
Towards a Streaming Model for
Nested Data Parallelism

Frederik M. Madsen Andrzej Filinski
Department of Computer Science (DIKU)

University of Copenhagen
{fmma,andrzej}@diku.dk

Abstract
The language-integrated cost semantics for nested data parallelism
pioneered by NESL provides an intuitive, high-level model for
predicting performance and scalability of parallel algorithms with
reasonable accuracy. However, this predictability, obtained through
a uniform, parallelism-flattening execution strategy, comes at the
price of potentially prohibitive space usage in the common case
of computations with an excess of available parallelism, such as
dense-matrix multiplication.

We present a simple nested data-parallel functional language
and associated cost semantics that retains NESL’s intuitive work–
depth model for time complexity, but also allows highly parallel
computations to be expressed in a space-efficient way, in the sense
that memory usage on a single (or a few) processors is of the
same order as for a sequential formulation of the algorithm, and
in general scales smoothly with the actually realized degree of
parallelism, not the potential parallelism.

The refined semantics is based on distinguishing formally be-
tween fully materialized (i.e., explicitly allocated in memory all
at once) vectors and potentially ephemeral sequences of values,
with the latter being bulk-processable in a streaming fashion. This
semantics is directly compatible with previously proposed piece-
wise execution models for nested data parallelism, but allows the
expected space usage to be reasoned about directly at the source-
language level.

The language definition and implementation are still very much
work in progress, but we do present some preliminary examples
and timings, suggesting that the streaming model has practical
potential.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.1.1 [Applicative (Func-
tional) Programming]; D.3.3 [Language Constructs and Fea-
tures]: Concurrent programming structures

Keywords cost semantics; space efficiency; dataflow networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FHPC ’13, September 23, 2013, Boston, MA, USA.
Copyright c© 2013 ACM 978-1-4503-2381-9/13/09. . . $15.00.
http://dx.doi.org/10.1145/2502323.2502330

1. Introduction
A long-standing goal in high-performance computing has been to
develop a programming notation in which the inherent parallelism
in regular data-processing tasks can be naturally expressed (also by
domain specialists, not only trained computer scientists), and gain-
fully exploited on today’s and tomorrows hardware. The functional
paradigm has shown particular promise in that respect, being close
to mathematical notation, and focusing on what is to be computed,
rather than how. In particular, computations expressed purely func-
tionally are naturally deterministic.

However, a good programming notation should also enable the
programmer to predict, with reasonable accuracy, what kind of per-
formance to expect from a particular way of expressing a calcula-
tion. For sequential languages, even (eager) functional ones, it is
usually fairly easy to deduce the asymptotic time and space be-
havior of an algorithm, at least for the purpose of choosing be-
tween different alternatives; indeed, elementary complexity analy-
sis is routinely taught in undergraduate classes. However, for paral-
lel computations, the programmer has often been at the mercy of the
compiler: sometimes an innocuous-looking change in the concrete
expression of an algorithm may have drastic performance implica-
tions (in either direction).

The NESL language [2] was a breakthrough not only in offering
a concise, platform-independent notation for expressing complex,
multi-level parallel algorithms in functional style, but perhaps even
more so for offering an intuitive, language-integrated cost model
to the programmer. The model allows one to derive expected work
and depth complexities of a high-level parallel algorithm in a struc-
tural way, with effort comparable to that for a purely sequential
language.

The NESL compilation model is centered around a relatively
simple and predictable “flattening” translation to a uniform, low-
level implementation language based on segmented prefix sums
(scans) of flat vectors [4]. This means that, from the derived high-
level parallel costs assigned by the model, one can immediately
obtain a fairly reliable prediction of the expected concrete perfor-
mance of the program, and especially how it will scale with increas-
ing number of processors.

However, a substantial weakness in the NESL model is that,
while time complexities of most algorithms are usually close to
what would be intuitively expected, having flat vector operations as
the only vehicle for expressing parallelism means that many “em-
barrassingly parallel” computations (say, matrix multiplication),
when naturally expressed in the language, will uniformly allocate
space proportional to the available parallelism (for instance, allow-
ing for up to n3 independent scalar multiplications when multi-
plying two n-by-n matrices), even if the available computation re-
sources are nowhere near sufficient to exploit this parallelism. Con-

sequently, programmers are often forced to explicitly sequentialize
their code, to avoid prohibitive – or at least embarrassing – space
usage. In other words, the plain NESL model effectively penalizes
code that exposes “too much” parallelism.

For an even simpler example, consider the problem of comput-
ing Σni=1 log i (= logn!), where n is on the order of 109. In NESL,
this computation would be naturally expressed as

logsum(n) = sum({log(float(i)) : i in [1 : n]}) ,

with work O(n), and depth O(1).1 Since the depth is negligible
in comparison to the work, for all realistic numbers of processors
p, we expect the computation time to be O(n/p), which is as
good as could be hoped for. But conversely, the computation will
conceptually allocate and traverse O(n) space, even when p = 1.

Of course, the NESL cost model does not force the compiler
to naively allocate gigabytes of space for the above computation.
For example, a 4-core back-end is perfectly allowed to divide the
range into 4 equal parts, let each core compute the corresponding
subrange sum, and then sequentially add up the 4 final results. This
still achieves very close to a 4-times speedup over the sequential
code, with negligible memory use. But relying on the compiler to
be clever in such cases means that the programmer effectively has
no reliable mental model of how much memory a conceptually low-
space algorithm can be expected to use under any given circum-
stances. Worse, the space usage may be subtly context dependent:
maybe the obvious optimization will be performed at the top level,
but not inside another, already parallel computation with varying
subproblem sizes, such as

sum({logsum(n ∗ n) : n in [1 : 1E3]}) .

We aim to refine the NESL language cost model so that, in ad-
dition to determining meaningful depth and work complexities, the
space usage will also reflect what is intuitively truly required for
execution – without sacrificing platform independence and the effi-
cient, vector-based implementation model. We do this by explicitly
introducing the notion of streaming at the language level.

Streaming A key feature of NESL and similar languages is that
the linked-list datatype commonly used to express bulk operations,
such as maps or folds in functional settings, is replaced by a type of
immutable arrays with constant-time access to arbitrary elements.
This is done not so much to to accommodate algorithms that do
need truly random access to individual elements (though those are
important too), but mainly for two reasons:

1. To allow all processors to immediately get to work on pieces of
large problems. For example, adding two billion-element vec-
tors elementwise has no inherent inter-element dependencies;
but if the vectors were represented as linked lists that each had
to be traversed, this traversal would represent a major sequential
bottleneck.

2. To ensure spatial locality and compactness, in particular to fully
utilize cache lines, and allow meaningful prefetching of data
from main memory. While (1) above could largely be achieved
by some kind of indexing superstructure (e.g., a balanced bi-
nary tree with pointers to equal-length segments of the lists),
gathering each processor’s assigned work from all over mem-
ory would still represent a significant overhead.

1 In the NESL cost model, the logarithmic depth of the summation tree is ac-
counted for in the mapping to a PRAM model, not in the source-level depth.
This way, many hidden administrative tasks, such as data distribution, can
also be given depth 1, simplifying the calculations considerably. But even if
sum were computed with an explicit parallel algorithm, it would only have
depth O(logn).

However, full random-access vectors are actually overkill for
many applications, such as vector addition. In principle, one could
achieve most of goals (1) and (2) by segmenting the vectors into
individually allocated chunks (of size anywhere from a few hun-
dreds to a few millions elements), with the additions within a pair
of chunks performed in parallel, but with the chunks themselves
still processed sequentially. (Indeed, if the vectors are so large that
they do not fit into main memory at all, but must be read in from
auxiliary storage, such a chunked implementation is what the pro-
grammer has to code explicitly.)

Of course, an appropriate chunk size depends heavily on the
platform, and we do not want to force programmers to commit
to any particular size in the code: they should merely express the
computational task in a way that is conductive to streaming, and the
compiler should take care of the rest.

Returning to the sum-of-logsums example (and ignoring that
some of the computations could obviously be shared), if the chunk
size is, for instance, 103, then the early chunks will cover the
computations of logsum(n2) for multiple n’s (1 through 13 plus
most of 14 for the first one), while the late chunks will each just
cover part of logsum(n2) for a single n (the last n takes 10
chunks). This would be considerably more awkward to express if
one were doing the problem partitioning manually.

Related work The space usage of flattening-based implementa-
tions of nested data-parallel algorithms has long been recognized
as a problem. In the standard implementation of the NESL front
end [4] (and apparently inherited in both direct derivatives such
as NESL-GPU [1], and reimplementations such as CuNesl [13]),
the most immediately apparent problem arises from the excessive
distribution of large vectors across parallel computations. It is ame-
liorated by an explicit parallel fetch, such that {v[i] : i in a} can
be considerably more efficiently expressed as v → a. This perfor-
mance anomaly is also relatively easy to fix by a refined flattening
translation, such as the one in Proteus [9], or in recent versions of
Data Parallel Haskell [6]. However, neither of these approaches ad-
dresses the more general problem of sequences always being fully
represented in memory at once.

In particular, Blelloch and Greiner’s space-efficient model im-
plementation of NESL [3] takes a materializing semantics of se-
quences as the sequential baseline, and establishes that a paral-
lel implementation does not need that much additional space to
achieve speedups. (This is reasonable, since the available NESL
operations on sequences, such as random-access indexing, in gen-
eral force them to be materialized, in order to achieve the work
complexity predicted by the model.) However, it does not flatten
nested sequence constructions, keeping space usage reasonable in,
e.g., the sum-of-logsums problem or the naive n-body algorithm.
The downside is that the execution model requires more general
task-level parallelism, not immediately realizable on a SIMD ma-
chine, or even on a vector-oriented GPU. It also relies on a fairly
sophisticated garbage collector, working efficiently at low gran-
ularities. In contrast, we propose a language model that identi-
fies streamable computations already at the source level, assigning
them much lower sequential space costs. With this refinement, the
uniform parallelism-flattening approach can still be employed, with
all computations and allocations/deallocations performable in bulk.

Subsequent work on space costs of parallel functional programs
has also tended to focus less on data parallelism, and more on gen-
eral task parallelism. In particular Spoonhower et al. [12], building
on the work by Blelloch and Greiner, extend the deterministic par-
allelism model and cost semantics to futures, but further deempha-
size SIMD-like execution models. Futures allow streaming com-
putations (which fall outside the strictly nested parallelism model)
to be expressed, along with much more general computation struc-
tures. In contrast, we use a rather modest generalization of nested

parallelism by modeling streams of unbounded length as conceptu-
ally existing all at once, but only being materialized a fragment at
a time.

Finally, our back-end execution model is similar to piecewise
execution of flattened data-parallel programs [8], which also fo-
cuses on reducing the space usage in a data-parallel setting. The
main difference is that we expose the streamability potential also
in the source cost model. Our initial timing experiments suggest
that piecewise execution is still relevant as an execution model is
on modern platforms (GPGPUs), perhaps even more so than on the
hardware of the mid-1990s.

2. A simple language with streamed vectors
In this section we present a minimalistic, expression-oriented core
language for expressing nested data-parallel computations (only).
For the purpose of defining the semantics, the language is slightly
more explicit than one would expect from a practically usable
notation. Programs written in an end-user language (such as NESL)
would be desugared and elaborated into our notation, possibly with
the default being the fully materializing elaboration, but allowing
the programmer to express others by suitable syntax extensions.

Throughout this section we will use the convention that the
metavariable k, when used as a length, ranges over “small” natural
numbers (typically related to static program sizes), while l ranges
over “potentially large” numbers (related to runtime data sizes).

2.1 Syntax and informal semantics
Types and values The language is first-order and explicitly typed,
with a grammar of types (in Haskell-style notation):

π ::= Bool | Int | Real | · · ·
τ ::= π | (τ1, ..., τk) | [τ]

σ ::= τ | (σ1, ..., σk) | {σ}

Here π represents some fixed collection of primitive types. τ is
the grammar of concrete types, the values of which are always fully
materialized in memory. In particular, vectors [τ] provide constant-
time read access to arbitrary elements. (Vectors of vectors may be
jagged; there is no requirement that they represent proper matrices.)

More unconventionally, σ is the grammar of general, or stream-
able, types, which adds sequence types {σ}. Unlike vectors, se-
quences do not have to be fully represented in memory at the same
time, and do not provide random access to elements. However, just
like vectors, they have a strict semantics, and every sequence will
always be fully computed (exactly once) in a program execution;
this is essential to allow chunked processing of sequences while
presenting a chunk-size indifferent cost model to the programmer.
Note that sequences may contain vectors, but not the other way
around.

The values are as follows:

a ::= T | F | n (n∈Z) | r (r∈R) | · · ·
v ::= a | (v1, ..., vk) | [v1, ..., vl] | {v1, ..., vl}

Here, a are the atomic values of the relevant primitive types. Values
are typed in the obvious way.

Expressions The expression language is syntactically very simi-
lar to a NESL subset; the main difference is in the refined typing
of the constructs and built-in operations. The raw grammar is quite
minimal, as follows:

e ::= x | a | (x1, ..., xk) | x.i | let x = e0 in e1 | φ(x)

| {e0 : x in x0 using x1, ..., xk} | {e0 | x0 using x1, ..., xk}
φ ::= (See Figure 2)

Γ ` e :: σ

Γ(x) = σ

Γ ` x :: σ Γ ` T :: Bool Γ ` n :: Int
· · ·

(
Γ(xi) = σi

)k
i=1

Γ ` (x1, ..., xk) :: (σ1, ..., σk)

Γ(x) = (σ1, ..., σk)

Γ ` x.i :: σi
(1≤i≤k)

Γ ` e0 :: σ0 Γ[x 7→ σ0] ` e1 :: σ1

Γ ` let x = e0 in e1 :: σ1

Γ(x) = σ1 φ :: σ1→ σ2

Γ ` φ(x) :: σ2

Γ(x0) = {σ0}
(
Γ(xi) = τi

)k
i=1

[x 7→ σ0, x1 7→ τ1, ..., xk 7→ τk] ` e :: σ

Γ ` {e : x in x0 using x1, ..., xk} :: {σ} (k≥0)

Γ(x0) = Bool
(
Γ(xi) = σi

)k
i=1

[x1 7→ σ1, ..., xk 7→ σk] ` e :: σ

Γ ` {e | x0 using x1, ..., xk} :: {σ} (k≥0)

Figure 1. Typing rules

For simplicity, we require many subexpressions to be variables;
more general expressions can be brought into the required form by
adding let-bindings. (In larger examples we may assume that this
let-insertion has been done automatically by a desugaring phase.)

The typing rules are given in Figure 1. They should be quite
straightforward, except possibly the rules for comprehensions
{· · · }. In particular, in the explicit syntax, we require that all
the auxiliary variables occurring free in the comprehension body
(and representing values constant across all iterations) be explic-
itly listed. (Again, the list can be mechanically constructed by the
desugarer, by simply enumerating the variables occurring free in e;
the order is not significant.)

In the general form of comprehensions (with the “in” syntax),
to preserve the invariant that sequences are only traversed once,
any auxiliary variables must be of concrete type, i.e., materialized
throughout the evaluation of the comprehension. The restricted
form (with the “|” syntax) could be seen as abbreviating a general
comprehension,

{e | x0 using ~x} “≡” {e : in iota(b2i(x0)) using ~x}
where b2i(F) = 0, b2i(T) = 1, and iota(n) = {0, ..., n − 1}.
However, since e here will only be evaluated at most once, there
are no restrictions on the types of the auxiliary variables.

Complementing the base syntax are the primitive operations
in Figure 2. (We will usually write binary operators infix in con-
crete examples.) Most of these should be self-explanatory, with
the following notes. The ellipses after “+” represents a collection
of further basic arithmetic and logical operations, all with types
of the form (π1, ..., πk)→ π0. mkseqk constructs a length-k se-
quence; empty tests whether a sequence has zero length (but with-
out traversing it otherwise); and the returns the sole element of a
singleton sequence. ++ appends two sequences, and zipk tuples
up corresponding elements of k equal-length sequences. flagpart
chops a sequence into subsequences, e.g.,

flagpart({3, 1, 4, 1, 5, 9}, {F,F,F,T,T,F,T,F,F,T}) =
{{3, 1, 4}, {}, {1}, {5, 9}} .

(The flag sequence must end in a T, and the number of F’s se-
quence must match the number of elements in the data sequence.)
Conversely, concat appends all subsequenes into one.

Finally, tab tabulates and materializes a sequence into a vector,
while seq streams the elements of a vector as a sequence. length
returns the length of a vector; and element indexing, !, is zero-

φ :: σ1→ σ2

+ :: (Int, Int)→ Int
...

mkseqkτ :: (

k︷ ︸︸ ︷
σ, ..., σ)→{σ} k≥0

emptyσ :: {σ}→ Bool

theσ :: {σ}→ σ

++σ :: ({σ}, {σ})→ σ

zipkσ1,...,σk :: ({σ1}, ..., {σk})→{(σ1, ..., σk)} k≥1

flagpartσ :: ({σ}, {Bool})→{{σ}}
concatσ :: {{σ}}→ {σ}

iota :: Int→{Int}
tabτ :: {τ}→ [τ]

seqτ :: [τ]→{τ}
lengthτ :: [τ]→ Int

!τ :: ([τ], Int)→ τ

reduceR :: {Int}→ Int R∈{+,×,max,...}

scanR :: {Int}→ {Int} R∈{+,×,max,...}

Figure 2. Primitive operations

based. reduceR computes the R-reduction of sequence elements
(whereR ranges over a fixed collection of basic monoidsR), while
scanR computes the exclusive scan (all proper-prefix reductions),
e.g., scan+({3, 5, 4, 2}) = {0, 3, 8, 12}.

In the actual implementation, we make available a number of
shorthands. First, as already mentioned, the front-end automatically
performs let-insertions where general expressions are used instead
of variables, and computes the auxiliary-variable lists in compre-
hensions. It also infers the type subscripts on primitive operations.
Further, we allow pattern-matching bindings on the left-hand side
of = and in, so that, e.g.,

let (x, y) = e in e′ ≡
let p = e in let x = p.1 in let y = p.2 in e′ ,

where p is a fresh variable. Likewise, we allow comprehensions to
traverse several sequences of the same length simultaneously,

{e : x1 in e1; . . . ;xk in ek} ≡
{e : (x1, ..., xk) in zip(e1, ..., ek)} .

And we may combine general and predicated comprehensions:

{e : x in e0 | e1} ≡ concat({{e | e1} : x in e0}) ,

where, naturally, any variable occurring free in e or e1 must be of
concrete type. Moreover, we allow sequence and vector construc-
tions as abbreviations:

{e1, ..., ek} ≡ mkseqk(e1, ..., ek)

[e1, ..., ek] ≡ tab({e1, ..., ek}) .
Finally, note that the base language does not include an explicit

conditional form. Instead, we can define it as:

if e0 then e1 else e2 ≡
let b = e0 in the({e1 | b}++ {e2 | ¬b}) ,

This decomposition mirrors the data-parallel NESL computation
model for conditionals occurring inside comprehensions: rather
than alternating between evaluating e1 and e2 on a per-element
basis, we first evaluate e1 for the subsequence of elements where

e0 evaluates to T, then e2 for those where e0 evaluates to F, and
finally merge the results.

Likewise, other useful functions can be efficiently (at least in an
asymptotic sense) defined in terms of the given primitive ones. For
example, we can compute the length of a sequence:

slength :: {σ}→ Int

slength(s) = reduce+({1 : in s}) .
Some operations require a little more thought to express in a
streamable way. For example, to tag each element of a sequence
with its serial number, we cannot simply say,

number :: {σ}→ {(σ, Int)}
number(s) = zip(s, iota(slength(s))) ,

because that would require traversing s twice. Instead, we must say,

number(s) = zip(s, scan+({1 : in s})) .
(In fact, iota is nominally implemented in terms of a +-scan any-
way, so the above solution is arguably more direct than explicitly
computing the sequence length first.)

The language as presented does not provide for programmer-
defined functions, so the definitions above must be thought of as no-
tational abbreviations. True functions, possibly recursive, add an-
other layer of complication – not so much in the high-level seman-
tics, but more in the compilation and low-level execution model.
For now, we have concentrated on the function-less fragment, since
it already highlights most of the significant issues related to stream-
ing.

Likewise, there is no notion of unbounded iteration (whether
in the form of tail recursion or more explicitly), and hence poten-
tial divergence; but given the eager nature of the language, there
should be no semantic problem with introducing potential non-
termination. However, just like in Haskell, we are forced to – at
least formally – identify all run-time errors (division by zero, index-
ing out of bounds, etc.) with divergence; if we distinguish between
them, the language becomes formally nondeterministic: if it aborts
with an error in one run, another run might diverge, or abort with
a different error, depending on low-level scheduling decisions. We
still guarantee, however, that if a run terminates with a non-error
answer, all other runs will also terminate with that answer.

2.2 Value size model
The actual data representation is invisible to the programmer, and
has no influence on the value semantics. However, in order to pro-
vide a reasonable model of the program’s execution and resulting
space-usage behavior, we do need to have a formal, asymptotically
accurate, definition of the size of any particular value. In the stream-
ing setting, we characterize the size as a pair of numbers, represent-
ing, respectively, the space required to process the value sequen-
tially and in parallel.

More specifically, for any value v, we define ‖v‖ as a pair of
natural numbers (M,N), as follows:

‖a‖ = (1, 1)

‖(v1, ..., vk)‖ = (Σki=1Mi,Σ
k
i=1Ni)

where ∀i. ‖vi‖ = (Mi, Ni)

‖[v1, ..., vl]‖ = (1 + Σli=1Mi, 1 + Σli=1Ni)

where ∀i. ‖vi‖ = (Mi, Ni)

‖{v1, ..., vl}‖ = (maxli=1(Mi + 1),Σli=1(Ni + 1))

where ∀i. ‖vi‖ = (Mi, Ni)

For simplicity, since we are mainly interested in asymptotic be-
havior, we consider all atomic values to require the same amount
of space, though there wouldn’t be any problem with accounting

more precisely for space usage, so that, e.g., a Real would have a
constantly larger size than a Bool.

For tuples, the arity k is statically known, and doesn’t need to
be explicitly represented at runtime at all, so the size of a tuple is
simply the sum of sizes of the elements. In particular, empty tuples
take truly zero space.

On the other hand, for vectors, the extra 1+ represents the need
to store the length of the vector somewhere, in addition to the el-
ement values. (This cost may be non-negligible for a nested vec-
tor type like [[Int]], especially if many of the inner vectors may
be empty.) This cost mirrors the eventual concrete representation,
where a nested vector is represented as a separate vector of subvec-
tor lengths and a vector of the underlying values. Since vectors are
always fully materialized, their sequential and parallel sizes are the
same.

Finally, for sequences, the conceptual representation model is
that segment boundaries are represented as flags marking the end
of each subsequence. The reason for this difference from vectors is
that, when streaming a sequence of subsequences, we do not know
the length of each subsequence until after it has been generated.
Also, since we want a faithful representation of consecutive empty
sequences, we effectively represent a value of type {{π}} as if it
were {π + ()}, i.e., every element is either a data element or a
subsequence terminator.

More fundamentally, sequences differ from vectors in that they
are in general not materialized in memory all at once; in fact, for
purely sequential execution, the are processed strictly one element
at a time. Therefore, the sequential size of a sequence value is
simply the size of its largest element, while the parallel size – where
all elements are simultaneously available for processing – is the
sum of the element sizes, just like for vectors. Consequently, for a
value v of any concrete type τ , we always have ‖v‖ = (M,M) for
some M , but for general v’s, ‖v‖ = (M,N) with M ≤ N .

2.3 Evaluation and cost model
We will now consider a big-step semantics of the language and
primitive operations. As far as the computed result is concerned,
one could simply erase the distinction between vectors and se-
quences, and even identify them both with simple ML-style lists.
The parallel nature of the language, and the role of streaming and
random-access indexing, is only made apparent through the cost
semantics.

Since sequence values are not directly expressible as literals
in the language (syntactic sugar notwithstanding), precluding a
simple substitution-based semantics, we use a semantics in which
open expressions are evaluated with respect to an environment ρ,
mapping variables to their values. The form of the judgment is thus
ρ ` e ⇓ v $ ω , where the cost metric ω is built as follows.

A metric is a 4-tuple of natural numbers, ω = (W,D;M,N),
where the first two capture the standard work and depth cost of
the computation. The former represents the total number of atomic
(constant-cost) operations performed during the evaluation; it cor-
responds to the execution time on a single processor, T1. The latter
(also called the span, or step complexity) represents the the longest
chain of sequential dependencies in the computation, thus repre-
senting how fast the evaluation could proceed with an unlimited
number of processors, T∞. Note that we will always haveW ≥ D,
with the inequality being strict precisely when parallel evaluation
is possible.

Like in NESL, the components of a tuple constructor – though
nominally independent – are not considered to be evaluated in
parallel (as far as the cost model is concerned; an opportunistic
compiler of course has the option of doing so anyway). This reflects
our focus on data parallelism, where sequences are the only source
of speedups. In particular, in an expression like f(x1) + f(x2),

ρ ` e ⇓ v $ (W,D;M,N)

ρ(x) = v

ρ ` x ⇓ v $ (0, 0; ‖v‖)

ρ ` a ⇓ a $ (1, 1; 1, 1)(
ρ(xi) = vi

)k
i=1

ρ ` (x1, ..., xk) ⇓ (v1,, vk) $ (0, 0; Σki=1‖vi‖)

ρ(x) = (v1, ..., vk)

ρ ` x.i ⇓ vi $ (0, 0; ‖vi‖)

ρ ` e0 ⇓ v0 $ (W0, D0;M0, N0) ‖v0‖ = (Mv, Nv)

ρ[x 7→ v0] ` e1 ⇓ v1 $ (W1, D1;M1, N1)

ρ ` let x = e0 in e1 ⇓ v1 $
(W0 +W1, D0 +D1;
max(M0,Mv +M1),max(N0, Nv +N1))

Fφ(ρ(x)) = (v,W)

ρ ` φ(x) ⇓ v $ (W, 1; ‖v‖)

ρ(x0) = {v1, ..., vl}
(
ρ[x 7→ vi] ` e ⇓ v′i $ (Wi, Di;Mi, Ni)

)l
i=1

ρ ` {e : x in x0 using xτ11 , ..., x
τk
k } ⇓ {v

′
1, ..., v

′
l} $

((l + 1) · Σki=1|τi|+ Σli=1Wi, Σki=1|τi|+ maxli=1Di;

1 + Σki=1|τi|+ maxli=1(‖vi‖+Mi),
1 + l · Σki=1|τi|+ Σli=1(‖vi‖+Ni))

ρ(x0) = F

ρ ` {e | x0 using xσ11 , ..., xk
σk} ⇓ {} $ (Σki=1|σi|,Σki=1|σi|; 1, 1)

ρ(x0) = T ρ ` e ⇓ v $ (W,D;M,N)

ρ ` {e | x0 using xσ11 , ..., xk
σk} ⇓ {v}} $

(Σki=1|σi|+W, Σki=1|σi|+D;
1 + Σki=1|σi|+M, 1 + Σki=1|σi|+N)

Figure 3. Evaluation semantics with costs

the two f -computations would not be considered independent, but
will be performed in sequence, and in particular with the depths
summed. (In fact, in our restricted language, the addition will have
to be explicitly let-sequenced anyway.)

If the programmer intends to actively exploit the parallelism in
evaluating the summands independently, he can write instead,

let r = tab({f(x) : x in {x1, x2}}) in r!0 + r!1 .

This would most likely only be appropriate in the context of a
recursive definition of f , so that the total available parallelism
would increase drastically at each level of recursion.

The last components of the cost, dubbed sequential and parallel
space, represent the maximal space usage during the computation,
respectively corresponding to a fully sequential execution (i.e., S1),
and one exploiting the maximal number of processors (S∞). In
contrast to time complexity, here we have S1 ≤ S∞; that is, in
order to take advantage of more processors, we will often need
more temporary space.

The evaluation rules are given in Figure 3. Note that variable ac-
cesses are themselves considered free wrt. time (the cost is assigned
to the computations using the variable’s value). Tuple construction
and component selection costs are also considered negligible (since
they don’t actually perform any extra data movement at runtime in
our implementation model), but literals do have unit cost.

More interestingly, in let-bindings, both work and depth costs
of the subexpression evaluations are summed, reflecting strict se-
quential evaluation of e0 and e1. But for space usage, the space
(sequential or parallel) used to evaluate the let-expression is the
maximum of two numbers: the space used to evaluate e0, and the
sum of the size of e0’s value and the space needed to evaluate e1.

Note that let-bindings, though commutative wrt. value and time
costs are not so wrt. space costs. That is, in an expression,

let x1 = e1 in let x2 = e2 in (x1, x2) ,

as long as x1 does not occur in e2 and vice versa, the order of the
bindings does not matter for the result value, or work and depth.
However, if e1 returns a small result but uses much temporary
space, while e2 requires little space beyond the large result it
allocates, the above sequencing is preferable to the one with the
bindings of x1 and x2 swapped.

The value and cost of primitive operations φ are given by an
auxiliary function Fφ. The value returned should be immediate
from the informal semantics of the operations. As previously men-
tioned, we consider the depth to always be 1, even for operations
like reduce. The work can be taken to be simply the (parallel) size
of the result in all cases except for the and zip, which perform no
work; ! which has unit cost; and concat and reduce whose work is
proportional to the length of the input sequence.

Finally, for sequence comprehensions (general or restricted),
work and depth costs of the body computations are combined in
the expected way, but with the addition of explicit distribution or
packing costs for the auxiliary variables. (For notational simplicity,
we have assumed that all such variables have been annotated by
their types in the using-clause.) Also, the space costs exhibit a
difference between the sequential and parallel cases analogous to
the one for value sizes. For the space costs, the per-element size of
a type, |σ|, is given by:

|a| = 1

|(σ1, ..., σk)| = Σki=1|σi|
|{σ}| = |σ|+ 1

|[τ]| = 1

Note that this is different from the sizes of values of that type: since
sequences are never copied, and vectors in the implementation are
copied as pointers, their actual lengths don’t matter.

3. Implementation model
Much like the source language refines NESL, the implementation
model is also an extension of NESL’s parallelism-flatting approach,
in that the two effectively coincide in the case of fully materialized
vectors, but we have a more space-efficient model for implementing
sequences, including sequences of vectors.

For sequences, our model is conceptually similar to that of
piecewise execution [8], in which long sequences are broken up into
fixed-sized chunks (which may cross segment boundaries). Each
chunk is then processed using all available computation units, and
the chunks are processed sequentially using a dataflow model.

The main difference in our model is that the chunking (but not
the chunk size!) is exposed at the source level in the type system
and cost model, rather than as an optimized implementation strat-
egy, whose applicability in any particular situation remains hidden
to the programmer – except through sometimes drastic effects on
performance or memory use. In particular, unlike transparent piece-
wise execution of NESL or Proteus programs, the compiler will
never silently recompute a sequence if it needs to be traversed more
than once; instead, the programmer must explicitly make the choice
between materialization and recomputation based on the overall
asymptotic-complexity requirements for time and space usage.

3.1 Data representation
In a bit more detail, all values are represented as trees of low-
level, flat streams of primitive values. Writing SA for the set of
finite streams ofA-elements, we interpret source-language types as
follows:

[[Bool]] = SB

[[Int]] = SZ

[[Real]] = SR

[[(σ1, ..., σk)]] = [[σ1]]× · · · × [[σk]]

[[[τ]]] = [[τ]]× (SN× SN)

[[{σ}]] = [[σ]]× SB

Tuples are just cartesian products. For vectors, we augment the
interpretation of the base type with a generalized segment descrip-
tor describing starts and lengths of the vectors. In the canonical
representation, the segments are allocated contiguously, and so the
starting positions are simply given as the +-scan of the lengths. For
example, writing streams between 〈· · · 〉, and using / for the “is
represented as” relation, we have:

[[3, 1, 4], [], [1], [5, 9]] /

((〈3, 1, 4, 1, 5, 9〉, (〈0, 3, 3, 4〉, 〈3, 0, 1, 2〉), (〈0〉, 〈4〉))
However, we also allow the subvectors to be permuted, allocated
non-contiguously, or share data – even across segment boundaries.
For example, the above nested vector could also be represented
non-canonically as

((〈7, 5, 9, 3, 1, 4〉, (〈3, 0, 4, 1〉, 〈3, 0, 1, 2〉), (〈0〉, 〈4〉))

(Note that the length stream is always the same as in the canonical
representation.) More usefully, we can represent the vector of all
prefixes or suffixes of another vector in linear, rather than quadratic
space. The only well-formedness constraint is that each “slice” (de-
termined by a corresponding (start,length) pair) has to fit entirely
within the base vector.

This representation corresponds to Lippmeier et al.’s virtual seg-
ment descriptors [6], introduced to avoid the performance anomaly
in code like {v!i : i in a} where the entire vector v is first dis-
tributed to all parallel computations, each one of which selects only
a single element. By instead keeping track of segment starts and
lengths separately (rather than uniquely determining the former by
a +-scan of the latter), we can avoid duplicating the full data, but
only the pointers. The price, of course, is the potential for read–
read memory contention, but that will normally be a second-order
effect compared to the performance impact on both time and space
of proactive massive duplication.

(We do not presently use scattered segment descriptors, where
different segments may also come from different base vectors,
because the need for copying in appends is significantly reduced
in our setting: it is only needed in the case where the concatenated
sequence must ultimately be materialized.

For sequences, as previously mentioned, we represent subse-
quence boundaries as flags:

{{3, 1, 4}, {}, {1}, {5, 9}} /
((〈3, 1, 4, 1, 5, 9〉, 〈F,F,F,T,T,F,T,F,F,T〉), 〈F,F,F,F,T〉)

Here, the representation is actually unique. It can be seen as a
unary counterpart of the canonical vector representation (where the
segment starts are redundant).

The explicit flag representation is for intended for interfacing
between operations. When a bulk-processing a chunk, as in a seg-
mented scan, we can coalesce consecutive T’s in the flag vector to
a simple count; then the segment-flag vector vector has exactly as

many elements as data vector, and so the corresponding elements
of both can be accessed in constant time.

3.2 Translation
In the actual implementation, we translate a nested data-parallel
source program to a stream-manipulating target-language program
in a low-level language. Here, for conciseness, we present the
essence of the translation by directly interpreting each source-
language term as the mathematical stream it denotes.

The semantics is compositional and type directed: For every
Γ ` e :: σ, we have [[e]] : [[Γ]]→ S1→ [[σ]], where ζ ∈ [[Γ]] is
a run-time environment mapping each variable x in dom(Γ) to a
low-level stream tree in [[Γ(x)]].

[[x]]ζ s = ζ x

[[a]]ζ s = rep s a

[[(x1, ..., xk)]]ζ s = (ζx1, ..., ζxk)

[[x.i]]ζ s = let (t1, ..., tk) = ζ x in ti

[[let x = e1 in e2]]ζ s = let t = [[e1]]ζ s in [[e2]]ζ[x 7→ t] s

[[φ(x)]]ζ s = [[F]]φ(ζ x) s

[[{e0 : x in x0 using xτ11 , ..., x
τk
k }]]ζ s =

let (t, s′) = ζ x0 in
([[e0]][x 7→ t, (xi 7→ distτi (ζxi) s

′)ki=1] (usum s′), s′)

[[{e0 | x0 using xσ11 , ..., x
σk
k }]]ζ s =

let s0 = ζ x0, s
′ = b2u(s0) in

([[e0]][(xi 7→ packσi (ζxi) s0)ki=1] (usum s′), s′)

The meaning of a closed top-level expression e is then given by
[[e]] [] 〈∗〉. In general, the stream of dummy input values represents
the parallelism degree of the computation, represented in unary
because the length of a sequence is in general not known a priori.

In the translation, the auxiliary function rep : S1→ A→ SA
produces a stream with every ∗ in s replaced by a. The function
usum : SB→S1 counts, in unary, the F’s in a segment-boundary
stream; formally, we can define it by the equations:

usum 〈〉 = 〈〉
usum 〈F |s〉 = 〈∗ |usum s〉
usum 〈T |s〉 = usum s

(We write stream heads and tails between 〈· | ·〉.) For any concrete
τ , the distribution function distτ : [[τ]]→ SB→ [[τ]] is given by:

distπ s0 s = pdist s0 s

dist(τ1,...,τk) (t1, ..., tk) s = (distτ1 t1 s, ..., distτk tk s)

dist[τ] (t0, ss, sl) s = (t0, pdist ss s, pdist sl s) ,

where pdist : SA→SB→SA is a segmented distribute for atomic
values:

pdist 〈〉 〈〉 = 〈〉
pdist 〈a |s〉 〈F |s′〉 = 〈a |pdist 〈a |s〉 s′〉
pdist 〈a |s〉 〈T |s′〉 = pdist s s′ .

Note that each iteration consumes exactly one element of the flag
stream, but zero or one element of the data stream. (For actual ex-
ecution, as described in the next section, streams are processed
chunkwise, and the element-wise specification would be imple-
mented efficiently in parallel using segmented scans, like in NESL.)

The restricted comprehension is handled similarly. b2u : SB→
SB maps truth values to segment flags:

b2u 〈〉 = 〈〉
b2u 〈F |f〉 = 〈T |b2u f〉
b2u 〈T |f〉 = 〈F | 〈T |b2u f〉〉

The function packσ : [[σ]]→ SB→ [[σ]] is defined analogously to
distτ , in terms of a primitive ppack : SA→ SB→ SA given by:

ppack 〈〉 〈〉 = 〈〉
ppack 〈a |as〉 〈F |bs〉 = ppack as bs

ppack 〈a |as〉 〈T |bs〉 = 〈a |ppack as bs〉 ,
but pack also has an additional clause for packing sequence types:

pack{σ}(t, s) b = (packσ t (pdist b s), upack s b) .

That is, we first distribute the pack flags b according to stream’s seg-
ment flags, and use them to pack the underlying stream elements.
upack : SB→ SB→ SB is like ppack but packs unary numbers
(subsequences of the form 〈F, ...,F,T〉, rather than atomic values.

The other primitive functions in [[F]] are defined similarly, many
in a type-directed fashion. For instance, mkstrkInt is ultimately
defined in terms of a k-way primitive merge:

pmerge 〈〉 · · · 〈〉 = 〈〉
pmerge 〈a1 |s1〉 · · · 〈ak |sk〉 = 〈a1 | · · · 〈ak |pmerge s1 · · · sk〉〉 .

3.3 Execution model
The low-level streaming language is effectively a dag of stream
definitions, represented as a linear list of “instructions” such as

s1 := lit〈5〉; s2 := iota(s1); s3 := reduce plus(s2) ,

similar in principle to the control-free fragment of VCODE [4]
(though we use named variables rather than a stack model). How-
ever, while it would be correct (wrt. the value computed and
work/depth complexity) to execute such a sequence from top to
bottom, it would entirely defeat the point of streamability, and the
space usage would always be on the order of the “parallel space”
from the cost model, even on a completely sequential machine.

Instead, we compute the stream definitions incrementally and
chunk-wise, in a dataflow fashion. We repeatedly “fire” the defini-
tions to transform some elements in the input stream(s) into ele-
ments of the output stream. Each stream definition has an associ-
ated buffer, which represents a moving window on the underlying
stream of values. For streams representing vector-free values, the
buffer is always of a fixed size, related to the number of processors;
but for streams of vectors, the buffer may expand dynamically to
contain at least each subvector at once. (The buffer never shrinks
below the chunk size, so that, for example, the buffer for a stream
of length-2 vectors would normally contain many such vectors at
once.) Note that vectors only represent data storage, not active com-
putations; it is only when they are explicitly turned into sequences
(by seq) that they are either divided or coalesced into chunks.

Each stream window can only move forwards; once it passes
past a part of the stream, those stream elements become inacces-
sible. To ensure that all consumers of a stream have accessed the
stream elements they need before the window advances, the imple-
mentation maintains read-cursors for each stream, keeping track of
the progress of each reader, to make sure that all of the consumer
firings have happened before the next producer firing is enabled.

In addition to the buffer, each stream may have a fixed-size
accumulator, which keeps tracks of the computation state across
chunks. For example, when computing the sum or +-scan of a
stream, the accumulator represents the sum of the elements so far,
and is used to “seed” the computation of the next chunk, rather
than restarting from zero each time. (This is how sums or scans of
vectors larger than the maximal block size must be implemented in
CUDA anyway; the difference is that we allow the processing of
consecutive sum/scan chunks to be interleaved with chunks from
unrelated computations.)

To keep the scheduling overhead small compared to the work
performed in each chunk, their size must generally be chosen some-

what larger than the number of available processors. For example,
on a fairly large GPU, a suitable chunk size seems to be 64k–256k
elements; see next section for details. Currently, for simplicity, the
chunk size is fixed for all streams and throughout the computation,
but in principle, it could vary dynamically, depending on memory
pressure, or even adaptively based on on-going performance mea-
surements.

Streamability To actually be executable in a streaming fashion,
source programs must respect the inherent temporal dependencies
between subcomputations. Most notably, no auxiliary variable in a
general comprehension may depend on a computation that requires
a prior traversal of the sequence currently being traversed. For
example,

let s = {log(real(x+ 1)) : x in iota(n)} in
letm = reduce+(s) in
reduce+({x× x+m : x in s usingm})

cannot be executed in constant space (i.e., independent of n), with-
out duplicating the computation of s, because m is only known
after all of s has been traversed. On the other hand, the following,
mathematically equivalent, expression is fine:

let s = {log(real(x+ 1)) : x in iota(n)} in
letm = reduce+(s) in
reduce+({x× x : x in s}) + slength(s)×m

because all three traversals of s can be performed in the same pass.
An alternative approach would be to materialize s, and traverse the
stored copy twice:

let sv = tab({log(real(x+ 1)) : x in iota(n)}) in
letm = sum(seq(sv)) in
reduce+({x× x+m : x in seq(sv) usingm})

A related situation arises with ++ (or mkstr): while trans-
ducing s to s ++ scan+(s) is obviously infeasible in constant
space, s ++ {sum(s)} or scan+(s) ++ {sum(s)} are fine – but
{sum(s)}++ s or {sum(s)}++ scan+(s) are not.

In our current implementation, such illegal dependencies are
only detected at runtime, but they should be conservatively pre-
ventable already at the source level by a suitable analysis.

In most functional (or imperative) languages, a programmer
who wants to compute, say, both the sum of a number sequence
and whether it contains any zero elements, without unnecessarily
materializing it, must explicitly merge both reductions into a single
foldl (or loop). Even though a lazy language, like Haskell, could
in principle compute both consumers of s in

... sum s ... not (all (/= 0) s) ...

in lockstep, garbage-collecting s incrementally, most likely it
would memoize all of s during the computation of sum, and only
deallocate it again after the all had been computed. In any case,
the programmer would not be able to count on the optimization.

It remains to be seen if working in a nominally eager language,
but with additional temporal constraints between variables (and
getting an error instead of a silent space explosion when those con-
straints are violated), is desirable in practice. We suspect that for
performance-sensitive applications, it may be; otherwise, the obvi-
ous easy fix is for the compiler to insert (possibly with a warning)
seq/tab-pairs and/or duplicate computations, in those places where
it cannot guarantee streamability.

4. Empirical validation
The practical applicability of our model is investigated through a
number of experiments over three semi-realistic parallel problems.

The GPU used for the benchmarks is an NVIDIA GeForce GTX
690 (2 GB memory, 1536 cores, 915 MHz), and the CPU is a dual
AMD Opteron 6274 (2× 16 cores, 2200 MHz). Due to significant
numerical sensitivity, all tests are performed using double-precision
floating points for real numbers when possible. The problems we
consider are:

• The sum of logarithms from the Introduction. From now on
referred to as log-sum.

• A total sum of several sum of logarithms, also presented in the
Introduction. From now on referred to as sum of log-sums.

• An N-body simulation, where the force interaction for all pairs
of bodies is computed, without using any special data struc-
tures.

For all problems, we compare the running time on a number of
implementations:

• A single-threaded C implementation running on the CPU serv-
ing as a sanity check for the rest of the implementations.

• A hand-optimized CUDA implementation.
• An implementation in Accelerate [5] version 0.13.0.1, a GPU-

enabled language embedded in Haskell.
• An implementation in Single Assignment C (SaC) [10] version

1.00 17229 using a multicore backend. SaC also supports a
GPU target, but for the experiments that we consider, the SaC
compiler does not emit GPU code. Namely, with-loops with
reductions are not executed on the GPU in the version of SaC
we have tested.

• An implementation in NESL-GPU [1], both with and without
kernel fusion. NESL-GPU is NESL with a VCODE interpreter
implemented in CUDA as back-end. Real numbers are only im-
plemented with single-precision in the NESL-GPU backend, so
the NESL benchmarks suffer from numerical imprecision and
an unfair advantage. Nonetheless, NESL-GPU uses the double-
precision version of the logarithm instruction, so in comparison
to the sum-log problem, the advantage is negligible as the cal-
culation of the logarithm dominates the performance.

• A streaming implementation written in CUDA that reflects the
streaming model of execution presented in this paper.

The comparison to Accelerate, SaC and NESL-GPU is done to
measure the performance of the streaming model against other
high-level data parallel languages without streaming execution.
NESL-GPU and SaC support irregular nested data parallelism,
while Accelerate only supports flat parallelism, and consequently
NESL-GPU and SaC are are similar to the source language for the
streaming model presented in this paper and therefore the most in-
teresting languages to compare with. Both Accelerate and NESL-
GPU support a GPU backend and perform kernel fusion, but NESL-
GPU requires the programmer to manually run a separate fusion
phase and compile and link the fused kernels. Using kernel fu-
sion in NESL-GPU gives a marginal speedup for all our exper-
iments, and therefore, only the timings using kernel fusion for
NESL-GPU are presented here. The streaming implementation is
based on the streaming model presented in this paper, implemented
manually. However, there is nothing to suggest that similar code
could not have been generated automatically by a compiler. The
streaming implementations uses the CUDA Parallel Primitive li-
brary (CUDPP) for performing reduction and scan primitives as
well as stream compaction.

We measure the running time of each experiment by using
the wall-clock time averaged over an appropriate number of ex-
ecutions. Note that the time it takes to load the CUDA driver
and initialize the GPU is not included in the benchmark, since it

varies greatly from platform to platform. Memory allocation and
de-allocation on the GPU and data transfer between device and host
is, however, included in the timings for the CUDA and streaming
implementations.

4.1 Log-sum
The log-sum problem can be categorized as flat data-parallelism,
and it can easily be expressed in all languages included in the ex-
periments. In the streaming source language it can be implemented
using only sequence types, so we can expect to compute the prob-
lem in constant space. The total work is proportional to N – the
problem size.

Without going into details, the problem can be compiled from
its source form to the following data-flow network using a straight-
forward mapping of the primitives:

s0 := range(1, N);

s1 := log(s0);

s2 := sum(s1);

Each stream definition is implemented by a separate kernel in
CUDA, and scheduling is simply implemented as a for-loop,
scheduling each of the three definitions in sequence in each it-
eration.

Figure 4 shows the running times of the log-sum problem for
a problem size N varying from 212 to 232. We can see that all
the GPU implementations outperform C and SaC for large enough
problem sizes as expected. Furthermore, the running time of all
the GPU implementations converge as the input size increases.
Note that NESL-GPU runs out of memory when log2(N) > 25.
Accelerate and SaC fail when log2(N) > 30 due to the number
of bits used to represent the size of a single dimension is limited to
32. In both cases, the problem could probably be mapped to a 2-
dimensional matrix without significant performance loss, but such
a mapping stands in contrast to the high-level of abstraction that the
languages have been selected for comparison because of.

From the second plot we can see that the choice of chunk size
greatly affects the running time: the running time grows rapidly
as the chunk size decreases for small chunks sizes (B < 218),
but for sufficiently large chunk sizes (B ≥ 218), the running
time stays more or less the same. Furthermore, a larger block size
incurs a larger overhead, which leads to significant performance
degradation for small problem sizes. This is an indication that on
our particular hardware, the chunk size B = 218 is a good choice,
keeping in mind that a larger chunk size requires more memory.

4.2 Sum of log-sums
The sum of log-sums problem can be categorized as irregular
nested data-parallelism because the sub-sums varies in size. The to-
tal work is proportional to N3. Just like log-sum, sum of log-sums
can be implemented using only sequence types in the streaming
language. It is not at all obvious how to implement this problem
efficiently in Accelerate or CUDA as these languages do not fa-
cilitate automatic parallelization of nested data parallelism, and
since the parallelism is irregular, there is no straight-forward way
to sequentialize the programs by hand. We leave out an Acceler-
ate implementation for this problem and implement two CUDA
versions. The two versions are manually sequentialized on two
different levels to make the problem flat:

• Inner loop: Using N threads, each sub-sum is computed se-
quentially in a single thread. The results are then summed in
parallel.

• Outer loop: In a top-level sequential loop, compute log-sum for
i = 12, · · · , N2 with i threads using the CUDA implementa-
tion from the log-sum experiment.

12 14 16 18 20 22 24 26 28 30 32
−4

−3

−2

−1

0

1

2

3

4

5

6

log
2
(N)

lo
g

1
0
(m

s
)

Log−sum wall−clock

CPU

Accelerate

CUDA

NESL

Streaming (B=18)

SaC

12 14 16 18 20 22 24 26 28 30 32
−1

0

1

2

3

4

5

6

log
2
(N)

lo
g

1
0
(m

s
)

Log−sum wall−clock

Streaming (B=10)

Streaming (B=12)

Streaming (B=14)

Streaming (B=16)

Streaming (B=18)

Streaming (B=20)

Streaming (B=22)

Streaming (B=24)

Figure 4. Benchmark results of the log-sum problem. The x-axis is
the problem size in base-2 logarithm, and the y-axis is the running
time in milliseconds in base-10 logarithm. The upper plot shows
the running time of different implementations measured in wall-
clock time. The lower plot shows the running time of the streaming
implementation for different choices of block sizes.

Both sequentialization strategies are easy to implement, but yield
uneven work distribution.

The compilation of sum-log-sum in the streaming model is sim-
ilar to the compilation of log-sum, but with parallel versions of
range computation and summation, leading to segmented streams.
Without going into detail, the compilation will produce the follow-
ing data-flow network:

s0 := range(1, N)

s1 := mult(s0, s0)

s2 := segment-head-flags(s1)

s3 := ranges(s2);

s4 := log(s2);

s5 := segmented sum(s2, s3);

s6 := sum(s4);

Here follows and explanation of the newly introduced instructions:

• segment-head-flags: Converts segment lengths to head flags.
E.g.

〈2, 3〉 7→ 〈T,F,T,F,F〉.

• ranges: Produces a range 1..n for each segment. E.g.

〈T,F,T,F,F〉 7→ 〈1, 2, 1, 2, 3〉.

It is implemented as a segmented scan of 1’s followed by adding
1 to each element.

• segmented sum: Takes a stream of segment head flags and a
stream of values and outputs a sub-sum for each segment. E.g.

〈T, F, T, F, F〉
〈2, 3, 1, 0, 7〉 7→ 〈5, 8〉.

Scheduling is an outer loop over all the instructions with an inner
loop over instructions s2, s3, s4 and s5.

Figure 5 shows the running times of the sum of log-sums prob-
lem for an problem size N varying from 24 to 212. Just like for
the log-sum problem, the GPU implementations will only outper-
form C and SaC for large enough problem sizes. NESL-GPU has
good performance, but runs out of memory at N = 29. If the
implementation was able to continue beyond this point, the per-
formance seems to coincide with the streaming implementation
suggesting that the two have equivalent performance, except the
streaming implementation has some initial overhead that is signif-
icant for small problem sizes. The two CUDA versions are outper-
formed by the streaming implementation for medium problem sizes
(7 ≤ log(N) < 10), which is likely due to uneven work distribu-
tion. The inner loop implementation is apparently asymptotically
superior to the other implementations, but this is likely due to the
total running time being bounded by the most work-heavy thread,
which computes exactly N2 logarithms, suggesting that any work
done up until this thread is started, is negligible. The curve will
likely converge to a cubic slope for even larger problem sizes. The
outer loop implementation seems to reach the point of cubic slope
at around log(N) = 11, where it already outperforms the stream-
ing model. With this problem size, the work is dominated by a few
very large computations of log-sum which can utilize the entire
GPU, so this result is not surprising.

A chunk size of B = 218, appears to be a good choice again.
The gap between the CPU implementation and the remaining im-
plementations is significantly smaller for sum of log-sums than for
log-sum, leading to the conclusion that none of the implementa-
tions handle irregular nested parallelism particularly well.

4.3 N-Body
The N-body problem can be categorized as regular nested data-
parallelism (i.e. all sub-computations have the same size). For sim-
plicity we assume that all bodies have unit mass, and we simulate
each body with the unit time-step. To avoid the problem of singu-
larities, we use the formula

f(~x, ~y) =
~x− ~y

((~x− ~y) · (~x− ~y) + ε)3/2
,

to compute the directional force between body x and y, where the
ε term ensures that no two bodies will ever have zero distance
sending them off to infinity. We define the problem as, given a
system of N bodies, for each body, given an initial position and
velocity, compute the acceleration subject to the force interaction
from all other bodies in the system, and compute a new position
and velocity, in three dimensions using the formula

~x` = ~x`−1 + dt · ~v`−1 + 1/2 · dt2 · ~a`−1

~v` = ~v`−1 + dt · ~a`−1

The total work in one iteration is proportional to N2. We measure
the average execution time of an iteration over a long simulation.

Although Accelerate contains no support for nested data-
parallelism, the regularity of the problem enables easy manual
flattening by replication of the bodies to form a matrix of all body-
pairs. A scalar function is mapped over each element of the matrix
computing the force between a pair of bodies, and each row is

4 5 6 7 8 9 10 11 12
−2

−1

0

1

2

3

4

5

6

7

log
2
(N)

lo
g

1
0
(m

s
)

Sum of log−sums wall−clock

CPU

CUDA (inner loop)

CUDA (outer loop)

NESL

Streaming (B=18)

SaC

4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

log
2
(N)

lo
g

1
0
(m

s
)

Sum of log−sums wall−clock

Streaming (B=10)

Streaming (B=12)

Streaming (B=14)

Streaming (B=16)

Streaming (B=18)

Streaming (B=20)

Streaming (B=22)

Streaming (B=24)

Figure 5. Benchmark results of the sum of log-sums problem, with
the same conventions as in Figure 4.

subsequently reduced to find the sum of all forces acting on each
body.

The implementation in NESL-GPU is much more intuitive due
to the support for nested data-parallelism2:

sum 3d(X) = let (X,Y, Z) = unzip3(X)

in (sum(X), sum(Y), sum(Z))

g(x,X) = sum 3d({f(x, y) : y inX})
nbody(X) = {g(x,X) : x inX}

The matrix of all body-pairs is implicitly computed in this expres-
sion sinceX must be distributed over itself in order to useX in the
inner-most apply-to-each.

We cannot implement the problem in the streaming language
without using concrete types. More precisely, if we use the NESL
expression as a starting point, the variables that are used in the
body of both apply-to-each constructs, must be explicitly stated.
The outer apply-to-each uses X , and consequently from the type
rule of apply-to-each, X cannot have sequence type and must be
fully materialized in memory. The solution is to make sure X is
tabulated, which is also what one would assume, and use seq(X)
to traverse it multiple times as a sequence.

g(x,X) = sum 3d({f(x, y) : y in seq(X) using x})
nbody(X) = {g(x,X) : x in seq(X) using X}
A compiler can utilize the regularity of the problem to generate

more efficient code. More specifically, we can compute the index

2 The code for updating positions and velocities is now shown here.

ranges using modulo arithmetic, and the segmented sum using a
single unsegmented scan, a gather and a subtraction. If we assume
that the streaming compiler can infer and exploit this regularity, we
can generate the following code for the streaming model:

X := < input >

s0 := 2d range x(N,N);

s1 := 2d range y(N,N);

s2 := gather(X, s0);

s3 := gather(X, s1);

s4 := force(s2, s3);

s5 := 2d segmented sum(N,N, s4);

Here 2d range x(N,M) produces the stream

〈

M︷ ︸︸ ︷︷ ︸︸ ︷
0, . . . , N − 1, · · · ,

︷ ︸︸ ︷
0, . . . , N − 1〉 ,

and 2d range y(N,M) produces the stream

〈
N︷ ︸︸ ︷

0, . . . , 0, · · · ,
N︷ ︸︸ ︷

M − 1, . . . ,M − 1〉 .

2d segmented sum(N,M, s) produces a regular segmented sum
of s segmented in N segments, each of length M . force is the
force calculation between two bodies, fused into a single instruc-
tion. The force calculation consists solely of scalar operations, so
fusion is straight-forward, and it is fair in comparison since both
Accelerate and NESL-GPU uses fusion.

The hand-optimized CUDA implementation is based on the al-
gorithm presented by Nyland, Harris, and Prins in GPU Gems 3 [7]
and uses explicit cache management and tiling.

The implementations in NESL-GPU, Accelerate and Sac do
not contain any explicit sequentialization except for the simulation
iterations. This is important because such a sequentialization would
be a platform-specific optimization, and we are comparing with
these languages because they are platform-agnostic. We were not
able to produce an implementation in SaC that performs better than
the CPU implementation for N-Body.

Figure 6 shows the running time of N-Body. Here the NESL-
GPU implementation runs out of memory for all but the smallest
problem sizes (210 bodies) and performs horribly, likely due to ex-
plicit replication. Accelerate on the other hand is able to handle all
tested input sizes indicating that it handles replication symbolically.

Once the input size is large enough, the streaming version is a
constant factor faster than the CPU version, Accelerate is a constant
factor faster than the streaming version, and the CUDA version is
a constant faster than Accelerate. Compared to the previous prob-
lems, the CUDA implementations is now significantly faster than
the other GPU implementations, and the streaming implementation
is painfully close to the CPU implementation in performance. From
the lower plot we can see that the optimal chunk size is the same as
for the previous problems.

4.4 Discussion
Considering the experimental results of the streaming implemen-
tation in isolation, it is evident that the running time of a given
problem converges as the chunk size increases, and furthermore, it
converges long before the chunk size reaches the problem size for
large enough problem sizes. As stated previously, when the chunk
size is big enough, the streaming execution model is largely equiv-
alent to that of NESL. In conclusion, choosing a reasonable chunk
size, the streaming model will not be slower than a traditional ex-
ecution model. The three experiments all suggested the same opti-
mal chunk size of 218, which is important since it is an indication

6 8 10 12 14 16
−2

−1

0

1

2

3

4

5

log
2
(N)

lo
g

1
0
(m

s
)

N−Body wall−clock

CPU

Accelerate

CUDA

NESL

Streaming (B=18)

6 8 10 12 14 16
−1

0

1

2

3

4

5

6

log
2
(N)

lo
g

1
0
(m

s
)

N−body wall−clock

Streaming (B=10)

Streaming (B=12)

Streaming (B=14)

Streaming (B=16)

Streaming (B=18)

Streaming (B=20)

Streaming (B=22)

Streaming (B=24)

Figure 6. Benchmark results of the sum of N-Body problem, with
the same conventions as in Figure 4.

that the optimal chunk size is independent from the algorithm and
problem size, meaning that for a given concrete machine, a spe-
cific chunk size can be selected once and for all programs. Given
a chunk size of 218 and depending on the type, a single buffer re-
quires roughly 8–16 MB worth of memory on the device, enabling
several hundreds of buffers to be allocated at any given time - more
than enough for most algorithms. It should be possible to estimate
the number of required buffers before execution begins, at least for
our somewhat restricted source language, and if more buffers are
needed than the GPU capacity enables, the block size can be low-
ered. In extreme cases, buffers can be swapped in and out of device
memory dynamically.

Comparing the results of the streaming implementation with the
other GPU implementations, the experiments shows that a stream-
ing execution of nested data-parallel programs on GPGPUs is on-
par with existing GPU-enabled high-level languages both for flat,
regular nested and irregular nested data-parallelism. We also con-
clude that much larger problem sizes are supported when using
streaming than what is available in NESL. This is a critical fea-
ture for data-parallel languages, because the benefit of parallel ex-
ecution increases as the problem size increases. For small prob-
lem sizes, the difference between 1 second and 10 milliseconds
is quickly shadowed by the overhead of loading and unloading
CUDA’s drivers, but the difference between 1 hour and 100 hours
for huge problem sizes is significant. By allowing a data-parallel
program to work on such problem sizes is therefore highly valu-
able, and that is exactly what the streaming execution model pro-
vides that both Accelerate and NESL-GPU does not.

On the other hand, the running time for streaming execution
is still considerably higher than we had hoped and what a hand-
optimized CUDA implementation offers. This can partly be at-
tributed to lack of tiling and explicit cache management. Another
concern is that dividing a parallel instruction into several kernel in-
vocations, as is required by data-flow execution, precludes the use
of registers to store intermediate results; In CUDA, it is not possi-
ble to carry values stored in registers or shared memory from one
kernel invocations to the next, even if it is the same kernel that is
invoked. Instead, the global memory must be used, which is much
slower. This indicates that kernel fusion is still beneficial in the
streaming model.

The experiments do not provide a clear validation of the stream-
ing model, but they do not reject it either. The results suggest that
implementing a GPU backend for a NESL-like language that scales
to extremely large problem sizes is possible using the streaming
model presented in this paper, without incurring too severe perfor-
mance degradation for small and medium problem sizes.

5. Preliminary conclusions and future work
We have outlined a high-level cost model and associated imple-
mentation strategy for irregular nested data parallelism, which re-
tains the performance characteristics of parallelism-flattening ap-
proaches, while drastically lowering the space requirements in sev-
eral common cases. In particular, many highly parallelizable prob-
lems that also admit constant-space sequential algorithms, when
expressed in the language, have space usage proportional to the
number of processors – not to the problem size.

The language and implementation are still under development,
and many details are incomplete or preliminary. Particular on-going
and future work, not already mentioned at length, includes:

• Extending the language and cost model with recursion, to allow
expression of more complex algorithms. The main challenge
here is to determine to what extent common parallel-algorithm
skeletons admit streaming formulations. For example, to explic-
itly code a logarithmic-depth reduce, a divide-and-conquer ap-
proach (split vector in halves, reduce each half in parallel, and
add the partial results) will obviously not work for sequences,
when not even the sequence length is known a priori. On the
other hand, a unite-and-conquer reduction (add pairs of adja-
cent elements in parallel, then recursively reduce the resulting
half-length sequence) can be implemented in a streaming fash-
ion, and probably exhibits better space locality as well.

• Extending the model to account for bulk random-access vec-
tor writes (permutes, or more generally, combining-scatter op-
erations). A significant class of algorithms that nominally in-
volve random-access vector updates, such as histogramming or
bucket sorting, can still be expressed in a parallel, streaming
fashion by generalizing (segmented) scans to multiprefix oper-
ations [11]. Making multiprefix primitives conveniently utiliz-
able by the programmer should minimize, or maybe even elimi-
nate, the need for explicitly distinguishing between copying and
in-place implementations of vector updates in the cost model.

• Formally establishing the time and space efficiency of the im-
plementation model, in the sense that the work and depth com-
plexity, and parallel and sequential space usage, predicted by
the high-level model are in fact realized, up to a constant factor,
by the low-level language with chunk-based streaming.

• A full language implementation with a representative collection
of back-ends (including at least sequential, multicore/SIMD,
and GPGPU) to gather more practical experience with the
model, and in particular determine whether the hand-coded
implementations of particular streaming algorithms can also be
realistically generated by a fixed compiler.

Finally, though we believe that the main value of the streaming
model is its explicit visibility to the programmer, some of the ideas
and concepts presented in this paper might be adaptable for trans-
parent incorporation in other data-parallel language implementa-
tions (APL, SaC, Data Parallel Haskell, etc.), to achieve drastic re-
duction in memory consumption in many common cases, without
requiring explicit programmer awareness of the streaming infras-
tructure.

Acknowledgments
The authors want to thank the FHPC’13 reviewers for their help-
ful and insightful comments. This research has been partially sup-
ported by the Danish Strategic Research Council, Program Com-
mittee for Strategic Growth Technologies, for the research center
HIPERFIT: Functional High Performance Computing for Finan-
cial Information Technology (hiperfit.dk) under contract num-
ber 10-092299.

References
[1] L. Bergstrom and J. H. Reppy. Nested data-parallelism on the GPU.

In International Conference on Functional Programming, ICFP’12,
pages 247–258, Copenhagen, Denmark, Sept. 2012.

[2] G. E. Blelloch. NESL: A nested data-parallel language. Technical
Report CMU-CS-92-103; updated version: CMU-CS-05-170, School
of Computer Science, Carnegie Mellon University, 1992.

[3] G. E. Blelloch and J. Greiner. A provable time and space efficient
implementation of NESL. In International Conference on Functional
Programming, ICFP’96, pages 213–225, Philadelphia, Pennsylvania,
May 1996.

[4] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Za-
gha. Implementation of a portable nested data-parallel language. Jour-
nal of Parallel and Distributed Computing, 21(1):4–14, Apr. 1994.

[5] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and
V. Grover. Accelerating Haskell array codes with multicore GPUs.
In Sixth Workshop on Declarative Aspects of Multicore Programming,
DAMP’11, pages 3–14, Austin, Texas, Jan. 2011.

[6] B. Lippmeier, M. M. T. Chakravarty, G. Keller, R. Leshchinskiy,
and S. L. Peyton Jones. Work efficient higher-order vectorisation.
In International Conference on Functional Programming, ICFP’12,
pages 259–270, Copenhagen, Denmark, Sept. 2012.

[7] L. Nyland, M. Harris, and J. Prins. Chapter 31. Fast N-Body Simula-
tion with CUDA. In H. Nguyen, editor, GPU Gems 3. Addison-Wesley
Professional, 2007.

[8] D. W. Palmer, J. F. Prins, S. Chatterjee, and R. E. Faith. Piecewise
execution of nested data-parallel programs. In Languages and Com-
pilers for Parallel Computing, 8th International Workshop, LCPC’95,
volume 1033 of Lecture Notes in Computer Science, Columbus, Ohio,
Aug. 1995.

[9] D. W. Palmer, J. F. Prins, and S. Westfold. Work-efficient nested
data-parallelism. In Fifth IEEE Symposium on Frontiers of Massively
Parallel Processing, FRONTIERS’95, pages 186–193, 1995.

[10] S.-B. Scholz. Single Assignment C: Efficient support for high-level
array operations in a functional setting. Journal of Functional Pro-
gramming, 13(6):1005–1059, 2003.

[11] T. J. Sheffler. Implementing the multiprefix operation on parallel
and vector computers. In Fifth Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 377–386, 1993.

[12] D. Spoonhower, G. E. Blelloch, R. Harper, and P. B. Gibbons. Space
profiling for parallel functional programs. In International Conference
on Functional Programming, ICFP’08, pages 253–264, Victoria, BC,
Canada, Sept. 2008.

[13] Y. Zhang and F. Mueller. CuNesl: Compiling nested data-parallel
languages for SIMT architectures. In 41st International Conference
on Parallel Processing, ICPP 2012, pages 340–349, 2012.

