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Abstract—We have enabled work migration in the CoMD
proxy application to study dynamic load imbalance. Proxy
applications are developed to simplify studying parallel perfor-
mance of scientific simulations and to test potential solutions for
performance problems. However, proxy applications are typically
too simple to allow work migration or to represent the load
imbalance of their parent applications. To study the ability of load
balancing solutions to balance work effectively, we enable work
migration in one of the ExMatEx proxy applications, CoMD. We
design a methodology to parameterize three key aspects necessary
for studying load imbalance correction: 1) the granularity with
which work can be migrated; 2) the initial load imbalance;
3) the dynamic load imbalance (how quickly the load changes
over time). We present a study of the impact of flexibility in
work migration in CoMD on load balance and the associated
rebalancing costs for a wide range of initial and dynamic load
imbalance scenarios.

I. INTRODUCTION

Modern scientific simulations rely on parallel computers to

solve state of the art problems requiring vast computational

resources. The largest supercomputers have millions of inde-

pendent processors, and concurrency levels are rapidly increas-

ing. For ideal efficiency, developers of the simulations that

run on these machines must ensure that computational work

is evenly balanced among processors. Dynamic load balancing

is a way to correct the imbalances that arise throughout the

application execution, and is increasingly important for overall

application performance. To enable dynamic load balancing,

applications must implement a mechanism for work migration.

We present a methodology for studying how flexibility in work

migration impacts the trade off between ability to balance the

work effectively and the associated costs.
Proxy applications can make it easier to study performance

of large simulations and try new solutions. However, as

the result of simplification, many proxy applications are not

suitable for studying load imbalance solutions because they do

not implement work migration. In this work, we extend one

of the ExMatEx proxy applications, CoMD, to enable work

migration, and to represent dynamic load imbalance found in

large scale molecular dynamics simulations. To mimic real

simulations, we develop a methodology to set up initial load

imbalance, and to dynamically control the imbalance as the

simulation progresses. We enable flexibility in the granularity

of work migration in CoMD, which allows us to study the

impact of the work migration granularity on the ability to

lower the imbalance in the simulation and the associated

rebalancing costs.

In this paper, we describe the control mechanisms for 1)

initial load imbalance, 2) dynamic imbalance, and 3) work

migration granularity we introduced in CoMD. Together, these

three aspects enable us to study the effectiveness of load bal-

ancing solutions and their costs when the application presents

different imbalance behaviors (high/low initial imbalance,

fast/slow rate of change in imbalance). We show that our

version of CoMD is useful in evaluating work migration granu-

larity and load balance algorithm performance for applications

with different imbalance behaviors.

Our contributions in this paper are:

• A proxy application that allows us to study work migra-
tion granularity, load imbalance and potential solutions;

• Ability to control initial load imbalance, dynamic load
imbalance, and flexibility in work migration;

• An evaluation of a load balance algorithm performance

on a wide range of initial and dynamic load imbalance

scenarios generated using our new proxy application.

Section II describes related work. Section III describes the

original CoMD proxy application. Section IV describes how

we create initial load imbalance in CoMD, and how we make

load imbalance dynamic in CoMD. Section V outlines the

changes we made to the implementation of CoMD to enable

work migration. Section VI describes our interface for load

balance algorithms. Section VII shows our results.

II. RELATED WORK

Many simulations implement their own load balance algo-

rithms that are tightly coupled with application data structures

(i.e., ParaDiS [3]). Others rely on stand-alone libraries like

graph partitioners (i.e., ParMetis [13], [14], Jostle [15], [16],

and Zoltan [4], [5]). Testing whether their own or stand-alone

load balance solutions can correct load imbalance is non-trivial

for a production application as enabling work migration can

involve significant changes to the application data structures.

Our work aims at providing a testbed to enable evaluation of

load balance solutions prior to performing the work necessary
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Fig. 1: Cutoff Radius and Regular Grid
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Fig. 2: Introducing Load Imbalance in CoMD

to enable work migration, and informing decisions about

granularity of work migration necessary for the load balance

solutions to be successful.

Some applications have the option of using AMPI to overde-

compose the domain [12] and then balance load by moving

virtual processors from overloaded physical processors to the

underloaded ones. This approach is application agnostic and

based solely on runtime information, but can impose extra

communication overhead for tightly coupled applications due

to the increase in the surface to volume ratio of the smaller

domains. Our work enables testing of load balance algorithms

that can rebalance the application based on the input from the

application.

LeanMD [9] is a parallel molecular dynamics simulation

framework written in Charm++ that exhibits load imbalance.

While it is useful for exploring the built-in Charm++ load

balance algorithms, it does not provide the control mechanisms

to set up different load balance scenarios, which are the

main contribution of this work. Similarly, the AMR mini-app

implemented in Charm++ and miniAMR from the Mantevo

suite [7] do not have a mechanism to control the imbalance.

The Particle-in-cell (PIC) Parallel Research Kernel

(PRK) [6] is a paper-and-pencil specification of the

computational task to be computed. PIC PRK was developed

to help measure the efficiency and effectiveness of dynamic

load balance techniques. Similarly to our work, they introduce

different imbalance scenarios to test load balance algorithms.

Particle distribution in PRK can be exponential, sinusodial, or

linear, resulting in different initial load imbalance. To simulate

dynamic imbalance, particles can be uniformly injected or

removed throughout execution. Besides representing a

different class of simulations, our work goes a step further

by explicitly parameterizing the initial and dynamic load

imbalance. We also parameterize work assignment granularity

to allow studying how flexibility in work assignment impacts

the ability to rebalance the application.

III. COMD: EXMATEX PROXY APP

Molecular dynamics is an important class of simulations

that evaluate the forces the atoms in the system exert on each

other over time. CoMD [1] is an ExMatEx proxy application

designed to represent this class of simulations.
Because atoms that are far apart have little effect on each

other, classical MD simulations frequently use atom interac-

tion models that define the force between two atoms to be

zero when their separation distance exceeds a cutoff radius.

This reduces the complexity of the force calculation to O(n).
Figure 1a shows a selected atom and a circle with the cutoff

radius which defines the range of interaction. To simplify

finding which of the atoms are within the cutoff radius, CoMD

divides the simulation space into cells that are no smaller than

the cutoff radius, as shown in Figure 1b. This cell definition

guarantees that the atoms within the cutoff radius from an atom

are either in the same cell as the atom, or in the immediately

surrounding cells.
CoMD has an MPI version which implements a Cartesian

spatial decomposition of atoms across processes, with each

process responsible for computing forces and evolving veloc-

ities and positions of all atoms within its domain boundaries.

As atoms move across domain boundaries, they are handed

off from one process to the logically neighboring process. To

compute forces between atoms on different domains, CoMD

uses ghost cells, or copies of the immediately neighboring

cells residing on the logically neighboring processes. Similar

to other molecular dynamic simulations, CoMD uses periodic

boundaries, allowing the atoms near the boundaries to interact

with the atoms on the opposite side of the simulated space.

IV. INTRODUCING LOAD IMBALANCE IN COMD

In this section, we describe how we introduce initial load

imbalance in CoMD, and how we ensure the load imbalance

changes throughout the simulation.

A. Initial Load Imbalance
The reference implementation of CoMD evenly divides the

simulated space between processes. Because the atoms are
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Fig. 3: Using Domain Overdecomposition to Enable Load Balancing

1: for timesteps do
2: Execute application iteration on the local domain
3: Communicate with neighbors

Fig. 4: Algorithm: Standard Proxy App

1: for timesteps do
2: for all local domains do
3: Execute application iteration on the local domain
4: Communicate with neighbors (local and remote)

Fig. 5: Algorithm: Overdecomposed Proxy App

uniformly spaced at setup, the atoms and the number of

atom interactions that need to be computed are also evenly

divided between processes, making the simulation inherently

balanced. To introduce imbalance, we introduce voids in

the simulated structure by removing some atoms from the

simulation. Figure 2a illustrates a four-process problem with

the atoms shown in green. We randomly place spheres in the

simulated space, shown in blue, and remove all the atoms that

fall inside the spheres. While the spheres are not part of the

simulation, we use the concept of the spherical voids in this

work to reason about the atom spacing in the simulated space.

After atom removal, the number of atoms assigned to each

process is different, and so is the number of atom interactions

the processes will compute. The spherical void size, the sphere

count, and a random seed for generating the coordinates for

the sphere center, are user-specified runtime parameters.

B. Dynamic Load Imbalance

To create a version of molecular dynamics with a dynamic

load imbalance, we introduce the ability to set a non-zero

center of mass velocity for the simulation. This causes the

atoms to gradually shift in any of the three spatial dimensions

(or combination of them) by a fixed distance at every time

step. Figure 2b shows an example of moving all the atoms

in Figure 2a horizontally. Now Process 0 gets fewer atoms to

work with, while Process 1 gets more.

Because MD is translationally invariant, this overall shifting

the atoms preserves the number of force interactions between

the atoms but changes which process has to compute the

interactions. We implemented the center of mass velocity as a

runtime parameter; the user indicates the dimension(s) along

which the atoms should be shifted, and the shift distance in

Angstroms per time step for the selected dimension(s). Atoms

can be shifted by a different distance in each dimension. This

simulates a production application where amount of work per

process changes over time throughout the application runtime.

V. ENABLING WORK MIGRATION IN COMD

The reference implementation of CoMD cannot be load

balanced because of several design decisions. CoMD decom-

poses the simulated space into the same number of domains as

processes, and assigns one domain per process. The domains

are rectangular prisms of the same size, and the user cannot

control the size or the shape of the domains. Figure 3a shows

the simulation space in CoMD decomposed into four equal-

sized rectangular domains; one domain is assigned to each

process. Once the domains are assigned to processes, the

assignment cannot be changed, so dynamic changes in work

cannot be reflected in the work assignment.

We relaxed these design decisions by overdecomposing

the application into more domains than available processes.

Figure 3b shows the same simulation space decomposed into

16 domains; the domains are then assigned to four processes.

However, if one process has more work than others, the

assignment might be more balanced if we move one of the

domains to another process, as shown in Figure 3c.

In our implementation, we introduce a data structure to store

the assignment of domains to processes. Our domain graph
consists of vertices which represent domains, and edges which

represent boundaries with logically neighboring domains. The

domain graph is distributed between processes, and each

process stores local domains and edges to local and remote

logically neighboring domains.

Figure 4 shows pseudocode for the existing CoMD imple-

mentation; each process performs computation on a single

domain. Figure 5 shows pseudocode for our overdecomposed

implementation. Each process is now responsible for comput-

ing the forces on one or more domains, and communicating

the velocity and position updates accordingly.

We evaluated the overhead of overdecomposing CoMD to

ensure that we have not substantially changed the performance

of the proxy application. While we have looked at the per-

formance in significant detail [8], Figure 6 summarizes the

impact on the overall runtime. Figure 6a shows weak scaling

with 256K atoms per process, while Figure 6b shows strong

scaling with 256M atoms overall. Both figures demonstrate

that the runtime is slightly shorter with our overdecomposed

implementation. This may be due to the fact that in the original

implementation, the atoms are stored in long lists; these lists

are broken into shorter lists in our overdecomposed approach.

Because we are computing atom-atom interactions for atoms

in different lists, our overdecomposed approach has the cache

effect similar to that of blocking for matrix-matrix multipli-

cation. Aside from this cache effect, our implementation does

not significantly change the performance of CoMD.

We implement overdecomposition granularity as a runtime

parameter to let us study the trade off between load balance

quality and cost. One hypothesis is that applications with
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Fig. 6: Total Runtime (1000 timesteps) for Original CoMD vs. Overdecomposed CoMD

moderate imbalance should be possible to balance even when

work assignment granularity is large (i.e., 8 domains per

process). Applications with more severe imbalance or more

dynamic imbalance may require a finer granularity of work

assignment; in this case, the higher cost of rebalancing may

be justified by more flexibility in making a more balanced

work assignment. Our proxy application allows us to easily

study these trade offs.

VI. LOAD BALANCE ALGORITHM INTERFACE

Our overdecomposed implementation of CoMD maintains

a distributed domain graph where the vertices represent do-

mains, and edges represent boundaries with logically neigh-

boring domains. A vertex in the domain graph represents the

smallest migratable unit in the application; its optional weight

represents the amount of work in that domain. In this paper, we

estimate the work in the domain as the number of interactions

computed for the domain, which has been shown to be a useful

estimate for molecular dynamics simulations [10].

Our distributed domain graph can be easily translated to

CSR format, and used as an input to generic load balance

algorithms like graph partitioners (i.e., ParMetis [13], [14],

Jostle [15], [16], and Zoltan [4], [5]). The output of a load

balance algorithm is an assignment of domains to processes.

Our implementation sends the domain to its new process and

updates the domain graph.

For the results shown in this paper, we used a simple load

balance algorithm based on a spatial sort. First, the domains

are spatially sorted using a Hilbert curve or Morton curve

based on the region of simulated space they represent. Next,

the curve is partitioned between the processes, taking domain

weights into consideration. This algorithm has the complexity

of a sorting algorithm in terms of the number of domains

sorted. So far, we used a sequential implementation of the

algorithm, necessitating reduction of the relevant information

to a single process. In the future, we plan to use a variety of

more sophisticated and parallel load balance methods.

Our domain graph is a suitable interface with load balance

algorithms since many load balance algorithms use graphs as

a representation of the application communication.

Load on each Process L max L ave Imbalance

(a)
0
1
2
3

P0 P1 P2 P3 P4 P5 P6 P7

2 2 0%

(b)
0
1
2
3

P0 P1 P2 P3 P4 P5 P6 P7

3 2 50%

(c)
0
1
2
3

P0 P1 P2 P3 P4 P5 P6 P7

3 2 50%

(d)
0
1
2
3

P0 P1 P2 P3 P4 P5 P6 P7

3 2 50%

TABLE I: Example Load Distributions and Their Imbalance

VII. RESULTS

In this section, we evaluate how different work assignment

(overdecomposition) granularity, initial load imbalance, and

velocity of shifting the atoms in the simulation impact the

ability of a load balance algorithm to correct the imbalance.

We study the trade-offs of load balancing accuracy and rebal-

ancing costs.

For our experiments, we use a Linux cluster with nodes

consisting of two 2.8 GHz Hex-core Intel Xeon EP X5660

processors, twelve cores per node. All nodes are connected by

QDR Infiniband. We use GCC 4.4.7 and MVAPICH v0.99 on

top of CHAOS, an HPC variant of RedHat Enterprise Linux

(RHEL), running at Linux kernel v2.6.32.

For our measurements, we use Caliper [2], a generic context

annotation tool developed at LLNL. Using Caliper, we anno-

tate the phases of execution in the application, and measure

how much time the phases take at each time step. The per-

timestep measurements allow us to observe the performance

changes in the simulation over time.

We define the load of an MPI process in a timestep as the

total time minus the time waiting at MPI synchronizations:

Lprocess = Ttotal − Tsync (1)

We use Caliper’s MPI service to measure the time each process

spends in MPI Barrier, MPI Allreduce, MPI Alltoall, and

MPI Waitall functions at each timestep. Tsync in Equation 1

is simply the total time the process spends in MPI synchro-

nizations at each timestep.
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(c) Detailed Parameters and Statistics

Prob % Atoms NumAtoms Number of Spherical Void %Imbalance % Imbalance After LB

-lem Removed Remaining Interactions #/Process Radius(Angstr.) Before LB 512xOV 64xOV 8xOV

1 6.76 21,750,645 467,711,537 10 19.3 5 0.8 2.8 3.1

2 17.34 19,283,754 414,158,794 2 46.3 20 3.5 2.9 4.2

3 23.92 17,747,675 380,027,720 2 52.4 25 4.4 4.7 7.2

4 38.28 14,397,791 301,885,115 8 39.5 30 7.8 6.2 6.7

5 42.40 13,431,088 283,106,849 4 52.4 50 10.2 10.6 10.7

6 45.09 12,809,523 266,446,859 10 39.5 40 7.7 6.9 7.2

7 54.23 10,677,200 220,856,392 8 46.3 55 12.9 13.6 13.0

8 67.84 7,501,551 153,090,962 8 52.4 75 29.8 31.6 29.8

9 75.45 5,727,095 115,381,879 10 52.4 100 31.8 33.4 34.1

Fig. 7: Initial Load Imbalance Scenarios in CoMD (64 Processes, 23M Atoms Initially)

For this paper, we define load imbalance as the scaled
maximum load on any process minus the average:

Imbalance =

(
Lmax − Lave

Lave

)
× 100%, (2)

where L is the load from Equation 1. The definition in

Equation 2 represents opportunity cost of load balancing, as

shown in Figure I [11]. Example (b) shows process loads with

50% imbalance, and because the maximum process load is

3 units, the execution time is 3 units, which is 50% longer

than the execution of the balanced example (a) (2 units).

A. Creating Initial Load Imbalance

The first control mechanism for our study is introducing

initial load imbalance before running the simulation. For these

experiments, we started by generating 23,328,000 atoms on 64

processes. The simulated space is a cube with a side length of

650.24 Angstroms; each process starts with a cube with a side

length of 162.56 Angstroms. We varied the number and size

of spherical voids to generate a set of problems with different

number of atoms and load imbalance for our experiments.

Figure 7 shows a set of problems with different configura-

tions for spherical voids. We varied the number of voids from 2

to 10 per process. We varied the radius of the voids from 19.3

to 52.4 Angstroms. The parameterized atom removal resulted

in a different number of atoms for each problem. Figure 7

shows the resulting initial imbalance for each problem, as

defined by Equation 2. Generally, large spherical voids lead to

less uniform distribution of atoms in the problem and therefore

higher imbalance and difficulty in load balancing.

We overdecomposed the generated set of problems and load

balanced them. We experimented with three granularities of

overdecomposition: 8 domains per process (8x overdecom-

position), 64 domains per process (64x overdecomposition),

and 512 domains per process (512x overdecomposition). De-

composing the problem into more domains gives us more

flexibility in terms of work assignment since it allows us to

migrate smaller portions of the problem space. Figure 7 shows
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(e) Detailed Parameters and Statistics

Num Num Atoms Number of % Imb % Imbalance After LB Total Runtime

Procs Remaining Interactions bef. LB 512xOV 64xOV 8x OV No LB 512xOV 64xOV 8x OV

64 13,431,088 283,106,849 50.70 10.20 10.60 10.70 351.70 288.59 280.66 277.20

128 26,505,376 558,243,612 50.30 14.33 14.96 16 353.98 293.91 283.32 284.52

256 53,190,202 1,120,473,002 55.76 16.42 16.22 16.26 370.02 305.10 287.86 291.86

512 106,273,179 2,239,029,303 50.55 16.67 17.13 17.6 357.41 314.23 292.73 291.33

1,024 212,741,503 4,482,828,235 58.00 14.87 14.08 14.67 375.26 328.83 292.16 284.03

2,048 425,692,895 8,971,434,404 65.00 17.67 19.42 17.22 393.54 379.90 303.28 291.36

4,096 852,665,073 17,971,364,315 63.00 NA 20.04 19.27 423.40 NA 332.71 297.77

Fig. 8: Impact of Load Imbalance and Rebalancing Costs on Total Runtime (Weak Scaling)

the load imbalance for each granularity of overdecomposition

after rebalancing. The problems with higher initial imbalance

still had higher imbalance even after the rebalancing step,

as compared to the problems with lower initial imbalance.

This is due to the fact that large spherical voids result in

problems with less uniform atom distribution, which are more

challenging to load balance. Different granularities of overde-

composition result in roughly the same load imbalance for

each problem, with smaller granularities of overdecomposition

mostly achieving slightly lower imbalance due to having more

flexibility in work assignment. In some instances, smaller

granularity of overdecomposition does not result in lower

imbalance, although the difference is negligible and is due

to the fact that the work cannot be evenly divided between

processes even with smaller granularity.

We used our set of problems with different initial load

imbalance and parameterized overdecomposition granularities

to look at the costs of rebalancing and redistributing work.

Figure 7b shows that higher granularities of overdecompo-

sition result in higher costs of rebalancing, due to the finer

granularity of work assignment. Additionally, the cost of

rebalancing was slightly higher in problems with more severe

imbalance as more domains were migrated during rebalancing.

While Figure 7a suggests slightly better load balance with

smaller granularities of overdecomposition, Figure 7b shows

the higher costs of overdecomposing into smaller domains. We

will look at these costs in more detail in Section VII-B as we

examine weak scaling of our approach and overall runtimes

of the problems.

Figure 7c details the runtime parameters (number and size of

spherical voids) for each problem shown in Figures 7a and 7b.

It also shows the number of remaining atoms and initial load

imbalance as well as the number of interactions each problem

computes in the initial timestep. We also list the resulting load
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Fig. 9: Effect of Velocity With Which the Atom Shift on Load Imbalance

imbalance for each granularity of overdecomposition.

Our ability to vary the initial load imbalance allows us

to evaluate how well a load balance method can correct the

imbalance for a given overdecomposition granularity.

B. Weak Scaling

To evaluate the impact of scale on the performance and

accuracy of a load balance algorithm, we performed a weak

scaling study. For these experiments, we use Problem 5 in

Figure 7c. This problem has 4 spherical voids with a radius of

52.4 Angstroms per process, and an initial imbalance of 50%.

We weak scale Problem 5 from 64 to to 4,096 processes by

proportionally increasing the simulated space and keeping the

size and the number of spherical voids per processor the same.

Figure 8e lists the number of atoms, interactions, and initial

imbalance at each scale. Load imbalance goes up slightly at

higher scales because differences in process loads become

more pronounced at scale.

Figure 8 demonstrates the impact of load imbalance and

load balancing costs on the total runtime of the simulation

when weak scaling the problem. We ran each problem for

160 timesteps, and rebalanced in the third timestep.

Figure 8a illustrates the ability of our load balance algorithm

to load balance the problem; we show the load imbalance

right after rebalancing when using 8x, 64x, and 512x overde-

composition. For all three granularities of overdecomposition,

the load balance algorithm is successful at reassigning work

in a more balanced manner. Because the difficulty of load

balancing increases with scale even in the weak scaling case,

we see that the post-rebalancing imbalance is higher at higher

scale. While the results are similar for all three levels of

overdecomposition, 512x overdecomposition is slightly better

due to more flexibility in work assignment. However since

512x overdecomposition deals with fine-grained data, it uses

more memory for bookkeeping and runs out of memory

on 4,096 processes when using our sequential load balance

algorithm.

Figure 8b shows the runtime of our load balance algorithm.

Because we only have a sequential algorithm in place at the

moment and need to gather/scatter its input/output, its execu-

tion time grows as the problem is weak scaled. The execution

time grows much faster with scale for finer granularity of

overdecomposition because the number of domains in the

problem is the input size to the load balance algorithm.

Figure 8c shows the time for redistributing the domains in

the simulation after the load balance algorithm determines the

new domain assignments. The higher the overdecomposition,

the more domains there are in the problem, and therefore the

longer it takes to redistribute the simulation.

Figure 8d shows the total runtime of the simulation over

160 timesteps. Problems run without load balancing take the

longest to finish. Problems run with 8x overdecomposition plus

load balancing are the fastest especially at higher scale.

Because we only have a sequential load balance algorithm

that requires reduction of all necessary data to a single process,

512x overdecomposition used too much memory and resulted

in a slow execution time of the load balance algorithm,

outweighing the benefits of achieving lower imbalance.

Our proxy application allowed us to study performance

and accuracy of a load balance algorithm as the number of

processes increased, as well as the associated costs.

C. Dynamic Imbalance

To allow dynamic work changes and to study their effect

on the ability to load balance the simulation, we experiment

with our control mechanism of shifting atoms in the simulated
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(a) Total Runtime for Different Velocity, Frequency of Load Balancing, and Overdecomposition (Problem 5)
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(c) 0.5% Velocity
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Fig. 10: Effect of Frequency of Rebalancing on Load Imbalance, Problem 5 (13M Atoms, 283M Interactions, 64 processes, 50% Initial Imbalance)

space. For these experiments we compare Problems 5 and 9

in Figure 7c on 64 processes. Problem 5 has 4 spherical

voids with the radius of 52.4 Angstroms per process; it has

13,431,088 atoms and computes 283,106,849 atom-pair force

interactions, and 50% initial imbalance. Problem 9 has 10

spherical voids with the radius of 52.4 Angstroms per process;

it has 5,727,095 atoms and computes 115,381,879 atom-pair

force interactions, and 100% initial imbalance. In addition to

being more imbalanced, Problem 9 performs significantly less

computation than Problem 5. For both problems, we use three

granularities of overdecomposition, and run the load balance

algorithm at even intervals with different frequencies.

Figure 9 shows the effect of shifting the atoms in the

simulation space on the load balance. We ran all problems

for 160 timesteps. We show three center of mass velocities:

0.1%, 0.5%, and 1%, where 1% velocity means each timestep

the atoms were shifted by 1% of the length of the simulation

space in one dimension of the problem. The change in the

imbalance is small when the atoms are shifted slowly, and a

faster shift of atoms results in a larger variation in imbalance.

The imbalance can both decrease and increase because the

atoms in the problem will shift from one process to the next,

changing the amount of computation each process performs.

For Problem 5, the variation in imbalance as the atoms shift

is not large, because each process does a significant amount

of work even as the atoms shift, as shown in Figure 9a. For

Problem 9, the variation in imbalance is larger, because there

are fewer atoms overall and the impact of them shifting to

other processes is greater, as shown in Figure 9b.

Figures 10 and 11 show the total runtimes for Problems 5

and 9, and how imbalance in Problems 5 and 9 evolves when

they are rebalanced with different frequency. Here we define

frequency of rebalancing as the number of times the problem

was rebalanced during the execution, so a frequency of 2x

means the problem was rebalanced twice, namely at timestep 1

and timestep 81. We ran the problems for 160 timesteps. We
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(a) Total Runtime for Different Velocity, Frequency of Load Balancing, and Overdecomposition (Problem 9)
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(c) 0.5% Velocity
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Fig. 11: Effect of Frequency of Rebalancing on Load Imbalance, Problem 9 (5.7M Atoms, 115M Interactions, 64 processes, 100% Initial Imbalance)

show rebalancing at equal intervals with different frequencies

that result in the best runtime (as demonstrated in Figure 10a)

for 0.1%, 0.5%, and 1.0% velocities of shifting atoms. We

show the runtimes for different velocities of shifting atoms,

and different frequencies of rebalancing. Minimizing the total

runtime requires appropriately evaluating the tradeoffs be-

tween the costs and benefit of rebalancing with different fre-

quency; we intend to use our version of CoMD for developing

and evaluating models which handle the trade off for different

imbalance scenarios and rebalancing costs.

Figure 10a shows the total runtimes for Problem 5. Fig-

ure 10b shows that load imbalance increases slowly when

center of mass velocity is 0.1%, and Figure 10a confirms

that load balancing twice results in the lowest execution

time (64x overdecomposition). The imbalance increases faster

when the shift velocity is 0.5%, as shown in Figure 10c,

so load balancing 8 times results in the lowest execution

time (8x overdecomposition). Load imbalance increases most

dramatically when the atoms are shifted with velocity of 1.0%,

as shown in Figure 10d, necessitating rebalancing 14 times (8x

overdecomposition).

Figure 11a shows the total runtimes for Problem 9. Fig-

ure 11b shows that load imbalance increases slowly when

shift velocity is 0.1%, and load balancing twice results in the
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lowest execution time (8x overdecomposition). The imbalance

increases faster when the shift velocity is 0.5%, as shown in

Figure 11c, so load balancing 4 times results in the lowest

execution time (8x overdecomposition). For this instance of

the problem (0.5% velocity), the state of the application at step

80 is such that the load balance algorithm does not improve

the imbalance; in fact, load imbalance increases; we are still

investigating why this happens. Load imbalance increases most

dramatically when the atoms are shifted with velocity of 1.0%,

as shown in Figure 11d, requiring rebalancing 8 times for the

best runtime (8x overdecomposition). Similarly to the 0.5%

velocity case, for 1.0% velocity case, there are points in the

problem when rebalancing increases the load imbalance (i.e.,

at timestep 40); we are still investigating the causes. Because

there is less work per process in Problem 9 as compared

to Problem 5, higher imbalance can be tolerated and fewer

rebalancing steps can be amortized over the duration of the

problem.

TABLE II: Details for Best Case Execution for Different Velocities

Problem
Velocity

0.1% 0.5% 1.0%

Problem 5 (50%)
Overdecomp. 64x 8x 8x
LB Frequency 2x 8x 14x
Time (sec) 281.1 286.8 296.9

Problem 9 (100%)
Overdecomp. 8x 8x 8x
LB Frequency 2x 4x 8x
Time (sec) 169.4 199.16 202.1

Table II shows details for the lowest runtimes in each ve-

locity/frequency category. As velocity increases, the benefit of

increasing the rate of rebalancing can outweigh the rebalancing

cost, resulting in overall improvement in total runtime of the

simulation.

Our ability to shift atoms in the simulation over time allows

us to study how dynamic work changes effect our ability to

load balance the simulation for a given overdecomposition

granularity.

VIII. CONCLUSIONS

We extended an ExMatEx proxy application, CoMD, to be

a suitable testbed for assessing the ability of load balance

algorithms to correct dynamic load imbalance. We designed

a methodology to parameterize three key aspects necessary

for studying load imbalance correction: the granularity with

which work can be migrated, the initial load imbalance, and

how quickly the imbalance changes throughout the simulation.

We presented a study demonstrating our ability to use our

modified version of CoMD to evaluate the effectiveness of a

load balance algorithm and the associated rebalancing costs for

a wide range of initial and dynamic load imbalance scenarios.
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