
Array abstractions for GPU programming

Martin Dybdal

July 13, 2017

i

Abstract

The shift towards massively parallel hardware platforms for high-
performance computing tasks has introduced a need for improved pro-
gramming models that facilitate ease of reasoning for both users and
compiler optimization.

A promising direction is the field of functional data-parallel program-
ming, for which functional invariants can be utilized by optimizing com-
pilers to perform large program transformations automatically. However,
the previous work in this area allow users only limited ability to reason
about the performance of algorithms. For this reason, such languages have
yet to see wide industrial adoption.

We present two programming languages that attempt at both support-
ing industrial applications and providing reasoning tools for hierarchical
data-parallel architectures, such as GPUs.

First, we present TAIL, an array based intermediate language and
compiler framework for compiling a large subset of APL, a language which
have been used in the financial industry for decades. The TAIL language is
a typed functional intermediate language that allows compilation to data-
parallel platforms, thereby providing high-performance at the fingertips of
APL programmers.

Second, we present FCL, a purely functional data-parallel language,
that allows for expressing data-parallel algorithms in a fashion where
users at a low-level can reason about data-movement through the memory
hierarchy and control fusion will and will not happen. We demonstrate
through a number of micro benchmarks that FCL compiles to efficient GPU
code.

ii

Resumé

Overgangen til massivt parallel hardware, som platform for opgaver
der kræver high-performance computing, har introduceret et behov for
forbedrede programmeringsmodeller, der bedre faciliterer ræsonering for
både brugere og optimerende oversættere.

En lovende retning er forskningsområdet der omhandler funktionelle
data-parallelle programmeringssprog. For sådanne sprog kan funktionelle
invarianter benyttes af oversættere til automatisk at udføre optimerende
programtransformationer. Tidligere arbejde indenfor dette område har
dog ofte kun tilladt brugere begrænset mulighed for at ræsonere om ef-
fektiviteten af deres algoritmer, netop på grund af disse automatiske op-
timeringer. Derfor har sådanne sprog endnu ikke set stor udbredelse i
industrielle sammenhænge. Vi præsenterer to programmeringssprog der
forsøger både at understøtte industrielle anvendelser og giver mulighed for
ræsonering omkring effektivitet, når algoritmerne afvikles på hierarkiske
data-parallele hardware arkitekturer, som for eksempel GPU’er.

Vi præsenterer først TAIL, et array baseret mellemsprog og oversæt-
tersystem, der gør det muligt at oversætte en stor delmængde af APL, et
sprog der har været brugt i den finansielle industri i flere årtier. Sproget
TAIL er et typestærkt funktionelt mellemsprog, der tillader oversættelse
til data-parallel platforme og dermed giver APL programmører adgang
til at generere effektiv kode for opgaver der kræver high-performance
computing.

Dernæst præsenterer vi FCL, et funktionelt data-parallelt sprog, der
tillader brugeren at udtrykke data-parallele algoritmer i en form hvor
brugere kan ræsonere om hvornår data overføres mellem de forskellige
hukommelseslag. Dette gøres blandt andet ved at give brugeren kontrol
over hvornår array kombinatorer vil eller ikke vil blive fusioneret. En-
delig demonstrerer vi at et antal mindre benchmarks skrevet i FCL kan
oversættes til effektive GPU programmer.

Contents

1 Introduction 1
1.1 Landscape of functional array languages for GPUs 2
1.2 Thesis . 3
1.3 Compiling APL into a typed array language 4
1.4 Hierarchical functional data-parallelism 5
1.5 Contributions . 6
1.6 Structure of the dissertation . 7

2 Functional array language design 8
2.1 A core functional language with arrays 9
2.2 Array operations . 17
2.3 Fusion . 23
2.4 Iteration and recursion . 33
2.5 Nested data-parallelism . 34

3 TAIL: A Typed Array Intermediate Language for Compiling APL 38
3.1 A Typed Array Intermediate Language 41
3.2 Compiling the Inner and Outer Products 53
3.3 APL Explicit Type Annotations 54
3.4 TAIL Compilation . 56
3.5 Benchmarks . 59
3.6 Related Work . 67
3.7 Conclusion and Future Work . 69

4 GPU architecture and programming 70
4.1 GPU architecture . 71
4.2 GPU programming . 73
4.3 Optimisation of GPU programs 75

5 FCL: Hierarchical data-parallel GPU programming 78
5.1 Obsidian . 79
5.2 Case Studies in FCL . 80
5.3 Formalisation . 86
5.4 Larger examples . 103
5.5 Performance . 110

iii

CONTENTS iv

5.6 Related work . 112
5.7 Discussion and future work . 113
5.8 Conclusion . 115

6 Conclusion 116

Bibliography 118

Chapter 1

Introduction

The society is increasingly relying on large-scale computing for infrastructure as
well as for industrial and scientific developments. In recent years, the number
and scale of data processing tasks have increased dramatically. Simultaneously,
hardware for high-performance computing have become cheaper than ever,
which has made previously untractable problems tractable.

However, while hardware for high-performance computing have become
a commodity, taking efficient advantage of the new hardware architectures
requires specialists with intimate knowledge of the particular hardware plat-
forms. Decreasing development time and cost for high-performance computing
systems will enable organisations to move into new areas faster, cheaper and
with a lower barrier for entry. In some domains quick responses are often nec-
essary, and shortening development time thus becomes even more important.
The financial sector is an example, where sudden changes in markets necessi-
tate timely reactions embodied as updated financial models and software.

Graphical processing units (GPUs) are a cost-effective technology for many
problems in high-performance computing. Traditional CPUs are equipped
with automatically managed caches and control logic such as branch predictors
or speculative execution, providing low latency processors that can quickly
switch between tasks. GPUs, in contrast, are designed for tasks where high
throughput is more important than low latency, and trades in the transistors
used for control logic and caches for additional compute units (ALUs). GPUs
are thus equipped with thousands of individual compute cores and a complex
hierarchical memory systems managed by the user.

To take advantage, a programmer needs thousands of simultaneous threads,
data parallel algorithms with enough similar, but independent tasks, where
control-divergence and synchronisation between threads are limited, as well
as careful utilisation of the deep memory hierarchies.

This dissertation explores how the use of purely functional programming lan-
guages can enable improvements in programmer productivity and performance
of data-parallel programs written for GPUs. Purely functional programming
languages delivers a programming model, where programs are constructed

1

CHAPTER 1. INTRODUCTION 2

from operators acting on arrays in bulk. By being pure, the languages provides
referential transparency of operations, which allows equational reasoning by
users as well as compilers. This in turn enables a wealth of optimisations to be
performed.

1.1 Landscape of functional array languages for GPUs

The HIPERFIT research center was establish at University of Copenhagen in
the aftermath of the 2008 financial crisis, with the following research goals:
“HIPERFIT seeks to contribute to effective high-performance modelling by
domain specialists, and to functional programming on highly parallel com-
puter architectures in particular, by pursuing a research trajectory informed
by the application domain of finance, but without limiting its research scope,
generality, or applicablity, to finance” [15].

To initiate efforts in the direction stated by the HIPERFIT research goals,
the first project I did as part of my Ph.D. was to evaluate the state of the art
in functional data-parallel languages for GPUs, by implementing a few algo-
rithms from financial engineering. We surveyed the languages Accelerate[28],
Nikola[77], NESL/GPU [11], Copperhead [26], and Thrust [83]. Our conclu-
sions from the study was that, current functional languages for data-parallel
GPU programming were limited in several ways.1

We found that the existing data-parallel languages for GPU programming,
provided limited control when implementing high-performance algorithms,
which is necessary for certain algorithms to implemented efficiently. For in-
stance, data-layout and data-access patterns are important consideration for
obtaining good performance on GPU systems. Being unable to reason about
the data-layout or data-access after applying a built-in operation, for example
a transposition, made it hard to optimise algorithms.

We also found that certain loop structures could not be expressed, in many
of the languages. For instance some algorithms involves construction of small
arrays, or parts of arrays small enough to be constructed in a single thread.
The languages did provide the necessary sequential loop contructs, necessary
for expressing such algorithms.

Languages often tend to provide a single version of each operation for
example, transposing an array, performing matrix multiplication, et cetera.
However, when arrays are small it may be faster to let all threads perform
identical operations, instead of parallelising a 3-by-3 matrix inversion. The
surveyed languages did not provide the flexibility of choosing between these
different algorithmic strategies.

Performance reasoning and control is important to high-performance com-
puting programmers. Brad Chamberlain from Cray Inc., developer of Chapel
[30], presented his vision for an ideal language for high-performance comput-
ing in a recent talk at DIKU [30]. He argued that computational scientists and

1A preliminary version of this study is available in my Master Thesis [25]. The full comparison
was unfortunately never published.

CHAPTER 1. INTRODUCTION 3

financial engineers wants to express their problems in architecture indepen-
dent terms, but an ideal language should still allow full control to the HPC
programmer whose job is to ensure performance of the final application.

Finally, in several cases we found it necessary to manually flatten algo-
rithms, as the only language supporting the flattening transformation was
NESL/GPU [11]. We could also confirm, however, that the flattening transfor-
mation caused a huge memory overhead for NESL/GPU, as it used 128 times
the amount of memory necessary for one of our case studies, where in compar-
ison, we were able to entirely fuse away the array in the implementation of the
same program in Thrust [83].

The above conclusions motivated our work. With these lessons in mind we
went on to design an experiment that would allow us to make progress in the
design of functional array languages for GPUs.

1.2 Thesis

To respond to the identified problems and gaps in existing research on func-
tional data-parallel languages for GPUs, we decided to work on an compiler
for the programming language APL, with the hope of eventually targeting
GPUs. APL is a an array programming language, with a functional core and a
large collection of built-in operations acting on arrays. The reason for choosing
APL as our language of study, was first of all motivated by the wide usage
of APL and descendants in the financial industry through more than forty
years. There is thus evidence that the selection of operations provided by APL
are suitable for a large range of problems, especially in the domain of finance.
The financial institutions backing HIPERFIT only provided a few financial
benchmarks we could study. By compiling APL we were able to seperate
the concern of whether our language would be adequate for implementing
financial algorithms, as this has already been proven for APL.

The second reason for selecting APL is that the built-in array operations
in APL are generic and can be implemented by highly parallel algorithms, or
quoting Robert Bernecky: "Unlike other languages, the problem in APL is not
determining where parallelism exists. Rather, it is to decide what to do with all
of it." [12].

We further speculated that APL programmers could not only be used for
declarative specification of data-parallel algorithms, but also instrument the
compilation process of the underlying lower level language, through annota-
tions at the APL level. In this way the APL programmer would not only be
implement his algorithms, but also be able to reason about their performance,
and optimize through annotations at the APL-level or by inlining expressions
written in one of the lower level language.

The main thesis of this dissertation was thus born: efficient compilation of the
high-level data-parallel language APL, can be achieved through compilation through
several typed functional array languages. This idea is illustrated in Figure 1.1.

In the following sections we will briefly sketch our various work towards
this goal.

CHAPTER 1. INTRODUCTION 4

APL

Intermediate language 0

Intermediate language 1

...

Intermediate language N

GPU code

Figure 1.1: Stack of intermediate languages

1.3 Compiling APL into a typed array language

APL is a notation and programming language designed for communicating
mathematical ideas and describing computational processes [63]. The language
is dynamically typed, with a functional core supporting first and second-
order functions and multi-dimensional arrays as the main data structure. The
language makes extensive use of special characters for denoting the many
different built-in functions and operators, which include prefix-sums (\), array
transposition (�\), and generalized multi-dimensional inner-product.

Traditionally, APL is an interpreted language, although there have been
many attempts at compiling APL into low-level code, both in online and offline
settings [50, 13, 47, 22]. However, only limited attention have been given from
a programming language semantics point of view [92].

In Chapter 3 we present an APL compiler that elaborates a large subset
of APL into a typed functional intermediate language, called TAIL, for which
we provide a rigorous dynamic semantics and a static type system. The front-
end of the APL compiler deals with much of the gory details of the APL
language, including infix resolution, scalar extension resolution, resolution of
function and operator overloading, and resolution of identity items for reduce
operations.

The type system of TAIL provides a shape-polymorphic type system, con-
ceptually close to the language Repa [68], with a wide set of array operations
supported on both shapes and arrays. We also make use of subtyping to al-
low shapes to be used in array contexts. These features are necessary in the
translation of APL, as APL does not make a distinction between shapes and
arrays, and having access to rank-information on type level makes several
optimisations possible.

Chapter 3 is an extension of previously released work [43]. The extensions
include sequential loop constructs, mutable arrays with store semantics, that
allows many programs requiring sequential loops and irregular array iteration
patterns to be implemented. Chapter 3 further extends on our previous work

CHAPTER 1. INTRODUCTION 5

by documenting that larger benchmarks, such as an option pricer from partner
company LexiFi is implementable in the subset of APL.

It should also be mentioned that TAIL has been compiled to both Accelerate
(by Masters student) and Futhark (by colleagues at the HIPERFTI research
center), which documents that TAIL is suitable intermediate language, for
compilation to GPUs.

1.4 Hierarchical functional data-parallelism

After the TAIL project we turned the attention towards compiling TAIL to GPU
code. Modern GPUs provide thousands of cores, however, they provide very
limited amounts of fast memory close to processing units. When data is moved
from slow memory into fast memory, it is therefore important to be able to
perform enough computations to keep processors active. Otherwise, compute
units will spend most of their time waiting for data-transfers to complete, and
we do not take full advantage of the GPU.

Fusion optimisations are techniques for reducing number of memory trans-
actions in program, by combining separate consecutive traversals over the
same memory area into a single pass. Fusion allows programmers to write
programs in logically separate functions, and later compose them into larger
programs without the overhead of writing intermediate data-structures to
memory.

However, as stated previously, data-parallel functional languages often per-
form these fusion optimisations automatically, with limited algorithmic control
for the user. In practice we want the ability to reason about the performance
aspects of function composition.

Instead of directly translating the built-in functions of TAIL into efficient
GPU kernels, we thus started from the other end, constructing a functional
language suitable for implementing the necessary GPU programs, while both
providing ability to achieve fusion and the ability to reason about performance.
The resulting language named FCL is by projects such as Obsidian [96], Sequoia
[44] and CUB [84], and provide control of which level of the hierarchical GPU
system that a particular function is executed.

FCL originated as a reimplementation of Obsidian as a standalone language,
and has since been extended with additional looping constructs and other
primitives, allowing further programs to be implemented. Fusion is achieved
through the use of delayed array representations, which are only written to
memory on the request of the user. The language is polymorphic in the level
of the GPU hierarchy, allowing users to write level-agnostic programs. FCL
also provides various standard optimizations and support for multi-kernel
programs.

We identify several problems with the use of delayed array representations.
Future work include I/O cost models for the hierarchical language, as well as
type-directed translation such that algorithmic choices can depend on the level
of hierarchy where a function is invoked.

CHAPTER 1. INTRODUCTION 6

1.5 Contributions

While we deviated from our original plan of providing a complete APL com-
piler for GPU programming, we present two separate projects working in the
direction of the stated thesis. Below we list the individual contributions from
the two projects.

The contributions on compiling APL to TAIL are as follows:

• We present a statically typed array intermediate language, TAIL, with
support for multi-dimensional arrays and operations on such arrays. The
type system supports several kinds of types for arrays, with gradual
degree of refinement using subtyping. The most general array type
keeps track of array ranks, using so-called shape types. One-dimensional
arrays may be given a more refined type, which keeps track of vector
lengths (also using shape types). To allow inference of such ranks and
vector lengths, the type system also supports special refined variants of
singleton scalar values and singleton vector values of statically known
value. These are necessary for typing and inferring results of operations
acting on shapes themselves.

• We demonstrate that TAIL is suitable as the target for an inference
algorithm for an APL compiler. The type system of the intermedi-
ate language allows the compiler to treat complex operations, such as
matrix-multiplication, and generalized versions thereof (inner products
of higher-ranked arrays), as operations derived from the composition of
other more basic operations.

• We further extend TAIL to support array updates. We present a type
system and store-based semantics with support for mutable arrays, array
indexing and array updates.

• We demonstrate that TAIL is useful as a language for further array-
compilation, by demonstrating that the array language can be compiled
effectively into a low-level array intermediate language, called Laila,
which lends itself to a straightforward translation into sequential C code,
OpenMP annotated C code, and GPU kernel code. The compilation is
based on the concept of hybrid pull-arrays [78], which combines several
variations of functional delayed arrays, and traditional materialized
arrays for supporting array updates.

• We demonstrate that the typed array language can be used to compile to
GPU code by compiling TAIL to the existing functional GPU language
Accelerate [28, 23]. As part of a student project, it has also been demon-
strated that TAIL, with good results, also can be compiled to the GPU
language Futhark [55].

CHAPTER 1. INTRODUCTION 7

The contributions on hierarchical data-parallelism and FCL are as follows:

• We present FCL a statically typed hierarchical data-parallel language
for GPU programming. FCL extends on the work on Obsidian, a data-
parallel language for GPUs. A main consideration for both FCL and
Obsidian is to allow users to reason about performance and experiment
with various algorithms for solving a problem. We thus allow a program-
ming style that allows fusion, in a way where users can reason about
when fusion will happen. In contrast to Obsidian, FCL is implemented
as a self-contained compiler, lifting us from some of the restrictions of
prototype languages implemented as embedded DSLs.

• Data-parallel algorithms are often based on a divide-and-conquer ap-
proach, where subproblems are solved by individual parallel processors,
and the results are assembled to form the final result. The Obsidian lan-
guage only allows these results to be assembled through concatenation.
To support a broader range of algorithms, we extend this method to allow
permutations to be performed before the results are concatenated.

• Larger programs require many different GPU kernels. Obsidian users
need to write and compile every kernel separately. FCL allows a pro-
gramming style that supports multiple kernels, and where kernels are
automatically compiled. Obsidian relied on its host language Haskell
for composing programs and for executing kernels. FCL generates stan-
dalone C-programs and the necessary OpenCL kernel files.

• To support loops inside sequential code, Obsidian programmers had to
rely on code generation in the meta-language and were thus limited to
completely unrolled loops. This strategy is not always desirable, as it
can lead to code explosion. We present a strategy that permits sequential
loops to be generated and integrates with the existing model.

• We also identify weaknesses of the current approach used in FCL and
Obsidian, such as limitations by the use of push/pull arrays. Push arrays
following the current definition, does not allow us to lift FCL programs
to operate on multiple GPU devices, as writing a socalled writer-function
for use at device-level must be a bulk operation, whereas push arrays are
based on writing elements individually. An alternative implementation
strategy is thus needed, if we want to support multiple devices.

1.6 Structure of the dissertation

The thesis is structured as follows. In Chapter 2 we will introduce the necessary
background on functional data-parallel programming languages design and
implementation. Chapter 3 presents the TAIL language and compiler, and is
an extended version of a previously published paper. Chapter 4 briefly covers
GPU programming and hardware. Chapter 5 presents the FCL language.
Chapter 6 concludes.

Chapter 2

Functional array language design

Arrays are fundamental data-structures in most programming languages for
high-performance computing, as many computational problems susceptible
for parallel acceleration can be written in terms of data-parallel operations on
arrays. Programming languages in this domain differ in terms of the set of
provided array operations, how array operations combine into whole programs,
and in the ability for users to reason about programs and their performance.

We will make a distinction between the concept of an array language and
that of an array library. Where both array libraries and array languages provide
a great variety of built-in operations on arrays, they differ in the type of
operations and how operations combine. The main focus of array libraries
are to provide independent software routines of high-performance, often solving
very specific tasks, such as solving systems of linear equations, least-squares
fitting, or the underlying linear algebra operations such as matrix factorisation
algorithms. For array languages, the main focus is not on performance on
the individual software routines, but on achieving high-performance when several
operations are composed into a single program.

Constructing an efficient array library comes down to selecting the rou-
tines necessary for the domain and implementing optimised algorithms for
each routine individually, annotating their individual asymptotic performance
behaviour. Different library implementations can be provided with each im-
plementation optimised for a specific hardware platform. Constructing an
efficient array language, on the other hand, requires a careful selection of built-
in operations on arrays, that allows efficient parallel code to be generated on
compositions, as well as providing the user with the ability to reason about
performance of such compositions. There is a trade-off involved when it comes
to selecting the built-in operations of such languages, as adding additional op-
erations also increases the complexity of the language, which make reasoning
harder [64].

This chapter will introduce the necessary concepts and background on
design and implementation of functional data-parallel array languages. We will
introduce the concepts by defining a small functional language with arrays that

8

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 9

e ::= true | false | i | d | x | [~e] | op
| fn x => e | e1 e2
| let x = e1 in e2 | fix e
| if e1 then e2 else e3
| (e1, e2) | fst e | snd e

i ∈ Z
d ∈ R
x ∈ Var

op ∈ ScalarOps ∪ ArrayOps

Figure 2.1: Abstract syntax of ALcore

exhibits the problems that an array language implementor needs to address.
Along the way, we will restrict our language with restrictions common in
current typed functional array languages. By restricting the set of allowed
programs, language implementors can provide better performance guarantees
for the users and additional optimisation opportunities might arise.

No new ideas are introduced in this chapter; we will instead use the oppor-
tunity to discuss related work in the field.

2.1 A core functional language with arrays

We will base our discussion of array languages on a small core language, ALcore,
which extends the typed lambda calculus with integers, booleans, conditionals,
tuples, let-expressions (allowing recursion), and arrays.

Notation 2.1 (Sequences) Whenever z is some object, we write ~z to range over
sequences of such objects. When we want to be explicit about the size of a sequence
~z = z0, · · · , z(n−1), we often write it on the form ~z(n) and we write z, ~z to denote the
sequence z, z0, · · · , z(n−1).

Let Var be a denumerable infinite set of program variables. Let Ops be a fi-
nite set of built-in operations. We use i and n to range over integers. Figure
2.1 shows the abstract syntax of ALcore. Expressions consists of scalar inte-
gers, scalar doubles, booleans, variables, array expressions, built-in operations
(op), abstraction forms, application forms, let-expressions, the fixed point
combinator (fix), conditional expressions, tupling, and tuple projections.

We divide the set of built-in operations in two, a set of operations over
scalar values, ScalarOps, and a set of operations on arrays, ArrayOps. We will
use the same set of operations over scalars throughout the chapter, whereas
we will extend and restrict the set of array operations as necessary, to illustrate
issues and techniques of array language design.

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 10

We define the set of standard operations on scalar values, which consists
of standard arithmetical operations overloaded to work on both integers and
floating point values, as well as maximum and minimum functions, standard
relational operations, and logical operations.

ScalarOps = {+, -, *, /, div,mod,
max, min, ==, <, >, &&, ||}

In array language design, the choice of built-in array operations is of utmost
importance, as it is through these array operations that the structure of array
computations are defined. Moreover, for the language implementor, the choice
of operations determines the optimisations that users and compilers can or
cannot perform. In this first section we introduce a very limited set of built-in
array operations: array creation (generate), array indexing (index), and
array length (length).

ArrayOps = {generate, index, length}

The operation generate en ef is an introduction form for arrays, constructing
an array of length en, by applying ef to each index of the array, thus returning
[ef 0, ef 1, . . . , ef (en − 1)]. Arrays can also be introduced as literal arrays
with the notation [~e]. Elimination forms for arrays consist of index e ei for
obtaining the value at index ei in array e, and length e for determining the
number of elements in the given array.

Together ScalarOps and ArrayOps constitute the built-in operations of ALcore.
The choice of having only generate, index, and length as our only vehicles
for expressing computations on arrays is made for presentation purposes. This
limited set of array operations allows us to discuss the issues faced when
implementing an array language. In later sections of the chapter, we will
change the set of ArrayOps to allow additional programs to be written, and to
make properties of algorithms, such as memory access patterns more evident.

Notation 2.2 (Recursive definitions) To simplify the introduction of recursive func-
tions, we introduce the common derived form:

letrec x = e1 in e2

which should be considered equivalent to writing the following expression:

let x = fix (fn x => e1) in e2

Notation 2.3 (Top-level definitions) When we want to present program fragments,
we will use the following notation for top-level definitions:

fun functionname arg0 arg1 ... argn = body

This notation should be considered equivalent to writing the following let-expression,
with the scope of the rest of the document:

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 11

letrec functionname =
fn arg0 => fn arg1 => ... fn argn => body

in ... rest of file ...

Example 2.1 To exemplify, we can build a few reusable combinators. As a first
example consider “iota”, which creates a length n array with integers 0 through
n− 1:

fun iota n = generate n (fn x => x)

We can also define the well-known combinator “map”, which applies the same function
to all elements of an array:

fun map f arr =
generate (length arr)

(fn i => f (index arr i))

With these definitions in place, we can build simple programs such as:

map (fn x => x * x) (iota 1000)

In this example we first create an array [0, 1, . . . , 999] and then apply a squaring-
function to each element, creating a new array with elements [02, 12, . . . , 9992].

2.1.1 Typing of ALcore

Types (τ) and type schemes (σ) for ALcore are of the form:

τ ::= α | int | double | bool | [τ] | (τ1, τ2) | τ1 → τ2 (types)
σ ::= ∀~α. τ (type schemes)

We assign type schemes to built-in operations, op, by defining the relation
TySc(op) in Figure 2.2 and Figure 2.3. We define ftv(τ) as the set of free type
variables in τ .

A type environment Γ, is a set of type assumptions of the form x : σ,
mapping program variables to type-schemes:

Γ ::= x : σ,Γ | ε

A substitution S = [τ0/α0, . . . , τn−1/αn−1] is a mapping from type variables
to types. Let S be such a substitution and let τ be a type, then S(τ) is the
type obtained by simultaneously replacing every occurence of αi in τ by τi,
renaming type variables not bound in S if necessary. A type τ ′ is an instance
of a type scheme σ = ∀~α.τ , written σ � τ ′, if there exists a substitution S such
that S(τ) = τ ′.

In Figure 2.4 we formalise the typing rules for ALcore as the judgment form
“Γ ` e : τ” which can be read as “under the assumptions Γ, the expression e
has type τ .”

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 12

op ∈ ScalarOps TySc(op)
+ : int→ int→ int
- : int→ int→ int

* : int→ int→ int
div : int→ int→ int
mod : int→ int→ int

+ : double→ double→ double
- : double→ double→ double

* : double→ double→ double
/ : double→ double→ double

max : int→ int→ int
min : int→ int→ int
== : int→ int→ bool
< : int→ int→ bool
> : int→ int→ bool

&& : bool→ bool→ bool
|| : bool→ bool→ bool

Figure 2.2: Types of scalar operations in ALcore

op ∈ ArrayOps TySc(op)
index : ∀α. [α]→ int→ α

length : ∀α. [α]→ int
generate : ∀α. int→ (int→ α)→ [α]

Figure 2.3: Types of array operations in ALcore

Example 2.2 Following these definitions we can infer the following types for the
iota and map combinators introduced in Example 2.1.

iota : int→ [int]
map : ∀αβ. (α→ β)→ [α]→ [β]

Notation 2.4 (Signatures) When defining top-level functions in AL0, we will anno-
tate their types using the following notation:

sig functionname : type
fun functionname a0 a1 a2 = body

All type variables occuring in type signatures are implicitly quantified at outermost
position.

Example 2.3 As an example using this notation, consider the following function:

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 13

Static semantics Γ ` e : τ

Γ ` i : int
(2.1)

Γ ` b : bool
(2.2)

Γ ` d : double
(2.3)

Γ ` ei : τ i ∈ [0;n)

Γ ` [~e(n)] : [τ]
(2.4)

Γ ` e : τ → τ

Γ ` fix e : τ
(2.5)

Γ(x) = σ σ � τ
Γ ` x : τ

(2.6)
Γ ` TySc(op) � τ

Γ ` op : τ
(2.7)

Γ ` e1 : τ ~α = ftv(τ) (Γ, x : ∀~α.τ) ` e2 : τ Γ ∩ {~α} = ∅
Γ ` let x = e1 in e2 : τ

(2.8)

(Γ, x : τ ′) ` e : τ

Γ ` fn x => e : τ ′ → τ
(2.9)

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ
(2.10)

Γ ` e1 : τ1 Γ ` e1 : τ2
Γ ` (e1, e2) : (τ1, τ2)

(2.11)
Γ ` e : (τ1, τ2)

Γ ` fst e : τ1
(2.12)

Γ ` e : (τ1, τ2)

Γ ` snd e : τ2
(2.13)

Figure 2.4: Static semantics of ALcore

sig limit : [int] -> [int]
fun limit = map (fn x => max 100 (min 100 x))

At this point it is worth reflecting over some of the issues that will surface if
we try to implement a compiler for this language. Without having introduced
the evaluation semantics, we can already observe some of the larger problems
that will need to be handled.

First we can observe that the presented typing rules does not put restrictions
on which type of values that can be stored in arrays. A compiler would thus
need to handle arrays of arrays, and arrays of functions. Furthermore, parallel
expressions (generate) can launch other parallel computations, and the only
mechanism for iteration in the language is through recursion. For many parallel
architectures, it is difficult to generate efficient code if parallel operations are
allowed to launch other parallel operations.

The rest of the chapter will discuss these issues and common ways to
address them, often by introducing restrictions on the language. We will end
this section with an overview of the rest of the chapter.

2.1.2 Values in ALcore

Figure 2.5 defines the value forms of ALcore. Values are either integers, tuples,
lambda abstractions or arrays. Notice that arrays in this basic language can
contain any type of value, including array values or functions.

In Figure 2.5 we define the typing of values in ALcore, with the judgment
form “Γ ` v : τ”.

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 14

Values

v ::= i | b | d
| (v1, v2)

| fn x => e
| [v0, . . . , vn−1]

| op

Figure 2.5: Values of ALcore

Value typing Γ ` v : τ

Γ ` i : int
(2.14)

Γ ` b : bool
(2.15)

Γ ` d : double
(2.16)

Γ ` TySc(op) � τ
Γ ` op : τ

(2.17)
(Γ, x : τ ′) ` e : τ

Γ ` fn x => e : τ ′ → τ
(2.18)

Γ ` v1 : τ1 Γ ` v2 : τ2
Γ ` (v1, v2) : (τ1, τ2)

(2.19)
Γ ` vi : τ i ∈ [0;n)

Γ ` [v0, . . . , vn−1] : [τ]
(2.20)

Figure 2.6: Value typing of ALcore

Evaluation contexts

E ::= [·] | E e | v E | [~v,E,~e]
| let x = E in e | fix E
| if E then e1 else e2

| (E, e) | (v,E) | fst E | snd E

Figure 2.7: Evaluation contexts for ALcore

2.1.3 Dynamic semantics of ALcore

We will define the dynamic semantics of ALcore as a small-step relation on
expressions. We define the concept of evaluation contexts in Figure 2.7, which
are ranged over by E, and denote expressions with one and only one unfilled
hole indicated by the symbol [·]. When E is an evaluation context and e is an
expression, we write E[e] to denote the expression resulting from filling the
hole in E with e. We write e[v/x] to denote the capture-avoiding substitution
of f for x in expression e, renaming bound variables where necessary.

The small-step reduction rules for ALcore are given in Figure 2.8, with the
judgment form e⇒ e′/err. The small-step relation is explicit about out-of-

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 15

Dynamic semantics e⇒ e′/err

e⇒ e′ E 6= [·]
E[e]⇒ E[e′]

(2.21)
e⇒ err E 6= [·]

E[e]⇒ err
(2.22)

let x = v in e⇒ e[v/x]
(2.23)

(fn x => e) v ⇒ e[v/x]
(2.24)

fix (fn x => e)⇒ e[(fix (fn x => e))/x]
(2.25)

if true then e1 else e2 ⇒ e1
(2.26)

if false then e1 else e2 ⇒ e2
(2.27)

fst (v1, v2)⇒ v1
(2.28)

snd (v1, v2)⇒ v2
(2.29)

length [v0, . . . , vn−1]⇒ n
(2.30)

i ∈ [0, n)

index [v0, . . . , vn−1]i⇒ vi
(2.31)

i 6∈ [0, n)

index [v0, . . . , vn−1]i⇒ err
(2.32)

vf i⇒∗ vi n < 0

generate n vf ⇒ [v0, v1, . . . , vn−1]
(2.33)

n ≤ 0

generate n vf ⇒ []
(2.34)

i = i0 + i1
i0 + i1 ⇒ i

(2.35)
v = i0 × i1
i0 * i1 ⇒ i

(2.36) . . .

i0 = i1
i0 == i1 ⇒ true

(2.37)
i0 6= i1

i0 == i1 ⇒ false
(2.38) . . .

Figure 2.8: Dynamic semantics of ALcore

bounds errors on array indexing. A well-typed expression e is either a value,
or it can be reduced into another expression, e′, or the special token err. We
use the notation e⇒∗ e′ for the transitive and reflexive closure of⇒.

The parallel nature of the ALcore language is introduced in the generate
construct, where each array element can be computed in parallel. The available
parallelism can be observed in the evaluation rule for generate, where the
evaluation order is not given.

It would be straight forward to prove a soundness theorem, by proving
type preservation and progress for our language.

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 16

2.1.4 Compiling ALcore: Not that simple a task

Although ALcore is fairly limited, it allows for expressing a large number of
array programs, through the use of generate, index, and recursion. For
instance, as demonstrated in the following example, we can implement a
reduction operation computing b ⊕ x0 ⊕ x1 ⊕ . . . ⊕ xi−1, for an associative
binary operator ⊕ and neutral element b.

Example 2.4 (Parallel reduction in ALcore)

sig halve : [a] -> ([a], [a])
fun halve arr =

let n = length arr in
let half = n div 2 in
(generate (n - half)

(fn i => index arr (2*i)),
generate half

(fn i => index arr (2*i + 1)))

sig zipWith : (a -> b -> c) -> [a] -> [b] -> [c]
fun zipWith f a1 a2 =

generate (min (length a1) (length a2))
(fn i => f (index a1 i) (index a2 i))

sig reduce : (a -> a -> a) -> a -> [a] -> a
fun reduce f b arr =

if length arr == 0 then b
else if length arr == 1

then b + index arr 0
else

let (h1,h2) = halve ((length arr) div 2) arr
in reduce f b (zipWith f h1 h2)

However the generality of ALcore comes with a price. Being explicit about
indices makes programming an errorprone process, and reasoning about pro-
grams is hard. Simple properties such as the equality:

map f (map g x) ≡ map (f ◦ g) x

are less obvious, when expressed in terms of generate and index. The above
equality is essential in array languages, as it allows intermediate arrays to be
removed. In Section 2.2 we will discuss an alternative language not based on
generate and index, but on primitives where such relations are easier to
express. In Section 2.3 we will discuss various implementation approaches for
fusion.

The use of recursion as means for iteration is also a problem for a com-
piler writer, as recursion is too powerful compared with facilities provided

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 17

by current data-parallel architectures. Consider the alternative formulation of
reduce:

sig reduce_alt : (a -> a -> a) -> a -> [a] -> a
fun reduce_alt f b arr =

if length arr == 0 then b
else if length arr == 1

then index arr 0
else

let (x,y) = halve ((length arr) div 2) arr
in f (reduce_alt f b x) (reduce_alt f b y)

In this variant, the function is not tail-recursive, and in each iteration several
smaller reductions are spawned. The possibilities for managing a recursion
stack or launching new operations within a parallel program are very limited
in architectures such as GPUs. It is thus common for current functional array
languages to provide alternative looping constructs [59, 28, 48], or restricting
recursion to tail-recursion.

As noted previously, ALcore allows nested parallelism and nested arrays,
another non-trivial problem that would need to be handled if anyone wanted
to implement the language as it is.

2.1.5 Chapter outline

The rest of the chapter is structured as follows. Section 2.2 will introduce
additional constructs commonly found in array languages, such as reduction,
prefix-sum and various index-space transformations. In Section 2.3 we will
present the issues related to fusion, and discuss various proposed solutions. In
Section 2.4 we will discuss how recursive procedures can be compiled, why it
is unfeasible for modern parallel architectures and we will replace the general
recursion of ALcore with more limited iteration constructs. In Section 2.5 we
discuss the issue of nested irregular data-parallelism.

2.2 Array operations

We consider array languages to be languages with the characteristics of having
arrays as a main and first-class data structure, with a set of built-in generic
composable data-parallel operations, and where operator composition does
not lead to performance degradation. The selection of built-in operators of
such languages thus serve a crucial role, as the choice of operators decides the
programs that may be written and the optimisations that may be performed.

In this section we will introduce a few widely used parallel operators found
in functional array languages. The ALcore language introduced in the previous
section provides a single operator for creating arrays, the generate operation,
and one operator for accessing array elements, index. In this section we will
introduce alternative operations to generate, that operate on elements in

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 18

bulk, allowing us to reason more clearly about programs. We will postpone
the discussion of fusion to Section 2.3.

2.2.1 Element-wise operations

Our first step towards abandoning generate as a data-parallel operation,
will be to introduce the most well-known operation on arrays from functional
programming, the map, which, given an array [~x] and a function f , produces
the array [~y], where yi = fxi for all i. As we have already shown in Section 2.1,
map and the similar zipWith could be directly implemented in ALcore using
generate.

Similarly, element-wise operations for functions of higher arity can also be
provided. Languages such as NESL and Futhark provides such a generalised
map:

mapN : ∀~αβ. (α0 → . . .→ αn−1 → β)→ [α0]→ . . .→ [αn−1]→ [β]

2.2.2 Array initialisation

In ALcore the generate operation was also the only array introduction form,
except for literal arrays. Instead our modified language of array combinators
will use the operator iota from APL as introduction form. Given an integer n,
iota n produces the array [0,1, ..., n− 1].

2.2.3 Parallel reduction

In addition to acting element-wise on a few values at a time, we often also need
operations for summarising or computing aggregates of large amounts of data,
such as averaging, summations or finding the maximum value of an array. A
reduction operation computes b⊕x0⊕x1⊕ . . .⊕xi−1, for an associative binary
operator ⊕with neutral element b.

In ALcore we could introduce a reduction with the following type:

reduce : ∀α.(α→ α→ α)→ α→ [α]→ α

Associativity of the binary operator allows this operation to be implemented
in parallel, through a tree structured divide-and-conquer algorithm. An illus-
tration of the algorithm is presented in Figure 2.9. The input array is at the
top of the diagram. Data flows through the edges from the top towards the
bottom. A vertex represented by a black dot, corresponds to an application of
the binary operation ⊕ on the two input edges. Most often, the requirement
that the given operator is associative is made a responsibility of the program-
mer. However, some languages, such as OpenMP and NESL, only provides
specialised versions of reduction with one of the seven operations: addition,
product, maximum, minimum, bitwise or, bitwise and, and bitwise exclusive-
or [17, 11, 71, 85]. These are the most common associative (and commutative)
operators.

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 19

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

xout

Figure 2.9: Parallel tree reduction, with associative operator.

2.2.4 Scan

Another parallel pattern used in many data-parallel algorithms allows not
only access to the final accumulated value of a reduction, but also computes
the accumulation of every prefix of the argument array. Given an array [~x],
an associative binary operator ⊕, and an initial value b, an exclusive left scan
computes the array [~y] where y0 = b and yi+1 = b ⊕ x0 ⊕ x1 ⊕ . . . ⊕ xi−1, for
0 ≤ i ≤ n, with the type:

scanl : ∀α.(α→ α→ α)→ α→ [α]→ [α]

The scan operation is exclusive as the last element of the array is not included.

Example 2.5 (Exclusive left scan)

scanl (+) 0 [5, 1, 4, 8, 0, 7, 1, 3]
=> [0, 5, 6, 10, 18, 18, 25, 26]

The first element of the result of an exclusive scan is always the neutral
element, which in this case is the value 0. The alternative, an inclusive left scan,
maintains the last array element, but does not requare a neutral element.

Example 2.6 (Inclusive scan)

scanl1 (+) [5, 1, 4, 8, 0, 7, 1, 3]
=> [5, 6, 10, 18, 18, 25, 26, 29]

Scan operations were first proposed as a programming language primitive
in the context of APL [63], where the name also originates. The operation is
also known as the prefix-sum of an array, as it computes the same value of a
reduction, but for each prefix of the array. We will use the name scan for the
remainder of the dissertation.

Several parallel scan algorithms exists [90, 91, 21, 70]. Two in-place inclu-
sive left scans are visualised in Figure 2.10. Scans were popularised by Guy
Blelloch in the early 1990s because of its wide applicability and its parallel
implementation for associative and commutative binary operators [19].

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 20

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

(a)

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

(b)

Figure 2.10: (a) The Sklansky construction for computing parallel prefix-sums.
(b) The Kogge-Stone network for computing parallel prefix-sums.

2.2.5 Index-space transformations

To perform operations such as matrix transposition, array replication, and other
operations rearranging the order of array elements, many languages provide
dedicated operations for index-space transformation or permutations.

We can in general do permutations in two directions. Either we can specify
how indexes in the old array maps to indexes in the new array (forward per-
mutation), or we can specify how the new array is constructed by mapping the
new index-space into the index-space of the old array (backward permutation).

Backward permutation

The backpermute function constructs a new array of a given size, and for
each cell of the new array a function specifies where in the old array elements
should be copied from. The function could have been directly implemented in
ALcore:

sig backpermute : int -> (int -> int) -> [a] -> [a]
fun backpermute n f arr =

generate n (fn i => index arr (f i))

with the assumption that 0 ≤ f(i) < length(arr), for all 0 ≤ i < n.

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 21

Example 2.7 (Replicate an array) Repeat the same array for n repetitions.

sig replicate : int -> [a] -> [a]
fun replicate p array =

let n = length array
in backpermute (p * n)

(fn i => i mod n)
array

Example 2.8 (Gather) Backpermute, but where the transformation is given as an
array mapping new indexes to indexes in the original array, instead of a function.

sig gather : [int] -> [a] -> [a]
fun gather from input =

let f = fn i => index from i
in backpermute (length from) f input

Forward permutation

The complementary transformation, permuting an array by mapping the old
index-space into the new index-space is called a forward permutation. The
operation works as follows. First a new array is allocated and initialised with
default values, then for each element of the input array the index-mapping is
applied to determine where in the new array the value should be stored. To be
deterministic, it is assumed that the index-mapping will not map several input
values into the same location of the output. Alternatively, as we will present it
here, an associative and commutative combination function is provided, that
combines values if several values map to the same output location.

The type of permute that we will introduce to AL is:

permute : (α→ α→ α)→ (int→ (int,bool))→ [α]→ [α]→ [α]

Permute allows implementation of several useful operations, for example
filter and scatter presented below.

Example 2.9 (Scatter) Forward permutation, where the transformation is given as
an array instead of a function.

sig drop : int -> [a] -> [a]
fun drop n arr = backpermute n (fn i => i) arr

sig scatter : [int] -> [a] -> [a] -> [a]
fun scatter to defaults input =

let f = fn i => (index to i, true)
n = min (length to) (length input)
input’ = drop n input

in permute const f defaults input’

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 22

Example 2.10 (Filtering) Removing values based on some predicate can be done
using a scan to compute the positions of the values to retain, and permute to create
the filtered array based on these destination values.

sig const : a -> (b -> a)
fun const i = fn x => i

sig filter : (a -> bool) -> [a] -> [a]
fun filter pred arr =

let flags = map pred arr
dest = scanl (+) 0 flags
n = index (length dest - 1) dest
default = map (const 0) (iota n)

in permute
const
(fn i => (index i dest,

index i flags))
default
arr

2.2.6 Built-in vs. derived forms

We have now presented a few of the most common array operators found in
functional data-parallel array languages. Most (if not all) of these operations
could have been implemented using generate, index, and recursion. There
are however benefits from having many of these operators built-in, as they
provide information about the computation structure useful for automatic
optimisers. As we shall see in the next section, this can help minimise expensive
memory transactions.

Providing built-in versions of scan, reduce and so on, allows the language
implementor to use highly-optimised version of these operations, written by de-
velopers with expertise in the target platform. Such templates of data-parallel
operations are called algorithmic skeletons, and is a common implementation
technique used by the Bohrium project [71], NESL for GPUs [11], Accelerate
[28], Repa [68], and others.

2.2.7 Array language extended with operators: ALop

To summarise, we have replaced the set of array operations, to avoid the very
general generate operation. Our new set of core array operators consist of:

ArrayOps = {length, index, map, zipWith, iota,
reduce, scanl, backpermute, permute}

with functions such as filter, replicate, gather, and scatter as de-
rived forms. These should not be seen as a comprehensive set of built-in
operations, in our presentation of TAIL in Chapter 3 we will introduce further
constructs and cover a more complete set of array operations.

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 23

op TySc(op)
length : ∀α. [α]→ int
index : ∀α. [α]→ int→ α

map : ∀αβ.(α→ β)→ [α]→ [β]
zipWith : ∀αβγ.(α→ β → γ)→ [α]→ [β]→ [γ]

backpermute : ∀α.int→ (int→ int)→ [α]→ [α]
reduce : ∀α.(α→ α→ α)→ α→ [α]→ α
scanl : ∀α.(α→ α→ α)→ α→ [α]→ α

permute : ∀α.(α→ α→ α)→ (int→ (int,bool))→ [α]→ [α]→ [α]

Figure 2.11: Built-in operations in ALop

Operation Type scheme
filter : ∀α.(α→ bool)→ [α]→ [α]
gather : ∀α.[int]→ [α]→ [α]

scatter : ∀α.[int]→ [α]→ [α]→ [α]

Figure 2.12: Derived operations ALop

2.3 Fusion

The overarching goal of array language research is to deliver languages where
users do not need to rely on built-in problem-specific building blocks, but
where high-performance can be achieved from the composition of completely
generic operations, such as those described in the previous section, as well as
making it possible to reason about the achieved performance of programs.

Input–output operations that move data between memory systems and
processing units, are time consuming operations for modern microprocessor
architectures. Deep memory hierarchies have been put in place to alleviate
some of the potential bottlenecks. There is a small amount of fast memory close
to processing units (registers), and increasingly larger but slower memories
(caches, shared memory, device memory, main memory, disk drives, tapes).
On such systems, it is important to use data as much as possible when they
are brought all the way to the fast memory, before returning results to slower
memory.

During computation, memory systems might still be active, thus another
benefit of increasing the computation per I/O operation ratio, is that the processors
can be kept active with useful work while waiting for data transfers, thus
achieving latency hiding.

In array languages, we express algorithms in terms of combinators acting
on entire arrays, not as individual data-elements. Often, these transformations
can be combined using fusion techniques, such that several computations over

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 24

the same memory area are combined into one pass over the same memory.
The same concept exists in other programming models, such as imperative

programming, where the optimisation loop fusion is used as an optimisation
that combines several loops over the same range, into a single pass over the
data [9]. Loop fusion originates from the ALPHA-language compiler [110].

In general, fusion can be beneficial at each level of a memory hierarchy. At
each level there is the potential to keep the data for additional computations,
before returning results back to slower memory.

Example 2.11 (Vertical fusion) The problem of superfluous I/O operations may
occur when we chain several operations calls after each other. As a simple example
consider the following two invocations of map:

fun f input =
let xs = map (fn x => x / 100.0) input in
let ys = map (fn x => x + 1.0) xs
in ys

Following the dynamic semantics of ALcore, the array xs will be written to memory,
before being read during the computation of ys. In this case the construction of the
intermediate array is unnecessary, and f can be computed directly:

fun f_fused input =
map (fn x => (x / 100.0) + 1.0) input

Vertical fusion is the process of combining array operations that are applied in
sequence.

Example 2.12 (Horizontal fusion) Another potential for optimisation is when two
independent computions act on the same data in a similar pattern.

fun g input =
let xs = map (fn x => x / 100.0) input in
let ys = map (fn x => x + 1.0) input
in (xs, ys)

If we were to follow the dynamic semantics of ALop, xs and ys would be computed
independently. This independence would result in two traversals over the input array.
Horizontal fusion is the process of combining two such unrelated traversals into one
sweep over the same data. In this case we would be able to optimise the function in the
following way:

fun g_fused input =
map (fn x => (x / 100.0, x + 1.0)) input

We do not want to require that programmers need to perform such fusion
optimisations by hand, as that would sacrifice the ability to construct reusable
components.

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 25

The different operations allow various possibilities for fusion. Not all fuse
with the same ease as map. To distinguish between how well operators fuse, it
is common to distinguish between producers such as map, that produce a result
and consumers such as reduce. In general, producers can fuse both on their
inputs and their outputs, while consumers only fuse on their inputs.

In ALop, the producers are map, zipWith, and backpermute, and con-
sumers are reduce, scanl, and permute.

There are also reasons to limit fusion, even in cases where it is possible.
Some intermediate values are needed many times, and thus recomputing
them every time they are needed might be more expensive than the memory
operation that stores them for later.

2.3.1 Implementation approaches

There are in general two approaches to fusion. Either rewriting will always
be a local transformation, and the rewrite rules are applied in a systematic
fashion, or the compiler takes a global view of the program and are able to
perform larger restructurings of the program. The localised approach is often
called short-cut fusion, whereas the global approach most commonly views the
program as a graph structure, and fusion as graph rewriting.

2.3.2 Short-cut fusion

Deforestation

Deforestation is the general term for various techniques used in functional
programming languages for removal of list and tree-based intermediate data
structures. Philip Wadler presented the original Deforestation Algorithm [106],
which uses seven rewrite rules, to remove such intermediate data structures.
The algorithm requires the programmer to write functions in a so-called treeless
form, and guarantees that all intermediate data structures will be removed,
when combining functions written in this form. The algorithm is however
limited, by the restrictions that the treeless form imposes; higher-order functions
are disallowed, variables must be used linearly and nested data structures (e.g.
list of lists) are not handled. Restricting programs to treeless form is necessary
for guaranteeing termination of the algorithm.

Another and more successful approach is called build/foldr fusion [45].
In this approach the construction of a list is delayed by parameterising list
producing functions over the list constructors (“cons” and “nil”).

To construct the list in memory, a special function build is used to provide
the list constructors:

build g = g cons nil

Alternative, if the list is to be directly consumed by a fold operation, the
reduction operand and neutral element that would be given to foldr can be
given instead of the list contructors. To hide these complexities for the user, the

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 26

library writer can always insert build and use the following rewrite rules to
remove those unnecessary build-operations again [45, 67].

∀k, z, g. foldr k z (build g) ≡ g k z

The build/foldr techniques also generalises to operations on tree struc-
tures [67], but are limited as left-folds (foldl) cannot be expressed, and for a
function such as a zip it is not possible to deforest both input lists.

Stream fusion solves these problems, by introducing a special stream data
type, represented as a state and a step-function. Calling the step function yields
the values of the stream. Operations stream and unstream are provided for
converting between streams and lists [38]. Library functions are written in
terms of streams, but details are hidden from the user by applying stream and
unstream, and a single rewrite rule removes the unnecessary intermediate
streams:

∀s. stream (unstream s) ≡ s
Both build/foldr and stream fusion produces values one at a time. To

take advantage of SIMD operations and optimised operations operating on
data in bulk, such as memcpy, it is necessary to allow alternate stream repre-
sentations. Generalised Stream Fusion [76] allows this by representing each
stream as a bundle of streams of varying representation. The final consumer of
the stream decides which representation to use and the alternative representa-
tions can be optimised away.

Delayed array representations

Deforestation, especially stream fusion, has been successful in generating
high performing sequential code, even outperforming hand tuned C in some
instances [76], and is a popular choice for current string processing and vector
libraries in the functional programming community, with implementations
in use in Haskell, Scala and OCaml. However, these approaches work on
sequential data, and only allow for limited parallelism and direct indexing
requires the underlying data structure to be materialised.

Another branch of short-cut fusion approaches is based on various delayed
representations of arrays. This approach traces back to Abrams concept of “dra-
galong” in APL compilation [1], where arrays “drags along” the computation
of individual array elements until they are needed, this was further explored
by Guibas and Wyatt, also in the context of APL [50].

In functional programming languages, the use of delayed array representa-
tions has only recently been applied. First in the representation of images in
the domain-specific language Pan [41] and since in various array languages
[68, 97, 78, 8].

Pull arrays The approach taken by Pan and most other libraries is to represent
array values as a length and a function from indices to array elements, some-
times known as pull arrays. In the case of AL, this representations corresponds

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 27

Value typing in ALpull Γ ` v : τ

Γ ` vn : int Γ ` vf : int→ τ

Γ ` generate vn vf : [τ]
(2.39)

Dynamic semantics in ALpull e⇒ e′/err

vidx ∈ [0, vn)

index (generate vn vf) vidx ⇒ vf vidx
(2.40)

vidx 6∈ [0, vn)

index (generate vn vf) vidx ⇒ err
(2.41)

length (generate vn vf)⇒ vn
(2.42)

Figure 2.13: Value typing and Dynamic Semantics of ALpull

exactly to the parameters of generate:

generate : ∀α. int→ (int→ α)→ [α]

Implementing pull arrays in AL corresponds to have generate as an
addtional value form for arrays:

v ::= . . .

| generate vn vf
In this way the computation of the individual array elements can be delayed
until they are needed. Figure 2.13 shows the required changes to value typing,
and dynamic semantics. With these rules, indexing into an array becomes as
cheap as a bounds check and a function application.

Rule (2.40) is what enables fusion.
The simplicity of the implementation comes with the price of potential

duplication of work, as the values of an array created using generate are
recomputed every time they are accessed. Duplicating work will be undesirable
for all but very cheap computations. It is thus necessary to limit fusion in one
way or the other, which is often done using special annotations on arrays,
denoting when a delayed array should be computed and written to memory. A
common approach is to use a function with identity-type for these annotations:

force : [α]→ [α]

The semantics of force corresponds to converting the generate-based
array into a materialised array:

force (generate vn vf)⇒ [vf 0, vf 1 . . . , vf (n− 1)]
(2.43)

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 28

Pull-arrays, however, only automate vertical fusion. Horizontal fusion is
still possible through the use of tuples. However, it must be performed by the
user as a manual transformation, and it is not possible in all cases. Encoding
computations as arrays of tuples creates other problems, as some architectures
or programming interfaces does not provide an efficient implementation of
such arrays of tuples. This can however be resolved through a conversion to
tuples of arrays.

Finally, pull arrays do not support efficient concatenation. It is possible to
define concatenation in terms of pull arrays, it will however be necessary to
introduce a conditional that is executed for every element of the new array:

fun concat a1 a2 =
generate (length a1 + length a2)

(fn i =>
if i < length a1
then index a1 i
else index a2 (i - length a1))

On single instruction multiple data hardware (SIMD) such as GPUs, a con-
ditional such as this can be detrimental to performance, as groups of processing
units execute the same instructions in lock-step, and will thus have to execute
both branches, for every element of the concatenated array. This can lead
to serious performance degradation if the concatenated arrays involve large
computations, which is fused inside the body conditional.

Push arrays To remedy the problem of inefficient concatenation, the concept
of push array was introduced by Svensson et al. [36]. A push array can be seen
as a dual to the concept of pull arrays, and push arrays does not replace pull
array, but are implemented using an additional data structure used to express
data-parallel programs.

For a pull array, two important aspects are left undecided: the order the
elements are generated and the destination in memory where elements are to
be written. This allows a consumer of a pull array to traverse it in any order
and decide where in memory the array is to be written. A push array, on the
other hand, locks the iteration pattern, and only leaves the consumer to decide
where in memory the elements should be written.

A push array is most often represented by a function that can construct an
array, when given a so-called writer-function. A writer-function is a function
that accepts an element and an index and produces an assignment statement
writing the element to its corresponding index in memory (here using Haskell
notation):

type Writer a = a -> Idx -> Program ()

Here Program () is a computation in a code-generation monad. Push arrays
are represented by a length and a function accepting such a writer-function:

type Push a = (Idx, Writer a -> Program ())

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 29

Materializing a push array is done by applying the function to a writer function,
and the writer will then be invoked for each array element.

This means that values will always be generated in the order given by that
writer function (or iteration scheme), when we materialize the array. This also
means that we can not access any single element of a push array, before it has
been fully materialized. This is however not the same as saying that push
arrays will necessarily write all the array elements in the same order.

Push arrays are in this way more restricted. However, the fact that the
iteration pattern is locked, makes efficient concatenation possible. Two push
array computations can be combined in sequence or in parallel, as appending
their results is only a matter of off-setting the write operations of the second
array, such that they are written where the first array ends. This offsetting is
accomplished by parameterising the push array computation with a writer
function, storing elements to memory.

Computations on push arrays can still be fused, however, the fact that the
iteration pattern of a push array is locked makes direct indexing impossible.
Thus a program will often switch between using pull and push array at different
points, depending on the context. Conversion from pull array to push array is
basically free, converting in the other direction requires the push array to be
materialised.

Alternative local approaches

There are alternative approaches with a local view of fusion. In Nessie [11],
the NESL GPU compiler, only map-map fusion is implemented as a rewrite
rule. Fusing maps and reductions is not possible. In Single-assignment C [48],
all array operations are defined in terms of a single loop-expression called a
“with-loop”, which allows both array creation, mutation and array reduction.
The Single-assignment C compiler employs various rewrite rules to combine
two or more with-loops. Bohrium [71] is based on a simple bytecode of array
operators, without any control flow. The control flow is managed by a host-
interpreter that issues the bytecode operations in sequence. This sequence
of bytecode operations is then JIT compiled into parallel operations. The JIT
compiler will do its best to fuse as many possible operations in sequence into a
single parallel operation.

2.3.3 Graph-based approaches to fusion

An alternative to the various “shortcut fusion” approaches is to take a more
global approach to fusion, analysing whole programs as graph-structures
and perform larger restructurings, which can have huge benefits as it makes
additional fusion possible. However, large automatic restructuring also limits
transparency, and can thus limit the ability for users to optimise.

In a graph representation of an array, nodes represent operations and
edges represent data dependencies. Fusion decisions in such representations

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 30

input

map reduce

map

xs × sum

ys

(a)

input

map reduce

map

xs × sum

ys

(b)

input

map reduce

map

xs × sum

ys

(c)

Figure 2.14: Three fusion possibilities for the example program. (a) No fusion.
(b) Horizontal fusion of map and reduce. (c) Vertical fusion of the two map-
operations.

correspond to partitioning nodes into fusable clusters, or rewriting graphs by
merging nodes.

Consider the following example from Robinson et al. [88]:

fun normalizeInc input =
let xs = map (fn a => a + 1.0) input in
let sum = reduce (+) 0.0 input in
let ys = map (fn a => a / sum) xs
in ys

This program can be described as the dataflow graph in Figure 2.14. The
crossed-out edge corresponds to a noncontractable edge, as the reduction
operation hinders further fusion. Grey areas corresponds to fusable clusters. In
this case there are three possible graph partitionings: no fusion (Figure 2.14a),
horizontal fusion of the two iterations across the input array (Figure 2.14b) or
vertical fusion between the two map operations (Figure 2.14c).

The larger the program, the more possible clusterings to consider. A good
clustering minimises the overall cost of the graph, where the cost is determined
by the number of memory accesses. In the normalizeInc example the solu-
tion in Figure 2.14c is optimal for large inputs, as this choice will remove both a
memory write and memory read per array element, whereas horizontal fusion
in Figure 2.14b only reduces the number of memory reads by one per element.

Integer programming

Determining good clusterings is in principle NP-hard. However, a solution
using integer programming has been developed that is efficient in practice [79].

Edges are annotated with weights corresponding to the memory cost of
not fusing this edge. The optimisation goal is to find a graph partitioning that
minimises the weight of inter-cluster edges. Let wij be the weight associated

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 31

with the edge between node i and j, and let xij be a 0,1-variable determining
whether nodes i and j are placed in the same cluster (0) or not (1).

The integer programming objective function is thus:

min
∑
i,j

wijxij

To ensure that the clustering is valid, constraints on xij variables are nec-
essary. We will not describe these contraints in detail, but just mention that
they ensure that the noncontractable edges are never fused, that no cycles
are introduced after contraction, and finally that all clusters are closed (i.e., if
xij = 0, xjk = 0 then we also have xik = 0).

In addition to these constraints, further constraints are necessary when
size-changing operations such as filter operations are allowed [88].

Graph rewriting

An alternative to working out optimal clusterings on graphs, is to rewrite the
graph based on a collection of rewrite rules, applied systematically. However,
for allowing horizontal fusion, such as fusing map and reduce in Figure 2.14b,
we cannot just rewrite the combined map and reduce without extending the
language. In Futhark [59, 55] fusion is performed by rewriting the standard
array combinators into various operators that are not exposed to the program-
mer. The primary (unexposed) operator being their so-called redomap that
allows multiple maps and reductions to be fused into the same operation. This
approach allows gradual refinement of the graph, where nodes are merged
into redomap’s, instead of making all fusion decisions at once. In Futhark the
above normalizeInc program could potentially be rewritten:

fun normalizeInc input =
let (sum, xs) =

redomap ((+),
fn (acc, x) => let v = a + 1.0

in (acc+v, v),
0.0) input in

let ys = map (fn a => a / sum) xs
in ys

The combined reduction and map operator thus both accumulates the result of
the reduction, while also producing the array output from the map.

However, as we saw previously the strategy of merging the two map opera-
tions is more optimal, as it removes an additional memory transaction, and is
probably also the choice Futhark will make in this case.

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 32

input

map reduce

map

xs × sum

ys

input

redomap

map

xs ×sum

ys

Figure 2.15: Fusion with Futharks redomap construct.

Auto-tuning

Another graph-rewriting approach is to apply a search algorithm to determine
which rewrite rules to apply, instead of applying the rules systematically. Vari-
ous attempts have been made in this direction [94, 105, 74]. These approaches
often rely on a large set of rewrite rules operating on their set of array combi-
nators. During search, the approach evaluates potential rewrite candidates, by
generating code and measuring performance. The best candidate is selected as
starting point for the next round. These approaches also demonstrate the need
for hardware awareness during compilation, as widely different optimisations
are necessary for the various hardware architectures.

2.3.4 Local versus global view of fusion

Fusion is necessary to obtain performance in array languages if composability
is desired. However, the scientific comunity has yet to determine an approach
that is satisfactory on all parameters.

Shortcut fusion is implemented by only a few general rules. The limited
number of rules is both positive and negative. Fewer rules makes it easier
for users to predict what will happen, but it also limits the number of fusion
opportunities. Horizontal fusion is for instance not possible in most work on
shortcut fusion. It is also sometimes necessary to write multiple versions of the
same program, to accomodate various usage scenarios.

Approaches based on graph rewriting, on the other hand, makes it easy for
the user, as they provide very limited control over where fusion happen. These
approaches, also allows the same program to be used in various contexts, but
optimised differently.

However, graph based approaches often suffer from the lack of predictabil-
ity; alternative versions of the same program might perform completely dif-
ferent. Without reasoning tools that can explain why one approach performs
better than the other, a slight change may make a different clustering seem
better to the compiler. Trying to optimise an algorithm might lead to perfor-

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 33

mance penalties, as some compiler optimisation is suddenly not taken into
effect. Finally, it is also unclear how well some of these approaches scale to
very large programs.

There is thus a need for further research on fusion systems, to obtain a
balance between predictability and ease of use.

2.4 Iteration and recursion

Recursion is the most fundamental iteration construct in functional languages,
and as such, we have allowed it in ALcore and ALop. Allowing recursive defini-
tions has consequences when compiling for parallel architectures. Recursion is
not the problem per-se; the problem is that the hardware architectures such as
GPUs only supports limited recursion, with either slow or limited stack space
useable for a recursion stack. The ability to launch new threads within parallel
code is also limited on these devices.

A tail-recursive function is on the other hand manageable, as no stack is
required, and can, through tail call elimination, be converted to loop structures.
The most common approach in data-parallel languages for GPUs, however, is
to replace recursion entirely by operations that simulate tail-recursion in one
way or another.

In embedded domain-specific languages such as Accelerate, Nikola and
Obsidian, it is common to see recursion performed on the meta-level. Outside
parallel code this corresponds to recursion in the host language, and allows
users to coordinate tasks. However, such recursion outside parallel code limits
the compilers ability to optimise across individual kernel invocations, as these
only exists on the host-level. Inside parallel code the user is restricted to
construct large unrolled loops through the meta-language. This approach can
lead to code-explosion inside parallel kernels and may introduce problems on
architectures with limited instruction memory. Recent versions of Accelerate
also provides two looping constructs, that corresponds to tail recursion on a
single array. One loop construct for iteration outside parallel code (coordination
of tasks) and one for iteration inside parallel code.

Similarly, Bohrium allows data-parallelism in interpreted environments,
such as Python, by issuing instructions to a virtual machine without support
for any control-flow [71]. The program flow is directed by the host language
(Python) and the virtual machine only executes high-level data-parallel opera-
tions in bulk. These operations are combined (fused) and just-in-time compiled
by the virtual machine. Thus no iteration exists in Bohrium, only in its host
language.

In standalone languages other approaches to iteration and recursion have
been considered. Single-assignment C (SaC) provides a generalisation of the
generate construct in ALcore, called a with-loop, that allows multiple gener-
ator functions to be specified for individual subranges of a multidimensional
array [48]. SaC allows nested loops. The QUBE language provides a similar
construct [100].

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 34

NESL allows recursion through a recursion stack. However, the GPU-
implementation of NESL [11] is limited to use of recursion outside parallel
code, as control flow is managed on the CPU.

Another possibility that we will return to in later chapters, is the ability
to recurse over the hierarchy of the data-parallel machine. Sequoia [44] allows
this style of recursion. This allows programmer control of how problems are
partitioned across the tree structured hierarchies of modern high-performance
computing systems.

Instead of considering adding support for programming in tail-recursive
style, we have decided to include a loop construct simulating such a tail-
recursive calls;

while : (α→ bool)→ (α→ α)→ α→ α

The operation “while c f x” repeatedly applies the step function f to
the initial value x, until the stop-condition c(x) returns false.

The while operation permits us to write operations such as reduce in the
following style:

fun reduce0 f arr =
while (fn a => length a > 1)

(fn a =>
let (x,y) = split ((length a) div 2) a
in zipWith f x y)

arr

fun reduce f b arr =
if length arr == 0
then b
else index (reduce0 f arr) 0

2.5 Nested data-parallelism

ALcore puts no restrictions on the type of operations that can occur inside
parallel computations, and thus parallel computations can launch other parallel
operations. To take advantage of both the inner and outer parallelism is
however not easy when executed on SIMD-architectures such as GPUs. A
simple solution would be to decide that we only allow parallelism on either
the inner-most operation or the outer-most operation. Following such an
approach, will however not allow us to extract all the possible parallelism in a
program. To exemplify, consider the following problem of sparse matrix-vector
multiplication.

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 35

Example 2.13 (Sparse Matrix-Vector Multiplication) We can represent a sparse
vector as an array of index-value pairs of type [int * double], and represent a
sparse matrix as an array of such sparse vectors [[int * double]].
The scalar product of a sparse vector and a dense vector, can be performed in parallel
by first performing a map and then a reduction:

sig dotprod : [int * double] -> [double] -> double
fun dotprod vsp v =

let ps = map (fn (c, x) => x * index v c) vsp
in reduce (+) 0.0 ps

We use this function to compute the sparse matrix-vector product, by performing a dot
product for each row of the sparse matrix:

sig smvm : [[int * double]] -> [double] -> [double]
fun smvm mat vec =

map (fn row => dotprod row vec) mat

This program is an example of nested parallelism, as each invocation of dotprod
is in itself a parallel operation consisting of a map and a reduction. If we only took
advantage of inner-most parallelism of the reduction operations, we would perform
poorly on a matrix with few columns and many rows. An contrary, if we only took
advantage of the outer-most parallelism, each of the dot-products would be executed
sequentially, and we would perform poorly on wide arrays with few rows.
A second problem found in the above sparse matrix-vector multiplication

example is that of irregular arrays. A regular array is multidimensional of
rectangular or cubic shape. An irregular array is an array of arrays, where the
inner arrays are of variable size.

Blelloch presented an alternative strategy to parallelise outermost or inner
most operations. His flattening transformation eliminates nested parallelism
from programs. This is done through three insights: 1) using a representation
of irregular nested arrays, that allows direct computations on inner arrays
(segmented arrays), 2) implementation of high-performance algorithms operat-
ing on segmented arrays, 3) a converstion scheme from nested data-parallel
programs to flat programs with non-nested operations acting on segmented
arrays.

2.5.1 Representing irregular nested arrays

The representation used by Blelloch is based on seperating the data values
from a description of where the subarray segments begins and ends. A nested
array structure is represented by two parts; a flat array of all data elements
and one or more segment descriptors denoting index and length information
necessary to reconstruct the nested array structure from the flat data array.

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 36

Example 2.14 Continuing our sparse-matrix vector example, consider the following
sparse matrix representation:

A = [[(2, 0.17)],

[(0, 2.0), (1, 0.4), (2, 1.0)],

[(0, 0.8), (2, 9.0)]]

The flat array of data elements are unzipped and placed in two separate data arrays:

Aindices = [3, 0, 1, 2, 1, 3]
Avalues = [0.17, 2.0, 0.4, 1.0, 0.8, 9.0]

The boundaries of the original subarrays are stored in a segment descriptor, recording
the length of each segment:

Asegdesc = [1, 3, 2]

Various alternative representation of segment descriptors have been suggested.

2.5.2 Operations on segmented arrays

The second step of flattening nested parallelism is to lift array operations such
as reductions and scans to operate on these segmented arrays. A segmented
operation will operate, not on the outer array, but on each of the inner arrays.
We will not go through the implementation of such operations, but just mention
that they exist and illustrate the segmented reduction through an example:

Example 2.15 Consider the nested array: [[0.17], [2.0, 0.4, 1.0], [0.8, 9.0]].
This array can be converted into the following segmented array:

values = [0.17, 2.0, 0.4, 1.0, 0.8, 9.0]

segdesc = [1, 3, 2]

Applying a segmented sum operation on the segmented array computes the sum of
each subarray.

segReduce (+) 0.0 (values, segdesc) = [0.17, 3.4, 9.8]

2.5.3 Flattening

Flattening can be performed either as a compiler transformation, or by intro-
ducing the necessary segmented operations, allowing users to manually flatten
their programs. To illustrate, the following example shows a flattened version
of the Sparse Matrix-Vector multiplication program.

CHAPTER 2. FUNCTIONAL ARRAY LANGUAGE DESIGN 37

Example 2.16 (Flattened Sparse Matrix-Vector multiplication)

sig smvm_flat : ([int], ([int], [double])) -> [double]
fun smvm_flat m vec =

let (segdesc, (ixs, vals)) = m in
let ps = zipWith (fn (i,x) => x * (index vec i))

ixs
vals

in segReduce (+) 0.0 ps segdesc

Flattening makes it possible to take advantage of additional parallelism in
nested data-parallel programs, however, with the cost of additional memory
overhead associated with maintaining segment descriptors. The memory
overhead is often stated as a main reason that languages based on flattening
has not seen more widespread use.

Since the development of flattening transformation as part of the work on
NESL, various attempts have attempted to optimise the memory usage of flat-
tened programs through various means, such as reusing memory, alternative
descriptor representations, limiting the amount of flattening necessary [69, 10],
and stream processing [75].

We will not describe the full flattening transformation, and instead refer
the reader to previous presentations [18]. Flattening is part of the story on
data-parallel functional languages, as it is important for high-performance
code-generation on irregular nested data-parallel programs, but it is outside
the scope of this dissertation.

Chapter 3

TAIL: A Typed Array Intermediate
Language for Compiling APL

Extended version of “Compiling a Subset of APL Into a Typed
Intermediate Language” presented at ARRAY’14

In the previous chapter we saw that the choice of built-in operators determines
how users and compilers can reason about programs, and which optimisations
can be performed. A highly successful array language in terms of industry
adoption and use for mathematical reasoning about programs is the language
APL. The language has been widely successful in the financial industry, where
large code bases are still operational and being actively developed. Many APL
dialects have been implemented over the last 50 years [73, 107, 24, 13], and
some are still used extensively within certain domains. In this chapter we want
to use APL to inform us about the choice of array operations, that have been
proven useful in practice.

APL is a dynamically typed array language with support for both multi-
dimensional arrays and nested arrays, with a functional core consisting of a
large number of array operations of both first-order and second-order, such as
array transposition, generalised multi-dimensional inner-products and outer-
product, prefix sums, and reductions.

Until recently, the programming language semantics community have paid
only little attention to the APL language. Kenneth E. Iverson never developed
a semantics for APL in terms of a formal model. Apart from recent work by
Slepak et al. [92], there have been few attempts at developing formal models or
type systems for APL. On the other hand, recent development in data-parallel
language implementations [36, 68, 28, 58] have resulted in promising and
scalable techniques for high-level programming of highly-parallel hardware,
such as GPGPUs.

This chapter presents TAIL [43], a typed intermediate language suitable
for implementing a large subset of APL. The chapter presents evidence that

38

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 39

TAIL may serve as a practical and well-defined format for generation of high-
performing sequential code, and indicates the potential for translating TAIL to
data-parallel GPU code. The intermediate language is conceptually close to
the language Repa [68]. It treats all numeric data as multi-dimensional arrays
and the type system makes the ranks of arrays explicit. Primitive operators
are polymorphic in rank and in the type of the underlying data operated on.
The language is sufficiently expressive that some primitive operators, such as
APL’s inner product operator, which works on arrays of arbitrary rank, can be
compiled using more primitive operations. Following other APL compilation
approaches, the compiler is based on lexical scoping and has no support for
dynamic compilation (APL execute) [13, 14].

A prime goal of the project is to study the requirements for implementing a
high-level array language such as APL, that have been proved useful in practice.
We have therefore followed a pragmatic rather than purist approach. We are
thus not attempting to encode all invariants regarding array shapes and sizes
in our type system, such as systems based on dependent types [100, 98]. The
purpose is rather to find a balance, which allows for complete type inference
without user involvement.

APL and its derivatives, such as J [24] and K [107], are still being used
extensively in certain domains, such as in the financial industry, where large
code bases are still operational and being actively developed. TAIL is however
only a subset of APL, and such a translation thus only provides some evidence
for general applicability in computational finance. We have implemented
medium sized programs in this subset of APL, and believe many problems can
solved using this subset. The most notable missing feature from APL is nested
irregular arrays.

The compilation framework relies on heavy inlining. It is thus unclear how
well TAIL will perform on larger examples than the presented benchmarks.

Example 3.1 As a simple example, consider the following signal processing program,
derived from the APEX benchmark suite [13]:

diff _ {1��-�1�|�}
signal _ {�50�50�50#(diff 0,�)%0.01+�}
+/ signal 9 8 6 8 7 4 4 3 2 2 1 2 4 5 6

This program declares two functions diff and signal, both taking a single parame-
ter, �. In the diff function, the expression �1�|� specifies that the parameter vector is
rotated one entry to the right. This vector is then subtracted from the argument vector
(point-wise), and the result of this subtraction is returned as the result with the first
element dropped. The last line of the program calls the signal function on an input
vector and sums (i.e., sum-reduces) the result of the call. In the compiled version of
the program, which is presented in Figure 3.1, bulk operations are replaced with calls
to the each function, which is equivalent to map in other functional languages. The
name “each” is the standard pronounciation for the map-like operator � in APL.

Moreover, the compiler has inserted explicit integer-to-double coercions and identi-
fied the neutral element 0.0 for a reduction with addition. Array types in the target

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 40

let v0:<int>15 = [9,8,6,8,7,4,4,3,2,2,1,2,4,5,6] in
let v3:<int>16 = consV(0,v0) in
reduce(addd,0.00,
each(fn v11:[double]0 => maxd(i2d(~50),v11),
each(fn v10:[double]0 => mind(i2d(50),v10),
each(fn v9:[double]0 => muld(i2d(50),v9),
sum(divd,
each(i2d,
drop(1,zipWith(subi,v3,rotateV(~1,v3)))),
each(fn v2:[double]0 => addd(0.01,v2),
each(i2d,v0)))))))

Figure 3.1: The result of compiling the example APL program into an explicitly
typed intermediate representation. Notice the presence of shape types with
explicit length attributes.

language are annotated with explicit ranks; the type [double]0, for instance, is the
type of double-precision scalar values, which are treated in the type system as arrays
of rank zero. Also notice the special one-dimensional vector types (e.g., <int>16),
which range over vectors of a specific length.

3.0.1 Chapter outline

The rest of the chapter is structured as follows.
In Section 3.1, we present a statically typed intermediate array language

with support for multi-dimensional arrays and operations on such arrays. The
type system supports several kinds of types for arrays, with gradual degree
of refinement. The most general array type keeps track of array ranks, using
so-called shape types. One-dimensional arrays (i.e., vectors) may be given
a more refined type, which keeps track of vector lengths (also using shape
types). The type system also supports special refined variants of singleton
scalar values and singleton vector values. We present a formal treatment of the
language in two steps. First, in Sections 3.1.1–3.1.4, we present a type system
and a dynamic semantics for the language without array updates. Then, in
Section 3.1.5, we extend the treatment to a store-based semantics with support
for mutable arrays, array indexing, and array updates.

We demonstrate that the typed array intermediate language TAIL is suitable
as the target for an inference algorithm for an APL compiler. As we shall see in
Section 3.2, the type system of the intermediate language allows the compiler
to treat complex operations, such as matrix-multiplication, and generalized
versions thereof (inner products of higher-ranked arrays) as operations derived
from the composition of other more basic operations.

With this work we aim at bridging the APL community and the functional
programming community. The concise syntax of APL primitives and array
abstraction concepts provide a rich source for data-parallel programming tech-

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 41

niques, in particular for the APL subset that we consider, which encourages a
functional style of programming [89]. As an example of how the APL commu-
nity can benefit from the programming language community (besides getting
APL programs to run efficiently), we demonstrate in Section 3.3 how APL
programmers may use explicit type annotations, in their APL programs, to
express, and statically certify, properties about defined operators and functions.

We demonstrate that the typed array intermediate language is useful as a
language for further array-compilation, by demonstrating that the array lan-
guage can be compiled effectively into a low-level array intermediate language,
called Laila, which lends itself to a straightforward translation into sequential
C code.

Finally, the effectiveness of the compilation approach is demonstrated, in
Section 3.5, by performance evaluation on a number of real world application
benchmarks (as well as a number of micro benchmarks) using our compilation
approach and comparing with a state-of-the-art APL interpreter. We examine
the possibility for future automatic parallelization, summarize the current
bottlenecks, and present work on compiling TAIL to the data-parallel languages
Accelerate and Futhark.

3.1 A Typed Array Intermediate Language

In this section, we present the typed array intermediate language TAIL. For
presentation purposes, we first present a subset of the language that does not
have support for mutable arrays in terms of array updates. Then in Section 3.1.5,
we develop the formal setup for covering also mutable arrays.

We assume a denumerable infinite set of program variables (x). We use i
and n to range over integers, d to range over doubles, and b to range over
boolean values tt and ff. Whenever z is some object, we write ~z to range
over sequences of such objects. When we want to be explicit about the size of a
sequence ~z = z0, · · · , z(n−1), we often write it on the form ~z(n) and we write
z, ~z to denote the sequence z, z0, · · · , z(n−1).

Shapes (δ), base values (a), arrays (arr), primitive operations (op), values (v),
and expressions (e) are defined as follows:

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 42

δ ::= 〈~n〉 (shapes)
bv ::= i | d | b (base values)

arr ::= [~bv]δ (arrays)
op ::= addi | subi | muli | mini | maxi (operations)

| addd | subd | muld | mind | maxd
| andb | orb | notb
| lti | ltei | gti | gtei | eqi
| ltd | lted | gtd | gted | eqd
| iota | each | reduce | i2d | b2i
| reshape0 | reshape | rotate
| transp | transp2 | zipWith
| shape | take | drop | first
| cat | cons | snoc (derived ops)
| shapeV | catV | consV | snocV (shape ops)
| iotaV | rotateV
| takeV | dropV | firstV

v ::= arr | λx.e (values)
e ::= v | x | [~e] | e e′ (expressions)
| let x = e1 in e2 | op(~e)

Notice that array expressions [~e] are always one-dimensional, whereas array
values [~bv]δ may be multi-dimensional with their dimensionality specified by
the shape δ. We often write i, d, and b to denote scalar values [i]〈〉, [d]〈〉, and
[b]〈〉, respectively.

3.1.1 A Type System with Shape Polymorphism

We assume denumerable infinite sets of type variables (α) and shape variables (γ).

κ ::= int | double | bool | α (base types)
ρ ::= i | γ | ρ+ ρ′ (shape types)
τ ::= [κ]ρ | 〈κ〉ρ | Sκ(ρ) | SVκ(ρ) (types)

| τ → τ ′

σ ::= ∀~α~γ.τ (type schemes)

Types are segmented into base types (κ), shape types (ρ), types (τ), and type
schemes (σ). Shape types (ρ) are considered identical upto associativity and
commutativity of + and upto evaluation of constant shape-type expressions
involving +.

Types (τ) are either multidimensional arrays, [κ]ρ, with explicit rank ρ,
one-dimensional vectors, 〈κ〉ρ with explicit length ρ, singleton integers and
booleans (Sκ(ρ)) or single-element integer and boolean vectors (SVκ(ρ)), both
with value ρ, or function types. As special notation, we often write κ to denote
the scalar array type [κ]0.

A type substitution (St) maps type variables to base types. A shape substitution
(Ss) maps shape variables to shape types. A substitution (S) is a pair (St, Ss) of

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 43

a type substitution and a shape substitution. Applying a substitution S to some
object B, written S(B), has the effect of simultaneously applying St and Ss to
objects in B (being the identity outside their domain). A type τ ′ is an instance of
a type scheme σ = ∀~α~γ.τ , written σ ≥ τ ′, if there exists a substitution S such
that S(τ) = τ ′.

A type τ is a subtype of another type τ ′, written τ ⊆ τ ′, if the relation can be
derived according to the following rules:

Subtyping τ ⊆ τ ′

τ ⊆ τ (3.1)
τ1 ⊆ τ2 τ2 ⊆ τ3

τ1 ⊆ τ3
(3.2) 〈κ〉ρ ⊆ [κ]1

(3.3)

SVκ(ρ) ⊆ 〈κ〉1 (3.4)
Sκ(ρ) ⊆ [κ]0

(3.5)

The subtyping relation allows known-sized vectors (one-dimensional arrays)
to be treated as shape vectors with the number of dimensions being statically
known. For instance, we shall see that the constant integer vector expression
[1, 2, 3] is given the type 〈int〉3, but that the expression can also be given the
type [int]1 using the subtyping relation. Similarly, when asking for the shape
of an integer vector of type 〈int〉γ , we obtain a one-element integer vector
containing the value γ. For typing this value, we can use the singleton vector
type SVint(γ), which is a subtype of 〈int〉1, the type of one-element integer
vectors.

Each operator, op, is given a unique type scheme, σ, as specified by the
relation TySc(op) = σ defined in Figure 3.2 and Figure 3.3. For all operators op,
such that TySc(op) = ∀~α~γ.τ1 → . . . → τn → τ , where τ is not a function type,
we say that the arity of the operator op, written arity(op), is n.

Type assumptions Γ map variables to type schemes:

Γ ::= Γ, x : σ | •

The type system allows inferences among sentences of the form Γ ` e : τ ,
which are read: “under the assumptions Γ, the expression e has type τ .”

Shape typing ` δ : ρ

` 〈~n(i)〉 : i
(3.6)

Base value typing ` bv : κ

` i : int
(3.7) ` d : double

(3.8)

` tt : bool
(3.9) ` ff : bool

(3.10)

Array typing ` arr : τ

` δ : ρ ` bvi : κ

` [~bv]δ : [κ]ρ
(3.11)

` bvi : κ

` [~bv]〈n〉 : 〈κ〉n
(3.12)

` tt : Sbool(1)
(3.13) ` ff : Sbool(0)

(3.14)

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 44

APL op(s) TySc(op)
addi, . . . : int→ int→ int
addd, . . . : double→ double→ double

 iota : int→ [int]1

� each : ∀αβγ.(α→ β)→ [α]γ → [β]γ

/ reduce : ∀αγ.(α→ α→ α)→ α
→ [α]1+γ → [α]γ

/ compress : ∀αγ.[bool]γ → [α]γ → [α]γ

/ replicate : ∀αγ.[int]γ → [α]γ → [α]γ

\ scan : ∀αγ.(α→ α→ α)→ [α]γ → [α]γ

� shape : ∀αγ.[α]γ → 〈int〉γ
� reshape0 : ∀αγγ′.〈int〉γ′ → [α]γ → [α]γ

′

� reshape : ∀αγγ′.〈int〉γ′ → α→ [α]γ → [α]γ
′

�| reverse : ∀αγ.[α]γ → [α]γ

�| rotate : ∀αγ.int→ [α]γ → [α]γ

�\ transp : ∀αγ.[α]γ → [α]γ

�\ transp2 : ∀αγ.〈int〉γ → [α]γ → [α]γ

^ take : ∀αγ.int→ α→ [α]γ → [α]γ

� drop : ∀αγ.int→ [α]γ → [α]γ

� first : ∀αγ.α→ [α]γ → α
zipWith : ∀α1α2βγ.(α1 → α2 → β)

→ [α1]γ → [α2]γ → [β]γ

, cat : ∀αγ.[α]γ+1 → [α]γ+1 → [α]γ+1

, cons : ∀αγ.[α]γ → [α]γ+1 → [α]γ+1

, snoc : ∀αγ.[α]γ+1 → [α]γ → [α]γ+1

Figure 3.2: Operator type schemes for standard operations.

APL op(s) TySc(op)
� shapeV : ∀αγ.〈α〉γ → SVint(γ)
^ takeV : ∀αγ.Sint(γ)→ [α]1 → 〈α〉γ
� dropV : ∀αγγ′.Sint(γ)→ 〈α〉(γ+γ′) → 〈α〉γ′
, consV : ∀αγ.α→ 〈α〉γ → 〈α〉(1+γ)
, snocV : ∀αγ.〈α〉γ → α→ 〈α〉(1+γ)
� firstV : ∀αγ.SVα(γ)→ Sα(γ)
 iotaV : ∀γ.Sint(γ)→ 〈int〉γ
�| rotateV : ∀αγ.〈α〉γ → 〈α〉γ
, catV : ∀αγγ′.〈α〉γ → 〈α〉γ′ → 〈α〉(γ+γ′)

Figure 3.3: Operator type schemes for operations on shapes.

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 45

` n : Sint(n)
(3.15)

` v : Sκ(n)

` [v]〈1〉 : SVκ(n)
(3.16)

Value typing Γ ` v : τ

` arr : τ

Γ ` arr : τ
(3.17)

Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′
(3.18)

Expression typing Γ ` e : τ

Γ ` e : Sκ(n)

Γ ` [e] : SVκ(n)
(3.19)

Γ(x) ≥ τ
Γ ` x : τ

(3.20)
τ ⊆ τ ′ Γ ` e : τ

Γ ` e : τ ′
(3.21)

Γ ` ei : κ i = [0;n[

Γ ` [~e(n)] : [κ]1
(3.22)

Γ ` ei : κ i = [0;n[

Γ ` [~e(n)] : 〈κ〉n (3.23)

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ
(3.24)

fv(~α~γ) ∩ fv(Γ, τ ′) = ∅
Γ ` e1 : τ Γ, x : ∀~α~γ.τ ` e2 : τ ′

Γ ` let x = e1 in e2 : τ ′
(3.25)

TySc(op) ≥ τ0 → . . .→ τ(n−1) → τ
Arity(op) = n Γ ` ei : τi i = [0;n[

Γ ` op(~e(n)) : τ
(3.26)

Notice that operators are required to be fully applied. In examples, how-
ever, when an operator op is not applied to any arguments (e.g., it is passed to a
higher-order function), it is eta-expanded into the form λx1. · · ·λxn.op(x1, · · · , xn),
where n = Arity(op).

As indicated by the operator type schemes, certain limitations apply. For in-
stance, in accordance with APL, the each operator operates on each base value
of a multi-dimensional array. One may consider providing a map operator with
the following type scheme:

map : ∀αβγ.([α]γ → [β]γ)→ [α]1+γ → [β]1+γ

However, it is not possible, with the present type system, to express that
the function returns arrays with the same extent for all arguments; the only
guarantee the type system can give us is that result arrays have the same rank
(number of dimensions). More expressive type systems, based on dependent
types, such as those found in AgdaAccelerate [98] and QUBE [101, 99], allow
for expressing more accurately, the assumptions of the higher-order operators.

Similarly, one may consider providing a reduce’ operator with the follow-
ing type scheme:

reduce’ : ∀αγ.([α]γ → [α]γ → [α]γ)→ [α]γ

→ [α]1+γ → [α]γ

The idea here is that the operator operates on entire subparts of the argument
array. In a system supporting only map and reduce’ (and not each and
reduce), nested instances of maps can be used instead of each and nested

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 46

instances of maps with an inner reduce’ can be used instead of reduce.
Additionally, one may consider providing a sequential fold operator that
does not require associativity of the argument function:

fold : ∀αβγ.([α]γ → [β]γ
′ → [β]γ

′
)→ [β]γ

′

→ [α]1+γ → [β]γ
′

As we shall see in the next section, the semantics of reduce is that it
reduces the argument array along its last dimension, following the traditional
APL semantics [63, 73].

The implementation of the APL compiler uses a hybrid approach of type
inference and local context querying for resolving array ranks, scalar extensions,
and identity items (neutral elements) during intermediate language program
generation. The inference is based on a simple unification algorithm using
conditional unification for the implementation of the subtyping inference.

3.1.2 Example Programs

We now present a few example programs that utilize the various operators. The
dot-product of two integer arrays can be defined in the language as follows:

dotpi : (∀γ.[int]1+γ → [int]1+γ → [int]γ)
= λx.λy.reduce(addi,0,zipWith(muli,x,y))

Notice that this function also works with integer matrices and integer arrays of
higher dimensions. In case the extents of the argument arrays do not match
up, the zipWith expression—and therefore the dotpi call—will result in a
runtime error, as further specified in the presentation of the dynamic semantics
below. We can generalize the above function to be useful in a broader sense:

dotp : (∀γα.(α→ α→ α)→ (α→ α→ α)→ α)→ [α]1+γ → [α]1+γ → [α]γ

= λadd.λmul.λn.λx.λy.reduce(add,n,zipWith(mul,x,y))

3.1.3 Dynamic Semantics

Evaluation contexts, ranged over by E, take the following form:

E ::= [·] | [~vE~e] | E e | v E
| let x = E in e | op(~vE~e)

When E is an evaluation context and e is an expression, we write E[e] to
denote the expression resulting from filling the hole in E with e. The dynamic
semantics is presented as a small step reduction semantics, which is explicit
about certain kinds of errors that are not easily checked statically. Intuitively,
a well-typed expression e is either a value or it can be reduced into another
expression or the special token err. Errors that are treated explicitly include

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 47

negative values passed to iota and illegal axis specifications as arguments
generalized transposition (see below), transp2.

We first define a few helper functions for computations on shapes and for
converting between flat indexing and multi-dimensional indexing. We assume
a reverse operation (rev) on shapes and an operation, named product, that
takes a shape of an array and returns the number of elements in the flattened
version of the array. An expression fromIdxδδ′ takes a shape δ of an array and
a multi-dimensional index δ′ into the array and returns a corresponding index
into the flattened version of the array.

fromIdx〈〉〈〉 = 0

fromIdx〈n,~n〉〈i,~i〉 = i ∗ p+ fromIdx〈~n〉〈~i〉
where p = product(~n)

An expression toIdxδi takes a shape δ and an index i into the flattened version
of the array and returns the corresponding multi-dimensional index into the
array.

toIdx〈〉0 = 〈〉
toIdx〈n,~n〉i = 〈i div p,~i〉

where p = product(~n)

〈~i〉 = toIdx〈~n〉(i mod p)

The expression exchangeδδ
′ exchanges the elements in the shape δ′ according

to δ:
exchange〈~p(n)〉〈~q(n)〉 = 〈qp0 , · · · , qp(n−1)

〉
where ∀ij.i 6= j ⇒ pi 6= pj

Notice the partiality of the exchange function; if δ′ = exchange〈~i(k)〉δ then~i(k)

is known to be a permutation of 0, · · · , (k − 1).
A majority of the dynamic semantics rules are given below. We have left out

the rules for rotate, cat, cons, snoc, drop, compress, replicate, and
scan. We have also left out the rules for the shape-versions of the operations
(e.g., takeV), which are all easily defined in terms of the non-shape versions.

Small Step Reductions e ↪→ e′ or err
e ↪→ e′ E 6= [·]
E[e] ↪→ E[e′]

(3.27)
e ↪→ err E 6= [·]

E[e] ↪→ err
(3.28)

let x = v in e ↪→ e[v/x]
(3.29)

(λx.e) v ↪→ e[v/x]
(3.30)

[~a(n)] ↪→ [~a(n)]〈n〉
(3.31)

i = i1 + i2
addi(i1, i2) ↪→ i

(3.32)
d = d1 + d2

addd(d1, d2) ↪→ d
(3.33)

n ≥ 0

iota(n) ↪→ [1, · · · , n]〈n〉
(3.34)

n < 0

iota(n) ↪→ err
(3.35)

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 48

e = [vf a0, · · · , vf a(n−1)]
each(vf , [~a

(n)]δ) ↪→ reshape0(δ, e)
(3.36)

δ = 〈~n,m〉 k = product(~n) i = [0;m[
ei = vf a(i∗k) (· · · (vf a(i∗k+m−1) v) · · ·)

reduce(vf , v, [~a
(n)]δ) ↪→ reshape0(〈~n〉, [~e(k)]) (3.37)

m = product(δ′) f(i) = i mod n n > 0

reshape(δ′, a, [~a(n)]δ) ↪→ [af(0), · · · , af(m−1)]δ
′ (3.38)

m = product(δ′) ai = a i = [0;m[

reshape(δ′, a, []δ) ↪→ [a0, · · · , a(m−1)]δ
′ (3.39)

δ′ = rev(δ) f = fromIdxδ′ o rev o toIdxδ
transp([~a(n)]δ) ↪→ [af(0), · · · , af(n−1)]δ

′ (3.40)

δ′ = exchangeδ0(δ)

f = fromIdxδ′ o exchangeδ0 o toIdxδ
transp2(δ0, [~a

(n)]δ) ↪→ [af(0), · · · , af(n−1)]δ
′ (3.41)

¬∃δ′.δ′ = exchangeδ0(δ)

transp2(δ0, [~a]δ) ↪→ err
(3.42)

m ≥ 0 δ′ = 〈m,~n〉 j = product(δ′)
f(i) = if i < k then ai else a

take(m, a, [~a(k)]〈n,~n〉) ↪→ [f(0), · · · , f(j − 1)]δ
′ (3.43)

m < 0 δ′ = 〈−m,~n〉 j = product(δ′)
f(i) = if i < k then a(k−1−i) else a

take(m, a, [~a(k)]δ) ↪→ [f(0), · · · , f(j − 1)]δ
′ (3.44)

k > 0

first(a, [~a(k)]δ) ↪→ a0
(3.45)

first(a, []δ) ↪→ a
(3.46)

The transitive, reflexive closure of ↪→, written ↪→∗, is defined by the follow-
ing two rules:

e ↪→ e′ e′ ↪→∗ e′′
e ↪→∗ e′′ (3.47)

e ↪→∗ e (3.48)

We further define e↑ to mean that there exists an infinite sequence e ↪→
e1 ↪→ e2 ↪→ · · · . The presented language does not support general recursion
or uncontrolled looping, thus all programs represented in the intermediate
language are guaranteed to terminate. The semantic machinery does support
the addition of recursion (e.g., for implementing APL’s recursion operator∇).

3.1.4 Properties of the Language

In the following, we give a few definitions before we present a unique decompo-
sition proposition. This proposition is used for the proofs of type preservation

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 49

and progress, which allow us to establish a type soundness result for the
language, following standard techniques [80].

A redex, ranged over by r, is an expression of the form

r ::= (λx.e) v | let x = v in e | op(~v) | [~v]

The following unique decomposition proposition states that any well-typed
term is either a value or the term can be decomposed into a unique context and
a unique well-typed redex. Moreover, filling the context with an expression of
the same type as the redex results in a well-typed term:

Proposition 1 (Unique Decomposition) If ` e : τ then either e is a value v or
there exists a unique E, a unique redex e′, and some τ ′ such that e = E[e′] and
` e′ : τ ′. Furthermore, for all e′′ such that ` e′′ : τ ′, it follows that ` E[e′′] : τ .

PROOF By induction over the derivation ` e : τ . �

The proofs of the following type preservation and progress propositions
are then straightforward and standard [80].

Proposition 2 (Type Preservation) If ` e : τ and e ↪→ e′ and e′ 6= err then
` e′ : τ .

PROOF By induction over the structure of the typing derivation ` e : τ , using
Proposition 1. �

Proposition 3 (Progress) If Γ ` e : τ then either

1. e is a value; or

2. e ↪→ err; or

3. there exists an expression e′ such that e ↪→ e′.

PROOF By induction over the structure of the typing derivation. �

Proposition 4 (Type Soundness) If ` e : τ then e↑, or e ↪→∗ v/err, or there
exists v such that e ↪→∗ v.

PROOF By induction on the number of machine steps using Proposition 2 and
Proposition 3. �

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 50

APL op(s) TySc(op)
index : int→ int→ [α]γ+1 → [α]γ

update : [α]γ+1 → 〈int〉γ+1 → α→ bool
�* power : ([α]γ → [α]γ)→ int→ [α]γ → [α]γ

Figure 3.4: Operator type schemes for store-based operations.

3.1.5 Mutable Arrays

For the formalization to support mutable arrays, we extend the evaluation
semantics with a store and the typing rules with a notion of store typing. We
assume a denumerable infinite set of locations (l). Primitive operations (op) and
values (v) are redefined as follows:

op ::= . . . | index | update | power (operations)
v ::= l | λx.e (values)

We now define a store (s) to be a finite map from locations to array values.
When arr is an array value and s is a store with l in its domain, we write
s[l 7→ arr] to mean the store s with the location l updated to contain the array
value arr. Further, a store s may be juxtapositioned with another store s′,
written s, s′, assuming that the domains of s and s′ do not overlap.

Types and type schemes remain unchanged. Type schemes for the store-
based operations are presented in Figure 3.4.

The index operation takes two integers, d and i, and an array a as argu-
ments and returns a new array (of rank one less than the rank of a) taken from
a with dimension d dissected at index i. It is an error if d or i does not match
with the shape a. The motivation for this particular form of index function is
the often-used APL index construct, which, for instance, supports that a plane
is extracted from a cube, as follows:

cube _ 10 20 30�6000 " Dim x=10,y=20,z=30
plane _ cube[;4;] " Dissect cube at y=4

where the index into cube, would in TAIL-notation be represented as index(2,4,cube)
(i.e. d = 2 and i = 4). The index function can easily be implemented using
dyadic transpose (i.e., transp2), take, drop, and assert, thus, we will not
give the dynamic semantics for the operation here. The update operation we
consider supports only individual array element updates. The operation takes
an array and an index vector as arguments together with a scalar value of the
proper type. The operation has the side-effecting behavior of updating the
array at the given index position with the scalar value. Again, it is an error if
the index vector does not match with the shape of the array. If the function
returns a proper value, it returns tt (to keep the presentation simple, we do
not support unit types). The power operation results from compiling APLs
power operator �*. The operation takes as arguments an iterator function f , a

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 51

number n, indicating the number of times the function should be applied, and,
finally, an initial array argument a. The power operation (f�*n) a, resembles
the mathematical notation fn(a), that is, compose the function f with itself n
times and apply the resulting function to the argument a.

The careful reader may now be worried that unless care is taken, combining
subtyping with mutability can lead to problems. Indeed, unless the subtyping
relation is modified slightly, we will run into problems showing type preser-
vation and progress. The problem is subtyping rule (3.4) and the support for
singleton vector types, which allows for the TAIL type system to reason stati-
cally about the content of a vector returned by a call to the shapeV operation.
Now, if this vector is mutated in memory, using the update operation, a cen-
tral invariant is violated. Fortunately, it turns out that if the subtyping relation
is strengthened to not include subtyping rule (3.4), we can establish a type
soundness result for the language. In what follows, we use ⊆s to denote the
strengthened subtyping relation, which consists of all the previous subtyping
rules from Section 3.1.1, except (3.4). Leaving this rule out requires the APL
frontend to infer instead that a copying coercion is inserted whenever a value
of type SVκ(ρ) needs to be treated as a value of type 〈κ〉1. This restriction is
only a small price to pay for type soundness!

A store type (Σ) is now defined as a finite map from locations to types.
We say that a store type Σ′ extends another store type Σ, written Σ′ w Σ, if
Dom(Σ′) ⊇ Dom(Σ) and for all l ∈ Σ, we have that Σ(l) ⊆s Σ′(l). Notice again
the use of the strengthened subtyping relation.

The extended type system allows inferences among sentences of the form
Γ; Σ ` e : τ , which are read: “under the variable assumptions Γ and the store
typing Σ, the expression e has type τ .” All expression typing rules (rules (3.19)–
(3.26)) remain unchanged except that a Σ needs to be added to all expression
typing judgments and except that rule (3.21) is modified to use the strengthened
subtyping relation.

Expression typing Σ,Γ ` e : τ

τ ⊆s τ
′ Γ; Σ ` e : τ

Γ; Σ ` e : τ ′
(3.49)

The typing rules for values and stores are now given as follows.
Value typing Σ,Γ ` v : τ

Σ(l) = τ

Σ,Γ ` l : τ
(3.50)

Store typing Σ ` s

Σ ` s ` arr : τ

Σ, {l 7→ τ} ` s, {l 7→ arr} (3.51)

We now define the notion of a configuration (k) to be a pair, written (e/s),
of an expression e and a store s. Intuitively, the small step semantics turn a

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 52

well-typed configuration k into another well-typed configuration k′ or into
the error token err. The relation is formalized as a set of reduction rules of the
form k ↪→ k′ or err. The reduction rules from Section 3.1.3 may all easily be
adapted to the refined setting. We only show a few of the modified rules below,
together with rules for the new operations.

Small Step Reductions k ↪→ k′ or err
e/s ↪→ e′/s′ E 6= [·]
E[e]/s ↪→ E[e′]/s′

(3.52)
e/s ↪→ err E 6= [·]

E[e]/s ↪→ err
(3.53)

e′ = e[v/x]

let x = v in e/s ↪→ e′/s
(3.54)

e′ = e[v/x]

(λx.e) v/s ↪→ e′/s
(3.55)

s′ = s, {l 7→ [~bv
(n)

]〈n〉}
[~bv

(n)
]/s ↪→ l/s′

(3.56)

s(larr) = [~bv
(m)

]〈~s
(n)〉 s(lidx) = [~i]〈n〉

~k = map(λx.x+ 1,~i) j = fromIdx〈~s〉〈~k〉 j < m

s(lval) = bvv s′ = s[larr 7→ [~bv
′
]〈~s

(n)〉]
~bv
′

= (bv0, · · · , bv(j−1), bvv, bv(j+1), · · · , bv(m−1))
update(larr, lidx, lval)/s ↪→ l′/s′, {l′ 7→ tt} (3.57)

s(larr) = [~bv
(m)

]〈~s
(n)〉 s(lidx) = [~i]〈n〉

~k = map(λx.x+ 1,~i) j = fromIdx〈~s〉〈~k〉 j ≥ m
update(larr, lidx, lval)/s ↪→ err

(3.58)

s(ln) = n n > 0
e′ = power(λx.e,subi(ln, 1), e[larr/x])

power(λx.e, ln, larr)/s ↪→ e′/s
(3.59)

s(ln) ≤ 0

power(λx.e, ln, larr)/s ↪→ larr/s
(3.60)

To extend the formal results of Section 3.1.4 to the store semantics, we need
to be explicit about how the stores evolve through the reduction semantics.
The notions of evaluation contexts and redexes remain unchanged.

Proposition 5 (Unique Decomposition) If ∅; Σ ` e : τ then either e is a value
v or there exists a unique E, a unique redex e′, and some τ ′ such that e = E[e′]
and ∅; Σ ` e′ : τ ′. Furthermore, for all e′′ such that ∅; Σ ` e′′ : τ ′, it follows that
∅; Σ ` E[e′′] : τ .

PROOF By induction over the derivation ∅; Σ ` e : τ . �

The proofs of the following type preservation and progress propositions
are then straightforward and standard (see e.g., the Chapter on references in
[86]).

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 53

Proposition 6 (Type Preservation) If ∅; Σ ` e : τ and Σ ` s and e/s ↪→ e′/s′

then there exists a store type Σ′ w Σ such that ∅; Σ′ ` e′ : τ and Σ′ ` s′.

PROOF By induction over the structure of the typing derivation ∅; Σ ` e : τ ,
using Proposition 1. �

Proposition 7 (Progress) If Γ; Σ ` e : τ and Σ ` s then either

1. e is a value; or

2. e/s ↪→ err; or

3. there exists an expression e′, a store s′, and a store type Σ′ w Σ such that
e/s ↪→ e′/s′ and Σ′ ` s′.

PROOF By induction over the structure of the typing derivation. �

Proposition 8 (Type Soundness) If ∅; Σ ` e : τ and Σ ` s then either (e/s)↑ or
there exist a value v, a store s′, and a store type Σ′ w Σ such that e/s ↪→∗ (v/s′) or err.

PROOF By induction on the number of machine steps using Proposition 6 and
Proposition 7. �

3.2 Compiling the Inner and Outer Products

One of the main reasons for the complexity of the type systems presented in
the previous sections is for the intermediate language to be a suitable target for
an APL compiler. In particular, the intermediate language must be rich enough
that complex array operations can be mapped to constructs in the intermediate
language.

We now demonstrate how the technique used by Guibas and Wyatt [50] for
compiling away the “dot” operator in APL, by representing it by a sequence of
simpler APL-operations. The APL source code is given in Figure 3.5, which
consist of the definition and use of an APL dyadic operator dot.

We shall not go into discussing and explaining the details of the APL code
for the dot-operator, except from mentioning that the left and right function
argument to the operator is referenced within the definition of the dot-operator
using �� and ��, respectively. The intermediate language code resulting from
compiling the dot-operator example is shown in Figure 3.6. The intermediate
language code generated for the inner product of two matrices may seem a
bit extensive. However, once traditional optimizations are applied, the code is
simplified drastically, as can be seen in Figure 3.7, which contains the result
after an extensive set of type- and semantics-preserving optimizations have
been applied to the TAIL code.

After TAIL program optimization, the example program can be compiled
into C code, as shown in Figure 3.8. We shall return to the topic of compiling
TAIL in Section 3.4.

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 54

dot _ { ": (κ�κ�κ)�(κ�κ�κ) �[κ](�1+1)
�[κ](�2+1)�[κ](�1+�2)

WA _ (1���),��
KA _ (����)-1
VA _ � �WA
ZA _ (KA�|�1�VA),�1^VA
TA _ ZA�\WA�� " Replicate, transpose
WB _ (�1���),��
KB _ � ���

VB _ � �WB
ZB0 _ (-KB) � KB �| (��VB)
ZB _ (�1�(KB)),ZB0,KB
TB _ ZB�\WB�� " Replicate, transpose
�� / TA �� TB " Compute final array

}

A _ 3 2 � 5 " Example input A
B _ �\ A " Example input B
R _ A + dot # B
R2 _ #/ +/ R " Reduce on the result

" 1 3 5
" 2 4 1
"

" 1 2 5 11 7 -+-> 23 |
" 3 4 11 25 19 -+-> 55 #

" 5 1 7 19 26 -+-> 52 |
" 65780 v

Figure 3.5: The definition of a general dot-operator in APL together with an
application of the operator to functions + and # and two matrices A and B.

3.3 APL Explicit Type Annotations

Consider again the signal function from Example 3.1 in the beginning of the
chapter. Often a programmer is interested in specifying static properties of a
program and to indicate the intention of some functionality. For instance, the
diff function takes a vector as an argument and returns a vector of length
one less than the length of the argument (unless the argument is the empty
vector, in which case the length of the result vector will also be zero.) Using
a typed intermediate language as a target for APL compilation, we can allow
programmers to specify types for functions and operators and have the speci-
fications checked, statically, by the compiler. Here is a new definition of the
diff function, which can be applied only to vectors of non-zero length and
which returns a vector of length one less than the length of the argument.

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 55

let v1:[int]2 = reshape([3,2],iotaV(5)) in
let v2:[int]2 = transp(v1) in
let v3:[int]2 = v1 in
let v4:[int]2 = v2 in
let v5:<int>3 = catV(dropV(b2iV(tt),shape(v4)),

shape(v3)) in
let v6:[int]0 = subi(firstV(shapeV(shape(v3))),

b2iV(tt)) in
let v7:<int>3 = iotaV(firstV(shapeV(v5))) in
let v8:<int>3 = catV(transp(vrotateV(v6,transp(

dropV(~1,v7)))),takeV(~1,v7)) in
let v9:[int]3 = transp2(v8,reshape(v5,v3)) in
let v10:<int>3 = catV(dropV(~1,shape(v3)),

shape(v4)) in
let v11:S(int,2) = firstV(shapeV(shape(v3))) in
let v12:<int>3 = iotaV(firstV(shapeV(v10))) in
let v13:<int>1 = dropV(negi(v11),transp(vrotateV(

v11,transp(iotaV(firstV(
shapeV(v12))))))) in

let v14:<int>3 = catV(dropV(~1,iotaV(v11)),
snocV(v13,v11)) in

let v15:[int]3 = transp2(v14,reshape(v10,v4)) in
let v20:[int]2 = reduce(addi,0,zipWith(muli,v9,v15)) in
let v25:[int]0 = reduce(muli,1,reduce(addi,0,v20)) in
i2d(v25)

Figure 3.6: Intermediate language code (before optimization) for inner product
of a 3× 2 matrix and a 2× 3 matrix with operations + and #.

let v1:[int]2 = reshape([3,2],iotaV(5)) in
let v2:[int]2 = transp(v1) in
let v9:[int]3 = transp2([2,1,3],reshape([3,3,2],v1)) in
let v15:[int]3 = transp2([1,3,2],reshape([3,2,3],v2)) in
let v20:[int]2 = reduce(addi,0,zipWith(muli,v9,v15)) in
let v25:[int]0 = reduce(muli,1,reduce(addi,0,v20)) in
i2d(v25)

Figure 3.7: Intermediate language code for the inner product example after
TAIL optimizations.

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 56

#include <apl.h>
double kernel(int n33) {
int n9 = 1;
for (int n10 = 0; n10 < 3; n10++) {
int n12 = 0;
for (int n13 = 0; n13 < 3; n13++) {
int n15 = 0;
for (int n16 = 0; n16 < 2; n16++) {
int n23 = 1+((((n13*6)+(n10*2)+n16)%6)%5);
int n27 = ((n10*6)+(n16*3)+n13)%6;
int n32 = 1+(((n27%3)*2)+(n27/3)%5);
n15 = n15+(n23*n32);

}
n12 = n12+n15;

}
n9 = n9*n12;

}
return i2d(n9);

}

Figure 3.8: Target C-like code for computing the inner product of a 3× 2 matrix
and a 2× 3 matrix with operations + and #.

diff _ { ": <κ>(�+1) � <κ>�
1��-�1�|�

}

Similarly, a type specification for the signal function can specify that the
function takes a vector of doubles as argument and returns a vector of the same
length as the argument.

signal _ { ": <double>� � <double>�
�50�50�50#(diff 0,�)%0.01+�

}

Another example of using APL type annotations is for the dot-operator defined
in Figure 3.5. This function takes two dyadic scalar functions as arguments
together with two arrays, of ranks ρ1 + 1 and ρ2 + 1, respectively, and returns
a new array of rank ρ1 + ρ2.

We retain compatibility with Dyalog interpreter and compiler, by placing
annotations inside comments, which are written using the symbol ".

3.4 TAIL Compilation

In this section, we demonstrate the feasibility of compiling TAIL programs
into a low-level intermediate language through a low-level array intermediate
language, or API, called Laila. The low-level intermediate language is sepa-
rated into an expression language part and a statement part and resembles

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 57

in this sense a standard low-level imperative language, such as C. Indeed, it
is a straightforward task to generate C code from the low-level intermediate
code. On top of the low-level intermediate language, we construct a number of
array abstractions, which forms the language Laila. As we shall see, the Laila
language is a suitable setup for hosting a notion of hybrid pull-vectors, which
support both multidimensional arrays with shapes and ordinary pull vectors,
which form the basis for our compilation to low-level code. This representation
is inspired by the work on optimizing Accelerate programs [78].

We use t to range over types at the low-level intermediate language level:

ty ::= int | double | bool | [ty]

We further assume a denumerable infinite set of program variables xty,
annotated with a type ty. We sometimes leave out types from program variables
when they are of no importance. Expression terms t and statements s for the
low-level intermediate language are defined as follows:

bop ::= addi | addd | andb | ltei · · · (binary ops)
uop ::= negi | expd · · · (unary ops)

t ::= xt | i | d | b | c | uop(t)

| bop(t, t) | malloc(ty, t) | subs(x, t)

s ::= For(t, λx.s, s) | If(t, t, t, s) | ε
| Decl(x, t, s) | Assign(x, e, s) | Update(x, i, e, s)

The language contains looping constructs and conditional constructs at
the statement level as well as support for declarations of variables. At the
expression term level, the malloc construct gives support for allocating mem-
ory for a number of elements of the specified type. The subs construct gives
support for indexing into allocated memory. For any expression term t, we
write typeof(t) to determine the result type of the expression. This function
is easily defined as all expressions have an immediate result type.

In the following, we define a number of data types for specifying hybrid
pull-arrays and code generation. We use an ML syntax for the presentation, but
the definitions should easily carry over to other settings. First we assume that
the meta language types for expression terms t, statements s, and variables var
are available. We use the syntax Ii and Bb for injecting integer values i and
boolean values b into the term expression language.

At the low-level array intermediate language level, we want to hide the
details of name bindings and, in general, hide the fact that we are working
with a language that distinguishes between expressions and statement. To this
end, we follow the standard technique [36] of using a monad for encapsulating
program construction:

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 58

infix >>=
structure M : MONAD = struct
type ’a M = ’a * (s -> s)
fun (v,sT) >>= g = let val (v’,sT’) = g v

in (v’,sT o sT’)
end

fun ret x = (x, fn s => s)
end

We can now define a set of helper functions for building intermediate language
constructs:

fun alloc ty t = let val x = newVar ty
in (v,fn s => Decl(x,malloc(ty,t),s))
end

fun update a i v = ((), fn s => Update(a,i,v,s))
fun index a i = (Subs(v,i), fn s => s)
fun lprod nil = I 1
| lprod (x::xs) = muli(x,lprod xs)

fun lett e =
let val v = newVar (typeof e)
in (v, fn s => Decl(n,e,s))
end

fun for n f = ((), fn s => For(n, f, s))

The lett combinator constructs a binding of an expression. We now make
use of the assumption that the ranks of all arrays in a program are statically
determined at compile time. This static property makes it possible to define
shapes as meta-level lists of residual expression terms:

type INT = t
type sh = INT list

Our notion of a hybrid pull-array is defined by an idx data type and an arr
data type:

datatype idx = F of INT -> t M (* flat representation *)
| N of sh -> t M (* shaped representation *)

type arr = ty * sh * idx

The arr denotes a multi-dimensional pull-array with underlying base type
ty, shape sh, and index function idx. The idx type supports two different
encodings of indices. The first form specifies that the pull-array is encoded
using a flat representation, requiring calculation of the proper index into a
row-major representation, if encoding a multi-dimensional array. The second
form specifies that the user needs only supply indices for each dimension to
“pull out” an underlying value of the pull-array; we call the second form a
shaped pull-array.

As we shall see below, some array operations are indifferent to the choice of
the form of the index function, whereas other array operations work best with
a particular form of index function. In particular, reshape operations are free
to perform on flat pull-arrays, whereas transpositions are free to perform on
shaped pull-arrays. We assume meta-level definitions of the toIdx and fromIdx
functions (from Section 3.1.3) with the following type signatures:

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 59

val fromIdx : sh -> sh -> INT M
val toIdx : sh -> INT -> sh M

We can now define a couple of helper functions for converting between shaped
pull-arrays and flat pull-arrays:

fun toF(ty,sh,F f) = (ty,sh,f)
| toF(ty,sh,N f) = (ty,sh,fn i => toSh sh i >>= f)

fun toN(ty,sh,N f) = (ty,sh,f)
| toN(ty,sh,F f) = (ty,sh,fn is => fromSh sh is >>= f)

Figure 3.9 shows an implementation of a selection of array operations on
hybrid pull-arrays. Notice in particular how the implementation of the each
combinator is indifferent to the form of the pull-vector; the supplied function
composes well with both forms of index functions. Notice also the implemen-
tation of the materialize combinator, which uses different materialization
strategies dependent on the form of pull array it is given.

We have left out many of the important array operations necessary for a
complete implementation of hybrid pull-arrays for the TAIL language. Missing
operations include the reduce and power operations for which details of
the semantics can be found in Section 3.1.3. The actual implementation of the
power primitive may recognize cases where the size of the iterated array values
is known not to change over the iterations. In such cases, a double-buffering
approach can be used and memory can be allocated outside of the generated
loop. Finally we mention that arrays that are mutated by the programmer
always use a materialized representation.

3.5 Benchmarks

We have evaluated our compiler by comparison with a state of the art in-
terpreter, namely Dyalog and handwritten C code. The chosen benchmarks
exhibit different computation patterns, and range from a a few lines (e.g. game
of life) to 200 lines of APL (a Monte-Carlo option pricer translated from code
provided by LexiFi).

In addition to comparing the pure sequential performance, we investigated
the possibility of future automatic parallelization, by adding a few OpenMP
pragmas [85] by hand, and comparing parallel speedup with hand-optimized
OpenMP code (Section 3.5.5).

We conclude the section by mentioning a few identified bottlenecks in our
approach, and possible solutions (Section 3.5.7).

3.5.1 Benchmark setup

All benchmarks have been executed on an AMD Opteron system, using 32
cores, model 6274, and running at 2.2 GHz. All benchmarks have been executed
30 times each, and we report averages of wall-clock timings together with
standard deviations. Time spent on file I/O while reading datasets to memory
are not included in the measurements.

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 60

fun transp a = case toN a of
(ty,sh,f) => (ty, rev sh, N o f o rev)

fun rotate (n,a) = case toN a of
(ty,x::xs,f) => (ty,x::xs,N (fn i::is =>

f(modi(absi(addi(i,n),x))::ix)))
| (ty,nil,f) => (ty,nil,N f)

fun drop (n,a) = case toN a of
(ty,x::sh,f) => (ty, maxi(0,subi(x,absi(n)))::sh,

N(fn i::ix => f((i+n)::ix)))
| (ty,nil,f) => (ty,nil,N f)

fun each f (ty,sh,idx) = (ty,sh,fn i => idx i >>= f)

fun extend sh f =
lett (lprod sh) >>= (fn sz =>
ret (fn i => f (modi(i,sz))))

fun reshape sh’ a = case toF a of
(ty,sh,f) => extend sh f >>= (fn g => (ty,sh’,F g))

fun fornest nil k = k nil
| fornest (s::sh) k =

for s (fn i => fornest sh (fn ix => k(i::ix)))

fun materialize (ty,sh,idx) =
lett (lprod sh) >>= (fn sz =>
alloc ty sz >>= (fn a =>
(case idx of

F f => for sz (fn i => f i >>= update a i)
| N f => lett (I 0) >>= (fn n =>

fornest sh (fn ix => f ix >>= (fn v =>
update a n v >>= (fn () =>
assign n (addi(n,I 1))))))

) >>= (fn () => ret (ty,sh,N (ret o (index a))))

Figure 3.9: Array operations based on our hybrid pull-array representation.

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 61

For the micro-benchmarks we compare ourselves against the commercial 32-
bit Dyalog APL interpreter version 14.0.22502, which have been made available
to us by Dyalog Ltd. With this version, Dyalog provides its own experimental
APL compiler, but it is still in an experimental stage and does not cover all of
APL. For example, functions using indexed assignments can not be compiled,
and you are not allowed to use global names (including calls to other user-
defined functions). Only one of our benchmarks (Easter) could benefit from
turning on automatic compilation, giving it a speed up of around 1.5 from
approximately 8.8 sec to 6 sec. We have not looked further into the possibility
of getting the remaining benchmarks to compile on Dyalog with Dyalog’s
builtin compilation support, especially because of the limitation with respect
to user-defined functions.

3.5.2 Micro-benchmarks

These five benchmarks are used to compare ourselves against the Dyalog
interpreter. The exact same source code have been used with a different prelude
library for certain operations. In particular: File I/O and bitwise operations
are implemented differently in Dyalog and TAIL.

In ordinary APL, such as in Dyalog APL, bitwise operations are written as
manipulation of bit arrays, together with encode/decode operations between
integer representation and bit array representation. This coding requires the
language implementer to handle bit vectors carefully, to be able to make use
of ordinary shift instructions, when a user issues a take or a drop on a bit
vector. Instead of going into that, which is not part of our research agenda, we
decided to provide direct access to the bitwise operations in TAIL, through
special symbols �AND, �XOR, and so on. The benchmarks are introduced below,
with problem-sizes given in Table 3.1, and the performance measurements
displayed in Table 5.1.

Game of life Simulates N iterations of Conway’s Game Of Life. This simu-
lation is a standard APL-benchmark. However, for compilation with TAIL, it
was necessary to rewrite it to avoid uses of nested arrays.

Easter This example is taken from a presentation by Dyalog, and computes
the date of Easter Sunday in all years from year 1 to year 3000. We do this 300
times, just to be sure!

Primes This benchmark computes the first N primes, and is short enough to
be able to present in entirety:

A_1�10000
primes _ (1=+/-0=A�.|A)/A

The main ingredient is a big outer-join using the remainder (modulus) opera-
tion. With a vertical reduction, the number of divisors for each input is counted
and a compress-operation selects the primes.

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 62

Benchmark Problem size Source
Primes N = 100.000 -
Easter N = 300× 3.000 Dyalog
Black-Scholes N = 100.000 -
Sobol MC π N = 10.000 Our own
Game of life N = 20.000 (board: 40× 40) Our own
Option pricer N = 1048576, medium dataset FINPAR
HotSpot N = 300 (grid: 512× 512) Rodinia

Table 3.1: Benchmarks used. The first five are relatively small micro bench-
marks. The bottom two are larger real world applications.

Benchmark Dyalog (ms) TAIL (ms) Speed-up
Primes 1423± 8.0 3190± 6.4 0.45
Easter 18259± 157 46± 5.2 401
Black-Scholes 3086± 20.2 96± 5.8 32
Sobol MC π 12692± 202 14.5± 1.1 871
Game of life 1490± 6.5 969.77± 6.8 1.5

Table 3.2: Timings of the five micro benchmarks on Dyalog and TAIL. Each
benchmark was executed 30 times, the standard deviations are annotated.

Benchmark Dyalog TAIL (ms) C (ms)
Option pricer 57 min. 4587± 70 2267± 142
HotSpot 14832 ms ±353 3679± 5 2044± 69

Table 3.3: Application benchmarks in Dyalog, TAIL and handwritten C code
respectively. We have executed all benchmarks 30 times, except the Option
pricer running on Dyalog.

Black Scholes This is a standard APL benchmark, pricing European (call)
options. We price the exact same option N times.

Monte-Carlo π with Sobol-sequences For Monte-Carlo problems where
sample correlation is non problematic, Sobol-sequences provides a good source
of random numbers. Instead of sampling pseudo-randomly, they fill out the
sample space systematically. This is an advantage in many situations, giving
faster convergence. In this benchmark we use Sobol-numbers to compute a
Monte-Carlo approximation to π.

3.5.3 Application benchmarks

Option Pricing This benchmark is a Black-Scholes Monte-Carlo model for
option pricing a wide class of contracts (the model does not handle American
options). The benchmark follows a nested Map/Reduce pattern. Involved

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 63

components are: Sobol-sequence generation [20], conversion from uniform to
normal distribution, and generation of price evolution paths using Brownian
bridge discretization. To simulate a market with dependencies among the
underlyings, a Black-Scholes model is used to correlate the generated paths.
Finally, the payoff for each option are calculated and in the reduction phase all
the obtained prices are averaged.

The original C code for this benchmark came from production code by
LexiFi, which were extracted to a stand-alone presentation in the FINPAR
benchmark suite [7]. Implementations details and mathematical foundations
can be found in the FINPAR paper.

We compare ourselves with the medium-sized dataset, which requires 3 un-
derlyings, 5 time steps and repeating the pricing for N = 1048576 independent
iterations. The large dataset was not manageable for the Dyalog interpreter.

The Dyalog implementation was initially implemented by us, and opti-
mized with suggestions from Dyalog software engineers.

HotSpot HotSpot is a widely used tool in the VLSI design process, and is
used to estimate processor temperature using simulation. The inputs are two
M×M matrices of respectively power and initial temperatures. The benchmark
progress by iteratively solving a series of differential equations. The output is
an M ×M grid where each cell represents the average temperature value for
the corresponding area of the die.

This benchmark is taken from the Rodinia benchmark suite for heteroge-
neous computing [33]. We have ported the implementation from code in the
APL-like language ELI, original presented by WM Ching et al. in connection
with work on ELI-to-C compilation and parallelization [34].

We have benchmarked using the same problem size as in the original
Rodinia paper: 512x512 grid and 360 iterations, though they also provide a
dataset for a 1024x1024 grid simulation.

3.5.4 Hybrid pull-array performance

The hybrid pull arrays introduced in Section 3.4, was motivated by a desire
to eliminate index space calculations, for example when doing transpositions,
as they are free as long as the array is on the form of a shaped pull-array. To
demonstrate the gain of this hybrid approach, we have compared our TAIL
performance using hybrid push arrays with ordinary flat pull arrays in the
style of Guibas and Wyatt [50]. The timings are presented in Table 3.4.

3.5.5 Parallelization potential

To test whether there is a potential for automatic parallelization of TAIL pro-
grams, we have attempted adding OpenMP pragmas by hand to the generated
code. We have only attempted it on the two application benchmarks, and we
only added OpenMP-annotations to a single loop in each case. In the option
pricing benchmark, where the outer loop is a large Map/Reduce, we added

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 64

Benchmark Flat Hybrid Speed-up
Primes 4243 ms 3190 ms 1.01
Easter 129 ms 46 ms 2.84
Black-Scholes 97 ms 96 ms 1.22
Sobol MC π 21 ms 14.5 ms 1.33
Game of life 1183 ms 970 ms 1.43
Option pricer 4947 ms 4587 ms 1.08
HotSpot 5238 ms 3679 ms 1.42

Table 3.4: Performance comparison between flat pull arrays and our hybrid
pull array on the seven benchmarks. Each benchmark was executed 30 times.

a single OpenMP reduction-pragma, hoisted out all the memory allocations,
letting the threads share the same allocation and padded the memory allo-
cations to avoid memory conflicts. With these few applications we got the
speedup shown in Figure 3.10. In the case of HotSpot, the outermost loop has
a dependence between loop iterations, making it inherently sequential, but
in each iteration of that loop there is a large map, which can be parallelized
by adding a single OpenMP-annotation. The speed-up graph for this attempt
is also shown in Figure 3.10. In both cases we can observe linear speed-up
until 8 threads where after the curve flattens a bit, at 32 threads we get around
21 times speedup compared to the sequential versions. These measurements
demonstrate that even a simple parallelization strategy might work, by adding
parallelization pragmas to the outer-most maps, reductions or scans, in a
breadth first search through the AST. To obtain good performance, it will also
be necessary to be able to hoist memory allocations out of loops, when there is
no forward dependency to next iteration.

3.5.6 TAIL on GPUs

A backend based on pull-arrays is of course only one out of many possibil-
ities for compiling the intermediate language. Together with students and
colleagues we have also compiled TAIL to the existing data-parallel GPU
languages Accelerate and Futhark.

Compiling TAIL to Accelerate

The language Accelerate is an array language for GPU programming em-
bedded in Haskell, supporting a wide range of data-parallel primitives, mul-
tidimensional and rank-polymorphic programming. Accelerate is limited
by not supporting nested data-parallelism. We have previously presented a
Accelerate-based backend for TAIL [23]. The backend was implemented as part
of a student project. To support the primitives of APL, a library of APL-style
functions were implemented, by the use of core Accelerate constructs. Various
difficulties arose, especially the encoding of shapes as so-called snoc-list, made
implementing operations operating on the outer dimension (inner most in

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 65

0 4 8 16 32
0

5

10

15

20

25

HotSpot OpenMP

HotSpot TAIL w.
OpenMP

Pricer OpenMP

Pricer TAIL w. OpenMP

of threads

×
 S

pe
ed

u
p

Figure 3.10: Speed-up compared with sequential version

Benchmark Problem size TAIL C (ms) TAIL Accelerate (ms)

Signal N = 50,000,000 209.03 16.1
Game-of-Life 40× 40, N = 2,000 28.70 2.30
Easter N = 3,000 33.96 -
Black-Scholes N = 10,000 54.0 -
Sobol MC π N = 10,000,000 4881.30 2430.30
HotSpot 1024× 1024, N = 360 6072.93 2.03

Table 3.5: Benchmark timings in milliseconds. The timings are averages over
30 executions. TAIL C is using our sequential C-code backend, TAIL Accelerate
is using the Accelerate backend.

the snoc-list), hard to write in a rank-polymorphic way without turning to
potentially inefficient array transpositions.

Table 3.5 lists our timings on a few of the same benchmarks mentioned
previously. All benchmarks were executed on a system with an Intel Xeon CPU
E5-2650 and an NVIDIA GeFore GTX 780 Ti GPU.

Our TAIL-to-Accelerate compiler failed to generate code for the Easter and
Black-Scholes benchmark, as the current formulation of those benchmarks are
written using nested reduce operations, which is not supported by Accelerate.
An alternative would be to attempt building a rewriting engine into the TAIL
compiler, that could probably eliminate the need for nested parallelism in these
smaller benchmarks.

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 66

Benchmark Problem size TAIL C (ms) TAIL Futhark (ms)

Signal N = 50,000,000 712.20 1.49
Game-of-Life 1200× 1200, N = 100 1274.03 16.11
Easter N = 10,000,000 321.80 1.80
Black-Scholes N = 10,000,000 5396.10 9.13
Sobol MC π N = 10,000,000 368.67 23.68
HotSpot 512× 512, N = 360 1210.57 16.84

Table 3.6: Benchmark timings in milliseconds. The timings are averages over
30 executions. TAIL C is using our sequential C-code backend, TAIL Futhark is
compiled using the Futhark backend.

Compiling TAIL to Futhark

As part of another student project, TAIL was also compiled into the language
Futhark [55].

Futhark is a purely functional programming language targeting GPUs
developed by colleagues at the HIPERFIT research center. Futhark is based
on a calculi of array operators inspired by the Theory of Lists by Bird [16],
allowing fusion and several other optimizations necessary to generate efficient
GPU code.

As Futhark is not a polymorphic language, TAIL programs involving poly-
morphism was monomorphed before translation to Futhark. Monomorphiza-
tion includes some of the built-in operations.

The Easter and Black-Scholes benchmarks that proved to be troubling for
Accelerate, was manageable for Futhark to compile to efficient GPU code.
Translating TAIL to Futhark did however still not allow us to translate the
larger Option pricing benchmark from the FINPAR benchmark suite presented
previously, because of the use of in-place updates which are necessary to write
the so-called Brownian bridge path generation procedure.

Table 3.6 lists timings as previously reported [55]. The benchmarks were
executed on the same system as the benchmarks of our TAIL-to-Accelerate
compiler above, and are thus comparable, although (for some reason unknown
to this Ph.D. student) the problems size of some of the benchmarks have been
changed.

A comparison between Futhark and Accelerate is now also possible. In most
cases Futhark drastically outperforms Accelerate, but in the case of HotSpot,
Futhark is 8 times slower on a much smaller dataset (512× 512, compared with
1024× 1024 in the case of Accelerate).

The results presented here, for compilation of TAIL to both Accelerate
and Futhark, are magnitudes better than what is attainable from the industry
standard interpreter Dyalog. These results give us further confidence that TAIL
is suitable as an intermediate language for compilation of APL programs to
GPUs.

The benchmark suite is however limited to only a few small programs,

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 67

and we will have to obtain more realistic benchmarking programs from our
industry partners to prove the practicality of the approach in larger settings.

3.5.7 Identified bottlenecks

While benchmarking we have discovered several shortcomings, that need to
be addressed to obtain better performance, and which are especially important
if we want to move into parallel computation.

Hoisting memory allocations outside loops when possible, has unsurpris-
ingly shown to give some additional performance, and are especially important
to get parallelization speedup. We should therefore also work at general ex-
pression hoisting and strength reduction, as memory allocations might depend
on other expressions.

We have also observed a few loops, where a loop interchange could im-
prove performance by making memory access patterns sequential. Memory
access patterns are even more important for architectures such as GPUs where
coalesced memory accesses is of key importance for performance.

3.6 Related Work

This chapter extends on our previous work on compiling APL [43] with a much
more complete treatment of the source language, including support for boolean
operations (e.g, compress), new data-parallel operations (e.g., scan), iterative
computations (i.e., the power operator �*), and mutable array updates. The
enriched treatment of the language also includes a refined type system for TAIL
and a more complete coverage of primitives, both with respect to translation
and target language operational semantics. Further, this work extends the
previous work by using the idea of hybrid array representation from McDonell
et al. [78], to reduce the amount of index-computations. Also, the previous
work did not report any performance numbers of the compilation approach
and it did not consider the possibility of allowing end-user APL programmers
to use type annotations to assert static properties of defined functions and
operators.

Other related work can be divided into a number of areas. Although, tra-
ditionally, APL is an interpreted language, there have been many attempts at
compiling the language. For instance, Guibas and Wyatt have demonstrated
how a subset of APL can be compiled using a delayed representation of ar-
rays [50]. Other attempts include Timothy Budd’s APL compiler [22] and
the ELI-compiler [34]. One of the most serious attempts at compiling APL
is the work on APEX [13], which also contains a backend for targeting SAC
[47]. APEX has been reported both to provide good sequential and parallel
performance on multi-processor machines. Our main contribution compared
to these APL compilers, is that we have identified a typed array intermediate
language, which can be understood in isolation from the gory details of APL,
including APL operators and function overloading, identity item resolution,

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 68

scalar extension resolution, and more. Moreover, we have demonstrated that
compiling APL through such a typed intermediate language can lead to a com-
petitive performance compared to hand-written C code. We also pave the road
for generating parallel code automatically by demonstrating the possibility of
achieving good parallel performance by adding, although manually, simple
OpenMP annotations to the generated C code.

A different area of related work relates to type systems for, and formal
semantics of, array-oriented languages. This area of work includes the work
by Slepak et al. [92] on giving a type system with static rank polymorphism for
expressing APL-like operations. A related pool of work include the work on
SAC [48], and in particular QUBE [101], on type systems for array languages.
The SAC project seeks to provide a common ground between functional and
imperative domains for targeting parallel architectures, including both multi-
core architectures [46] and massively data-parallel architectures [51]. SAC uses
with and for loops to express map-reduce style parallelism and sequential
computation, respectively. More complex array constructs can be compiled
into with and for loops, as demonstrated, for instance, by the compilation of
APL into SAC [47]. The work on QUBE supports dependent types for verifying
array related invariants [101].

Another pool of related work on array languages is the work on Futhark
[58, 56, 57], which, as TAIL, and in opposition to SAC, holds on to the concept
of second order array combinators (named SOACs) in the intermediate repre-
sentations. The benefit of this approach is to perform critical optimizations,
such as fusion, even in cases involving filtering and scans. Such operations are
not straightforward constructs for SAC to cope with. Similar to Futhark, we
seek to allow programmers to express parallel patterns in programs as high-
level functional constructs, with the aim of systematically (and automatically)
generating efficient (and even data-dependent) parallel code. Also related to
the present work is the work on capturing the essential mathematical algebraic
aspects of array programming [52] and list programming [16] for functional
parallelization. Another piece of related work is the work on the Fish program-
ming language [65], which uses partial evaluation and program specialization
for resolving shape information at compile time.

A scalable technique for targeting parallel architectures in the presence of
nested parallelism is to apply Blelloch’s flattening transformation [17]. Blel-
loch’s technique has also been applied in the context of compiling NESL [11]
to GPU code, but is sometimes incurring a drastic memory overhead. In an
attempt at coping with this issue and for processing large data streams, while
still making use of all available parallelism, a streaming version of NESL, called
SNESL has been developed [75] , which supports a stream datatype for which
data can be processed in chunks and for which the cost-model is explicit. For
utilizing parallel architectures efficiently, future compilation approaches for
TAIL may also involve a variant of the flattening technique.

Finally, a large body of related work includes the work on embedded
domain specific languages (DSLs) for programming massively parallel archi-
tectures, such as GPUs. This body of work includes the work on Obsidian [36],

CHAPTER 3. TAIL: A TYPED ARRAY INTERMEDIATE LANGUAGE FOR
COMPILING APL 69

from which the idea of push-arrays originates, and the Accelerate library [28],
both of which targets GPUs.

3.7 Conclusion and Future Work

We have presented a statically typed intermediate language, used as a target
for an APL compiler and demonstrated the ability to compile our selected
subset of APL into efficient low-level code.

Our goal with this work has not been a desire to construct a minimal and
pure language. We have instead been thriving to find a practical and pragmatic
middle way between systems supporting dependent types such as QUBE, and
languages without shape information in types. In contrast to systems based on
dependent types, TAIL allows full type inference without user involvement.

There are several directions for future work. In particular, our intermediate
language does not support nested arrays, although it does have support for
expressing nested parallelism. Adding segmented operations and flattening
transformations would be a possible future path.

Obtaining larger benchmark programs written by APL experts have been
harder than anticipated, and to demonstrate our goals more clearly it would
be interesting to obtain such realistic benchmark programs written by financial
industry specialists.

Finally, it would be interesting to investigate the possibility for compiling
the intermediate language directly into efficient code for multi-core CPUs and
many-core GPUs. We have initiated efforts in this direction, by attempting to
construct a language for building GPU kernels, that allows fusion. This work
is presented in Chapter 5.

We ended the TAIL project in 2015, to pursue alternative strategy for gener-
ating GPU code. The HIPERFIT research center already had another ongoing
project on GPU compilation, the before mentioned Futhark project, which is in
many aspects similar to the TAIL language. To avoid too much internal com-
petition at the research center. We therefore changed course to investigating
GPU programming approach with more control of GPU resources and memory
hierarchy, than what can be achieved by automatic optimizers. The work on
such a resource aware language is presented in Chapter 5, but before we get to
that, Chapter 4 will introduce the necessary background on GPU architectures
and programming.

Chapter 4

GPU architecture and programming

Historically, hardware manufacturers has been able to increase clock rates and
instruction-level parallelism on each new generation of processors, allowing
single-threaded code to run faster without modifications. Heat dissipation,
power consumption and other limiting factors have put an end to that trend.
Clock rates have stalled around 4 Ghz, despite that the number of transistors
manufacturers can put on a single chip is increasing at the same rate as pre-
viously, following Moore’s law. Instead of increasing clock rates, hardware
vendors are now applying the growing amount of transistors to increase the
number of cores on a single chip.

Hardware vendors are thus exploring other options of increasing perfor-
mance. At the extreme, thousands of individual processing units are placed on
the same die, on devices such as graphics processing units (GPUs). The design
of a GPU is vastly different from that of traditional CPUs. Caches and control
logic such as branch predictors and data forwarding paths are exchanged for
additional compute units (see Figure 4.1). This massively parallel design has
become a cost-effective alternative to CPUs in areas such as image processing,
machine learning, simulations in natural sciences, bioinformatics and computa-
tional finance. Many tasks in these domains can be formulated as data-parallel
programs, which can take advantage of the massive degree of parallelism, and
are not bound by requirements of low-latency context switching that control
logic and caches provides for traditional CPUs.

Taking advantage of the highly parallel GPU hardware requires careful
attention to a major underlying issue, namely the performance gap between
the computational power of GPUs and the limited bandwidths of their memory
systems. The GPU we have used in our experiments, an NVIDIA GTX 780
Ti, has the ability to perform 5,046 GFlop/s (single precision). However, its
internal memory system is limited by a bandwidth of 336 GB/s. Data transfer
rates with memory external to the GPU is further limited by the PCI Express
bus. As GPUs are still in their infancy, their memory systems are complex
and intimate knowledge of its different facets are required for writing efficient
GPU algorithms. Programmers needs to limit the number of main memory

70

CHAPTER 4. GPU ARCHITECTURE AND PROGRAMMING 71

Cache

ALUControl

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

Figure 4.1: Transistor usage CPUs vs GPUs. Figure from NVIDIA CUDA C
Programming Guide [82]

transactions through the use of memory efficient algorithms and the limited
amount of manually controlled local memory and caches. In addition, one
should make sure to schedule enough simultaneous computations to obtain
latency hiding on otherwise I/O bound computations.

This chapter will introduce the central terminology on GPU programming,
and give an overview of current GPU hardware, GPU programming and dis-
cuss optimisation strategies necessary for obtaining efficiency on GPU devices.

4.1 GPU architecture

A typical modern GPU device consists of a few hundred to a couple of thou-
sand individual computational cores, all operating in parallel. These cores are
clustered into larger units called streaming multiprocessors (SMs). As mentioned,
the GPU we have used in our experiments is an NVIDIA GeForce GTX 780 Ti,
which is based on the Kepler GK110 architecture. The layout of a streaming
multiprocessor from the GK110 is shown in Figure 4.2. This particular stream-
ing multiprocessor consists of 192 cores and the complete GK110 GPU consists
of fifteen such streaming multiprocessors, with a total of 2880 cores.

GPUs are typically programmed by launching thousands of identical co-
operating threads operating on different data elements of the input. The
programmer partitions the threads into cooperative thread arrays (CTAs), also
known as thread blocks. Each CTA is assigned to a single SM, and the threads
in a CTA can communicate and synchronise through the use the SMs shared
memory. Several CTAs can be executed concurrently on the same SM.

The fact that all threads of a CTA are executing the same program, allow the
individual cores of an SM to share components such as instruction schedulers,
caches and register files. The 192 cores of the GK110 streaming multiprocessor
are sharing four instruction schedulers. The instruction scheduler groups
adjacent threads of a CTA into warps of 32 threads, and dispatches instructions
to groups of 32 cores at a time. All 32 cores of such a subgroup always execute
exactly the same instructions in lock-step on different threads, single instruction,
multiple thread (SIMT). Each thread have its own register set and can branch

CHAPTER 4. GPU ARCHITECTURE AND PROGRAMMING 72

Figure 4.2: Streaming Multiprocessor of the NVIDIA Kepler GK110 GPU.
Illustration from NVIDIA Kepler White paper.

independently of the other threads. However, as all threads of a warp execute
in lock-step, control divergence between threads will be realised by disabling
threads that are not taking a given branch. This means that full efficiency is
only realised when all threads of a warp follow the same execution path.

Accessing memory on a GPU is typically slow and to obtain latency hiding
it is necessary to be aware of the ratio of arithmetic operations to number of
memory operations. Increasing arithmetic intensity can either come directly
from compute-intensive problems with high-degree of arithmetic operations
per thread or be achieved by launching orders of magnitudes more threads
than the total number of cores, such that some threads can perform useful work
while others wait for memory transactions to complete. A useful measure
is the occupancy of a streaming multiprocessor. Occupancy is defined as the
ratio of active warps to the maximum number of active warps that the SM
supports. The maximum number of supported warps is limited by the number
of registers and shared memory the program requires per group of threads,
and thus depends on the individual program as well as hardware parameters.

CHAPTER 4. GPU ARCHITECTURE AND PROGRAMMING 73

4.1.1 Memory hierarchy

The memory system of a GPU is hierarchically structured, with a large main
memory (global memory) of several gigabytes, a relatively small L2 cache
shared between all streaming multiprocessors (512 KB to 2 MB), as well as
various even smaller memory modules in each streaming multiprocessor. A
streaming multiprocessor provides its cores with an L1 cache, a read-only
texture buffer, a register file and an area of shared memory. The shared memory
module makes it possible for the cores inside an SM to communicate and is
also useful as a manually controlled read/write cache.

The register file and shared memory bank is the working memory of the
threads. Each SM of the GTX 780 Ti provides 256 KB of registers and 64 KB of
shared memory. However, but the register file and shared memory have to be
shared by all active threads. The number of registers and amount of shared
memory used per thread thus limit the number of active threads on the SM,
thus reducing occupancy. To obtain good occupancy it is thus beneficial to
limit register and shared memory usage.

Reading and writing to global memory is performed in transactions in-
volving entire blocks of successive memory locations. In GPU terms, this is
called memory coalescing, as many memory accesses are coalesced into a single
transaction. Accessing memory through coalesced transactions is essential for
performance, and we will discuss it further in Section 4.3 on optimisation of
GPU programs.

The bandwidth of global memory accesses are bound by the width of the
memory bus and the memory clock rate. For our NVIDIA Geforce GTX 780 Ti,
the bus width is 384 bit, the memory is clocked at 1750 Mhz, and with GDDR5
memory it has double data rate and double data lines. This gives a theoretical
bandwidth of:

1750 Mhz× 384 bit× 2× 2 = 336 Gbps

The effective bandwidth is however much lower, and must be measured empir-
ically. With NVIDIA’s bandwidth tester (bandwidthTest --cputiming),
we measure an effective bandwidth of 254.9 Gbps.

An even greater bottleneck is present in the connection between GPU and
CPU memories. Currently the CPU and the GPU are most often connected
through PCI Express bus, which in current versions are limited to a bandwidth
around 8-16 GB/s. Reducing data movement over the PCI Express bus is thus
even more crucial for performance. Alternative designs that allows CPUs and
GPUs to share the same memory system have been developed to mitigate this.

4.2 GPU programming

General purpose computing on graphics processing units (GPGPU) is the technique
of using GPUs (graphical processing units) for applications not necessarily

CHAPTER 4. GPU ARCHITECTURE AND PROGRAMMING 74

involving computer graphics1. There are two widely used GPU programming
platforms, namely OpenCL and CUDA. Each platform uses its own terminol-
ogy. We will not try to cover the differences, but stick mostly to the terminology
of OpenCL.

The execution of a GPU program has to be conducted by an accompanied
program executing on a CPU. The CPU is referred to as the host and the GPU is
called the device. Other concepts such as pointers or arrays are often prefixed
with the location (GPU or CPU) to specify where they reside. A host pointer is
thus a pointer pointing to host memory and a device-side array is an array located
in device memory. Observe, that OpenCL is not limited to interfacing with GPUs,
so the device and the host might be the same hardware unit.

The smallest unit of work on a GPU is a single thread of execution on a
core. However, to limit the number of scheduling units on the SMs, these cores
are grouped into warps (or wavefronts) of 16 or 32 cores executing the same
instructions in lock-step. All the threads are further arranged into equal-sized
groups called work-groups (or thread blocks), which in turn are arranged into
a grid of work-groups. Each work-group is executed on a single SM, which
provides shared memory accessible from all cores of that SM.

Programming a GPU is done by writing kernel programs or simply kernels.
A kernel specifies the work done by a single thread of the complete problem.
Synchronisation across threads is not necessary within warps, as they always
execute in lockstep. Synchronisation across threads in individual work-groups
is accomplished by barrier-functions. These calls must not occur inside condi-
tionals and shall thus always synchronise all threads inside the work-group.
Synchronisation between work-groups is possible only by splitting work into
several kernels.

Because synchronisation is not possible across work-groups, the common
structure of all GPU algorithms is to a) partition the input data between work-
groups, b) let each work-group process its designated part of the input, c) let
each work-group distribute its output to distinct sections of global memory. In
addition to writing such kernel programs, care has to be taken when scheduling
kernel calls and data-movement between host and device.

The host program, conducting which GPU kernels to launch, is also re-
sponsible for managing data movement between host and device memory in
between kernel invocations. However, newer generations of GPUs (which we
have not had available for this project) allow a unified virtual address space,
such that data movement can be performed on as-need basis, when a kernel
requests specific portions of an array, instead of being explicitly managed by
the host program.

1Some GPUs are built only for computation, and confusingly, sometimes the term “GPGPU”
also refer to these headless GPUs.

CHAPTER 4. GPU ARCHITECTURE AND PROGRAMMING 75

4.3 Optimisation of GPU programs

Efficient use of a GPU first of all requires attention to the memory bottlenecks
described earlier, and various optimisations can be used to address this bot-
tleneck. Optimizing memory usage either reduce the amount of transfers
necessary, or perform latency hiding that allow useful computations to run
while the waiting for memory transactions to complete.

In addition, another class of optimization addresses the SIMT nature of
GPUs, which introduces the problem of control divergence, where multiple
threads sharing the same instruction schedulers are allowed to diverge in their
control flow.

Finally, standard optimisation such as strength reduction, loop unrolling,
constant folding, and so on also have an impact when trying to obtain optimal
performance of GPU programs.

4.3.1 Memory throughput

Most significant are performance issues related to global-memory accesses.
Accessing global-memory on current generations of NVIDIA GPUs incurs
a 200-400 clock cycle stall [82], and can thus quickly overshadow any other
algorithmic improvement.

The number of global-memory operations can be decreased by various
means. We have already discussed how fusion techniques can lead to fewer
memory transactions (See Section 2.3). Other possibilities include the use of
shared-memory for intermediate storage; when the same data elements needs
processing more than once, or optimizing data access patterns that allows
coalescing of many memory accesses into a single transaction.

Blocking

Blocking [72], or tiling, is a technique for improving locality of reference,
through subdividing a problem in memory blocks, or tiles, that fit into the
cache. On GPUs shared memory can be used as a cache, and blocking can be
achieved by loading data into shared-memory, before performing the actual
computation.

Memory coalescing

Several memory transactions can be coalesced into a single transaction, if
threads in the same warp access the same segment simultaneously. On NVIDIA
GPUs, if 16 threads (a half-warp) access 16 words in the same aligned segment
of 64 or 128 bytes, this access will result in only a single memory-transaction,
regardless of the access pattern followed by the threads within that mem-
ory segment [82]. It is thus important to organise computations such that
threads sharing the same warp will take the same branches and issue memory
operations inside the same memory segments.

CHAPTER 4. GPU ARCHITECTURE AND PROGRAMMING 76

If input data is needed in a different order, than what can be achieved by
doing a coalesced traversal of memory, it can often be wise to load the data into
shared-memory in a coalesced fashion, before traversing it in the needed order.
This pattern is illustrated in Section 5.2, in an implementation of a transpose
operation.

Shared memory bank conflicts

Although shared-memory can be used to optimise global memory accesses,
shared-memory itself presents us with additional problems. The shared mem-
ory system used in NVIDIA GPUs is partitioned into memory-banks, each
accessible with a bandwidth of 32 bits per clock cycle [82]. Two simultaneous
loads to the same bank results in a conflict, stalling the computation. Special
care is thus also necessary when using shared-memory.

4.3.2 Utilisation

Utilising a GPU efficiently does not only require optimising memory trans-
actions, it also requires optimised utilisation of the GPU’s compute units
(streaming multiprocessors).

The various reasons why a GPU might not be fully utilised ranges from:
optimising algorithms for less inter-thread synchronisation, reducing resource
requirements (such as number of registers used), and increasing the parallelism
degree to be able to perform latency hiding.

Avoiding synchronisation

Threads are able to communicate at all levels of the hierarchy of the GPU,
but with vastly different cost. Synchronisation between work groups are only
possible through separating programs into individual kernels. This can in effect
also require costly memory transactions to global memory, and should thus be
avoided if possible. Mapping parallel algorithms such that synchronisation is
mostly required between threads in the same work group is thus important to
maximise utilisation.

Similarly, limiting inter-work group syncronisation can also be beneficial.
This is for instance possible if threads that need to communicate are allocated
to the same warp.

Latency hiding

Latency hiding is achieved when enough arithmetical work is available to
keep the processor active while waiting for memory transactions to complete.
Increasing the amount of arithmetic work per thread is not always possible,
and is very dependent on the algorithm being implemented. When threads in
a warp are waiting for I/O operations to complete, streaming multiprocessor
can execute warps from the same or other work-groups.

CHAPTER 4. GPU ARCHITECTURE AND PROGRAMMING 77

The number of work-groups and warps residing on a streaming multi-
processor depends on the resource requirements of the individual kernel, for
instance the amount of registers and shared memory required by the kernel. To
increase the number of resident work-groups and warps it is thus necessary to
decrease pressure on registers and shared memory. Choosing a smaller work-
group size might, for instance, reduce the amount of shared memory required.
However, smaller work-group sizes will often also increase the shared memory
requirements.

4.3.3 Thread divergence

Another challenge posed by the SIMT architecture of GPU streaming multipro-
cessors, is the use of a shared instruction scheduler for warps of threads. When
threads inside a warp deviate on their control flow paths, each separate path
must be executed in sequence, with the threads not following a given path
disabled. If data-dependent control flow is necessary in a given application,
it is thus necessary to optimise the grouping of threads into warps, such that
thread divergence inside warps is minimised. This can for instance be achieved
by bucketing similar values in a separate pass.

Chapter 5

FCL: Hierarchical data-parallel
GPU programming

Extended version of “Low-Level Functional GPU Programming”
presented at FHPC’16

In recent years, several languages for general purpose, data-parallel compu-
tation on GPUs have been suggested [29, 59, 96, 27, 62, 11]. Most of these
language developments have focused on providing users with high-level spec-
ifications of programs and performing a range of automatic optimizations.
Often no cost-model is specified, and the language is thus a black box for
users who want to reason about the performance of their programs. Parallel
algorithms researchers are sidelined, as it is hard to reason about the actual
efficiency and performance characteristics of algorithms. The user is decoupled
from the hardware model, and cannot be sure whether an operation will result
in a memory transaction or not, making unexpected performance hits hard to
debug. Also, some algorithms require memory access patterns not supported
by the prevalent set of primitives, or depend critically on hardware parameters
that these languages do not expose [25].

A body of work exists on the topic of modelling I/O usage in sequential
[66, 4] and parallel algorithms [3, 5, 103, 104], including modelling of hierarhical
memory systems, such as GPUs. However, the work in this area is mostly
concerned with machine models useful for analyzing algorithms, and does not
specify a programming model for those machine models.

In the GPU niche of data-parallel languages, Obsidian is an exception [96],
allowing for playfulness and invention on the low-level giving you (almost)
complete control over the GPU, and still allowing computations to be composed
efficiently using so called pull arrays and push arrays. These arrays are not
directly stored in a region of memory, but are rather representations of array-
computations. This means that most array operations are cheap: they do not
incur the overhead of writing a modified array to memory. Instead, they

78

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 79

modify the underlying symbolic array-computation directly. Furthermore, the
memory hierarchy of the GPU is exposed in the type system, allowing users to
reason about how programs are mapped to hardware.

Obsidian uses a multi-staged compilation approach, that allows users to
use Haskell as a meta-language generating Obsidian expressions, which can
for instance be used to generate all the statements of an unrolled loop, or to
precompute certain values already at code-generation time. However, this
approach also has a few drawbacks. Obsidian does not provide any general
loop constructs, kernels are compiled as individial programs, and no cross-
kernel optimizations can thus be performed.

We present FCL, a reimplementation of Obsidian with an external syntax im-
plemented in Haskell2010 as a self-contained compiler1. With FCL, we extend
on the work on Obsidian; eliminating the need of using meta-programming
techniques in program development, and introducing new operators and lan-
guage constructs to maintain the same expressive power. The embedded
nature of Obsidian also had its drawbacks, especially if used as an intermediate
language, which is another reason this project came to be.

In both Obsidian and FCL, computations are polymorphic in their mapping
to executions on the GPU hardware, by the use of level-annotations in array
types. We have developed a dynamic operational semantics for FCL that details
the computational model and makes it clear how the different levels map to
various iteration schemes on the GPU.

The rest of the chapter is structured as follows. Section 5.1 explains pull
and push arrays. In Section 5.2, we introduce FCL through three example
programs: array reversal, matrix transpose, and parallel reduction. Section
5.5, we demonstrate that FCL is able to generate efficient OpenCL-code. In
Section 5.3, we do a rigorous introduction to FCL, defining its type system and
dynamic semantics. With language fully presented we present some further
example programs in Section 5.4 and benchmark results in 5.5. Finally, we
conclude with a discussion of future work in Section 5.7 and 5.8.

5.1 Obsidian

FCL inherits pull and push arrays from Obsidian [35]. As mentioned previously,
these are not actual arrays manifested in memory, but are instead delayed array
computations that describe how to produce an array. When the result of a pull
or push array computation is written to memory, we say that the array has
been materialized.

The two types of arrays complement each other; pull arrays allow array
indexing, but array concatenation is inefficient. Push arrays on the other hand
allow for efficient concatenation, but disallow array indexing.

In Obsidian, iteration schemes on push arrays are annotated in the array
types, by a level-parameter. The level-parameter can be either Grid, Block, or
Thread, corresponding to the hierarchy of organization for GPU threads, and

1FCL is available at http://github.com/dybber/fcl

http://github.com/dybber/fcl

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 80

annotates the sequential/parallel structure of the underlying iteration scheme.
How levels are used will be explained in the context of FCL in the next section.

The main advantage of push arrays compared with pull arrays, is that they
allow for efficient implementation of functions that combine arrays, for exam-
ple array append and various interleavings. Combining pull arrays typically
lead to conditionals evaluated at each index of the array. The performance
hit of these conditionals can be severe, in particular in the cases when these
conditionals lead to threads diverging within a warp. Interleaving two pull
arrays is particularly bad as it means that each pair of consecutive threads take
different paths through the conditional, wasting half of the resources within
each warp in use by this interleaving.

Append and interleave of two push arrays can be achieved by generating
two separate loop structures and offsetting the writer function.

In Obsidian, the programmer can access the underlying array representation
based on index-functions and writer-functions of both pull and push arrays.
In FCL, we keep the concepts of pull and push arrays, but abstract away from
their actual representation, as will be illustrated in the rest of the chapter.

5.2 Case Studies in FCL

In this section we will demonstrate the use of FCL by implementing three
different GPU algorithms: array reversal, array transposition using shared
memory, and parallel reduction.

5.2.1 Array Reversal

Consider a program that reverses an array:

sig reverse : forall ’a. [’a] -> [’a]
fun reverse arr =

let n = length arr
in generate n (fn i => index arr (n - i - 1))

This program is implemented using the function generate, a language prim-
itive that creates a new array by mapping the given function over the index-
space [0;n− 1]. The program here cannot be compiled directly to GPU code, as
it does not mention how it should be mapped to sequential or parallel loops.
The arrays in this example are pull arrays, which are identified by types of the
form [’a], where ′a is a type variable, representing an arbitrary non-function
type. To compile an FCL program into a kernel, we require the user to add an
iteration scheme, detailing how this kernel should be mapped to the threads of
the GPU. Such iteration schemes are annotated by a level, which can be either
thread (sequential execution), block, or grid. The iteration scheme is added using
a function called push. Let us demonstrate, the basic functionality by creating
a block-level version of reverse, that is executed in parallel by a work-group
of threads.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 81

sig revBlock : forall ’a. [’a] -> Program<block> [’a]<block>
fun revBlock arr = return<block> (push<block> (reverse arr))

Notice how the iteration scheme is reflected in the array type, [’a]<block>.
This is a push array (using Obsidian terms), and is contructed using the push
function, which, given a level parameter, associates an iteration scheme with the
given pull array:

push : forall <level> ’a. [’a] -> [’a]<level>

The push array is further encapsulated in a Program-monad, using the
return function. The Program monad allow us to restrict where values can be
used, such that values computed in one kernel can not slip out, and be reused
in another, where the values are no longer available. We will return to this
aspect later.

To distribute the computation across several blocks, the input-arrays have to
be partitioned and the resulting reversed array-chunks need to be concatenated
back together again in the right order. In this case, the order of the chunks also
needs to be reversed before concatenation.

sig revDistribute : forall ’a. int -> [’a]
-> Program <grid> [’a]<grid>

fun revDistribute chunkSize arr =
splitUp chunkSize arr
|> map revBlock
|> reverse
|> concat<block> chunkSize

The operator |> is reversed function application (the syntax is taken from
F# and Elm), also known as forward-pipe. Notice that the same reverse
function can be used both to reverse the order of elements and the order of
the blocks. The operation concat distributes the computation across a grid of
blocks, thereby raising the level from block to grid. This is also evident from
the type of concat, where 1+level, unifies with levels of one level higher in
the hierarchy (details are given in Section 5.3).

concat : int -> [Program<level> [’a]<level>]
-> Program<1+level> [’a]<1+level>

This means that each subarray is executed in a separate block, and concat
makes sure that each block writes its result to adjacent subsections of the array
it returns. Alternatively we could have applied push <grid> directly to the
primitive reverse function, to add a grid-level iteration scheme to the array, but
that is only possible in simple cases, where there is no dependencies between
threads and where we do not need to manipulate the amount of data processed
by each block or how results are combined. Neither splitUp nor concat
is a primitive of FCL, and more complicated tiling and interleaving can thus
be implemented, as we will see in the following example. splitUp can be
implemented using two applications of the previously introduced generate:

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 82

sig splitUp : forall ’a. int -> [’a] -> [[’a]]
fun splitUp n arr =

generate ((length arr) / n)
(fn i => generate n

(fn j => index arr ((i * n) + j)))

5.2.2 Transpose in Shared Memory

The simple revDistribute function can also be implemented in Obsidian.
Now consider the problem of matrix transposition. In FCL we only have
one-dimensional arrays, which means that a two-dimensional matrix must
be represented as its flat representation together with information about the
number of columns and rows.

If we follow a naive approach, we can transpose a two-dimensional matrix,
using the following transpose function:

sig transpose : forall ’a. int -> int -> [’a] -> [’a]
fun transpose rows cols arr =

generate (rows * cols)
(fn n =>

let i = n / rows
j = n % rows

in index arr (j * rows + i))

If this version of transpose were to be executed in parallel on the GPU, using
the same type of partitioning and concatenation as in the reverse example, it
would lead to uncoalesced writes. When a group of GPU threads collectively
read or write a section of memory, the memory transactions can be coalesced if
they all fall into the same segment of memory. In this case, when adding an
iteration scheme to the final array, the final writes will always be coalesced in a
single transaction, but the indexing into the input array will not, and the reads
from the input-array will thus not be able to coalesce and we will incur a huge
performance penalty.

A more efficient approach is to chunk up the matrix in smaller two-dimensional
tiles, transpose each tile in shared memory, and finally stitch the tiles back
together again (in transposed order). By using the shared-memory as inter-
mediate storage, we make sure that both reads and writes to global memory
are coalesced, as the threads can first collaborate on moving data to shared
memory, and afterwards collaborate on copying data from shared memory to
the output-array.

The transpose algorithm is presented in Figure 5.2. Notice the use of
“do”-notation, for operating in Program-monad. The transpose algorithm
follows roughly the same structure as the reverse example. However, instead
of splitting the linear input-array into chunks (one following the other), we
split and concatenate two-dimensional tiles with the functions splitGrid
and concatGrid. The important thing to notice is that this reading/writing

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 83

Figure 5.1: Transpose in Shared memory. Figure by NVIDIA.

sig transposeBlock : forall ’a. int -> int
-> Program<block> [’a]
-> Program<block> [’a]<block>

fun transposeBlock rows cols arr =
do<block>

{ arr’ <- arr
; return<block> (push<block> (transpose rows cols arr’))
}

sig transposeTiled : forall ’a. int -> int -> int -> [’a]
-> Program <grid> [’a]<grid>

fun transposeTiled tileDim rows cols elems =
splitGrid tileDim cols rows elems
|> map push<block>
|> map force<block>
|> map (transposeBlock tileDim tileDim)
|> transpose (rows / tileDim) (cols / tileDim)
|> concatGrid<block> tileDim cols

Figure 5.2: Matrix transposition in FCL using shared-memory to obtain mem-
ory coalescing.

order is encapsulated in splitgrid and concatgrid, and a library of such
operations can be provided to users.

Also, we apply the function force which executes an iteration scheme,
writing the array to shared memory, which converts the push array into a pull
array, allowing the array to be indexed arbitrarily:

force : [a]<lvl> -> Program<lvl> [a]

The result is a single kernel performing the transposition with all steps
fused, performing just as well as the standard OpenCL implementation. For
the sake of simplicity, the kernel in the form presented here, works only for
matrices that can be evenly divided by tileDim. To use this method for other
matrices, a reshape operation increasing its size can be performed and, the

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 84

surplus columns and rows, can afterwards be removed using drop. We expect
that these operations will be able to fuse, such that no additional reads/writes
are necessary.

5.2.3 Parallel Reduction

To implement a parallel reduction in FCL, we will perform a tree-reduction
inside each work-group; this subcomputation is implemented by splitting the
subarray in two, and performing an element-wise sum of the two halves. The
implementation is similar to what has previously been shown in Obsidian [96].

The FCL prelude provides the following functions for splitting arrays in
two parts and joining arrays element-wise.

sig zipWith : forall ’a ’b ’c. (’a -> ’b -> ’c)
-> [’a] -> [’b] -> [’c]

fun zipWith f a1 a2 =
generate (min (length a1) (length a2))

(fn ix => f (index a1 ix) (index a2 ix))

sig halve : forall ’a. [’a] -> ([’a], [’a])
fun halve arr =

let half = (length arr) / 2
in splitAt half arr

The tuple returned by halve is merely a syntactic construction, only the tuple
element will be present in the OpenCL kernel code. Using these we can now
write a function for taking one reduction-step:

sig step : forall <lvl> ’a. (’a -> ’a -> ’a) -> [’a]
-> Program <lvl> [’a]<lvl>

fun step<lvl> arr =
let x = halve arr
in return<lvl> (push<lvl> (zipWith f (fst x) (snd x)))

Notice that the function is polymorphic in the level-variable lvl. This strategy
makes it possible to postpone the decision of whether step will run sequen-
tially or at one of the parallel levels of the hierarchy.

In Obsidian, we would have implemented this functionality as a recursive
function on the meta-level. Recursion on the meta-level is possible in Obsidian,
as the function is working on just a chunk of the array and we would statically
know the chunk size. The meta-level recursion in Obsidian would generate an
unrolled loop.

In FCL we instead provide a built-in looping-construct, while, which
accepts a stop-condition and a stepping function as arguments as well as the
initial array.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 85

sig reduce : forall <lvl> ’a. (’a -> ’a -> ’a) -> [’a]
-> Program<lvl> [’a]<lvl>

fun reduce<lvl> f arr =
do <lvl>
{ a <- while<lvl> (fn a => 1 != length a)

(step<lvl> f)
(step<lvl> f arr)

; return<lvl> (push<lvl> a)
}

The above program will generate a while-loop in the OpenCL kernel, and
automatically force values to shared memory between operations as well as
performing synchronization between threads in the work-group. In cases
where the chunk size is known at compile time, we can use loop unrolling
techniques to achieve the same code as if we had used Obsidian.

The while-construct assumes that arrays never need to grow during eval-
uation and thus reuses the same area of shared memory on each iteration.
Also, while will always materialize the input array to shared memory before
starting the iteration. To avoid doing a direct copy from global memory to
shared memory, in the reduction kernel, we take one initial step before starting
the while-loop, an optimization called “First add during load” by Mark Harris
[53].

To perform the reduction using multiple work-groups, we need to split a
larger array and concatenate the intermediate sums:

sig reducePart : forall ’a. (’a -> ’a -> ’a) -> [’a]
-> Program<grid> [’a]<grid>

fun reducePart f arr =
let chunkSize = 2 * #BlockSize
in splitUp chunkSize arr

|> map (reduce <block> f)
|> concat 1

Here #BlockSize will refer to either OpenCL’s get_local_size(0) or a
constant specified by the user as a configuration option at compilation time.

Another difference from Obsidian also comes to light here; as we no longer
distinguish between statically known values and dynamically known values,
we are not be able to infer that reduce <block> f always returns a single
scalar. We solve this by requiring an extra argument to concat, an expression
computing the size of each chunk to concatenate. The size is necessary as a
parameter, as memory allocations must be performed before executing a GPU
kernel.

In addition, static sizes are required by Obsidian to determine the sizes of
shared memory allocations, and allow memory reuse, when two arrays are not
live simultaneously. In FCL, two uses of shared memory will never overlap,
even though they are not live at the same time. An alternative allocation
algorithm is left as future work. In many cases we should be able to determine

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 86

these sizes, as long as block-sizes are declared, not computed, and in these
cases we should be able to improve memory footprint.

The above reduceGrid function will result in a kernel that reduces chunks
of the array in each of their work-group, to a single value. These values are
concatenated, but to do the full reduction the reduce kernel has to be invoked
again. We perform a similar while loop, as the one in the original reduce
function, here we are instead iterating the grid-level function reducePart:

sig reduceFull : forall ’a. (’a -> ’a -> ’a) -> [’a]
-> Program <grid> ’a

fun reduceFull f arr =
do<grid>
{ a <- while<grid>

(fn arr => 1 != length arr)
(reducePart f)
(reducePart f arr)

; return<grid> (index a 0)
}

In the next section, we will introduce FCL more formally, before we present
some larger examples in Section 5.4.

5.3 Formalisation

To better understand the limitations and performance of programs written in
FCL, and to validate correctness, we will now turn to a more formal treatment
of the language.

We use i, d, b, to range over integers, doubles, and booleans, respectively. Let
α range over an infinite set of type variables, let δ range over an infinite set of
level variables, and let x range over program variables.

Whenever z is some object, we write ~z to range over sequences of simi-
lar objects. When we want to be explicit about the size of a sequence ~z =
z0, · · · , z(n−1), we often write it on the form ~z(n).

The core syntax of FCL is defined as follows:

bv ::= i | d | b (scalars)
l ::= δ | Z | 1 + l (levels)

e ::= bv | x <~l> | (e1, e2) | () (expressions)
| fn x => e | e1 e2
| let x <~δ> = e1 in e2

| if e1 then e2 else e3
The notation () is a unit value.
The set of built-in operations is not visible from this syntax presentation,

and will be presented in the next sections. It is through the built-in operations
that the specifics of the language really becomes clear.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 87

Notice that a variable x is parameterised over a number of level parameters, ~δ,
with the notation x <~δ>, where δ is a level variable. Each use of a variable require
specifying concrete values for all level arguments, for instance x thread. For
variables that does not require any level arguments we will use the shorthand
x for x <>.

We often use the following short-hands for the first three levels:

thread = Z

block = 1 + Z

grid = 1 + (1 + Z)

Unlike Obsidian, we do not support warp-level computations, which re-
duces the complexity of the implementation. It is possible to reintroduce
warp-level into the model, and doing so will likely be beneficial, performance
wise, for several applications.

5.3.1 Type System

The syntax of FCL types, kinds and type-schemes is defined as follows:

bt ::= α | int | double | bool (base types)
τ ::= α | bt | (τ1, τ2) | τ1 → τ2 | unit (types)
| [τ] (pull arrays)
| [bt]<l> (push arrays)
| Program<l> τ (program monad)

κ ::= BT | GT | TYP (kinds)

σ ::= ∀<~δ> −−→α : κ. τ (type-schemes)

As previously mentioned, the type of pull arrays with elements of type τ
are written [τ]. Push arrays can only contain values of base types (bt). The
type of push arrays containing values of type bt is written [bt]<l>, where l
denotes the level in the GPU hierarchy where it can be written if materialized.
To encapsulate materialized arrays, the type system includes a hierarchy of
monads Program<l> τ , with l denoting where on the GPU hierarchy the
monadic actions are executed.

To define the set of valid types (under assumptions for free variables), we
define a relation ∆ ` τ below, where ∆ are kind environments, mapping type
variables to kinds:

∆ ::= α : κ,∆ | ε
The kind-system divides types into three categories. Base types (BT),

ground types (GT), and general types (TYP). Base types are types of scalar
values, which are the only types of values allowed in push arrays. Ground
types are all types except function-types, and are the types allowed in pull
arrays.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 88

In practice, we often leave out kinds, when they are obvious from the
context.

Kind system ∆ ` τ : κ

∆ ` int : BT
(5.1)

∆ ` double : BT
(5.2)

∆ ` bool : BT
(5.3)

∆ ` unit : GT
(5.4)

∆(α) = κ

∆ ` α : κ
(5.5)

∆ ` τi : κ

∆ ` (τ1, τ2) : κ
(5.6)

∆ ` τ : BT

∆ ` τ : GT
(5.7)

∆ ` τ : GT

∆ ` τ : TYP
(5.8)

∆ ` τ : TYP ∆ ` τ ′ : TYP

∆ ` τ → τ ′ : TYP
(5.9)

∆ ` τ : GT

∆ ` [τ] : GT
(5.10)

∆ ` τ : BT

∆ ` [τ]<l> : GT
(5.11)

∆ ` τ : BT

∆ ` Program<l> τ : GT
(5.12)

A type environment Γ is a set of type assumptions of the form x : σ,
mapping program variables to type-schemes:

Γ ::= x : σ,Γ | ε
The types of built-in array combinators are shown in Figure 5.4. In addition

a set of built-in scalar operations are defined in Figure 5.5. An initial typing
environment Γinit is formed by adding a binding op : TySc(op) for each op.

The operation interleave is used to combine array operations at one
level into programs at the level above. It is through interleave that opera-
tions such as concat and concatGrid used in the previous examples, can be
implemented. The details of interleave will be explained when the seman-
tics is described in Section 5.3.3. The operations power, poweri, and while
allow iteration of array programs, in the same style as the power operator in
APL.

To support sequential loops on thread-level, the operation seqfor is pro-
vided. The function seqfor constructs an array through repeatedly executing
a function that returns index-value pairs, corresponding to the assignment that
should be done in that iteration. In Figure 5.3 we shown how seqfor might
be used to implement standard sequential algorithms such as folds and scans
on arrays.

A substitution S maps type variables to types and level variables to levels.
The result of applying a substitution S to an object X , written S(X), is first to
extend the substitution to be the identity outside its domain and then simulta-
neously substitute each type variable α in X with S(α) and each level variable
l in S(X) with S(l), after appropriately renaming bound variables in X . The
support of a substitution S, written Supp S, is the set of elements v for which
S(v) 6= v.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 89

sig foldl : forall ’a ’b. (’a -> ’b -> ’a) -> ’a -> [’b]
-> [’a]<thread>

fun foldl f b array =
seqfor 1 (1 + (length array))

(fn read => fn i =>
(0, if i == 0

then b
else f (read 0) (index array (i - 1))))

sig scanl : forall ’a ’b. (’a -> ’b -> ’a) -> ’a -> [’b]
-> [’a]<thread>

fun scanl op b array =
let n = length array
in seqfor (1 + n) (1 + n)

(fn read => fn i =>
(i, if i == 0

then b
else op (read (i - 1)) (index array (i - 1))))

Figure 5.3: Sequential left fold and left scan, using seqfor.

A type scheme σ = ∀<~l> ~α.τ generalises a type τ ′ via a substitution S,
written “σ � τ ′ via S”, iff Supp S ⊆ {~α,~l} and S(τ) = τ ′.

The type system allows inferences among sentences of the form ∆,Γ ` e : τ ,
which are read: “under the assumptions ∆,Γ the expression e has type τ”. The
typing rules are shown in Figure 5.6.

The typing rules are mostly standard. The only interesting rules are the
rules for let-bindings and the rule for variable instantiation, which are extended
to support level parameters.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 90

op TySc(op)
fst : ∀α, β. (α, β)→ α
snd : ∀α, β. (α, β)→ β
length : ∀α.[α]→ int
lengthPush : ∀<δ> α. [α]<δ>→ int
map : ∀α, β. (α→ β)→ [α]→ [β]
mapPush : ∀<δ> α, β. (int→ α→ β)→ [α]<δ>→ [β]<δ>
generate : ∀α. int→ (int→ α)→ [α]
index : ∀α. [α]→ int→ α
push : ∀<δ> α. [α]→ [α]<δ>
force : ∀<δ> α. [α]<δ>→ Program<δ> [α]
return : ∀<δ> α. α→ Program<δ> α
bind : ∀<δ> α, β. Program<δ> α→ (α→ Program<δ> β)→ Program<δ> β
interleave : ∀<δ> α. int→ ((int,int)→ int)→ [Program<δ> [α]<δ>]→ Program<1 + l> [α]<1 + δ>
interleaveSeq : ∀<δ> α. int→ ((int,int)→ int)→ [Program<δ> [α]<δ>]→ Program<δ> [α]<δ>

op TySc(op)
power : ∀<δ> α. int→ ([α]→ Program<δ> [α]<δ>)→ Program<δ> [α]<δ>→ Program<δ> [α]
poweri : ∀<δ> α. int→ (int→ [α]→ Program<δ> [α]<δ>)→ Program<δ> [α]<δ>→ Program<δ> [α]
while : ∀<δ> α. ([α]→ bool)→ ([α]→ Program<δ> [α]<δ>)→ Program<δ> [α]<δ>→ Program<δ> [α]
seqfor : ∀α. [α]<thread>→ int→ ((int→ α)→ int→ (int, α))→ [α]<thread>

Figure 5.4: Built-in operators with type schemes.

+ : int→ int→ int

- : int→ int→ int

* : int→ int→ int

/ : int→ int→ int

% : int→ int→ int

. . .

Figure 5.5: Built-in scalar operators.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 91

Expression typing ∆,Γ ` e : τ

∆,Γ ` i : int
(5.13)

∆,Γ ` d : double
(5.14)

∆,Γ ` b : bool
(5.15)

∆,Γ ` () : unit
(5.16)

∆,Γ ` e1 : τ1 ∆,Γ ` e1 : τ2
∆,Γ ` (e1, e2) : (τ1, τ2)

(5.17)

∆, (Γ, x : τ ′) ` e : τ

∆,Γ ` fn x => e : τ ′ → τ
(5.18)

∆,Γ ` e1 : τ ′ → τ ∆,Γ ` e2 : τ ′

∆,Γ ` e1 e2 : τ
(5.19)

∆,Γ ` e1 : bool ∆,Γ ` e2 : τ ∆,Γ ` e3 : τ ∆ ` τ : BT

∆,Γ ` if e1 then e2 else e3 : τ
(5.20)

Γ(x) � τ via S S(~δ(n)) = ~l(n) ∆ ` τ : TYP

∆,Γ ` x <~l(n)> : τ
(5.21)

(∆, ~α(k) : ~κ),Γ ` e1 : τ ′ ftv(Γ) ∩ {~α,~δ} = ∅
σ = ∀~δ(n) ~α(k).τ ′ ∆, (Γ, x : σ) ` e2 : τ

∆,Γ ` let <~δ(n)> x = e1 in e2 : τ
(5.22)

Figure 5.6: Static semantics for FCL

5.3.2 Monomorphization

Before compilation we perform monomorphization, which is performed follow-
ing the rules in Figure 5.7. The only thing different from traditional monomor-
phization is the use of level variables which are explicitly given by the user at
variable usage.

A monomorphization environment E maps program variables to objects of the
form (σ, e):

E ::= x 7→ (σ, e), E | ε
For each predefined operator op with type scheme σ = Γinit(op), we add a

binding op 7→ (σ, op) to create the initial monomorphization environment Einit.
Following these rules, all let-defined variables are inlined. However, our

implementation maintains these let-bindings, creating a new binding for each
different usage of the variable and avoids introducing more copies than there
are type instances.

5.3.3 Dynamic Semantics

We now present the semantics of the language, which will aid understand
how FCL terms can be compiled and, in particular, how level-types guide the
compilation.

The evaluation relation, we define below, is annotated with a location.
Locations emulate the hierarchical tree structure of a parallel machine, and are

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 92

Monomorphization E ` e⇒ e′

E ` i⇒ i
(5.23) E ` d⇒ d

(5.24) E ` b⇒ b
(5.25)

E ` e1 ⇒ e′1 E ` e2 ⇒ e′2
E ` (e1, e2)⇒ (e′1, e

′
2)

(5.26)

E , x 7→ (τ, x) ` e⇒ e′

E ` fn x : τ.e⇒ fn x : τ.e′
(5.27)

E ` e1 ⇒ e′1 E ` e2 ⇒ e′2
E ` e1 e2 ⇒ e′1 e

′
2

(5.28)

E ` e1 ⇒ e′1 E ` e2 ⇒ e′2 E ` e3 ⇒ e′3
E ` if e1 then e2 else e3 ⇒ if e′1 then e

′
2 else e

′
3

(5.29)

E(x) = (σ, e)

σ ≥ τ via S S(~δ(n)) = ~l(n)

E ` x <~l(n)>⇒ S(e)
(5.30)

E ` e1 ⇒ e′1 fv(E) ∩ {~α,~δ} = ∅
σ = ∀~δ(n)~α(k).τ

E , x 7→ (σ, e′1) ` e2 ⇒ e′2
E ` let x : σ <~δ(n)> = e1 in e2 ⇒ e′2

(5.31)

Figure 5.7: Monomorphization of FCL expressions.

of the form:

loc ::= Thread(thread_id) thread_id ∈ N

| Group(
−→
loc(n))

Locations relates to levels and we introduce similar shorthands for blocks and
grids.

Block(
−→
loc(n)) = Group(loc0, . . . , locn−1)

where loci = Thread(thread_idi), for some thread_idi

Grid(
−→
loc(n)) = Group(Block(loc0), . . . ,Block(locn−1))

We also introduce a relation, loc B l, which defines whether the location loc
is respecting the level l:

loc B l

Thread(thread_id) B Z
(5.32)

loci B l for all i

Group(
−→
loc) B 1 + l

(5.33)

To allow fusion, certain rules of the semantics are allowed to fire during
compile time, such as the rules for creating and indexing into pull arrays. To
distinguish between these two sets of rules, we annotate the judgment with a
location and a symbol 0 or 1 depending on whether the rule may fire at compile
time. In the semantics we allow all non-array accessing operations at arbitrary

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 93

loc I τ

loc I bt
(5.34)

loc I ()
(5.35)

loc I τ1 loc I τ1
loc I (τ1, τ2)

(5.36)
loc I τ1 loc I τ1
loc I τ1 → τ2

(5.37)

loc I τ
loc I [τ]

(5.38)
loc I [bt]<l>

(5.39)

loc B l loc I τ
loc I Program<l> τ

(5.40)

Figure 5.8: Relation loc I τ

levels, which, in particular, is used to model that such operations may occur at
the host level, when calculating array sizes.

We define the relation loc I τ in Figure 5.8 to denote types τ which can be
evaluated at loc.

Values in FCL are either base values (bv), lambda abstractions, pull arrays,
push arrays, delayed interleavings of push arrays, delayed sequential loops or
a value in a Program context.

v ::= bv (base values)
| fn x => e
| [e0, . . . , en−1] (pull array)
| Push <δ> v (push array)
| Interleave vn vf v (delayed interleave)
| InterleaveSeq vn vf v (delayed sequential interleave)
| SeqFor [e0, . . . , en−1] n i f g (sequential for)
| Program <l> v

While pull arrays are traditionally presented as function values (see Chapter
2), we use a representation of arrays of expressions, to be able to use them as a
vehicle for modelling various evaluation orders in the small-step semantics.

An array value of type Program <l> [bt]<l> is essentially modelled as a
tree structure, with “pushed” pull arrays at the leaves (Push [~e]), interleavings
forming the body of the tree, and a Program <l> v at the root.

The SeqFor models a sequential loop constructing an array. The user
provides an initial array, which is materialized before repeatedly executing f to
update the array. In this way in-place updates are allowed. In practice, we also
provide an unsafe version of seqfor, where the initial array is not initialized,
and it is the user’s responsibility to make sure all values are written and not to
index into locations that do not yet have a value.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 94

Value typing ∆,Γ ` v : τ

∆, (Γ, x : τ ′) ` e : τ

∆,Γ ` λx.e : τ ′ → τ
(5.41)

∆,Γ ` ei : τ ∆ ` τ : GT

∆,Γ ` [e1, . . . , en] : [τ]
(5.42)

∆,Γ ` v : [τ] ∆ ` τ : BT

∆,Γ ` Push <l> v : [τ]<l>
(5.43)

∆,Γ ` v : τ

∆,Γ ` Program <l> v : Program<l> τ
(5.44)

∆,Γ ` vn : int ∆,Γ ` vf : int→ int→ int
∆,Γ ` v : [Program<l> [τ]<l>]

∆,Γ ` Interleave vn vf v : [τ]<1 + l>
(5.45)

∆,Γ ` vn : int ∆,Γ ` vf : int→ int→ int
∆,Γ ` v : [Program<1 + l> [τ]<l>]

∆,Γ ` InterleaveSeq vn vf v : [τ]<l>
(5.46)

∆,Γ ` vi : τ ∆,Γ ` n : int ∆,Γ ` i : int ∆,Γ ` g : (τ → τ ′)
∆,Γ ` f : (int→ τ)→ int→ (int, τ)

∆,Γ ` SeqFor [~v(n)] n i f g : [τ ′]<thread>
(5.47)

Figure 5.9: Typing of values

To support map operations on an array generated with seqfor, an extra
function (g) is added, which initially is just an identity-function.

We extend the typing relation to include typing of values in Figure 5.9, and
extend our notion of expressions (e) to include values (v):

e ::= . . . | v

We further add two functions ifP and permute to the language, which
are necessary for formalising the language as a small-step semantics; these
constructs, however, are not part of the implemented language. Their types
are given below. The ifP function allows conditionals on programs, which is
a necessary construct for unrolling a single step of the iteration constructs. The
permute function performs a scatter operation similar to the one described
in Chapter 2 and which is also found in NESL and Accelerate. We use the
permute function to simplify our formalisation of interleave below; in
practice, however, these two operations are implemented as a single step,
which avoids the overhead of storing the permutation vector to memory. We
introduce permute mainly to simplify the formalisation.

op TySc(op)
ifP : ∀<δ> α. bool→ Program<δ> α→ Program<δ> α→ Program<δ> α
permute : ∀<δ> α. [int]→ [[α]<δ>]→ Program<δ> [α]

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 95

Evaluation contexts

E ::= [·] | E e | v E
| if E then e1 else e2

| (E, e) | (v,E) | fst E | snd E

Figure 5.10: Evaluation contexts for FCL

Evaluation contexts, ranged over by E are defined i Figure 5.10. When E is
an evaluation context and e is an expression, we write E[e] to denote the
expression resulting from filling the hole in E with e.

The dynamic semantics is defined as a small step reduction semantics, with
the judgment form e ↪→c

loc e
′/err, where c ranges over costs 0 and 1. Intuitively,

a large number of the rules for the operational semantics, namely those that are
annotated with a cost of 0, denote “administrative reductions”, which appear
at compile time and therefore are not directly associated with a runtime cost.

We shall later present a property stating that a well-typed expression e is
either a value or it evaluates in one step, with cost 0 or 1 to another expression
e′ or the special token err, signaling an error. Such errors cover index-out-of-
bounds errors when reading from and writting into arrays. Other errors, not
considering non-termination, are ruled out by the static type system.

We shall not formally demonstrate a phase-distinction property for the
language specifying that the 0-cost rules can be implemented through a compi-
lation into a lower-level imperative language suitable for execution on parallel
architectures. However, the implementation for FCL that targets OpenCL, for
which benchmarks are given in Section 5.5, provides evidence for such a phase
distinction.

The evaluation rules are separated into a number of groups and appear in
Figures 5.11–5.14. The first group of rules appear in Figure 5.11. These rules,
include contextual rules and rules that implements compile-time function
application, compile-time elimination of tuples, and the introduction of pull
arrays and associated operations. Only the operation of indexing into a pull-
array is considered to have a cost different from 0. The reason is that the
operation is considered to perform bounds-checking, which in the worst case
will happen at runtime.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 96

Small-step semantics e ↪→c
loc e

′/err

e ↪→c
loc e

′ E 6= [·]
E[e] ↪→c

loc E[e′]
(5.48)

e ↪→c
loc err E 6= [·]
E[e] ↪→c

loc err
(5.49)

(fn x => e1) v2 ↪→0
loc e1[v2/x]

(5.50)

fst (v1, v2) ↪→0
loc v1

(5.51)
snd (v1, v2) ↪→0

loc v2
(5.52)

map f [e0, e1, . . . , en−1] ↪→0
loc [f e0, f e1, . . . , f en−1]

(5.53)

interleave v1 v2 v3 ↪→0
loc Interleave v1 v2 v3

(5.54)

interleaveSeq v1 v2 v3 ↪→0
loc InterleaveSeq v1 v2 v3

(5.55)

seqfor (Push <thread> [~e(n)] m f ↪→0
loc SeqFor [~e(n)] m 0 f (fn x => x)

(5.56)

push <l> v ↪→0
loc Push <l> v

(5.57)

generate n f ↪→0
loc [f 0, . . . , f (n− 1)]

(5.58)
length [e0, . . . , en−1] ↪→0

loc n
(5.59)

i ∈ [0, n)

index i [e0, . . . , en−1] ↪→1
loc ei

(5.60)
i 6∈ [0, n)

index i [e0, . . . , en−1] ↪→1
loc err

(5.61)

Figure 5.11: Small-step semantics

The second group of rules are presented in Figure 5.12, and include rules
for sequencing monadic operations, rules for determining the length of a
push-array, and rules for map-map fusion on push arrays. Each of these rules
contribute with 0 runtime cost; in particular, map-map fusion is guaranteed to
be performed at compile time.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 97

Small-step semantics (continued) e ↪→0
loc e

′/err

loc B l
return <l> v ↪→0

loc Program <l> v
(5.62)

loc B l
bind <l> (Program <l> v) f ↪→0

loc f v
(5.63)

lengthPush (Push <l> [e0, . . . , en−1]) ↪→0
loc n

(5.64)

lengthPush (Interleavem f <l> [p0, . . . , pn−1]) ↪→0
loc mulim n

(5.65)

lengthPush (InterleaveSeqm f <l> [p0, . . . , pn−1]) ↪→0
loc mulim n

(5.66)

lengthPush (SeqFor [~v(n)] m i f g) ↪→0
loc n

(5.67)

mapPush g (Push <l> v) ↪→0
loc Push <l> (map g v)

(5.68)

∀i ∈ [0;n(pi = Program <l> [e0, . . . , em−1]
p′i = Program <l> [g e0, . . . , g em−1]

mapPush g (Interleavem f <l> [p0, . . . , pn−1])

↪→0
loc Interleavem f <l> [p′0, . . . , p

′
n−1]

(5.69)

∀i ∈ [0;n(pi = Program <l> [e0, . . . , em−1]
p′i = Program <l> [g e0, . . . , g em−1]

mapPush g (InterleaveSeqm f <l> [p0, . . . , pn−1])

↪→0
loc InterleaveSeqm f <l> [p′0, . . . , p

′
n−1]

(5.70)

mapPush h (SeqFor [~e(n)] m i f g) ↪→0
loc (SeqFor [~e(n)] m i f (h ◦ g))

(5.71)

Figure 5.12: Small-step semantics (continued)

Figure 5.13 covers the third group of rules and detail the evaluation of se-
quential computations in a single GPU thread t. Rules (5.73)–(5.75) perform the
actual thread-level computations, including scalar operations and conditionals.

Rules (5.76)–(5.80) specify how force expressions are evaluated, when
invoked on sequential computations (thread level). The first two rules specify
an array is computed sequentially by a single thread with thread ID t. The step
cost is not limited, as it might both take 0 cost and 1 steps.

The rules for seqfor are described using monadic expressions. Rule (5.78)
computes the input array through invoking the just explained thread-level
force. Rule (5.79) computes a single iteration of the loop, through invoking
the f function and writing the value u to index p in the array. Rule (5.80) is
invoked after the final iteration and applies the function g to all elements.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 98

Small-step semantics (continued) e ↪→c
Thread(t) e

′/err

addi v1 v2 ↪→1
Thread(t) v1 + v2

(5.72)
muli v1 v2 ↪→1

Thread(t) v1 × v2
(5.73) . . .

if true then e1 else e2 ↪→1
Thread(t) e1

(5.74)

if false then e1 else e2 ↪→1
Thread(t) e2

(5.75)

ei ↪→c
Thread(t) e

′
i

force (Push <thread> [bv0, . . . , bvi−1, ei, . . . , en−1])

↪→c
Thread(t) force (Push <thread> [bv0, . . . , bvi−1, e′i, . . . , en−1])

(5.76)

ei ↪→c
Thread(t) err

force (Push <thread> [bv0, . . . , bvi−1, ei, . . . , en−1]) ↪→c
Thread(t) err

(5.77)

force (SeqFor [~e(n)] m i f g)

↪→1
Thread(t) bind (force (Push <thread> [~e(n)])) (fn v => force (SeqFor v m i f g))

(5.78)

i < m

force (SeqFor [~v(n)] m i f g)

↪→1
Thread(t)

bind (f (fn k => vk) i)

(fn (p, u) => force (SeqFor [v0, . . . , vp−1, u, vp+1, . . . , vn−1] m (i+ 1) f g))

(5.79)

i = m

force (SeqFor [~v(n)] m i f g) ↪→1
Thread(t) force (Push [g v0, . . . , g vn−1])

(5.80)

Figure 5.13: Small-step semantics (continued)

The rules in Figure 5.14 specify how parallel expressions in the Program-
monad are evaluated (above the thread level). Through the loc B l relation,
it is specified how a computation is mapped to the hierarchy of the GPU. It
should be noted that the Program-monad, is a means to restrict how val-
ues flow through the program and that a top-level program must be of type
Program<grid> τ to be evaluated.

Rule (5.81) describes how expressions such as force (push <l> e) are
evaluated, where a pull array e is converted to a parallel expression on the
given level l. The input array is e is partitioned in n subarrays [−→e0] through
[−−→en−1], however the rule does not mention exactly how the array is partitioned.
Through the use of force at the level below, each subarray are allowed take a
0 or 1 step. We can understand this as follows: at the outermost level, a single
step corresponds to a single step being executed on all locations at lower levels.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 99

Small-step semantics with locations e ↪→c
loc e

′/err

∀j ∈ J,force (Push <l> [−→ej] ↪→cj
locj

Program <l> [e′j] locj B l
J ⊆ {0, . . . , n− 1} |J | ≤ m c = maxj∈J(cj)

e′′i =

{
ei if i 6∈ J
e′i if i ∈ J

force (Push <1 + l> [−→e0 , . . . ,−−→en−1])

↪→c

Group(
−→
loc(m))

force (Push <1 + l> [
−→
e′′0 , . . . ,

−−→
e′′n−1])

(5.81)

loc B l
force (Push <l> [bv0, . . . , bvn−1]) ↪→0

loc Program <l> [bv0, . . . , bvn−1]
(5.82)

∀j ∈ J, pj ↪→cj
locj

p′j locj B l
J ⊆ {0, . . . , n− 1} |J | ≤ m c = maxj∈J(cj)

p′′i =

{
pi if i 6∈ J
p′i if i ∈ J

force (Interleave <l> k f [p0, . . . , pn−1])

↪→c

Group(
−→
loc(m))

force (Interleave <l> k f [p′′0 , . . . , p
′′
n−1])

(5.83)

locj B l pi = Program <l> (Push <l> [bvi0, . . . , bv
i
k−1])

force (Interleave <l> k f [p0, . . . , pn−1])

↪→1

Group(
−→
loc(m))

bind (force (Push <l> [f(0, 0), f(0, 1), . . . ,
f(1, 0), f(1, 1), . . . ,
. . . ,
f(n− 1, 0), . . . , f(n− 1, k − 1)]))

(fn v => permute <1 + l> v (Push <1 + l> [
−→
bv0,
−→
bv1, . . . ,

−→
bvn−1]))

(5.84)

∃k 6∈ [0;n(

permute [
−→
k (n)] (Push <l> [

−→
bv(n)]) ↪→1

loc err
(5.85)

∀k ∈ [0;n(

permute [
−→
k (n)] (Push <l> [

−→
bv(n)]) ↪→1

loc Program <l> [bvk0 , bvk1 , . . . , bvkn−1]
(5.86)

Figure 5.14: Small step semantics continued. Rules for force.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 100

Rule (5.82) corresponds to the final synchronisation after all subarrays have
been fully evaluated to base values.

Enclosing values in the Program-monad allows us to limit at which points
values can flow upwards in the hierarchy of computation. From the types,
we know that escaping up to the above level is possible only through the
interleave-operation. The interleave operation is thus central to the
language, as it specifies how values are passed up through the hierarchy, as
well as how these values are written in the combined array. Recall the type of
interleave:

interleave : ∀<δ> α. int
→ ((int,int)→ int)

→ [Program<δ> [α]<δ>]

→ Program<1 + l> [α]<1 + δ>

The third argument is a pull array of Program arrays that needs to be com-
bined; each Program specifies a push array computation executed on a lower
level processor (a streaming multiprocessor or a single compute unit). The first
argument specifies the size of subarrays of the third argument, which allows
us to precompute the size of the combined array during allocation. Where
Obsidian only allows concatenation of array results, interleave allows spec-
ification of a function that determines where in the final array the individual
values should be stored. For each computed value, the function is invoked
with the corresponding index in the outer pull array and the inner push-array.
The returned index determines where it should be placed in the final array.

Concatenating the subarrays in row-major order can thus be performed as
follows:

sig concat : forall <l> ’a. int
-> [Program<l> [’a]<l>]
-> Program<1+l> [’a]<1+l>

fun concat<l> n arr =
interleave<l> n (fn sh => ((fst sh) * n) + (snd sh)) arr

The interleave operation is not intended for direct usage by FCL users,
but can be used to write operations such as concat and concatGrid, which
can be provided in a standard library for users.

In the first rule for interleave, rule (5.83), it is specified that at most m
sub-programs in the given pull array can take a 1 step, where m is the number
of locations in the group. The set J determines which of the subprograms in
the array [−→p (n)] are taking a step. All subprograms pj where j 6∈ J are left
unchanged.

The second rule for interleave, Rule (5.84), fires when all sub-programs
are fully evaluated to vectors of base values, and constructs a permutation
vector from the permutation function f , specifying the order in which the
computed values should be written to memory. In this formalisation, the actual

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 101

power 0 f v ↪→1
loc v

(5.87)

n > 0

power n f (Program <l> v) ↪→1
loc bind (force v) (fn v′ => power (n− 1) f (f v′))

(5.88)

while f g (Program <l> v) ↪→1
loc

bind (force v) (fn v′ => bind (f v′) (fn b => ifP b (while f g (g v′)) (return <l> v′))

(5.89)

ifP true x1 x2 ↪→1
loc x1

(5.90)
ifP false x1 x2 ↪→1

loc x2
(5.91)

Figure 5.15: Small step semantics continued. Rules for seqfor.

permutation is performed by the previously mentioned permute function,
which we introduced to simplify the presentation of interleave.

We have left out the rules for interleaveSeq. These rules are similar to
the rules for interleave, however without moving data up the hierarchy.
That is, the <1 + l> level argument to permute and Push, should be changed
to <l>.

It should be noted that these rules for interleave does not go into detail
with how values flow up and down through the memory system. In fact,
following this formalisation subprograms might be reassigned to various loca-
tions of the machine on every step. In practice, however, our implementation
only pass values back up through the memory hierarchy when a subprogram
is completely evaluated, not in every step. There is an implicit synchronization
after all interleave operations. While the outset of the project aimed at
providing a memory cost-model, the developed semantics only covers the use
of computing resources, and the GPU memory systems effects on performance
such as memory coalescing are not possible to cover.

Rules (5.87)–(5.91) in Figure 5.15 evaluates the loop constructs power and
while. The operations while and power are similar to the power operation
in APL, modified to work on push and pull arrays. The initial value is given as
a push array, and before the loop begins, this array is forced. The resulting pull
array will be given to the iteration function, which again returns a push array
to be consumed in the next iteration. Note the use of ifP in rule 5.89, this is
the only place it is used. In practice, the power and while constructs reuse
the same memory area for each force operation. This scheme limits these
iteration constructs to non-enlarging functions, as the result after an iteration
step must always be smaller than the array given as initial value.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 102

5.3.4 Properties of the language

In the following we present propositions stating type soundness of FCL, how-
ever only when excluding the while and seqfor.

We use the notation e ↪→→c
loc e

′ for the transitive and reflexive closure of
↪→c

loc, as defined below. In such judgments, c ranges over natural numbers N0.

e ↪→→c
loc e

′/err

e ↪→→0
loc

(5.92)
e ↪→c1

loc e
′ e′ ↪→→c2

loc e
′′ c = c1 + c2

e ↪→→c
loc e

′′ (5.93)

Proposition 9 (Type Preservation) If ∆,Γ ` e : τ , then either

(1) e is a value; or

(2) there exists c such that e ↪→c
loc err and loc I τ ; or

(3) there exists c such that e ↪→c
loc e

′ and loc I τ and ∆,Γ ` e′ : τ .

Proposition 10 (Progress) Given a location loc I τ , and if ∆,Γ ` e : τ , then either

(1) e is a value; or

(2) there exists c such that e ↪→c
loc err is a value; or

(3) there exists e′ and c such that e ↪→c
loc e

′

The following soundness proposition states that given a machine specifica-
tion (location) loc and an expression with a type respecting that location, then
an execution of said expression will either error, fail to terminate, or compute a
value of type τ .

Proposition 11 (Type Soundness) Given a location loc I τ , if Γinit ` e : τ then
either

(1) there exists c such that e ↪→→c
loc err; or

(2) there exists an infinite sequence e ↪→c
loc e

′ ↪→c′

loc e
′′ ↪→c′′

loc e
′′′ . . .; or

(3) there exists c and a value v such that e ↪→→c
loc v and ` v : τ

In practice, top level expressions always have the type Program <grid> int,
we state this special case of the soundness proposition in the following corol-
lary.

Corollary 1 Given a location loc B grid, if Γinit ` e : Program <grid> int
then either

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 103

(1) there exists c such that e ↪→→c
loc err; or

(2) there exists an infinite sequence e ↪→c
loc e

′ ↪→c′

loc e
′′ ↪→c′′

loc e
′′′ . . .; or

(3) there exists c and a value v such that e ↪→→c
loc Program <grid> v and ` v :

int

5.4 Larger examples

We have now introduced FCL in its entirety, and we will now demonstrate its
capabilities more fully, through some larger example programs. First, let us
return to the transpose example presented in Section 5.2.

5.4.1 Transpose revisited: splitGrid and concatGrid

The transpose operation presented in Figure 5.2 used operations splitGrid
and concatGrid to partition an array in two-dimensional tiles. The splitGrid
operation can be implemented as two nested calls to generate, and boils
down to a number of index calculations.

sig splitGrid : forall ’a. int -> int -> int -> [’a] -> [[’a]]
fun splitGrid splitSize width height elems =

let tileSize = splitSize * splitSize in
let groupsWidth = width / splitSize in
let groupsHeight = height / splitSize
in
generate (groupsWidth * groupsHeight)
(fn gid =>

let groupIDy = gid / groupsWidth in
let groupIDx = gid % groupsWidth
in generate tileSize

(fn tid =>
let localIDx = tid % splitSize in
let localIDy = tid / splitSize in
let xIndex = groupIDx * splitSize + localIDx in
let yIndex = groupIDy * splitSize + localIDy in
let ix = yIndex * width + xIndex
in index elems ix))

The concatGrid operation is written using the interleave operation,
again requiring a number of index calculations:

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 104

sig concatGrid : forall <l> ’a. int
-> int
-> [Program <l> [’a]<l>]
-> Program <1+l> [’a]<1+l>

fun concatGrid <l> splitSize width arr =
let tileSize = splitSize * splitSize in
let groupsWidth = width / splitSize in
interleave <l> tileSize

(fn sh =>
let gid = fst sh in
let tid = snd sh in
let groupIDx = gid % groupsWidth in
let groupIDy = gid / groupsWidth in
let localIDx = tid % splitSize in
let localIDy = tid / splitSize in
let xIndex = groupIDx * splitSize + localIDx in
let yIndex = groupIDy * splitSize + localIDy in
let ix = yIndex * width + xIndex
in ix)

arr

It is the responsibility of the author of functions such as concatGrid to
guarantee memory coalescing. The interleave n f operation allows an
arbitrary permutation to performed before the array is written, using the
function f . The programmer should make sure that invocations f(i, j), f(i, j +
1), f(i, j + 2), . . . return values in the same neighbourhood (corresponding to
writes into the same memory segment).

The author of functions such as splitGrid can however not provide any
guarantees, as he is merely constructing a pull array. The reading order of the
actual array will be determined by how this array ends up being read. That
such guarantees can not be made is a major drawback of pull arrays, and often
makes it necessary to reason backwards, if you want to understand whether a
given program accesses an array coalesced.

It should be noted that it is not the intention that users need to be aware
of the details of these lengthy implementations; they can be provided in a
standard library.

5.4.2 Tiled matrix multiplication

Another operation that can make use of splitGrid and concatGrid is ma-
trix multiplication. Through tiling, we can limit the number of global memory
accesses necessary, by moving complete tiles of the matrix into local memory,
before computing. Such an optimization is possible for matrix multiplica-
tion, as the problem can be subdivided into a large number of smaller matrix
multiplications.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 105

0 1 2 3

0

1

2

3

4

5

A

×
0 1 2 3 4 5

0

1

2

B

=

0 1 2 3

0

1

2

C

Figure 5.16: Tiled matrix multiplication. The matrix product AB = C can be
computed by subdivison into smaller matrices. Computing the greyed out tile
of matrix C, corresponds to multiplying the greyed out rectangles of matrix A
and matrix B.

When computing the matrix product A×B = C, the two matrices A and
B can be subdivided into horizontal and vertical rectangles, respectively, as
shown in the Figure 5.16. Each rectangle consists of a number of smaller square
matrices. Computation of the sub-matrix Ci,j of matrix C, can be implemented
as the sum of matrix products:

Ci,j =
∑
k

Aj,kBk,i

In FCL, the above algorithm can be implemented as follows. First, we will
need a program for computing a simple matrix multiplication in a single work
group. The standard matrix multiplication algorithm can be implemented by
performing m× n dot products. We therefore need a sequential dot product
operation, which we can implement using foldl:

sig dotp : forall ’a. (’a -> ’a -> ’a)
-> (’a -> ’a -> ’a)
-> ’a -> [’d] -> [’c] -> [’a]<thread>

fun dotp f g neutral vec1 vec2 =
foldl f neutral (zipWith g vec1 vec2)

The block-wide matrix multiplication can then be implemented through
concatenating m× n such dot products:

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 106

-- Block-wide matrix multiplication
-- multiply m*p matrix by p*n matrix
sig matmulBlock :

forall ’a. (’a -> ’a -> ’a)
-> (’a -> ’a -> ’a)
-> ’a -> int -> int -> int -> [’a] -> [’a]
-> Program <block> [’a]<block>

fun matmulBlock f g neutral m p n A B =
generate (m * n)

(fn i =>
let col = i % n in
let row = i / n in
let rowVec = generate p

(fn j => index A (row * p + j)) in
let colVec = generate p

(fn j => index B (j * p + col))
in return<thread> (dotp f g neutral rowVec colVec))

|> concat<thread> 1

To be able to implement matrix multiplication, we will also need a variant
of zipWith, that zips a pull array and a push array into a push array. Such
a function can be implemented as follows, using a variant of mapPush that
passes index information to the mapping function:

sig zipWithPush : forall <lvl> ’a ’b ’c.
(’a -> ’b -> ’c)
-> [’a] -> [’b]<lvl> -> [’c]<lvl>

fun zipWithPush <lvl> f a1 a2 =
mapPushIx<lvl> (fn i => fn x => f (index a1 i) x) a2

With these functions we can now perform a multiplication of two rectangu-
lar arrays, which have already been tiled. We first create an array containing
the neutral element in all positions. We then use the power operation to iterate
over each tile of the two rectangles, initially forcing each tile to shared mem-
ory. Finally, we compute the matrix-multiplication using matmulBlock and
adding the result to the accumulated array.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 107

sig matmulRect : forall ’a. (’a -> ’a -> ’a)
-> (’a -> ’a -> ’a)
-> ’a -> [[’a]] -> [[’a]]
-> int -> int
-> Program <block> [’a]

fun matmulRect f g neutral rectA rectB s q =
let init = generate (s*s) (fn y => neutral) in
let body =

(fn i => fn accumulator =>
do<block>
{ let subA = index rectA i
; let subB = index rectB i
; subA’ <- force<block> (push<block> subA)
; subB’ <- force<block> (push<block> subB)
; res <- matmulBlock f g neutral s s s subA’ subB’
; return<block> (zipWithPush<block> f accumulator res)
})

in power<block> q body
(return<block> (push<block> init))

The final step is to partition the original matricesA andB using splitGrid,
apply the matmulRect for all combination of rectangles from the two arrays,
and concatenate the results using concatGrid.

sig matmulTiled : forall ’a. (’a -> ’a -> ’a)
-> (’a -> ’a -> ’a)
-> ’a -> int
-> int -> int -> int
-> [’a] -> [’a]
-> Program <grid> [’a]<grid>

fun matmulTiled f g neutral split hA wA wB A B =
let tileSize = split * split in
let p = wA / split in
let q = wB / split in
let tiledA = splitGrid split wA hA A in
let tiledB = splitGrid split wB wA B
in
iota (hA*wB / tileSize)
|> map

(fn tile =>
let row = tile / q in
let col = tile % q in
let rectA = generate p (fn i => index tiledA (p * row + i)) in
let rectB = generate p (fn i => index tiledB (i * q + col))
in matmulRect f g neutral rectA rectB split p)

|> concatGrid<block> split wB

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 108

5.4.3 Parallel prefix sum

Like Obsidian, we can implement a scan operation in FCL. In the scanChunked
function below sklansky is block-level scan, as previously presented in the
context of Obsidian. We leave out the definition as it is almost identical to their
presentation.

The main function scan performs three grid-level computations, the first
performs a block level scan, the second compute the cumulative sums after
each block, through a second scan operation, and finally we perform map that
adjust the results, by adding the cumulative sum of all previous blocks to each
value of the current block.

The final operation adjusting each value returns a grid-level push array,
which is the result of the entire computation. When using scan in a larger
program, it would thus be possible to fuse the final grid-level computation
with any map operations immediately following it.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 109

sig scanChunked : forall ’a. int -> (’a -> ’a -> ’a) -> [’a]
-> Program <grid> [’a]<grid>

fun scanChunked lgChunkSize op arr =
let chunkSize = 1 << lgChunkSize
in concatMap<block> chunkSize

(sklansky lgChunkSize op)
(splitUp chunkSize arr)

sig intermediateSums : forall ’a. int -> [’a] -> [’a]
fun intermediateSums chunkSize arr =

map last (splitUp chunkSize arr)

fun adjust n f neutral scans sums =
(generate (length scans / n)

(fn i => generate n
(fn j => f (index scans (i*n + j))

(if i == 0
then neutral
else index sums (i - 1)))))

|> map (fn a => return <block> (push<block> a))
|> concat <block> n

sig scan : forall ’a. (’a -> ’a -> ’a) -> ’a -> [’a]
-> Program <grid> [’a]<grid>

fun scan f neutral input =
let lgChunkSize = 8 in
let chunkSize = 1 << lgChunkSize
in do<grid>

{ scansPush <- scanChunked lgChunkSize f input
; scans <- force<grid> scansPush
; let sums = intermediateSums chunkSize scans
; scanSumsPush <- scanChunked lgChunkSize f sums
; scanSums <- force<grid> scanSumsPush
; adjust chunkSize f neutral scans scanSums
}

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 110

5.5 Performance

FCL is work in progress; thus certain optimizations are still not implemented.
However, the performance on the previously shown examples is promising
and we have identified the bottlenecks that are currently limiting performance.
In this section, we compare the performance of each benchmark with hand-
written OpenCL kernels from NVIDIA’s OpenCL SDK.

When an FCL program is compiled, the result is a file containing one or
more OpenCL kernels and an executable that instruments the execution of the
OpenCL kernels.

To benchmark the generated code, we have used an NVIDIA GeForce GTX
780 Ti, which is built on the Kepler architecture. It has 2880 cores (875 Mhz),
and 3GB GDDR5 ram (7 Ghz, bus-width: 384 bit). Calculating the theoretical
peak bandwidth on global memory accesses, we get 7Ghz× 384bit = 336GB/s.
In practice we can expect a 254.90GB/s maximum bandwidth, when accessing
global memory, which we have measured using NVIDIA’s benchmarking tool
(bandwidthTest).

Each benchmark has been executed on an array of 224 32-bit integers (64
MiB). Timing was measured using OpenCL profiling operations, on 1000 exe-
cutions of the same kernel, preceded by a single warm-up run.

The achieved global-memory bandwidths are shown in Figure 5.17, and are
measurements of a single kernel call (e.g. not a full reduction). The measured
maximum bandwidth, measured with NVIDIA’s bandwidthTest program is
plotted as a dashed horizontal line. The actual achieved performance for each
kernel is presented in Table 5.1.

In the reverse and transpose examples, we hit the measured maximum
bandwidth as we hoped. The generated code is similar to the hand-written code
from NVIDIA, except for block-virtualization, which is not used in NVIDIA’s
version.

The reduction example is interesting; here we generate a completely un-
rolled loop, which performs reasonably well, but does not quite hit the per-
formance target set by NVIDIA’s heavily tuned kernel. To identify how we
can improve our solution, we have inspected the difference between the two
kernels. To get on par with NVIDIA’s kernel, we will need to make each
thread do an initial sequential reduction on a few elements, before the parallel
tree-reduction we already have implemented.

Furthermore, we synchronize across the complete work group between
each reduction step, even when the amount of elements is below warp size.
Adding a warp-level between thread-level and block-level, would make it
possible to avoid such unnecessary synchronizations. We had such a warp-
level in our earlier implementation, but we have removed it for simplicity; it
should not be a problem to reintroduce it again.

For the matrix multiplication example, we are not quite on par with the
handwritten code either. Investigation lead us to believe that the extensive
usage of divisions and modulo operations are to blame. See Section 5.7 below

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 111

OpenCL

FCL

OpenCL
FCL

OpenCL

FCL

OpenCL

FCL

0

25

50

75

100

125

150

175

200

225

250

275

Reverse Transpose Partial Reduce Matrix Mult

B
an

dw
id

th
 (

G
B

/s
)

Figure 5.17: Measured bandwidths on our example programs. OpenCL bars
are code from NVIDIA’s OpenCL SDK, and we compare it to OpenCL ker-
nels generated by FCL. The dashed line indicates the maximum achievable
bandwidth as measured by NVIDIA’s benchmarking tool.

Benchmark Input size OpenCL FCL
Reverse 224 32-bit integers 0.526 ms 0.533 ms
Transpose 224 32-bit integers 0.695 ms 0.648 ms
Partial reduction 224 32-bit integers 0.331 ms 0.454 ms
Matrix multiplication 224 doubles 8.692 ms 10.076 ms

Table 5.1: Timings of single-kernel executions of each micro benchmark. Aver-
age over 1000 invocations.

for suggestions for how we might avoid these expensive operations through
introduction of multidimensional arrays.

Table illustrate that FCL also allow slightly bigger programs consisting of
several kernels to compiled. We compare the performance of our reduce and
scan programs with the kernels provided with the CUDA-based framework
Thrust [83]. Timings are measured as wall-clock time.

For the reduction example we are on par with Thrust, which is curious as
the optimised NVIDIA kernel where beating us in our previous single-kernel
benchmark. For scan we are 50% slower than Thrust, which might be due to a
different algorithm used.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 112

Benchmark Input size Thrust FCL
Full reduction 224 32-bit integers 0.5503 ms 0.533 ms
Full scan 224 32-bit integers 1.4543 ms 2.84 ms

Table 5.2: Wall-clock timings of full reduction (2 kernels) and scan (3 kernels).

5.6 Related work

Obsidian and FCL are not the first languages for hierarchical parallel machines.
Sequoia is an imperative hierarchical language [44], inspired by previous work
on Parallel Memory Hierarchies (PMH) [5], supporting both cluster computing
through MPI and programming of multiple GPUs. Both Sequoia and PMH
models a parallel machine as a tree of distinct memory modules. Programs are
written to be machine independent, where function calls correspond to either
executing a subtask on a child in the hierarchy (copying data to this memory
module) or staying in the same memory module. Thus, the call/return of
a subtask implies that data movement through the machine hierarchy might
occur. The stopping criteria for recursive functions are left out, and instead
specified separately in a mapping specification, which details how an algorithm
maps to a concrete machine. Programs can also involve tunable parameters
and various variants of the same algorithm; the mapping specification also
controls these choices. Mapping specifications can potentially be automatically
generated. The ideas from Sequoia are further generalized in the work on
Hierarchical Place Trees [109].

Another hierarchical data-parallel language is HiDP by Zhang and Mueller
[81] for hierarchical GPU-programming. In addition to the hierarchies of
Obsidian and FCL, they add two sub-warp levels of size 4 and 8, respectively.
Parallelism is embodied as nested parallel-for loops (which are called map-
blocks) together with a set of built-in parallel array-operators (partition, reduce,
scan, sort, and reverse). Arrays are multi-dimensional and nested irregular
segmented arrays are built-in. For optimization purposes, it is however also
possible to use regular arrays. Fusion decisions and use of shared-memory are
completely controlled by the compiler.

The language discussed by Dubach et al. [94] is also related to FCL, op-
erating at a similarly low-level. The main idea is to build a language that
can be automatically tuned to hardware, by applying search strategies on the
provided set of rewrite rules. It might be interesting to build a similar search-
based rewrite-engine on top of FCL and allow the user to express rewrite-rules.
Another interesting aspect of this work is its support for programming with
vector-instructions (such as adding two int4 values in OpenCL), which would
correspond to a layer between warp-level and thread-level in Obsidian and
FCL. Previous work have also been attempted in the context of Obsidian [105]
and Qilin [74].

The hierarchy in FCL and Obsidian might also be compared to the concept
of locales and sublocales in the Chapel language [31]. However, Chapel does

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 113

not currently target GPUs.
Functional approaches to GPU computing have typically concentrated on

optimizing compilers that are intended to shield the user from the need to
understand (or control) details of the GPU. Examples include Futhark [59],
Accelerate [29], Delite [27], Harlan [62], and Nessie [11]. These projects might
perhaps be considered to be at roughly the same level as NVIDIA’s Thrust
library [83]. FCL and Obsidian are rather at the level of NVIDIA’s CUB library,
which provides reusable software components for every level of the GPU
hierarchy [84].

5.7 Discussion and future work

The FCL language is still at a very early prototype stage. We have already
mentioned that reintroduction of warp-level would be beneficial for algorithms
where extraneous work-group wide synchronisation are slowing the compu-
tation down. Doing so would not be difficult, but we chose to remove that
feature for ease of implementation of our prototype compiler.

Another interesting and similar effort could be support for an extra level
above grid-level. Currently, all arrays always reside on the device. How-
ever, this restriction is not feasible for large problems, because of the limited
memory of GPU devices. Having a level above the grid-level would allow
programmers to reason about data-movement between the host and the device.
However, in our efforts towards implementing such a level we found that
the push/pull array representation was not appropriate, as handles to the
underlying arrays are not accessible across GPUs. Moving data to and from
GPUs must be performed in large transactions, not elementwise, and a different
array representation is thus necessary. On newer NVIDIA devices supporting
unified memory, it may be less of a problem to use push/pull arrays, as the
data movement will then be handled automatically by the OpenCL/CUDA
runtime.

Adding extra levels to the language, such as a warp or a device level,
however, would also require users to write even lengthier programs to spec-
ify how arrays are chunked and subproblems combined. Often the same
split/interleave operations would be necessary for each level of the hierarchy
until we arrive at the thread-level. To avoid such cumbersome programming,
it would be relevant to investigate how recursion over the machine hierarchy
could be achieved in a way similar to the programming language Sequoia [44],
albeit in functional style. Adding recursion and a ad-hoc level-polymorphism
in the form of case-statement working on levels should indeed be possible, as
it would be possible to unfold and remove both after monomorphization.

Programs might then be written in a style similar to the following pseu-
docode, and users of such functions would obtain different versions depending
on what level of the hierarchy that they require.

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 114

sig f : forall ’a ’b <lvl>. [’a] -> Program<lvl> [’b]<lvl>
fun f <lvl> xs =

case <lvl> of
| <thread> => ... sequential solution...
| <1+l> => partition into subproblems

|> map (f<l>)
|> combine subproblems

Furthermore, as can be seen in the transpose program as well as the
splitGrid and concatGrid functions, a large amount of index calculations
are sometimes necessary in the current version of FCL. Supporting multidi-
mensional arrays in the style of Repa [68] or Accelerate [28] would allow us
to reduce the amount of index calculations. We could for instance implement
splitGrid in a more straightforward maner, avoiding costly divisions and
give it a type that more precisely describes its functionality:

sig splitGrid : forall ’a. int -> [’a]2 -> [[’a]2]2
fun splitGrid chunkSize arr =

generate2D
(width arr / chunkSize, height arr / chunkSize)
(fn (outerX, outerY) =>

generate2D (chunkSize, chunkSize)
(fn (innerX, innerY) =>

let x = outerX * chunkSize + innerX in
let y = outerY * chunkSize + innerY in
let index = y * (width arr) + x
in index elems index))

Here we use the notation [α]n for the type of pull arrays of rank n, and after the
splitGrid operation we would obtain a 2D array of 2D arrays. Making such
a change would of course also require most other operations to be changed
to work with higher-dimensional arrays. For example, a modified force
function operating on multidimensional arrays, might be implemented with
the following type:

force : ∀α<l>. [α]n<l>→ Program<l> [α]n

Another area of future work relates to fusion. FCL currently allows pro-
ducer/producer fusion and consumer/producer fusion. However, horizontal
fusion is not possible in general, which can be a major drawback for many
applications. Allowing push arrays to be fused horizontally requires that two
push arrays can share the same loop structure. Currently we only allow push
arrays to contain base types. However, if we also allowed tuples, an array of
tuples, to tuples of arrays conversion would allow us to write two or more
arrays simultaneously. Such an approach would however still require a manual
composition of programs from the user, which is not desirable. Alternatively,
it might be interesting to look at how the force<grid> operation could be

CHAPTER 5. FCL: HIERARCHICAL DATA-PARALLEL GPU
PROGRAMMING 115

modified to accept several computations, and execute them in tandem, if they
follow the same structure.

As stated previously, the use of pull and push arrays have several draw-
backs. Improving on these representations to support larger memory transac-
tions and better support for horizontal fusion is one path to explore. Alterna-
tively, it would be interesting to avoid the distinction altogether, and instead
provide a limited set of rewriting rules on array combinators that are simple
enough that users can reason about when they will be applied.

Furthermore, with the current version of pull and push arrays, we found it
difficult to give any precise cost-model, as the cost of accessing a pull array both
depends on the order it will be accessed. It would be interesting to remodel
the language such that data movement from global memory to local-memory
is always required to be in blocks corresponding to the transaction size of
the GPU, which would expose the cost of uncoalesced accesses directly to the
user. In this way it should only be possible to access individual array element
from within sequential code, when data is already moved to the streaming
multiprocessor. In practice, the compiler might remove unecessary uses of
shared memory, but forcing the user to always move data between all layers
of the GPU would probably make the language more uniform, and perhaps
easier to provide a meaningful cost-model.

Currently memory is allocated implicitly during force, and it is thus not
possible to reuse the same memory, except using the power/while operations.
We would want the possibility of writing an in-place version of for example
reverse, writing the reserved array back to the same global-array. Similar
problems occur in the sequential loop, as we always have to initialise the array,
even though these initial values will never be used. Futhark [59] solves these
issues using uniqueness types, allowing them to provide safe in-place updates
to arrays, by guaranteeing that the reference to the given array is unique, and
no execution path might use it.

5.8 Conclusion

We have presented FCL, a functional language for GPU algorithms. FCL is
work in progress, but the prototype that we have presented shows promising
results.

FCL builds on previous work on Obsidian [96], from which both the con-
cepts of push arrays and level-variables originate. FCL distinguishes itself from
Obsidian by adding support for more involved interleaving patterns when
push arrays are forced, being a self-contained language, supporting wider
range of sequential loops, and by using a similar programming style for all
layers of the hierarchy.

In the previous section, we have identified a number of paths for future
work. Other possibilities for futre work would be to implement some larger
example programs in FCL, and attempt to use FCL as an intermediate language
for our APL-compiler [43].

Chapter 6

Conclusion

We have presented two functional data-parallel programming languages for
programming massively parallel architectures.

We first presented a statically typed array intermediate language, TAIL
[43], for compiling the language APL, which has seen wide use in the financial
industry. APL is originally a dynamically typed and interpreted language
providing support for multidimensional array and a wide range of built-in
shape-polymorphic primitives.

Our TAIL compiler supports a large subset of APL. The TAIL type system
support several kinds of types for arrays, with gradual degree of refinement
using subtyping. The type system keeps track of array ranks, and allows
one-dimensional to be given a more refined type, which keeps track of vector
lengths. Keeping track of vector lengths are necessary in situations where
vectors are used as array shapes (e.g. in the reshape operation). We further
demonstrate that TAIL is suitable as the target for an inference algorithm for
an APL compiler.

After an APL program have been translated into TAIL, we have shown
that the resulting TAIL program can be further translated into fused high-
performance sequential code, or through various existing data-parallel func-
tional programming languages into efficient GPU code [23, 55].

Following our TAIL project, we determined that it would be interesting to
pursue a compilation strategy that allows users to reason about data movement
and data access patterns, while still supporting efficient composition through
fusion. It has been mentioned that a reason why functional data-parallel
languages lack industrial adoption, is the limited ability for users to optimise
their algorithms and ensure performance. Previous work on compilers for
functional data-parallel languages often rely on heavy program restructuring
to achieve fusion, without providing control of when fusion will or will not
happen, or whether memory accesses are coalesced.

The language resulting from our work in this direction, FCL [40], is a
purely functional data-parallel language based on previous work on Obsidian
[96]. FCL allows expressing data-parallel algorithms in a style following the

116

CHAPTER 6. CONCLUSION 117

hierarchical structure of the GPU, and allows reasoning about the location and
movement of data through memory system.

The implementation of FCL is based delayed array representations and user
annotations of when data should be written. We demonstrate through a number
of micro benchmarks that FCL compiles to efficient GPU code. However, the
delayed array representations makes horizontal fusion hard and does not allow
bulk memory operations, which are necessary for efficient data movement
between the GPU and the host. It is future work to determine if another
compilation scheme can be used to solve some of these issues.

While FCL is still at a prototype stage, it might be useful as an explorative
tool to try various algorithmic approaches when implementing parallel algo-
rithms for the GPU.

Pointing forward, future work might include strengthening the FCL lan-
guage with a cost-model, providing support for ad-hoc level-polymorphism,
and work on compiling TAIL to FCL. A target worth pursuing might be to
allow APL users the ability to annotate their APL programs with level annota-
tions, instructing the underlying compiler framework how APL programs are
mapped to hierarchical machines.

Bibliography

[1] Philip Samuel Abrams. An APL machine. PhD thesis, Stanford University,
1970.

[2] Advanced Micro Devices, Inc. AMD Accelerated Parallel Processing,
OpenCL Programming Guide, 2013.

[3] Alok Aggarwal, Bowen Alpern, Ashok Chandra, and Marc Snir. A
model for hierarchical memory. In Proceedings of the nineteenth annual
ACM symposium on Theory of computing, pages 305–314. ACM, 1987.

[4] Alok Aggarwal, Jeffrey Vitter, et al. The input/output complexity of
sorting and related problems. Communications of the ACM, 31(9):1116–
1127, 1988.

[5] Bowen Alpern, Larry Carter, and Jeanne Ferrante. Modeling parallel
computers as memory hierarchies. In Programming Models for Massively
Parallel Computers, 1993. Proceedings, pages 116–123. IEEE, 1993.

[6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[7] Christian Andreetta, Vivien Begot, Jost Berthold, Martin Elsman, Troels
Henriksen, Maj-Britt Nordfang, and Cosmin E. Oancea. A financial
benchmark for gpgpu compilation. In 18th International Workshop on
Compilers for Parallel Computing (CPC’15), CPC ’15, 2015.

[8] Emil Axelsson, Koen Claessen, Gergely Dévai, Zoltán Horváth, Karin
Keijzer, Bo Lyckegård, Anders Persson, Mary Sheeran, Josef Svennings-
son, and András Vajdax. Feldspar: A domain specific language for digital
signal processing algorithms. In Formal Methods and Models for Codesign
(MEMOCODE), 2010 8th IEEE/ACM International Conference on, pages
169–178. IEEE, 2010.

[9] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler trans-
formations for high-performance computing. ACM Computing Surveys,
26(4):345–420, December 1994.

118

BIBLIOGRAPHY 119

[10] Lars Bergstrom, Matthew Fluet, Mike Rainey, John Reppy, Stephen Rosen,
and Adam Shaw. Data-only flattening for nested data parallelism. SIG-
PLAN Not., 48(8):81–92, February 2013.

[11] Lars Bergstrom and John Reppy. Nested Data-parallelism on the GPU.
In Proceedings of the 17th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP ’12. ACM, 2012.

[12] Robert Bernecky. The role of apl and j in high-performance computation.
SIGAPL APL Quote Quad, 24(1):17–32, September 1993.

[13] Robert Bernecky. APEX: The APL parallel executor. Master’s thesis,
Department of Computer Science University of Toronto, 1997.

[14] Robert Bernecky and Stephen B. Jaffe. ACORN: APL to C on real num-
bers. In ACM SIGAPL Quote Quad, pages 40–49, 1990.

[15] Jost Berthold, Andrzej Filinski, Fritz Henglein, Ken Friis Larsen, Mogens
Steffensen, and Brian Vinter. Functional high performance financial it.
In International Symposium on Trends in Functional Programming, pages
98–113. Springer, 2011.

[16] R. S. Bird. An Introduction to the Theory of Lists. In NATO Inst. on Logic
of Progr. and Calculi of Discrete Design, pages 5–42, 1987.

[17] Guy Blelloch. Programming Parallel Algorithms. Communications of the
ACM (CACM), 39(3):85–97, 1996.

[18] Guy Blelloch and Gary W. Sabot. Compiling collection-oriented lan-
guages onto massively parallel computers. Journal of Parallel and Dis-
tributed Computing, 8:119–134, 1990.

[19] Guy E. Blelloch. Prefix sums and their applications. Technical report,
Synthesis of Parallel Algorithms, 1990.

[20] Paul Bratley and Bennett L Fox. Algorithm 659: Implementing sobol’s
quasirandom sequence generator. ACM Transactions on Mathematical
Software (TOMS), 14(1):88–100, 1988.

[21] Richard P. Brent and H-T_ Kung. A regular layout for parallel adders.
IEEE Trans. Computers, 31(3):260–264, 1982.

[22] Timothy Budd. An APL Compiler. Springer-Verlag, 1988.

[23] Michael Budde. Compiling APL to Accelerate through a typed IL. MSc
project, Department of Computer Science, University of Copenhagen
(DIKU), November 2014.

[24] Chris Burke and Roger Hui. J for the APL programmer. SIGAPL APL
Quote Quad, 27(1):11–17, September 1996.

BIBLIOGRAPHY 120

[25] Philip Carlsen and Martin Dybdal. Option pricing using data-parallel
languages. Master’s thesis, DIKU, University of Copenhagen, Depart-
ment of Computer Science, 2013.

[26] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead:
compiling an embedded data parallel language. ACM SIGPLAN Notices,
46(8):47–56, 2011.

[27] Hassan Chafi, Arvind K Sujeeth, Kevin J Brown, HyoukJoong Lee,
Anand R Atreya, and Kunle Olukotun. A domain-specific approach
to heterogeneous parallelism. In ACM SIGPLAN Notices, volume 46.
ACM, 2011.

[28] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell,
and Vinod Grover. Accelerating Haskell array codes with multicore
GPUs. In Sixth Workshop on Declarative Aspects of Multicore Programming,
DAMP’11, pages 3–14. ACM, 2011.

[29] Manuel MT Chakravarty, Gabriele Keller, Sean Lee, Trevor L McDonell,
and Vinod Grover. Accelerating haskell array codes with multicore
gpus. In Proceedings of the sixth workshop on Declarative aspects of multicore
programming, pages 3–14. ACM, 2011.

[30] Bradford L Chamberlain. Chapel: Parallel programmability from desk-
tops to supercomputers, 2016. URL: http://chapel.cray.com/
presentations/ChapelForCopenhagen-presented.pdf.

[31] Bradford L Chamberlain, David Callahan, and Hans P Zima. Parallel
programmability and the Chapel language. International Journal of High
Performance Computing Applications, 21(3):291–312, 2007.

[32] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. X10: An object-oriented approach to non-uniform cluster com-
puting. In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOP-
SLA ’05, pages 519–538, New York, NY, USA, 2005. ACM.

[33] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaf-
fer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for
heterogeneous computing. In IEEE International Symposium on Workload
Characterization (IISWC), IISWC ’09, 2009.

[34] Hanfeng Chen and Wai-Mee Ching. An eli-to-c compiler: Production
and performance, 2013.

[35] Koen Claessen, Mary Sheeran, and Bo Joel Svensson. Expressive array
constructs in an embedded GPU kernel programming language. In
Proceedings of the 7th workshop on Declarative aspects and applications of
multicore programming, pages 21–30. ACM, 2012.

http://chapel.cray.com/presentations/ChapelForCopenhagen-presented.pdf
http://chapel.cray.com/presentations/ChapelForCopenhagen-presented.pdf

BIBLIOGRAPHY 121

[36] Koen Claessen, Mary Sheeran, and Joel Svensson. Expressive array
constructs in an embedded GPU kernel programming language. In 7th
workshop on Declarative aspects and applications of multicore programming,
DAMP’12. ACM, 2012.

[37] Robert Clifton-Everest, Trevor L McDonell, Manuel MT Chakravarty,
and Gabriele Keller. Embedding foreign code. In Practical Aspects of
Declarative Languages, pages 136–151. Springer, 2014.

[38] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion:
From lists to streams to nothing at all. In Proceedings of the 12th ACM
SIGPLAN international conference on Functional programming, ICFP ’07.
ACM, 2007.

[39] Dave Cunningham, Rajesh Bordawekar, and Vijay Saraswat. Gpu pro-
gramming in a high level language: compiling x10 to cuda. In Proceedings
of the 2011 ACM SIGPLAN X10 Workshop, page 8. ACM, 2011.

[40] Martin Dybdal, Martin Elsman, Bo Joel Svensson, and Mary Sheeran.
Low-level functional gpu programming for parallel algorithms. In Pro-
ceedings of the 5th International Workshop on Functional High-Performance
Computing, pages 31–37. ACM, 2016.

[41] Conal Elliott. Functional images. In The Fun of Programming, “Corner-
stones of Computing” series. Palgrave, 2003.

[42] Conal Elliott, Sigbjørn Finne, and Oege De Moor. Compiling embedded
languages. J. Funct. Program., 13(3):455–481, 2003.

[43] Martin Elsman and Martin Dybdal. Compiling a subset of APL into
a typed intermediate language. In 1st ACM SIGPLAN International
Workshop on Libraries, Languages and Compilers for Array Programming,
ARRAY’14. ACM, 2014.

[44] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J Knight, Larkhoon
Leem, Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex
Aiken, William J Dally, et al. Sequoia: Programming the memory hierar-
chy. In Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
page 83. ACM, 2006.

[45] Andrew Gill, John Launchbury, and Simon L Peyton Jones. A short cut
to deforestation. In Proceedings of the conference on Functional programming
languages and computer architecture, pages 223–232. ACM, 1993.

[46] Clemens Grelck. Shared memory multiprocessor support for func-
tional array processing in SAC. Journal of Functional Programming (JFP),
15(3):353–401, 2005.

BIBLIOGRAPHY 122

[47] Clemens Grelck and Sven-Bodo Scholz. Accelerating APL programs
with SAC. In Conference on APL ’99: On Track to the 21st Century, APL’99,
pages 50–57. ACM, 1999.

[48] Clemens Grelck and Sven-Bodo Scholz. SAC: A functional array lan-
guage for efficient multithreaded execution. Int. Journal of Parallel Pro-
gramming, 34(4):383–427, 2006.

[49] Clemens Grelck and Fangyong Tang. Towards Hybrid Array Types in
SAC. In 7th Workshop on Prg. Lang., (Soft. Eng. Conf.), pages 129–145, 2014.

[50] Leo J. Guibas and Douglas K. Wyatt. Compilation and delayed evalua-
tion in APL. In 5th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL’78, pages 1–8. ACM, 1978.

[51] Jing Guo, Jeyarajan Thiyagalingam, and Sven-Bodo Scholz. Breaking
the GPU programming barrier with the auto-parallelising SAC compiler.
In Procs. Workshop Decl. Aspects of Multicore Prog. (DAMP), pages 15–24.
ACM, 2011.

[52] G. Hains and L. M. R. Mullin. Parallel functional programming with
arrays. The Computer Journal, 36(3):238–245, 1993.

[53] Mark Harris et al. Optimizing parallel reduction in cuda. NVIDIA
Developer Technology, 2(4), 2007.

[54] Troels Henriksen. Exploiting functional invariants to optimise paral-
lelism: a dataflow approach. Master’s thesis, DIKU, Denmark, 2014.

[55] Troels Henriksen, Martin Dybdal, Henrik Urms, Anna Sofie Kiehn,
Daniel Gavin, Hjalte Abelskov, Martin Elsman, and Cosmin Oancea.
Apl on gpus: A tail from the past, scribbled in futhark. In Proceedings of
the 5th International Workshop on Functional High-Performance Computing,
pages 38–43. ACM, 2016.

[56] Troels Henriksen, Martin Elsman, and Cosmin Eugen Oancea. Size
slicing - a hybrid approach to size inference in futhark. In Procs. Funct.
High-Perf. Comp. (FHPC), FHPC ’14. ACM, 2014.

[57] Troels Henriksen and Cosmin E. Oancea. A T2 graph-reduction approach
to fusion. In 2nd ACM SIGPLAN Workshop on Functional High-Performance
Computing, September 2013.

[58] Troels Henriksen and Cosmin E. Oancea. Bounds checking: An instance
of hybrid analysis. In 1st ACM SIGPLAN International Workshop on Li-
braries, Languages and Compilers for Array Programming, ARRAY’14. ACM,
2014.

[59] Troels Henriksen and Cosmin Eugen Oancea. A T2 graph-reduction
approach to fusion. In Proceedings of the 2nd ACM SIGPLAN workshop on
Functional high-performance computing, pages 47–58. ACM, 2013.

BIBLIOGRAPHY 123

[60] Stephan Herhut, Sven-Bodo Scholz, Robert Bernecky, Clemens Grelck,
and Kai Trojahner. From contracts towards dependent types: Proofs by
partial evaluation. In Olaf Chitil, Zoltán Horváth, and Viktória Zsók,
editors, Implementation and Application of Functional Languages, volume
5083 of Lecture Notes in Computer Science, pages 254–273. Springer Berlin
Heidelberg, 2008.

[61] K. Hillesland and A. Lastra. GPU floating-point paranoia. Proceedings of
GP2, 2004.

[62] Eric Holk, William E Byrd, Nilesh Mahajan, Jeremiah Willcock, Arun
Chauhan, and Andrew Lumsdaine. Declarative Parallel Programming
for GPUs. In International Conference on Parallel Computing (ParCo 2011),
2011.

[63] Kenneth E. Iverson. A Programming Language. John Wiley and Sons, Inc,
May 1962.

[64] Kenneth E. Iverson. Notation as a tool of thought. Commun. ACM,
23(8):444–465, August 1980.

[65] C. Barry Jay. Programming in fish. International Journal on Software Tools
for Technology Transfer, 2(3):307–315, 1999.

[66] Hong Jia-Wei and Hsiang-Tsung Kung. I/o complexity: The red-blue
pebble game. In Proceedings of the thirteenth annual ACM symposium on
Theory of computing, pages 326–333. ACM, 1981.

[67] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the
rules: rewriting as a practical optimisation technique in ghc. In Haskell
workshop, volume 1, pages 203–233, 2001.

[68] Gabriele Keller, Manuel M. T. Chakravarty, Roman Leshchinskiy, and
Simon Peyton Jones. Regular, shape-polymorphic, parallel arrays in
Haskell. In ACM SIGPLAN International Conference on Functional Program-
ming, ICFP’2010, September 2010.

[69] Gabriele Keller, Manuel MT Chakravarty, Roman Leshchinskiy, Ben
Lippmeier, and Simon Peyton Jones. Vectorisation avoidance. In ACM
SIGPLAN Notices, pages 37–48. ACM, 2012.

[70] Peter M Kogge and Harold S Stone. A parallel algorithm for the efficient
solution of a general class of recurrence equations. IEEE transactions on
computers, 100(8):786–793, 1973.

[71] Mads RB Kristensen, Simon AF Lund, Troels Blum, Kenneth Skovhede,
and Brian Vinter. Bohrium: a virtual machine approach to portable
parallelism. In Parallel & Distributed Processing Symposium Workshops
(IPDPSW), 2014 IEEE International, pages 312–321. IEEE, 2014.

BIBLIOGRAPHY 124

[72] Monica D Lam, Edward E Rothberg, and Michael E Wolf. The cache per-
formance and optimizations of blocked algorithms. In ACM SIGARCH
Computer Architecture News, volume 19, pages 63–74. ACM, 1991.

[73] Bernard Legrand. Mastering Dyalog APL. Dyalog Limited, November
2009.

[74] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: exploiting
parallelism on heterogeneous multiprocessors with adaptive mapping.
In Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 45–55. ACM, 2009.

[75] Frederik M. Madsen and Andrzej Filinski. Towards a streaming model
for nested data parallelism. In 2nd ACM SIGPLAN Workshop on Functional
High-Performance Computing, September 2013.

[76] Geoffrey Mainland, Roman Leshchinskiy, and Simon Peyton Jones. Ex-
ploiting vector instructions with generalized stream fusion. In Proceedings
of the 18th ACM SIGPLAN international conference on Functional program-
ming, ICFP ’13. ACM, 2013.

[77] Geoffrey Mainland and Greg Morrisett. Nikola: Embedding compiled
GPU functions in Haskell. In Third ACM Haskell Symposium on Haskell,
Haskell’10, pages 67–78. ACM, 2010.

[78] Trevor L McDonell, Manuel MT Chakravarty, Gabriele Keller, and Ben
Lippmeier. Optimising purely functional gpu programs. ACM SIGPLAN
Notices, 48(9):49–60, 2013.

[79] Nimrod Megiddo and Vivek Sarkar. Optimal weighted loop fusion for
parallel programs. In Proceedings of the ninth annual ACM symposium on
Parallel algorithms and architectures, pages 282–291. ACM, 1997.

[80] Greg Morrisett. Compiling with Types. PhD thesis, School of Computer
Science, Carnegie Mellon University, USA, December 1995.

[81] Frank Mueller and Yongpeng Zhang. Hidp: A hierarchical data parallel
language. In Proceedings of the 2013 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), CGO ’13, pages 1–11, Wash-
ington, DC, USA, 2013. IEEE Computer Society.

[82] NVIDIA. CUDA C Programming Guide, 2015.

[83] NVIDIA. NVIDIA Thrust Library, 2015. URL: https://developer.
nvidia.com/thrust.

[84] NVIDIA Research. NVIDIA CUB Library, 2015. URL: https://nvlabs.
github.io/cub/.

https://developer.nvidia.com/thrust
https://developer.nvidia.com/thrust
https://nvlabs.github.io/cub/
https://nvlabs.github.io/cub/

BIBLIOGRAPHY 125

[85] OpenMP Architecture Review Board. OpenMP application pro-
gram interface version 3.1, 2011. URL: http://www.openmp.org/
mp-documents/OpenMP3.1.pdf.

[86] Benjamin C. Pierce, Chris Casinghino, Marco Gaboardi, Michael Green-
berg, Cătălin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. Software Founda-
tions. Electronic book, January 2015. Version 3.2.

[87] David MacQueen Robert Harper and Robin Milner. Standard ML. Techni-
cal Report ECS-LFCS-86-2, Department of Computer Science, University
Of Edinburgh, March 1986.

[88] Amos Robinson, Ben Lippmeier, and Gabriele Keller. Fusing filters with
integer linear programming. In Proceedings of the 3rd ACM SIGPLAN
workshop on Functional high-performance computing, pages 53–62. ACM,
2014.

[89] John Scholes. D: A functional subset of Dyalog APL. The Journal of the
British APL Association, 17(4):93–100, April 2001.

[90] Mary Sheeran. Functional and dynamic programming in the design of
parallel prefix networks. Journal of functional programming, 21(01):59–114,
2011.

[91] Jack Sklansky. Conditional-sum addition logic. IRE Transactions on
Electronic computers, pages 226–231, 1960.

[92] Justin Slepak, Olin Shivers, and Panagiotis Manolios. An array-oriented
language with static rank polymorphism. In Programming Languages and
Systems, volume 8410 of Lecture Notes in Computer Science, pages 27–46.
Springer-Verlag, 2014.

[93] Justin Slepak, Olin Shivers, and Panagiotis Manolios. An array-oriented
language with static rank polymorphism. In Zhong Shao, editor, Program-
ming Languages and Systems, volume 8410 of Lecture Notes in Computer
Science, pages 27–46. Springer Berlin Heidelberg, 2014.

[94] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach.
Generating performance portable code using rewrite rules: From high-
level functional expressions to high-performance opencl code. In Pro-
ceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, 2015.

[95] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Noël Pouchet, Fab-
rice Rastello, J. Ramanujam, and P. Sadayappan. A framework for
enhancing data reuse via associative reordering. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, pages 65–76, New York, NY, USA, 2014.
ACM. URL: http://doi.acm.org/10.1145/2594291.2594342,
doi:10.1145/2594291.2594342.

http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://doi.acm.org/10.1145/2594291.2594342
http://dx.doi.org/10.1145/2594291.2594342

BIBLIOGRAPHY 126

[96] Bo Joel Svensson, Ryan R. Newton, and Mary Sheeran. A language for
hierarchical data parallel design-space exploration on GPUs. Journal of
Functional Programming, 26, 2016.

[97] Joel Svensson, Mary Sheeran, and Koen Claessen. Obsidian: A domain
specific embedded language for parallel programming of graphics pro-
cessors. Implementation and Application of Functional Languages, pages
156–173, 2011.

[98] Peter Thiemann and Manuel M. T. Chakravarty. Agda meets acceler-
ate. In 24th Symposium on Implementation and Application of Functional
Languages, IFL’2012, 2013. Revised Papers, Springer-Verlag, LNCS 8241.

[99] Kai Trojahner and Clemens Grelck. Dependently typed array pro-
grams don’t go wrong. The Journal of Logic and Algebraic Programming,
78(7):643–664, 2009. The 19th Nordic Workshop on Programming Theory
(NWPT’2007).

[100] Kai Trojahner and Clemens Grelck. Descriptor-free representation of
arrays with dependent types. In Procs. Int. Conf. on Implem. and Appl. of
Funct. Lang. (IFL), pages 100–117, 2011.

[101] Kai Trojahner and Clemens Grelck. Descriptor-free representation of
arrays with dependent types. In 20th International Conference on Imple-
mentation and Application of Functional Languages, IFL’08, pages 100–117.
Springer-Verlag, 2011.

[102] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez,
Christian Tenllado, and Francky Catthoor. Polyhedral parallel code
generation for cuda. ACM Trans. Archit. Code Optim., 9(4):54:1–54:23,
January 2013.

[103] Jeffrey Scott Vitter and E AM Shriver. Algorithms for parallel memory, i:
Two-level memories. Algorithmica, 12(2):110–147, 1994.

[104] Jeffrey Scott Vitter and E AM Shriver. Algorithms for parallel memory, ii:
Hierarchical multilevel memories. Algorithmica, 12(2):148–169, 1994.

[105] Michael Vollmer, Bo Joel Svensson, Eric Holk, and Ryan R Newton. Meta-
programming and auto-tuning in the search for high performance gpu
code. In Proceedings of the 4th ACM SIGPLAN Workshop on Functional
High-Performance Computing, pages 1–11. ACM, 2015.

[106] Philip Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical computer science, 73(2):231–248, 1990.

[107] Arthur Whitney. K. The Journal of the British APL Association, 10(1):74–79,
July 1993.

BIBLIOGRAPHY 127

[108] Hongwei Xi and Frank Pfenning. Dependent types in practical program-
ming. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’99, pages 214–227, New York,
NY, USA, 1999. ACM.

[109] Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar. Hierarchical
place trees: A portable abstraction for task parallelism and data move-
ment. In International Workshop on Languages and Compilers for Parallel
Computing, pages 172–187. Springer, 2009.

[110] A. P. Yershov. Alpha - an automatic programming system of high effi-
ciency. Journal of the ACM, 13(1):17–24, January 1966.

	Introduction
	Landscape of functional array languages for GPUs
	Thesis
	Compiling APL into a typed array language
	Hierarchical functional data-parallelism
	Contributions
	Structure of the dissertation

	Functional array language design
	A core functional language with arrays
	Array operations
	Fusion
	Iteration and recursion
	Nested data-parallelism

	TAIL: A Typed Array Intermediate Language for Compiling APL
	A Typed Array Intermediate Language
	Compiling the Inner and Outer Products
	APL Explicit Type Annotations
	TAIL Compilation
	Benchmarks
	Related Work
	Conclusion and Future Work

	GPU architecture and programming
	GPU architecture
	GPU programming
	Optimisation of GPU programs

	FCL: Hierarchical data-parallel GPU programming
	Obsidian
	Case Studies in FCL
	Formalisation
	Larger examples
	Performance
	Related work
	Discussion and future work
	Conclusion

	Conclusion
	Bibliography

