥𝑛]) + 1

where(let 𝑓 𝑥1 · · · 𝑥𝑛 = 𝑒) ∈ 𝑃

𝑊 (𝑒1binop𝑒2) = 𝑊 (𝑒1) + 𝑊 (𝑒2) + 1

𝑊 (map 𝐹 𝑒) = let [𝑣1, · · · , 𝑣𝑛] = [[𝑒]]

𝜆𝑥.𝑒′ = ⟨𝐹 ⟩
in 𝑊 (𝑒) + 𝑊 (𝑒′[𝑣1/𝑥]) + . . . + 𝑊 (𝑒′[𝑣𝑛/𝑥])

𝑊 (reduce 𝐹 𝑒′ 𝑒′′) = let [𝑣1, · · · , 𝑣𝑛] = [[𝑒′′]]

𝜆𝑥 𝑥′.𝑒 = ⟨𝐹 ⟩
in 𝑊 (𝑒′) + 𝑊 (𝑒′′) + 𝑊 (𝑒[𝑣1/𝑥, 𝑣𝑛/𝑥

′]) × 𝑛 + 1

assuming 𝑊 (𝑒[𝑣1/𝑥, 𝑣𝑛/𝑥
′]) indifferent to 𝑣1 and 𝑣𝑛

𝑊 (iota 𝑒) = 𝑊 (𝑒) + 𝑛 where 𝑛 = [[𝑒]]

6.4. Work and Span 67

Parallel Programming in Futhark, Release 0.80

Span (𝑆)

𝑆(𝑣) = 1

𝑆(let 𝑥 = 𝑒 in 𝑒′) = 𝑆(𝑒) + 𝑆(𝑒′[[[𝑒]]/𝑥]) + 1

𝑆(let (𝑥1, ..., 𝑥𝑛) = 𝑒 in 𝑒′) = let [𝑣1, ..., 𝑣𝑛] = [[𝑒]]

in 𝑆(𝑒) + 𝑆(𝑒′[𝑣1/𝑥1, · · · , 𝑣𝑛/𝑥𝑛])

𝑆([𝑒1, · · · , 𝑒𝑛]) = 𝑆(𝑒1) + . . . + 𝑆(𝑒𝑛) + 1

𝑆((𝑒1, · · · , 𝑒𝑛)) = 𝑆(𝑒1) + . . . + 𝑆(𝑒𝑛) + 1

𝑆(𝑓𝑒1 · · · 𝑒𝑛) = 𝑆(𝑒1) + . . . + 𝑆(𝑒𝑛) + 𝑆(𝑒[[[𝑒1]]/𝑥1, · · · [[𝑒𝑛]]/𝑥𝑛]) + 1

where (let 𝑓 𝑥1 · · · 𝑥𝑛 = 𝑒) ∈ 𝑃

𝑆(𝑒1 binop 𝑒2) = 𝑆(𝑒1) + 𝑆(𝑒2) + 1

𝑆(map 𝐹 𝑒) = let [𝑣1, · · · , 𝑣𝑛] = [[𝑒]]

𝜆𝑥.𝑒′ = ⟨𝐹 ⟩
in 𝑆(𝑒) + max(𝑆(𝑒′[𝑣1/𝑥]), . . . , 𝑆(𝑒′[𝑣𝑛/𝑥])) + 1

𝑆(reduce 𝐹 𝑒′ 𝑒′′) = let [𝑣1, · · · , 𝑣𝑛] = [[𝑒′′]]

𝜆𝑥 𝑥′.𝑒 = ⟨𝐹 ⟩
in 𝑆(𝑒′) + 𝑆(𝑒′′) + 𝑆(𝑒[𝑣1/𝑥, 𝑣𝑛/𝑥

′]) × ln𝑛 + 1

assuming 𝑆(𝑒[𝑣1/𝑥, 𝑣𝑛/𝑥
′]) indifferent to 𝑣1 and 𝑣𝑛

𝑆(iota 𝑒) = 𝑆(𝑒) + 1

6.5 Reduction by Contraction

In this section, we shall investigate an implementation of reduction using the general concept of
contraction, which is the general algorithmic trick of solving a particular problem by first making
a contraction step, which simplifies the problem size, and then repeating the contraction algorithm
until a final result is reached [Org16].

The reduction algorithm that we shall implement assumes an associative reduction operator ⊕ :
𝐴 → 𝐴 → 𝐴, a neutral element of type 𝐴, and a vector 𝑣 of size 2𝑛, containing elements of type
𝐴. If size(𝑣) = 1, the algorithm returns the single element. Otherwise, the algorithm performs
a contraction by splitting the vector in two and applies the reduction operator elementwise on the
two subvectors, thereby obtaining a contracted vector, which is then used as input to a recursive
call to the algorithm. In Futhark, the function can be implemented as follows:

let red (xs : []i32) : i32 =
let xs = loop xs=padpow2 0 xs while length xs > 1 do

let n = length xs / 2
in map2 (+) xs[0:n] xs[n:2*n]

68 Chapter 6. A Parallel Cost Model for Futhark Programs

Parallel Programming in Futhark, Release 0.80

The function specializes the reduction operator ⊕ to be + and the neutral element to be 0. The
function first pads the argument vector xs with neutral elements to ensure that its size is a power
of two. It then implements a sequential loop with the contraction step as its loop body, implemented
by a parallel map over an appropriately split input vector.

The auxiliary function for padding the input vector is implemented by the following code:

-- Find the smallest power of two greater than n
let nextpow2 (n:i32) : i32 =

loop a=2 while a < n do 2*a

-- Pad a vector to make its size a power of two
let padpow2 [n] (ne: i32) (v:[n]i32) : []i32 =

concat v (replicate (nextpow2 n - n) ne)

6.5.1 Determining Work and Span

To determine the work and span of the algorithm red, we first determine the work and span
for padpow2, for which we again need to determine the work and span for nextpow2. From
simple inspection we have 𝑊 (nextpow2 n) = 𝑆(nextpow2 n) = 𝑂(log n). Now, from the
definition of 𝑊 and 𝑆 and because nextpow2 n ≤ 2n, we have

𝑊 (padpow2 ne v) = 𝑊 (concat 𝑣 (replicate (nextpow2 n - n) ne)) = 𝑂(n)

and

𝑆(padpow2 ne v) = 𝑂(log n)

where n = size v.

Each loop iteration in has span 𝑂(1). Because the loop is iterated at-most log(2n) times, we have
(where n = sizev)

𝑊 (red v) = 𝑂(n) + 𝑂(n/2) + 𝑂(n/4) + · · · + 𝑂(1) = 𝑂(n)

𝑆(red v) = 𝑂(log n)

It is an exercise for the reader to compare the performance of the reduction code to the performance
of Futhark’s built-in reduce SOAC (see Benchmarking).

6.6 Radix-Sort by Contraction

Another example of a contraction-based algorithm is radix-sort. Radix-sort is a non-comparison
based sorting routine, which implements sorting by iteratively moving elements with a particular
bit set to the beginning (or end) in the array. It turns out that this move of elements with the same

6.6. Radix-Sort by Contraction 69

Parallel Programming in Futhark, Release 0.80

bit set can be parallelised. Thus, for arrays containing 32-bit unsigned integers, the sorting routine
needs only 32 loop-iterations to sort the array. A central property of each step is that elements with
identical bit values will not shift position. Depending on whether the algorithm consistently moves
elements with the bit set to the end of the array or to the beginning of the array results in the array
being sorted in either ascending or descending order.

6.6.1 Radix-Sort in Futhark

A radix-sort algorithm that sorts the argument vector in ascending order is shown below:

let rsort_step [n] (xs: [n]u32, bitn: i32): [n]u32 =
let bits1 = map (\x -> (i32.u32 (x >> u32.i32 bitn)) & 1) xs
let bits0 = map (1-) bits1
let idxs0 = map2 (*) bits0 (scan (+) 0 bits0)
let idxs1 = scan (+) 0 bits1
let offs = reduce (+) 0 bits0
let idxs1 = map2 (*) bits1 (map (+offs) idxs1)
let idxs = map2 (+) idxs0 idxs1
let idxs = map (\x->x-1) idxs
in scatter (copy xs) idxs xs

-- Radix sort algorithm, ascending
let rsort [n] (xs: [n]u32): [n]u32 =

loop (xs) for i < 32 do rsort_step(xs,i)

The function rsort_step implements the contraction step that takes care of moving all elements
with the bitn set to the end of the array. The main function rsort takes care of iterating the
contraction step until the array is sorted (i.e., when the contraction step has been executed for all
bits.) To appreciate the purpose of each data-parallel operation in the function, the table below
illustrates how rsort_step takes care of moving elements with a particular bit set (bit 2) to the
end of the array. The example assumes the current array (xs) contains the array [2,0,6,4,2,
1,5,9]. Notice that the last three values all have their 0-bit set whereas the first five values have
not.

70 Chapter 6. A Parallel Cost Model for Futhark Programs

Parallel Programming in Futhark, Release 0.80

Variable
xs 2† 0 2† 4 2† 1 5 9
bits1 1 0 1 0 1 0 0 0
bits0 0 1 0 1 0 1 1 1
scan (+) 0 bits0 0 1 1 2 2 3 4 5
idxs0 0 1 0 2 0 3 4 5
idxs1 1 1 2 2 3 3 3 3
idxs1' 6 6 7 7 8 8 8 8
idxs1'' 6 0 7 0 8 0 0 0
idxs 6 1 7 2 8 3 4 5
map (-1) idxs 5 0 6 1 7 2 3 4

By a straightforward analysis, we can argue that 𝑊 (rsort v) = 𝑂(n), where 𝑛 = lengthv; each
of the operations in has work 𝑂(n) and rsort_step is called a constant number of times (i.e.,
32 times). Similarly, we can argue that 𝑆(rsort v) = 𝑂(log n), dominated by the SOAC calls in
rsort_step.

6.7 Counting Primes

A variant of a contraction algorithm is an algorithm that first solves a smaller problem, recursively,
and then uses this result to provide a solution to the larger problem. One such algorithm is a version
of the Sieve of Eratosthenes that, to find the primes smaller than some 𝑛, first calculates the primes
smaller than

√
𝑛. It then uses this intermediate result for sieving away the integers in the range

√
𝑛

up to 𝑛 that are multiples of the primes smaller than
√
𝑛.

Unfortunately, Futhark does not presently support recursion, thus, one needs to use a loop con-
struct instead to implement the sieve. A Futhark program calculating the number of primes below
some number 𝑛, also denoted in the literature as the 𝜋 function, is shown below:

import "/futlib/math"

-- Find the first n primes
let primes (n:i32) : []i32 =

let (acc, _) = loop (acc,c) = ([],2) while c < n+1 do
let c2 = i32.min (c * c) (n+1)
let is = map (+c) (iota(c2-c))
let fs = map (\i ->

let xs = map (\p -> if i%p==0 then 1
else 0) acc

in reduce (+) 0 xs) is
-- apply the sieve
let new = filter (\i -> 0 == unsafe fs[i-c]) is
in (concat acc new, c2)

(continues on next page)

6.7. Counting Primes 71

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

in acc

-- Return the number of primes less than n
let main (n:i32) : i32 =

let ps = primes n in length ps

Notice that the algorithm applies a parallel sieve for each step, using a combination of maps and
reductions. The work done by the algorithm is 𝑂(𝑛 log log 𝑛) and the span is 𝑂(log log 𝑛). The
log log 𝑛 factor appears because the size of the problem is squared at each step, which is identical
to doubling the exponent size at each step (i.e., the sequence 22, 24, 28, 216, . . . , 𝑛, where 𝑛 = 22𝑚 ,
for some positive 𝑚, has 𝑚 = log log 𝑛 elements.)

72 Chapter 6. A Parallel Cost Model for Futhark Programs

Chapter 7
Fusion and List Homomorphisms

In this chapter, we outline the general SOAC reasoning principles that lie behind both the philoso-
phy of programming with arrays in Futhark and the techniques used for allowing certain programs
to have efficient parallel implementations. We shall discuss the reasoning principles in terms of
Futhark constructs but introduce a few higher-order concepts that are important for the reasoning.

We first discuss the concept of fusion, which aims at eliminating intermediate arrays while still
allowing the Futhark programmer to express an algorithm using simple SOACs and their associated
reasoning principles.

We then introduce the concept of list homomorphism through a few examples.

7.1 Fusion

Fusion aims at reducing the overhead of unnecessary repeated control-flow or unnecessary tempo-
rary storage. In essence, fusion is defined in terms of a number of fusion rules, which specify how
a Futhark (intermediate) expression can be transformed into a semantically equivalent expression.

The rules make use of the auxiliary higher-order functions for, for instance, function composition,
presented in Higher-Order Functions.

The first fusion rule, 𝐹1, which says that the result of mapping an arbitrary function f over the
result of mapping another arbitrary function g over some array a is identical to mapping the com-
posed function f <-< g over the array a. The first fusion rule is also called map-map fusion and
can simply be written

map f <-< map g = map (f <-< g)

Given that f and g denote the Futhark functions \x -> e and \y -> e', respectively (possibly
after renaming of bound variables), the function product of f and g, written f <*> g, is defined
as \(x,y) -> (f x, g y).

73

Parallel Programming in Futhark, Release 0.80

Now, given functions f:a->b and g:a->c, the second fusion rule, 𝐹2, which denotes horizontal
fusion, is given by the following equation:

(map f <*> map g) <-< dup = map ((f <*> g) <-< dup)

Here dup is the Futhark function \x -> (x,x).

The fusion rules that we have presented here generalise to functions that take multiple arguments by
applying zipping, unzipping, currying, and uncurrying strategically. Notice that due to Futhark’s
strategy of automatically transforming arrays of tuples into tuples of arrays, the applications of
zipping, unzipping, currying, and uncurrying have no effect at runtime.

Futhark applies a number of other fusion rules, which are based on the fundamental property
that Futhark’s internal representation is based on a number of composed constructs (e.g., named
scanomap and redomap). These constructs turn out to fuse well with map.

7.2 Parallel Utility Functions

For use by other algorithms, a set of utility functions for manipulating and managing arrays is an
important part of the tool box. We present a number of utility functions here, ranging from finding
elements in an array to finding the maximum element and its index in an array.

7.2.1 Finding the Index of an Element in an Array

We device two different functions for finding an index in an array for which the content is identical
to some given value. The first function, find_idx_first, takes a value e and an array xs and
returns the smallest index i into xs for which xs[i] = e:

-- Return the first index i into xs for which xs[i] == e
let find_idx_first [n] (e:i32) (xs:[n]i32) : i32 =

let es = map2 (\x i -> if x==e then i else n) xs (iota n)
let res = reduce i32.min n es
in if res == n then -1 else res

The second function, find_idx_last, also takes a value and an array but returns the largest
index i into xs for which xs[i] = e:

-- Return the last index i into xs for which xs[i] == e
let find_idx_last [n] (e:i32) (xs:[n]i32) : i32 =

let es = map2 (\x i -> if x==e then i else -1) xs (iota n)
in reduce i32.max (-1) es

The above two functions make use of the auxiliary functions i32.max and i32.min.

74 Chapter 7. Fusion and List Homomorphisms

Parallel Programming in Futhark, Release 0.80

7.2.2 Finding the Largest Element and its Index in an Array

Futhark allows for reduction operators to take tuples as arguments. This feature is exploited in
the following function, which implements a homomorphism for finding the largest element and its
index in an array:

-- Find the largest integer and its index in an array
let MININT : i32 = -10000000

let mx (m1:i32,i1:i32) (m2:i32,i2:i32) : (i32,i32) =
if m1 > m2 then (m1,i1) else (m2,i2)

let maxidx [n] (xs: [n]i32) : (i32,i32) =
reduce mx (MININT,-1) (zip xs (iota n))

The function is a homomorphism [Bir87]: For any 𝑥 and 𝑦, and with ++ denoting array concate-
nation, there exists an associative operator ⊕ such that

maxidx(𝑥 ++ 𝑦) = maxidx(𝑥) ⊕ maxidx(𝑦)

The operator ⊕ = mx. We will leave it up to the reader to verify that the maxidx function will
operate efficiently on large inputs.

7.3 Radix Sort Revisited

A simple radix sort algorithm was presented already in Radix-Sort in Futhark. In this section, we
present two generalized versions of radix sort, one for ascending sorting and one for descending
sorting. As a bonus, the sorting routines return both the sorted array and an index array that can
be used to sort an array with respect to a permutation obtained by sorting another array. The
generalised ascending radix sort is as follows:

-- Store elements for which bitn is not set first
let rs_step_asc [n] ((xs:[n]u32,is:[n]i32),bitn:i32) : ([n]u32,[n]i32)
→˓=
let bits1 = map (\x -> (i32.u32 (x >> u32.i32 bitn)) & 1) xs
let bits0 = map (1-) bits1
let idxs0 = map2 (*) bits0 (scan (+) 0 bits0)
let idxs1 = scan (+) 0 bits1
let offs = reduce (+) 0 bits0 -- store idxs1 last
let idxs1 = map2 (*) bits1 (map (+offs) idxs1)
let idxs = map (\x->x-1) (map2 (+) idxs0 idxs1)
in (scatter (copy xs) idxs xs,

scatter (copy is) idxs is)

(continues on next page)

7.3. Radix Sort Revisited 75

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

-- Radix sort - ascending
let rsort_asc [n] (xs: [n]u32) : ([n]u32,[n]i32) =

let is = iota n
in loop (p : ([n]u32,[n]i32)) = (xs,is) for i < 32 do

rs_step_asc(p,i)

And the descending version as follows:

-- Store elements for which bitn is set first
let rs_step_desc [n] ((xs:[n]u32,is:[n]i32),bitn:i32) : ([n]u32,
→˓[n]i32) =
let bits1 = map (\x -> (i32.u32 (x >> u32.i32 bitn)) & 1) xs
let bits0 = map (1-) bits1
let idxs1 = map2 (*) bits1 (scan (+) 0 bits1)
let idxs0 = scan (+) 0 bits0
let offs = reduce (+) 0 bits1 -- store idxs0 last
let idxs0 = map2 (*) bits0 (map (+offs) idxs0)
let idxs = map (\x->x-1) (map2 (+) idxs1 idxs0)
in (scatter (copy xs) idxs xs,

scatter (copy is) idxs is)

-- Radix sort - descending
let rsort_desc [n] (xs: [n]u32) : ([n]u32,[n]i32) =

loop (p : ([n]u32,[n]i32)) = (xs,iota n) for i < 32 do
rs_step_desc(p,i)

Notice that in case of identical elements in the source vector, one cannot simply implement the
ascending version by reversing the arrays resulting from calling the descending version.

7.4 Finding the Longest Streak

In this section, we shall demonstrate how to write a function for finding the longest streak of
increasing numbers. Here is one possible implementation of the function:

-- Longest streak of increasing numbers
let streak [n] (xs: [n]i32) : i32 =

-- find increments
let ys = rotate 1 xs
let is = (map2 (\x y -> if x < y then 1 else 0) xs ys)[0:n-1]
-- scan increments
let ss = scan (+) 0 is
-- nullify where there is no increment
let ss1 = map2 (\s i -> s*(1-i)) ss is

(continues on next page)

76 Chapter 7. Fusion and List Homomorphisms

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

let ss2 = scan max 0 ss1
-- subtract from increment scan
let ss3 = map2 (-) ss ss2
let res = reduce max 0 ss3
in res

The following derivation shows how the algorithm works for a particular input, namely when
stream is given the argument array [1,5,3,4,2,6,7,8], in which case the algorithm should
return the value 3:

Variable
xs = 1 5 3 4 2 6 7 8
ys = 5 3 4 2 6 7 8 1
is = 1 0 1 0 1 1 1
ss = 1 1 2 2 3 4 5
ss = 0 1 0 2 0 0 0
ss2 = 0 1 1 2 2 2 2
ss3 = 1 0 1 0 1 2 3
res = 3

In Finding the Longest Streak Using Segmented Scan we present a simpler algorithm, which builds
directly on the concept of a so-called segmented scan.

7.4. Finding the Longest Streak 77

Parallel Programming in Futhark, Release 0.80

78 Chapter 7. Fusion and List Homomorphisms

Chapter 8
Regular Flattening

In this chapter, we introduce the concept of regular moderate flattening [HSE+17], which is the
essential technique used for making regular nested parallel Futhark programs run efficiently in
practice on parallel hardware such as GPUs.

We first introduce a number of parallel segmented operations, which are essential for dealing with
nested parallelism. The segmented operations, it turns out, can be implemented using Futhark’s
standard SOAC parallel array combinators. In particular, it turns out that the scan operator is of
critical importance in that it can be used to develop the notion of a segmented scan operation, an
operation that, in its own right, is essential to many parallel algorithms. Based on the segmented
scan operation and the other Futhark SOAC operations, we present a set of utility functions as well
as their parallel implementations. The functions are used by the moderate flattening transformation
presented in Moderate Flattening, but are also useful, as we shall see in Irregular Flattening,
for the programmer to manage irregular parallelism through flattening transformations, performed
manually by the programmer.

8.1 Segmented Scan

As mentioned, the segmented scan operation is quite essential for Futhark to flatten nested regular
parallelism and for the programmer to flatten irregular nested parallel problems. The operation can
be implemented with a simple scan using an associative function that operates on pairs of values
[Sch80][Ble90]. Here is the definition of the segmented scan operation, hardcoded to work with
addition:

-- Segmented scan with integer addition
let sgm_scan_add [n] (vals:[n]i32) (flags:[n]bool) : [n]i32 =

let pairs = scan (\ (v1,f1) (v2,f2) ->
let f = f1 || f2
let v = if f2 then v2 else v1+v2

(continues on next page)

79

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

in (v,f)) (0,false) (zip vals flags)
let (res,_) = unzip pairs
in res

We can make use of Futhark’s support for higher-order functions and polymorphism to define a
generic version of segmented scan that will work for other monoidal structures than addition on
i32 values:

-- Generic version of segmented scan
let sgm_scan 't [n] (g:t->t->t) (ne:t) (vals:[n]t) (flags:[n]bool) :
→˓[n]t =
let pairs = scan (\ (v1,f1) (v2,f2) ->

let f = f1 || f2
let v = if f2 then v2 else g v1 v2
in (v,f)) (ne,false) (zip vals flags)

let (res,_) = unzip pairs
in res

We leave it up to the reader to prove that, given an associative function g, (1) the operator passed
to scan is associative and (2) (ne, false) is a neutral element for the operator.

8.1.1 Finding the Longest Streak Using Segmented Scan

In this section we revisit the problem of Finding the Longest Streak for finding the longest streak
of increasing numbers. We show how we can make direct use of a segmented scan operation for
solving the problem:

-- Longest streak of increasing numbers
let sgm_streak [n] (xs: [n]i32) : i32 =

let ys = rotate 1 xs
let is = (map2 (\x y -> if x < y then 1 else 0) xs ys)[0:n-1]
let fs = map (==0) is
let ss = sgm_scan_add is fs
let res = reduce max 0 ss
in res

The algorithm first constructs the is array, as in the previous algorithm, and then uses a segmented
scan over a negation of this array over the unit-array to create the ss3 vector directly. Here is a
derivation of how the segmented-scan based algorithm works:

80 Chapter 8. Regular Flattening

Parallel Programming in Futhark, Release 0.80

Variable
xs = 1 5 3 4 2 6 7 8
ys = 5 3 4 2 6 7 8 1
is = 1 0 1 0 1 1 1
fs = 0 1 0 1 0 0 0
ss = 1 0 1 0 1 2 3
res = 3

The morale here is that the segmented scan operation provides us with a great abstraction.

8.2 Replicated Iota

The first utility function that we will present is called replicated_iota. Given an array
of natural numbers specifying repetitions, the function returns an array of weakly increasing
indices (starting from 0) and with each index repeated according to the repetition array. As
an example, replicated_iota [2,3,1,1] returns the array [0,0,1,1,1,2,3]. The
function is defined in terms of other parallel operations, including scan, map, scatter, and
segmented_scan:

let replicated_iota [n] (reps:[n]i32) : []i32 =
let s1 = scan (+) 0 reps
let s2 = map (\i -> if i==0 then 0 else unsafe s1[i-1]) (iota n)
let tmp = scatter (replicate (unsafe s1[n-1]) 0) s2 (iota n)
let flags = map (>0) tmp
in segmented_scan (+) 0 flags tmp

An example evaluation of a call to the function replicated_iota is provided below. No-
tice that in order to use this Futhark code with futhark-opencl, we need to prefix the array
indexing in line 3 and line 4 with the unsafe keyword.

Args/Result
reps = 2 3 1 1
s1 = 2 5 6 7
s2 = 0 2 5 6
replicate = 0 0 0 0 0 0 0
tmp = 0 0 1 0 0 2 3
flags = 0 0 1 0 0 1 1
segmented_scan = 0 0 1 1 1 2 3

8.2. Replicated Iota 81

Parallel Programming in Futhark, Release 0.80

8.3 Segmented Replicate

Another useful utility function is called segmented_replicate. Given a one-
dimensional replication array containing natural numbers and a data array of the same shape,
segmented_replicate returns an array of size equal to the sum of the values in the repli-
cation array with values from the data array replicated according to the corresponding repli-
cation values. As an example, a call segmented_replicate [2,1,0,3,0] [5,6,9,
8,4] result in the array [5,5,6,8,8,8]. Here is the code that implements the function
segmented_replicate:

let segmented_replicate [n] (reps:[n]i32) (vs:[n]i32) : []i32 =
let idxs = replicated_iota reps
in map (\i -> unsafe vs[i]) idxs

The segmented_replicate function makes use of the previously defined function
replicated_iota. Notice the use of the unsafe keyword in the last line; it is necessary
because Futhark cannot prove that the index i will always be within bounds of the array vs.

8.4 Segmented Iota

Another useful utility function is the function segmented_iota that, given a array of flags (i.e.,
booleans), returns an array of index sequences, each of which is reset according to the booleans in
the array of flags. As an example, the expression:

segmented_iota [false,false,false,true,false,false,false]

returns the array [0,1,2,0,1,2,3]. The segmented_iota function can be implemented
with the use of a simple call to segmented_scan followed by a call to map:

let segmented_iota [n] (flags:[n]bool) : [n]i32 =
let iotas = segmented_scan (+) 0 flags (replicate n 1)
in map (\x -> x-1) iotas

8.5 Indexes to Flags

Many segmented operations, such as segmented_scan takes as argument an array of boolean
flags for specifying when new segments start. Often, only the sizes of segments are known,
which means that it may come in useful to be able to transform an array of segment sizes to a
corresponding array of boolean flags. Here is one possible parallel implementation of such an
idxs_to_flags function:

82 Chapter 8. Regular Flattening

Parallel Programming in Futhark, Release 0.80

let idxs_to_flags [n] (is : [n]i32) : []bool =
let vs = segmented_replicate is (iota n)
in map2 (!=) vs ([0] ++ vs[:length vs-1])

As an example use of the function, the expression idxs_to_flags [2,1,3] evaluates to the
flag array [false,false,true,true,false,false]. Notice that the implementation
also works in case some segments are of size zero.

8.6 Moderate Flattening

The flattening rules that we shall introduce here allow the Futhark compiler to generate parallel
kernels for various code block patterns. In contrast to the general concept of flattening as intro-
duced by Blelloch [BHS+94], Futhark applies a technique called moderate flattening [HSE+17],
which does not cover arbitrary nested parallelism, but does cover well many regular nested parallel
patterns. We shall come back to the issue of flattening irregular nested parallelism in Irregular
Flattening.

In essence, moderate flattening works by matching compositions of fused constructs against a
number of flattening rules. The aim is to merge (i.e., flatten) nested parallel operations into se-
quences of parallel operations. Although, such flattening is often possible, in particular due to an
integrated transformation called vectorisation, there are situations where choices needs to be made.
In particular, when a map is nested on top of a loop, we may choose to parallelise the outer map
and sequentialise the inner loop, which on the GPU will amount to all threads running sequen-
tial loops in parallel. An alternative, when possible, will be to interchange the outer map and the
loop and then sequentialise the outer loop (on the host) and parallelise the inner map, which will
then be executed multiple times. It turns out that Futhark can make some guesses about which
strategy to pursue based on possible information about the sizes of the arrays. An extension to
the static concept moderate flattening, Futhark also supports a notion of flattening that generates
multiple versions of flattened code, guarded by parameters that may be autotuned to achieve good
performance for a range of different data sets [HTEO19].

In the following we shall focus on the transformations performed by moderate flattening.

8.6.1 Vectorisation

Assuming e' contains SOACs, transform the expression

map (\x -> let y = e in e') xs

into the expression

let ys = map (\x -> e) xs
in map (\(x,y) -> e') (zip xs ys)

8.6. Moderate Flattening 83

Parallel Programming in Futhark, Release 0.80

This transformation does not itself capture any nested parallelism but may enable other transfor-
mations by eliminating the inner let-expression.

8.6.2 Map-Map Nesting

Nested applications of map constructs are in essence transformed into a single map construct
by (1) flattening the argument array, (2) applying the inner function on the flattened array, and
(3) unflattening the concatenated results. This process can be repeated for multiple nested map
constructs. It turns out that the administrative operations can be implemented with zero overhead.

8.6.3 Map-Scan Nesting

In case of an expression made up from a map construct appearing on top of a scan operation, the
expression is transformed into a regular segmented scan operation. That is, the expression:

map (\xs -> scan f ne xs) xss

is transformed into the expression:

regular_segmented_scan f ne xss

Notice here that we assume the availability of a regular segmented scan operation of type:

val regular_segmented_scan 't [n] [m]: (t->t->t) -> t -> [n][m]t ->
→˓[n][m]t

Internally, this function will use the inner size of the multi-dimensional argument array (i.e., m)
to construct an appropriate flag vector suitable for the segmented scan. Again, for an in-depth
discussion of how to implement a segmented scan operation on top of an ordinary scan operation,
please consult Segmented Scan.

8.6.4 Map-Reduce Nesting

In case of a map construct appearing on top of a reduce operation, this expression is transformed
into a regular segmented reduction [LH17]. That is, the expression:

map (\xs -> reduce f ne xs) xss

is transformed into the expression:

regular_segmented_reduce f ne xss

Notice here that we assume the availability of a regular segmented reduction operation of type:

84 Chapter 8. Regular Flattening

Parallel Programming in Futhark, Release 0.80

val regular_segmented_reduce 't [n] : (t->t->t) -> t -> [n][]t -> [n]t

Internally, this function can be implemented based on the function
regular_segmented_scan discussed above. Here is a simple definition::

let regular_segmented_reduce = map last <-< regular_segmented_scan

8.6.5 Map-Iota Nesting

A map over an iota expression can be transformed to the composition of the segmented_iota
function defined in Segmented Iota and a function ìdxs_to_flags, which converts an array of
indices to an array fs of boolean flags of size equal to the sum of the values in xs and with
true-values in indexes specified by the prefix sums of the index values.

As an example, the expression idxs_to_flags [2,1,3] evaluates to the flag ar-
ray [false,false,true,true,false,false]. Notice that the expression
idxs_to_flags [2,0,4] evaluates to the same boolean vector as idxs_to_flags
[2,4]. We shall not here give a definition of the idxs_to_flags function, but refer the reader
to Indexes to Flags.

All in all, an expression of the form:

map iota xs

is transformed into:

(segmented_iota <-< idxs_to_flags) xs

8.6.6 Map-Replicate Nesting

Recall that replicate has the type:

val replicate 't : (n:i32) -> t -> [n]t

A map over a replicate expression takes the form:

map (\x -> replicate n x) xs

where n is invariant to x. Such an expression can be transformed into the expression:

segmented_replicate (replicate (length xs) n) xs

As an example, consider the expression map (replicate 2) [8,5,1]. This expression is
transformed into the expression:

8.6. Moderate Flattening 85

Parallel Programming in Futhark, Release 0.80

segmented_replicate (replicate 3 2) [8,5,1]

which evaluates to [8,8,5,5,1,1]. Notice that the subexpression replicate 3 2 evalu-
ates to [2,2,2].

86 Chapter 8. Regular Flattening

Chapter 9
Pseudo-Random Numbers and Monte Carlo
Sampling Methods

Pseudo-random number generation and Monte Carlo sampling are concepts that apply to a large
number of application areas. In a data-parallel setting, these concepts require special treatment be-
yond the usual sequential methods. In this chapter, we first present a Futhark package, called
cpprandom for generating pseudo-random numbers in parallel. We then present a Futhark
package, called sobol, for generating Sobol sequences, which are examples of so-called low-
discrepancy sequences, sequences that make numerical multi-dimensional integration converge
faster than if pseudo-random numbers were used.

9.1 Generating Pseudo-Random Numbers

The cpprandom package is inspired by the C++ library <random>, which is very elaborate, but
also very flexible. Due to Futhark’s purity, it is up to the programmer to explicitly manage the
state of the pseudo-random number engine (the RNG state). In particular, it is the programmer’s
responsibility to ensure that the same state is not used more than once (unless that is what is
desired).

The following program constructs a uniform distribution of single precision floats using
minstd_rand as the underlying RNG engine.

module dist = uniform_real_distribution f32 minstd_rand

let rng = minstd_rand.rng_from_seed [123]
let (rng, x) = dist.rand (1,6) rng

The dist module is constructed at the program top level, while we use it at the expression level.
We use the minstd_rand module for initialising the random number state using a seed, and
then we pass that state to the rand function in the generated distribution module, along with a

87

Parallel Programming in Futhark, Release 0.80

description of the distribution we desire. We get back not just the random number, but also the new
state of the engine.

The dist.rand function, coming from uniform_real_distribution, simply takes a
pair of numbers describing the range. Consider instead the following code:

module norm_dist = normal_distribution f32 minstd_rand

let (rng, y) = norm_dist.rand {mean=50, stddev=25} rng

In contrast to dist.rand, the norm_dist.rand function, coming from
normal_distribution takes a record specifying the mean and the standard deviation. Since
both dist and norm_dist have been initialised with the same underlying rng_engine, we
can reuse the same RNG state. Such reuse is often convenient when a program needs to generate
random numbers from several different distributions, as we still only have to manage a single
RNG state.

9.1.1 Parallel random numbers

Random number generation is inherently sequential. The rand functions take an RNG state as
input and produce a new RNG state. This dependence creates challenges when we wish to map a
function f across some array xs, and each application of the function must produce some random
numbers. We generally don’t want to pass the exact same state to every application, as that means
each element will see the exact same stream of random numbers. The common procedure is to
use split_rng, which creates any number of RNG states from one, and then pass one to each
application of f:

let rngs = minstd_rand.split_rng n rng
let (rngs, ys) = unzip (map2 f rngs xs)
let rng = minstd.rand.join_rngs rngs

We assume here that the function f returns not just the result, but also the new RNG state. Gen-
erally, all functions that accept random number states should behave like this. We subsequently
use join_rngs to combine all resulting states back into a single state. Thus, parallel program-
ming with random numbers involves frequently splitting and rejoining RNG states. For most RNG
engines, these operations are generally very cheap.

9.2 Low-Discrepancy Sequences

The Futhark package sobol is a package for generating Sobol sequences, which are examples of
so-called low-discrepancy sequences, sequences that, when combined with Monte-Carlo methods,
make numeric integration converge faster than if ordinary pseudo-random numbers are used and
are more flexible than if uniform sampling techniques are used. Sobol sequences may be multi-
dimensional and a key property of using Sobol sequences is that we can freely choose the number

88 Chapter 9. Pseudo-Random Numbers and Monte Carlo Sampling Methods

Parallel Programming in Futhark, Release 0.80

of points that should span the multi-dimensional space. In contrast, if we set out to use a simpler
uniform sampling technique for spanning two dimensions, we can only span the space properly if
we choose the number of points to be on the form 𝑥2, for some natural number 𝑥. This spanning
problem becomes worse for higher dimensions.

As an example, we shall see how we can use Sobol sequences together with Monte-Carlo simu-
lation to compute the value of 𝜋. We shall also see that doing so will result in faster convergence
towards the true value of 𝜋 compared to if pseudo-random numbers are used.

To calculate an approximation to the value of 𝜋, we will use a simple dart-throwing approach. We
will throw darts at a 2 by 2 square, centered around the origin, and then establish the ratio between
the number of darts hitting within the unit circle with the number of darts hitting the square. This
ratio multiplied with 4 will be our approximation of 𝜋. The more darts we throw, the better our
approximation, assuming that the darts we throw hit the board somewhat evenly. To calculate
whether a particular dart, thrown at the point (𝑥, 𝑦), is within the unit circle, we can apply the
standard Pythagoras formula:

𝜋 ≈ 4

𝑁

𝑁∑︁
𝑖=1

{︂
1 if 𝑥2

𝑖 + 𝑦2𝑖 < 1
0 otherwise

For the actual throwing of darts, we need to establish 𝑁 pairs of numbers, each in the interval [-
1;1]. Now, it turns out that it matters significantly how we choose to throw the darts. Some obvious
choices would be to throw the darts in a regular grid (i.e., uniform sampling), or to choose points
using a pseudo-random number generator.

The Futhark package makes essential use of an independent formula for calculating, independently,
the 𝑛‘th Sobol number. However, even though such a formula is essential for achieving parallelism,
it performs poorly compared to the more efficient recurrent formula, which makes it possible to
calculate the 𝑛‘th Sobol number if we know the previous Sobol number. The Futhark package
makes essential use of both formulas. The calculation of a sequence of Sobol numbers depends on
a set of direction vectors, which are also provided by the package.

The key functionality of the package comes in the form of a higher-order module Sobol, which
takes as arguments a direction vector module and a module specifying the dimensionality of the
generated Sobol numbers:

module type sobol_dir = { ... }
module sobol_dir : sobol_dir -- file sobol-dir-50, e.g.

module type sobol = {
val D : i32
val norm : f64
val independent : i32 -> [D]u32
val recurrent : i32 -> [D]u32 -> [D]u32
val sobol : (n: i32) -> [n][D]f64

}
module Sobol : (DM : sobol_dir) -> (X : { val D : i32 }) -> sobol

9.2. Low-Discrepancy Sequences 89

Parallel Programming in Futhark, Release 0.80

For estimating the value of 𝜋, we will need a two-dimensional Sobol sequence, thus we apply the
Sobol higher-order module to the direction vector module that works for up-to 50 dimensions and
a module specifying a dimensionality of two:

import "lib/github.com/diku-dk/sobol/sobol-dir-50"
import "lib/github.com/diku-dk/sobol/sobol"

module sobol = Sobol sobol_dir { let D = 2 }

We can now complete the program by writing a main function that computes an array of Sobol
numbers of a size given by the parameter given to main and feed this array into a function that will
compute the estimation of 𝜋 using the function shown above:

let sqr (x:f64) = x * x

let in_circle (p:[2]f64) : bool =
sqr p[0] + sqr p[1] < 1.0f64

let pi_arr [n] (arr: [n][2]f64) : f64 =
let bs = map (i32.bool <-< in_circle) arr
let sum = reduce (+) 0 bs
in 4f64 * r64 sum / f64.i32 n

let main (n:i32) : f64 =
sobol.sobol n |> pi_arr

The use of Sobol numbers for estimating 𝜋 turns out to be about three times slower than using a
uniform grid on a standard GPU. However, it converges towards 𝜋 equally well (with increasing
𝑁) and is superior for larger dimensions [HEO18]. In general, there are other good reasons to
avoid uniform sampling in relation to Monte-Carlo methods.

90 Chapter 9. Pseudo-Random Numbers and Monte Carlo Sampling Methods

Chapter 10
Irregular Flattening

In this chapter, we investigate a number of challenging irregular algorithms, which cannot be dealt
with directly using Futhark’s moderate flattening technique discussed in Moderate Flattening.

10.1 Flattening by Expansion

For dealing with large non-regular problems, we need ways to regularise the problems so that they
become tractable with the regular parallel techniques that we have seen demonstrated previously.
One way to regularise a problem is by padding data such that the data fits a regular parallel schema.
However, by doing so, we run the risk that the program will use too many parallel resources
for computations on the padding data. This problem will arise, in particular, if the data is very
irregular. As a simple, and also visualisable, example, consider the task of determining the points
that make up a number of line segments given by sets of two points in a 2D grid. Whereas we may
easily devise an algorithm for determining the grid points that make up a single line segment, it is
not immediately obvious how we can efficiently regularise the problem of drawing multiple line
segments, as each line segment will end up being represented by a different number of points. If
we choose to implement a padding regularisation scheme by introducing a notion of ‘’an empty
point’‘, each line can be represented as the same number of points, which will allow us to map
over an array of such line points for processing the lines using regular parallelism. However, the
cost we pay is that even the smallest line will be represented as the same number of points as the
longest line.

Another strategy for regularisation is to flatten the irregular parallelism into regular parallelism
and use segmented operations to process each particular object. It turns out that there, in many
cases, is a simple approach to implement such flattening, using, as we shall see, a technique called
expansion, which will take care of all the knitty gritty details of the flattening. The expansion
approach is centered around a function that we shall call expand, which, as the name suggests,
expands a source array into a longer target array, by expanding each individual source element into
multiple target elements, which can then be processed in parallel.

91

Parallel Programming in Futhark, Release 0.80

For implementing the expand function using only parallel operations, we shall make use of the
segmented helper functions defined in Regular Flattening. In particular, we shall make use of the
functions replicated_iota, segmented_replicate, and segmented_iota.

Here is the generic type of the expand function:

val expand 'a 'b : (sz: a -> i32) -> (get: a -> i32 -> b) -> []a -> []b

The function expands a source array into a target array given (1) a function that determines, for
each source element, how many target elements it expands to and (2) a function that computes a
particular target element based on a source element and the target element number associated with
the source. As an example, the expression expand (\x->x) (*) [2,3,1] returns the array
[0,2,0,3,6,0]. The function is defined as follows:

let expand 'a 'b (sz: a -> i32) (get: a -> i32 -> b) (arr:[]a) : []b =
let szs = map sz arr
let idxs = replicated_iota szs
let iotas = segmented_iota (map2 (!=) idxs (rotate (i32.negate 1)

→˓idxs))
in map2 (\i j -> unsafe get arr[i] j) idxs iotas

10.2 Drawing Lines

In this section we demonstrate how to apply the flattening-by-expansion technique for obtaining a
work efficient line drawing routine that draws lines fully in parallel. The technique resembles the
development by Blelloch [Ble90] with the difference that it makes use of the expand function
defined in the previous section. Given a number of line segments, each defined by its end points
(𝑥1, 𝑦1) and (𝑥2, 𝑦2), the algorithm will find the set of all points constituting all the line segments.

We first present an algorithm that will find all points that constitutes a single line segment. For
computing this set, observe that the number of points that make up the constituting set is the
maximum of |𝑥2 − 𝑥1| and |𝑦2 − 𝑦1|, the absolute values of the difference in 𝑥-coordinates and
𝑦-coordinates, respectively. Using this observation, the algorithm can independently compute the
constituting set by first calculating the proper direction and slope of a line, relative to a particular
starting point.

The simple line drawing routine is given as follows:

-- Finding points on a line
type point = (i32,i32)
type line = (point,point)
type points = []point

let compare (v1:i32) (v2:i32) : i32 =
if v2 > v1 then 1 else if v1 > v2 then -1 else 0

(continues on next page)

92 Chapter 10. Irregular Flattening

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

let slope ((x1,y1):point) ((x2,y2):point) : f32 =
if x2==x1 then if y2>y1 then 1f32 else -1f32

else r32(y2-y1) / f32.abs(r32(x2-x1))

let linepoints ((x1,y1):point, (x2,y2):point) : points =
let len = 1 + i32.max (i32.abs(x2-x1)) (i32.abs(y2-y1))
let xmax = i32.abs(x2-x1) > i32.abs(y2-y1)
let (dir,sl) =

if xmax then (compare x1 x2, slope (x1,y1) (x2,y2))
else (compare y1 y2, slope (y1,x1) (y2,x2))

in map (\i -> if xmax
then (x1+i*dir,

y1+i32.f32(f32.round(sl*r32(i))))
else (x1+i32.f32(f32.round(sl*r32(i))),

y1+i*dir)) (iota len)

Futhark code that uses the linepoints function for drawing concrete lines is shown below:

-- Write to grid
let update [h] [w] [n] (grid: [h][w]i32)(xs:[n]i32)(ys:[n]i32):
→˓[h][w]i32 =
let is = map2 (\x y -> w*y+x) xs ys
let flatgrid = flatten grid
let ones = map (\ _ -> 1) is
in unflatten h w (scatter (copy flatgrid) is ones)

-- Sequential algorithm for drawing multiple lines
let drawlines [h] [w] [n] (grid: *[h][w]i32) (lines:[n]line) :
→˓[h][w]i32 =
loop (grid) for i < n do -- find points for line i

let (xs,ys) = unzip (linepoints (lines[i]))
in update grid xs ys

-- Draw lines on a 70 by 30 grid
let main : [][]i32 =
let height:i32 = 30
let width:i32 = 70
let grid : *[][]i32 = replicate height (replicate width 0)
let lines = [((58,20),(2,3)),((27,3),(2,28)),((5,20),(20,20)),

((4,10),(6,25)),((26,25),(26,2)),((58,20),(52,3))]
in drawlines grid lines

The function main sets up a grid and calls the function drawlines, which takes care of sequen-
tially updating the grid with constituting points for each line, computed using the linepoints
function. The resulting points look like this:

10.2. Drawing Lines 93

Parallel Programming in Futhark, Release 0.80

An unfortunate problem with the line drawing routine shown above is that it draws the lines se-
quentially, one by one, and therefore makes only very limited use of a GPU’s parallel cores. There
are various ways one may mitigate this problem. One way could be to use map to draw lines in
parallel. However, such an approach will require some kind of padding to ensure that the map
function will compute data of the same length, no matter the length of the line. A more resource
aware approach will apply a flattening technique for computing all points defined by all lines si-
multaneously. Using the expand function defined in the previous section, all we need to do to
implement this approach is to provide (1) a function that determines for a given line, the number
of points that make up the line and (2) a function that determines the n’th point of a particular line,
given the index n. The code for such an approach looks as follows:

-- Parallel flattened algorithm for turning lines into
-- points, using expansion.

let points_in_line ((x1,y1),(x2,y2)) =
i32.(1 + max (abs(x2-x1)) (abs(y2-y1)))

let get_point_in_line ((p1,p2):line) (i:i32) =
if i32.abs(p1.1-p2.1) > i32.abs(p1.2-p2.2)
then let dir = compare (p1.1) (p2.1)

let sl = slope p1 p2
in (p1.1+dir*i,

p1.2+i32.f32(f32.round(sl*r32 i)))
else let dir = compare (p1.2) (p2.2)

let sl = slope (p1.2,p1.1) (p2.2,p2.1)
in (p1.1+i32.f32(f32.round(sl*r32 i)),

p1.2+i*dir)

let drawlines [h][w][n] (grid:*[h][w]i32)
(continues on next page)

94 Chapter 10. Irregular Flattening

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

(lines:[n]line) :[h][w]i32 =
let (xs,ys) = expand points_in_line get_point_in_line lines

|> unzip
in update grid xs ys

Notice that the function get_point_in_line distinguishes between whether the number of
points in the line is counted by the x-axis or the y-axis. Notice also that the flattening technique
can be applied only because all lines have the same color. Otherwise, when two lines intersect,
the result would be undefined, due to the fact that scatter results in undefined behaviour when
multiple values are written into the same location of an array.

10.3 Drawing Triangles

Another example of an algorithm worthy of flattening is an algorithm for drawing triangles. The
algorithm that we present here is based on the assumption that we already have a function for
drawing multiple horizontal lines in parallel. Luckily, we have such a function! The algorithm is
based on the property that any triangle can be split into an upper triangle with a horizontal baseline
and a lower triangle with a horizontal ceiling. Just as the algorithm for drawing lines makes use
of the expand function defined earlier, so will the flattened algorithm for drawing triangles. A
triangle is defined by the three points representing the corners of the triangle:

type triangle = (point, point, point)

We shall make the assumption that the three points that define the triangle have already been sorted
according to the y-axis. Thus, we can assume that the first point is the top point, the third point is
the lowest point, and the second point is the middle point (according to the y-axis).

The first function we need to pass to the expand function is a function that determines the number
of horizontal lines in the triangle:

let lines_in_triangle ((p,_,r):triangle) : i32 =
r.2 - p.2 + 1

The second function we need to pass to the expand function is somewhat more involved. We first
define a function dxdy, which computes the inverse slope of a line between two points:

let dxdy (a:point) (b:point) : f32 =
let dx = b.1 - a.1
let dy = b.2 - a.2
in if dy == 0 then f32.i32 0

else f32.i32 dx f32./ f32.i32 dy

We can now define the function that, given a triangle and the horizontal line number in the triangle
(counted from the top), returns the corresponding line:

10.3. Drawing Triangles 95

Parallel Programming in Futhark, Release 0.80

let get_line_in_triangle ((p,q,r):triangle) (i:i32) =
let y = p.2 + i
in if i <= q.2 - p.2 then -- upper half

let sl1 = dxdy p q
let sl2 = dxdy p r
let x1 = p.1 + i32.f32(f32.round(sl1 * f32.i32 i))
let x2 = p.1 + i32.f32(f32.round(sl2 * f32.i32 i))
in ((x1,y),(x2,y))

else -- lower half
let sl1 = dxdy r p
let sl2 = dxdy r q
let dy = (r.2 - p.2) - i
let x1 = r.1 - i32.f32(f32.round(sl1 * f32.i32 dy))
let x2 = r.1 - i32.f32(f32.round(sl2 * f32.i32 dy))
in ((x1,y),(x2,y))

The function distinguishes between whether the line to compute resides in the upper or the lower
subtriangle. Finally, we can define a parallel, work-efficient function that converts a number of
triangles into lines:

let lines_of_triangles (xs:[]triangle) : []line =
expand lines_in_triangle get_line_in_triangle

(map normalize xs)

To see the code in action, here is a function that draws three triangles on a grid of height 30 and
width 62:

let draw (height:i32) (width:i32) : [][]i32 =
let grid : *[][]i32 = replicate height (replicate width 0)
let triangles = [((5,10),(2,28),(18,20)),

((42,6),(58,10),(25,22)),
((8,3),(15,15),(35,7))]

let lines = lines_of_triangles triangles
in drawlines grid lines

The function makes use of both the lines_of_triangles function that we have defined here
and the work efficient drawlines function defined previously. Here is a plot of the result:

96 Chapter 10. Irregular Flattening

Parallel Programming in Futhark, Release 0.80

10.4 Complex Flattening

Unfortunately, the flattening-by-expansion technique does not suit all irregular problems. We shall
now investigate how we can flatten a highly irregular algorithm such as quick-sort. The Quick-sort
algorithm can be presented very elegantly in a functional language. The function qsort that we
will define has the following type:

val qsort 't [n] : (t -> t -> bool) -> [n]t -> [n]t

Given a comparison function (<=) and an array of elements xs, qsort (<=) xs returns an
array with the elements in xs sorted according to <=. Consider the following pseudo-code, which,
unfortunately, is not immediately Futhark code:

let qsort (<=) xs =
if length xs < 2 then xs
else let (left,middle,right) = partition (<=) xs[length xs / 2] xs

in qsort (<=) left ++ middle ++ qsort (<=) right

Here the function partition returns three arrays with the first array containing elements smaller
than the pivot element xs[length xs / 2], the second array containing elements equal to
the pivot element, and the third array containing elements that are greater than the pivot element.
There are multiple problems with this code. First, the code makes use of recursion, which is
not supported by Futhark. Second, the kind of recursion used is not tail-recursion, which means
that it is not directly obvious how to eliminate the recursion. Third, it is not clear how the code
can avoid using an excessive amount of memory instead of making use of inplace-updates for the
sorting. Finally, it seems that the code is inherently task-parallel in nature and not particularly
data-parallel.

10.4. Complex Flattening 97

Parallel Programming in Futhark, Release 0.80

The solution is to solve a slightly more general problem. More precisely, we shall set out to sort a
number of segments, simultaneously, where each segment comprises a part of the array. Notice that
we are interested in supporting a notion of partial segmentation, for which the segments of interest
are disjoint but do not necessarily together span the entire array. In particular, the algorithm does
not need to sort segments containing previously chosen pivot values. Such segments are already
located in the correct positions, which means that they need not be moved around by the segmented
quick sort implementation.

We first define a type sgm that specifies a segment of an underlying one-dimensional array of
values:

type sgm = {start:i32,sz:i32} -- segment descriptor

At top-level, the function qsort is defined as follows, assuming a function step of type (t ->
t -> bool) -> *[n]t -> []sgm -> (*[n]t,[]sgm):

let qsort [n] 't ((<=): t -> t -> bool) (xs:[n]t) : [n]t =
if n < 2 then xs
else (loop (xs,mms) = (copy xs,[{start=0,sz=n}])

while length mms > 0 do
step (<=) xs mms).1

The step function is called initially with the array to be sorted as argument together with a
singleton array containing a segment denoting the entire array to be sorted. The step function
is called iteratively until the returned array of segments is empty. The job of the step function
is to divide each segment into three new segments based on pivot values found for each segment.
After the step function has reordered the values in the segments, the middle segment (containing
values equal to a pivot) need not be dealt with again in the further process. A new array of segment
descriptors is then defined and after removing empty segment descriptors, the resulting array of
non-empty segment descriptors is returned by the step function together with the reordered value
array.

Before we can define the step function, we first define a few helper functions. Using the functions
segmented_iota and segmented_replicate, defined earlier, we can define a function for
finding all the indexes represented by an array of segments:

let idxs_values (sgms:[]sgm) : []i32 =
let sgms_szs : []i32 = map (\sgm -> sgm.sz) sgms
let is1 = segmented_replicate sgms_szs (map (\x -> x.start) sgms)
let fs = map2 (!=) is1 (rotate (i32.negate 1) is1)
let is2 = segmented_iota fs
in map2 (+) is1 is2

We also define a function info that, given an ordering function and two elements, returns -1 if
the first element is less than the second element, 0 if the elements are identical, and 1 if the first
element is greater than the second element:

98 Chapter 10. Irregular Flattening

Parallel Programming in Futhark, Release 0.80

let info 't ((<=): t -> t -> bool) (x:t) (y:t) : i32 =
if x <= y then if y <= x then 0 else -1
else 1

The following two functions tripit and tripadd are used for converting the classification of
elements into subsegments:

let tripit x = if x < 0 then (1,0,0)
else if x > 0 then (0,0,1) else (0,1,0)

let tripadd (a1:i32,e1:i32,b1:i32) (a2,e2,b2) =
(a1+a2,e1+e2,b1+b2)

We can now define the function step that, besides from an ordering function, takes as arguments
(1) the array containing values and (2) an array of segments to be sorted. The function returns a
pair of a reordered array of values and a new array of segments to be sorted:

let step [n] 't ((<=): t -> t -> bool) (xs:*[n]t) (sgms:[]sgm)
: (*[n]t,[]sgm) =
-- find a pivot for each segment
let pivots : []t = map (\sgm -> unsafe xs[sgm.start + sgm.sz/2]) sgms

-- find index into the segment that a value belongs to
let idxs : []i32 = replicated_iota (map (\sgm -> sgm.sz) sgms)

let is = idxs_values sgms

-- for each value, how does it compare to the pivot associated
-- with the segment?
let infos : []i32 =

map2 (\idx i -> unsafe info (<=) xs[i] pivots[idx]) idxs is
let orders : [](i32,i32,i32) = map tripit infos

-- compute segment descriptor
let flags =

[true] ++ (map2 (!=) idxs (rotate (i32.negate 1) idxs))[1:]

-- compute partition sizes for each segment
let pszs : [](i32,i32,i32) =

segmented_reduce tripadd (0,0,0) flags orders

-- compute the new segments
let sgms' =

map2 (\(sgm:sgm) (a,e,b) -> [{start=sgm.start,sz=a},
{start=sgm.start+a+e,sz=b}]) sgms pszs

|> flatten
(continues on next page)

10.4. Complex Flattening 99

Parallel Programming in Futhark, Release 0.80

(continued from previous page)

|> filter (\sgm -> sgm.sz > 1)

-- compute the new positions of the values in the present segments
let newpos : []i32 =

let where : [](i32,i32,i32) =
segmented_scan tripadd (0,0,0) flags orders

in map3 (\i (a,e,b) info ->
let (x,y,_) = unsafe pszs[i]
let s = unsafe sgms[i].start
in if info < 0 then s+a-1

else if info > 0 then s+b-1+x+y
else s+e-1+x) idxs where infos

let vs = map (\i -> unsafe xs[i]) is
let xs' = scatter xs newpos vs
in (xs',sgms')

The algorithm has best case work complexity 𝑂(𝑛) (when all elements are identical), worst case
work complexity 𝑂(𝑛2), and an average case work complexity of 𝑂(𝑛log𝑛). It has best depth
complexity 𝑂(1), worst depth complexity 𝑂(𝑛) and average depth complexity 𝑂(log𝑛).

100 Chapter 10. Irregular Flattening

Chapter 11
Conclusion

In this book, we have aimed at providing a practical guide to writing data-parallel programs in
Futhark. Futhark is quite an extensive language even though its semantics is pure. It does how-
ever have limitations. In particular, Futhark does not currently support recursion and it has no
built-in support for algebraic datatypes. Support for some of these concepts are currently being
investigated.

On the performance side, there are, of course, always room for improvements. In particular, a
number of low-level optimisations, such as register tiling, could turn out helpful for certain kinds
of applications. However, even with the current performance level, Futhark may turn out fruitful
for serious prototyping and quick time-to-market development.

The Futhark web site at http://futhark-lang.org contains a list of research papers, which will serve
as a suggestion for further reading.

101

http://futhark-lang.org

Parallel Programming in Futhark, Release 0.80

102 Chapter 11. Conclusion

Bibliography

[ABB+16] Christian Andreetta, Vivien Bégot, Jost Berthold, Martin Elsman, Fritz Henglein,
Troels Henriksen, Maj-Britt Nordfang, and Cosmin E Oancea. Finpar: a parallel financial
benchmark. In ACM TACO. 2016.

[Ann18] Danil Annenkov. Adventures in Formalisation: Financial Contracts, Modules, and Two-
Level Type Theory. PhD thesis, Department of Computer Science, Faculty of Science, Univer-
sity of Copenhagen, April 2018.

[Bir87] R. S. Bird. An Introduction to the Theory of Lists. In NATO Inst. on Logic of Progr. and
Calculi of Discrete Design, 5–42. 1987.

[Ble90] Guy E Blelloch. Vector models for data-parallel computing. Volume 75. MIT press Cam-
bridge, 1990.

[BHS+94] Guy E Blelloch, Jonathan C Hardwick, Jay Sipelstein, Marco Zagha, and Siddhartha
Chatterjee. Implementation of a Portable Nested Data-Parallel Language. Journal of parallel
and distributed computing, 21(1):4–14, 1994.

[Ell03] Conal Elliott. Functional images. In The Fun of Programming, “Cornerstones of Comput-
ing” series. Palgrave, March 2003. URL: http://conal.net/papers/functional-images/.

[Els98] Martin Elsman. Polymorphic equality—no tags required. In Second International Work-
shop on Types in Compilation (TIC‘98). March 1998.

[Els99] Martin Elsman. Static interpretation of modules. In Procedings of Fourth International
Conference on Functional Programming (ICFP‘99), 208–219. ACM Press, September 1999.

[Els05] Martin Elsman. Type-specialized serialization with sharing. In Sixth Symposium on Trends
in Functional Programming (TFP‘05). September 2005.

[EHAO18] Martin Elsman, Troels Henriksen, Danil Annenkov, and Cosmin E. Oancea. Static in-
terpretation of higher-order modules in Futhark: functional GPU programming in the large.
Proc. ACM Program. Lang., 2(ICFP):97:1–97:30, July 2018. URL: http://doi.acm.org/10.
1145/3236792, doi:10.1145/3236792.

103

http://conal.net/papers/functional-images/
http://doi.acm.org/10.1145/3236792
http://doi.acm.org/10.1145/3236792
https://doi.org/10.1145/3236792

Parallel Programming in Futhark, Release 0.80

[Fly72] Michael J. Flynn. Some computer organizations and their effectiveness. IEEE Transac-
tions of Computers, 21(9):948–960, September 1972.

[GHK+11] Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, and Dana Schaa. Het-
erogeneous Computing with OpenCL. Morgan Kaufmann, September 2011. Second Edition.

[Hen17] Troels Henriksen. Design and Implementation of the Futhark Programming Language.
PhD thesis, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, 11 2017.

[HDU+16] Troels Henriksen, Martin Dybdal, Henrik Urms, Anna Sofie Kiehn, Daniel Gavin,
Hjalte Abelskov, Martin Elsman, and Cosmin Oancea. APL on GPUs—a TAIL from the past,
scribbled in Futhark. In Proceedings of the 5th ACM SIGPLAN workshop on Functional High-
Performance Computing (FHPC‘16). ACM, September 2016.

[HEO14] Troels Henriksen, Martin Elsman, and Cosmin E Oancea. Size slicing: a hybrid ap-
proach to size inference in Futhark. In Proceedings of the 3rd ACM SIGPLAN workshop on
Functional High-Performance Computing (FHPC‘14), 31–42. ACM, 2014.

[HEO18] Troels Henriksen, Martin Elsman, and Cosmin E. Oancea. Modular acceleration: tricky
cases of functional high-performance computing. In Proceedings of the 7th ACM SIGPLAN
International Workshop on Functional High-Performance Computing, FHPC 2018. New York,
NY, USA, 2018. ACM.

[HLO16] Troels Henriksen, Ken Friis Larsen, and Cosmin E Oancea. Design and GPGPU per-
formance of Futhark’s redomap construct. In Proceedings of the 3rd ACM SIGPLAN Inter-
national Workshop on Libraries, Languages, and Compilers for Array Programming, 17–24.
ACM, 2016.

[HO14] Troels Henriksen and Cosmin E Oancea. Bounds checking: an instance of hybrid analy-
sis. In Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming (ARRAY‘14), 88. ACM, 2014.

[HO13] Troels Henriksen and Cosmin Eugen Oancea. A T2 graph-reduction approach to fusion.
In Proceedings of the 2nd ACM SIGPLAN workshop on Functional High-Performance Com-
puting (FHPC‘13)), 47–58. ACM, 2013.

[HSE+17] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E.
Oancea. Futhark: purely functional GPU-programming with nested parallelism and in-place
array updates. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017, 556–571. New York, NY, USA, 2017. ACM.
URL: http://doi.acm.org/10.1145/3062341.3062354, doi:10.1145/3062341.3062354.

[HTEO19] Troels Henriksen, Frederik Thorøe, Martin Elsman, and Cosmin E. Oancea. Incremen-
tal flattening for nested data parallelism. In Proceedings of the 24th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP ‘19. ACM, February 2019.

[Hov18] Anders Kiel Hovgaard. Higher-order functions for a high-performance programming lan-
guage for GPUs. Master’s thesis, Department of Computer Science, Faculty of Science, Uni-
versity of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, May 2018.

104 Bibliography

http://doi.acm.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354

Parallel Programming in Futhark, Release 0.80

[HHE18] Anders Kiel Hovgaard, Troels Henriksen, and Martin Elsman. High-performance de-
functionalization in Futhark. In Symposium on Trends in Functional Programming (TFP‘18).
September 2018.

[Ken04] Andrew J. Kennedy. Functional pearl: pickler combinators. Jounal of Functional Pro-
gramming, 14(6):727–739, November 2004.

[LH17] Rasmus Wriedt Larsen and Troels Henriksen. Strategies for regular segmented reductions
on GPU. In Proceedings of the 6th ACM SIGPLAN International Workshop on Functional
High-Performance Computing, FHPC 2017, 42–52. New York, NY, USA, 2017. ACM. URL:
http://doi.acm.org/10.1145/3122948.3122952, doi:10.1145/3122948.3122952.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114–117, April 1965.

[Moo75] Gordon E. Moore. Progress in Digital Integrated Electronics. In Technical Digest 1975,
11–13. IEEE, 1975. International Electron Devices Meeting.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda. Queue, 6(2):40–53, March 2008. URL: http://doi.acm.org/10.1145/
1365490.1365500, doi:10.1145/1365490.1365500.

[Org16] Course Organizers. Algorithm Design: Parallel and Sequential. Carnegie Mellon Univer-
sity, September 2016. Course Book Draft Edition. Course Taught Fall 2016 by Umut Acar and
Robert Harper.

[PJ93] John Peterson and Mark Jones. Implementing type classes. In Proceedings of the ACM
SIGPLAN 1993 Conference on Programming Language Design and Implementation, PLDI
‘93, 227–236. New York, NY, USA, 1993. ACM. URL: http://doi.acm.org/10.1145/155090.
155112, doi:10.1145/155090.155112.

[Sch80] Jacob T. Schwartz. Ultracomputers. ACM Trans. Program. Lang. Syst., 2(4):484–521, Oc-
tober 1980. URL: http://doi.acm.org/10.1145/357114.357116, doi:10.1145/357114.357116.

[vN45] John von Neumann. First draft of a report on the EDVAC. Technical Report, Moore School
of Electrical Engineering, University of Pennsylvania, June 1945.

Bibliography 105

http://doi.acm.org/10.1145/3122948.3122952
https://doi.org/10.1145/3122948.3122952
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/155090.155112
http://doi.acm.org/10.1145/155090.155112
https://doi.org/10.1145/155090.155112
http://doi.acm.org/10.1145/357114.357116
https://doi.org/10.1145/357114.357116

	Preface
	Contributing to the Book
	Acknowledgments

	Introduction
	Structure of the Book

	The Futhark Language
	Basic Language Features
	Array Operations
	In-Place Updates
	Size Annotations
	Records
	Parametric Polymorphism
	Higher-Order Functions
	Modules

	Practical Matters
	Testing and Debugging
	Benchmarking
	Package Management
	When Things Go Wrong

	Interoperability
	Calling Futhark from Python
	Calling Futhark from C
	Handling Awkward Futhark Types

	A Parallel Cost Model for Futhark Programs
	Futhark - the Language
	Futhark Type System
	Futhark Evaluation Semantics
	Work and Span
	Reduction by Contraction
	Radix-Sort by Contraction
	Counting Primes

	Fusion and List Homomorphisms
	Fusion
	Parallel Utility Functions
	Radix Sort Revisited
	Finding the Longest Streak

	Regular Flattening
	Segmented Scan
	Replicated Iota
	Segmented Replicate
	Segmented Iota
	Indexes to Flags
	Moderate Flattening

	Pseudo-Random Numbers and Monte Carlo Sampling Methods
	Generating Pseudo-Random Numbers
	Low-Discrepancy Sequences

	Irregular Flattening
	Flattening by Expansion
	Drawing Lines
	Drawing Triangles
	Complex Flattening

	Conclusion
	Bibliography

