
Extended Abstract: A Functional Approach to Monte
Carlo based American Option Pricing

Wojciech Michal Pawlak
Department of Computer Science,

University of Copenhagen
SimCorp Technology Labs

wmp@di.ku.dk,wmpk@simcorp.com

Martin Elsman
Department of Computer Science,

University of Copenhagen
mael@di.ku.dk

Cosmin Eugen Oancea
Department of Computer Science,

University of Copenhagen
cosmin.oancea@diku.dk

Abstract
We study the feasibility and performance efficiency of ex-
pressing a complex financial numerical algorithm with high-
level functional parallel constructs. The algorithm we inves-
tigate is a least-square regression-based Monte-Carlo simula-
tion for pricing American options.We propose an accelerated
parallel implementation in Futhark, a high-level functional
data-parallel language. The Futhark language targets GPUs
as the compute platform and we achieve a performance com-
parable to an implementation optimised by NVIDIA CUDA
engineers. In absolute terms, we can price a put option with
1 million simulation paths and 100 time steps in 20ms on a
NVIDIA Tesla V100 GPU.
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1 Introduction
Pricing American options is a fundamental business case in
the financial services sector as such financial instruments are
widely traded in the derivative markets. American options
can be exercised at any time between the present date and
the time to maturity. This aspect puts them in contrast to Eu-
ropean options, that can only be exercised at their maturity.
In the usual case, the option holder is expected to exercise
the option as soon as it is more profitable to do so rather than
wait until its expiration. Effectively, the value of an American
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option is the value achieved by exercising optimally. This
embedded optimisation (optimal stopping) problem is the
main challenge. As there is no general closed-form formula
solutions [17], it is necessary to approximate the option value
accurately with a numerical simulation. This is a substantial
and timely computational effort. It has to be significantly re-
duced to become acceptable for time-critical applications in
financial practice. Therefore it is a valid case for performance
acceleration through massive parallelisation on GPUs.
Current most efficient accelerated simulations are imple-

mented in dedicated languages and frameworks like CUDA
[1, 15, 27], MPI [10], OpenMP [32], and other technologies
[9]. The challenge with these implementations is the poor
expressibility, which makes them inaccessible to domain ex-
perts and limits them to the specialist developers. It also
results in code that is difficult to maintain. On top of that,
one needs to be aware of the low-level properties of the
underlying hardware architecture.

We propose a functional approach to the implementation
of an accelerated option pricing model. The use of high-
level parallel constructs lets us express the algorithm in
an intuitive manner, without the implementation concerns
of mapping the code to the architecture. The Futhark lan-
guage and the optimizing compiler behind it make this pos-
sible [21]. Previous work has investigated the use of Futhark
for implementing Monte Carlo based European option pric-
ing [2], which covered a number of advanced features that
the present work does not consider, including Sobol sequence
generation [18]. Quite a few approaches exist aiming at gen-
erating efficient data-parallel GPGPU code for applications
written using high-level array language constructs, including
the work on Obsidian [11, 29, 30] and Accelerate [8], which
are both domain specific languages embedded in Haskell,
but, which do not feature arbitrary nested parallelism. Ap-
proaches that support arbitrary nested parallelism includes
the seminal work on flattening of nested parallelism in NESL
[4, 5], which was extended to operate on a richer set of val-
ues in Data-parallel Haskell [7], and the work on data-only
flattening [33]. However, such general compiler-based flat-
tening is challenging to implement efficiently on GPUs [3].
Other promising attempts at compiling NESL to GPUs in-
clude Nessie [28], which is still under development, and
CuNesl [33], which aims at mapping different levels of nested
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parallelism to different levels of parallelism on the GPU, but
which lacks critical optimisations such as fusion.

The main contribution of this work is an efficient Futhark
implementation of a pricing model for American options, a
Longstaff-Schwartz algorithm using Monte Carlo Simulation
with Least-Square Regression (abbreviated LSMC) [25]. We
present our implementation and compare the performance
results to a benchmark CUDA version. We obtain results that
are on par with a hand-tuned version written in a dedicated
low-level programming model.

2 Design and Implementation
Futhark is a statically typed parallel functional array lan-
guage. The language is based on an ML or Haskell style
syntax and is equipped with a number of second-order ar-
ray combinators (SOACs), such as map, reduce, scan, and filter.
The Futhark language features a higher-order module system
[14], polymorphism, and a restricted form of higher-order
functions [23], concepts that are all eliminated at compile
time and introduce no overhead at runtime. The Futhark com-
piler supports aggressive fusion of parallel constructs [20],
and specialised code generators for key parallel operators,
such as map-scan and (segmented) map-reduce composi-
tions [19, 24]. For generating parallel GPU kernels, Futhark
flattens nested parallel constructs using a number of flatten-
ing techniques [21, 22].
Several authors have proposed the use of regression to

estimate continuation values from simulated paths [6, 12, 25,
31]. The structure of a regression-based simulation algorithm
can be summarised as follows.

1. Generate a matrixW (n,m) of random numbers drawn
from a standard normal distribution.

2. UsingW , simulate by forward induction n independent
paths S1j , . . . , Smj , j = 1, . . . ,n of Geometric Brownian
Motion stochastic processes for the underlying asset
prices.

3. At the last step T (at maturity), compute the option
value V̂mj = pm (Xmj ), j = 1, . . . ,n applying the payoff
function p.

4. Apply backward induction for each step i =m−1, . . . , 1
to compute cashflows:
a. Select the paths that are in-the-money.
b. Compute the matrix A and the right hand side b of

the least-square linear equation Ax = b to approx-
imate the continuation function from asset prices
Si and cashflows V̂i+1 only for the paths that are
in-the-money.

c. Decide to early-exercise based on:

V̂i j =

{
pi (Si j ), pi (Si j ) ⩾ Ĉi (Si j );
V̂i+1, j , pi (Si j ) < Ĉi (Si j ).

(1)

5. Set V̂0 = (V̂11 + · · · + V̂1n )/n

The computational effort of a Monte Carlo simulation is
determined by the number of simulation paths and time steps.
A large number of pathsn, usually 100.000 to 1.000.000, needs
to be generated to obtain an accurate value approximation
[16]. The number of time stepsm is bound to the number
of early-exercise opportunities and is usually much smaller
than n. We use a minimum standard pseudo-random number
generator in a parallel skip-ahead fashion.
1 map ( n ) −− Path G en e r a t i o n
2 loop (m)
3 transpose

4 map (m) −− SVD P r e p a r a t i o n
5 loop ( n )
6 scan ( chunk )
7 map ( n ) | > reduce ( n )
8 map ( n )
9 map (m)
10 loop (m) −− Main Loop
11 map ( n )
12 map ( n )

Listing 1. High-level structure of the implemented al-
gorithm presented as a combination of possibly nested
parallel constructs. The algorithm consists of three parts
with n denoting the number of paths andm denoting the
number of time steps. The transpose function performs
matrix transposition.

The backward dynamic programming steps 4a and 4b in
the intrinsically sequential loop are the main performance
bottlenecks as we need to (1) perform operations on a matrix
of size n × 3 in the worst case, (2) deal with matrix sizes that
vary across steps (thread divergence), and (3) make sure that
threads are synchronised after each step. The payoff function
determines the number of relevant (in-the-money) paths at
each time step, and thus the total computational effort of
this part. We therefore hoist this computation out of the
loop and prepare small fixed-size matrices by performing the
computation in parallel across time steps. We achieve this
goal through a chain of linear algebra transformations, such
as SVD and QR decomposition as well as a pseudo-inverse
transform. In addition, we specialise the algorithm to work
with a 3-degree monomial basis function. We do not claim
any contributions to this algorithm. In fact, for this part,
our implementation closely follows the implementation pro-
posed by NVIDIA [13, 26]. We focus on the goal to match the
performance of this publicly available benchmark implemen-
tation. The algorithm outlined in Listing 1 is implemented
using a nested composition of sequential loops and parallel
map, reduce, and scan constructs.

3 Experimental Results
We have run experiments on a Linux system with a 26-core
2-way HT Intel Xeon Platinum 8167M CPU (2.00GHz), 754
GB DDR RAM and NVIDIA Tesla V100 SXM2 GPU (2688
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Model Parameters Value

Option Type, Payoff Put, max(K − S )
Initial spot price (S0) 80.0
Strike price (K) 90.0
Time to maturity (T) 1 year
Risk free rate (r) 5%
Volatility (σ ) 30%

Simulation Parameters

Time steps/Early Exercise dates 100
Paths 1.000.000

Option Price (Binomial Tree) 13.804
Table 1. Set of model and simulation parameters for the
American option pricing. We provide an option price ob-
tained from a different numerical method (binomial tree) for
reference. We use it to validate the result.

Volta FP64 cores, 16 GBHBM2) using CUDA 10.1. The pricing
test case is presented in Table 1. The performance results are
presented in Table 2.

Path SVD Main Total Speedup Value

Ref 4.7 1.8 8.9 15.4 1.45× 13.778
V1 5.9 2.1 14.3 22.3 1.00× 13.789
V2 5.4 1,9 13.1 20.4 1.09× 13.789
Table 2. Execution times for the test case. Ref is the CUDA
benchmark, while V1 is Futhark compiled to OpenCL and
V2 is Futhark compiled to CUDA. Both total and partial
execution times for each part of the algorithm are shown.
Execution times are given in ms. The runtimes are averaged
based on 250 runs. We compare the speedups against the
slowest runtime.
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