
Compiling APL to Accelerate Through a Typed IL

Michael Budde

University of Copenhagen
skx295@alumni.ku.dk

6. November 2014

Abstract

APL is a functional array programming language from
the 1960’s. While APL no longer has widespread
adoption as a general programming language, there
still exist large codebases in APL in the industry. Ac-
celerate is an array language embedded in Haskell
for doing high-performance computation on GPU’s.

In this report I present a compiler written in
Haskell for compiling a typed intermediate array lan-
guage (TAIL), as produced by the APL compiler by
Elsman [2], to Haskell programs using the Acceler-
ate library that can be run on GPU’s by using the
backends available for Accelerate.

1 Introduction

APL was created by Kenneth E. Iverson in the 60’s and
is a functional array language that supports multi-
dimensional arrays and first and second order func-
tions. While APL is an old language, some industries
such as the financial industry still has large code
bases in APL that are being actively developed [3].
APL features a very succinct syntax where symbols
are used for most of the built-in operations such as
‘ρ’ for reshape and ‘,’ (comma) for concatenation of
arrays. The same symbol is also used for different
operations and the choice of operation depends on
the number of arguments to the operator. The syntax
of APL means that programs can be written concisely
but it also means that programs can be difficult to
understand and to maintain. The syntax also cre-
ates some difficulties when it comes to compiling
the language since it can be difficult to parse. This
project builds on the work on the APLTAIL compiler

by Elsman [2], which can compile a subset of APL
to a typed intermediate array language. This inter-
mediate language is easy to parse, reason about and
perform transformations on. For a formal descrip-
tion of TAIL please refer to the paper by Elsman and
Dybdal [3].

Accelerate is an array language embedded in
Haskell that supports multi-dimensional arrays. Ac-
celerate can generate code for different architectures
by using different backends. One of the available
backends is a CUDA backend that allows the code to
be offloaded to a GPU and run in parallel.

The goal of this project was to do the ground work
of making a compiler from a subset of APL to Accel-
erate and evaluate the performance of the compiled
programs running on a GPU. This report will present
a compiler from the intermediate language TAIL to
Accelerate that enables compilation of a subset of APL
to programs that can use CUDA supporting GPUs to
perform calculations in parallel. In the rest of the
report I will refer to this compiler as the APLACC

compiler. The code is available online [1].
Section 2 will give a description of the TAIL syntax.

In section 4, we will see how the transformation from
TAIL to Accelerate is done. Finally in section 8 we
come to a conclusion and discus possible future work.

2 TAIL

The APLACC compiler takes TAIL programs as input.
What follows is a description of the TAIL syntax. We
use i to range over integers and d to range over dou-
bles. We use x to range over identifiers. Identifiers
start with a letter and is followed by zero or more
alphanumeric characters or underscores. For some z,

1

mailto:skx295@alumni.ku.dk

v ::= i | d | inf | x | ~v (values)

e ::= v | [~v] | x ι(~e) (expressions)

| fn x :τ => e
| let x :τ = e1 in e2

κ ::= int | double (base types)

τ ::= [κ]i | Sh(i) | Si(i) | Vi(i) (types)

ι ::= {[~κ], [~i]} | ε (instance lists)

Figure 1: Grammar describing the TAIL syntax supported
by the compiler. The symbols i, d and x denote
an integer, a double and an identifier, respec-
tively.

we write~z(n) to denote the sequence z0, z1, . . . , zn−1.
If the exact length of the sequence is unknown or
irrelevant, we leave it out and just write ~z.

Figure 1 shows the TAIL syntax supported by the
compiler. This syntax deviates a bit from the gram-
mar described in the TAIL paper [3] but is based on
the actual output of the APLTAIL compiler.

A TAIL program consists of a single toplevel ex-
pression (e). An expression can either be a value (v),
a vector of values, a function call, a lambda expres-
sion or a let expression. Values can be in integers (i),
doubles (i), infinity, an identifier (x) or the negation
of a value.

The possible types in TAIL are multi-dimensional
arrays ([κ]i, written as [κ]i when not describing the
syntax), shape vectors (Sh(i)), singleton integers
(Si(i)) and single-element integer vectors (Vi(i)).
The type of elements in arrays can be of one of the
base types, which are integers or doubles.

Function calls in TAIL can be annotated with in-
stance lists that specify which particular instance of
a polymorphic function is being used. The first list
contains the type instantiations and the second list
contains the rank instantiations. The number of el-
ements in the two lists depend on the function. For
example, the type of the reduce function is given as:

∀αγ. (α → α → α) → α → [α]γ+1 → [α]γ

The type is parameterized over two type parameters
α and γ, where α denotes a base type and γ a rank
type. In addition, α is used to denote the scalar array

type [α]0. An instantitation list for a call to reduce

would then be the particular values of α and γ for
that call. For example, for α = int and γ = 0 a call
to reduce could look like:

reduce{[int], [0]}(addi, 0, [1,2,3])

Instantiation lists were added (by Martin Elsman) to
the output of the APLTAIL compiler as we found that
this information was needed in the transformation
APL programs to Accelerate. Since APLTAIL already
performs type inference and has this information
available, adding the information to the TAIL pro-
grams was a better solution than having to do type
inference in APLACC.

It is currently assumed that the final result of any
TAIL program has the type [double]0. To allow other
result types the compiler will need a way to get this
information. Since APLTAIL already has information
about the result type, it would be easy to add this
information to the TAIL syntax. Alternativly, the in-
formation can be deduced while compiling the TAIL
program, although it would require some modifica-
tions to the compilation algorithm described in this
report.

3 Accelerate

Accelerate is an array language embedded in Haskell.
Array computations are instances of the data type
Acc, which represents an abstract syntax tree of the
computation. When running the array computation,
the tree is optimized in various ways and then passed
on to a backend which takes care of executing the
computation and returning the result. There exist a
number of different backends to Accelerate but the
primary one is the CUDA backend. This backend will
compile the Accelerate AST to CUDA code and run it
in parallel on the GPU. There is also a backend for
running the computations sequentially on the CPU,
mainly for testing purposes.

In addition to the Acc data type Accelerate has
another data type Exp that represents a scalar expres-
sion. Arrays are multi-dimensional and are repre-
sented by the type

(Shape sh, Elt e) ⇒ Array sh e

2

Shapes have the number of dimensions encoded in
the type and are constructed using the snoc operator
(which is both a type constructor and a type level
operator):

Z :. 5 :. 8 : Z :. Int :. Int

The following is an example of an Accelerate program.
The qualifier P is the Haskell prelude module and
Prim is the module containing implementations of
primitive functions. Unqualified functions and types
come from the Accelerate module.

program :: Acc (Scalar P.Double)

program =

let a = 3.14 :: P.Double in

Prim.reduce (+) (constant (0.0 :: P.Double))

(Prim.each (\x -> x + constant (a :: P.Double))

(use (fromList (Z :. 3) [1.0, 2.0, 3.0]) ::

Acc (Array DIM1 P.Double)))

main = P.print (Backend.run program)

4 From TAIL to Accelerate

The translation of a TAIL program to an Accelerate
program in the APLACC compiler is split into three
stages: parsing the TAIL source code, converting the
TAIL AST to an AST representing Accelerate code and
finally converting the Accelerate AST into Haskell
code. The last two steps will be presented as a single
step in the following sections.

The TAIL program is translated to Haskell source
code instead of compiling directly to an Accelerate
computation. The latter would require a function
definition of the form

compileTail : String → Acc (...)

where “. . . ” could be a number of different types
depending on the resulting type of the TAIL program.
A benefit of choosing the source code approach is
that the output is human readable and can be useful
as a starting point for manually translating the APL
code to Haskell.

The parsing of TAIL is very straightforward and
was easy to implement using the parser combinator
library Parsec in Haskell. The parsed TAIL program
is represented by the abstract syntax tree shown in
Figure 2.

rank = R integer
btype = IntT | DoubleT

type = ArrT btype rank | ShT rank
| SiT rank | ViT rank

instdecl = ([btype], [integer])
exp = Var string | I integer | D double

| Inf | Vc [exp] | Neg exp
| Let string type exp exp
| Op string (Maybe instdecl) [exp]
| Fn string type exp

Figure 2: AST for representing TAIL code.

4.1 Translating Types

Lets first consider the translation of TAIL types to
Accelerate types. As we have already seen, in TAIL
we have four type classes: arrays, shapes, singleton
integers and single-element integer vectors. Scalar
values are represented by a zero dimensional array
or singleton integer. There are also a number of sub-
typing relations: shapes and single-element vectors
are subtypes of one dimensional arrays and singleton
integers are a subtype of zero dimensional arrays.

In Acclerate the situation is a bit more complicated.
There are two main data types: Acc for array-valued
computations and Exp for scalar expressions. In ad-
dition to that there are also plain values1, e.g. Ints,
and shapes. Finally we have shapes. It is possible
to convert values between certain types but there
are not the same subtyping relations as in TAIL. This
means for example that we cannot treat a shape vec-
tor like it was an array. Instead we must explicitly
convert the shape to an array or pass it as an argu-
ment to a function that works on shapes. Accelerate
gives us the following three functions to convert be-
tween different types:

constant : Elt e ⇒ e → Exp e

unit : Elt e ⇒ Exp e → Acc (Scalar e)

the : Elt e ⇒ Acc (Scalar e) → Exp e

Converting Int values to Double can be done with
the Haskell built-in function fromIntegral and con-

1 Not to be confused with the Plain associated-type for the
Lift type class in Accelerate.

3

verting from Exp Int to Exp Double can be done
with the fromIntegral function from Accelerate.

Consider the following TAIL program:

let a:[int]0 = 5 in

reduce{[int], [0]}(addi, a, [a])

When translating this code we have a choice in
which type to give a. We can either give it type
Int, Exp Int or Acc (Scalar Int). The choice we
make decides which conversions we will need to do
in the call to reduce since the second argument to
reduce should be of type Exp Int while the in the
vector literal it should be a plain Int. One thing to
note is that we do not have a way to convert from
Exp a to a. This means that choice that will work
in this case is storing a as Int because otherwise we
can’t use it in the vector literal.

After some experimentation I have ended up with
the following mapping:

ArrT e (R 0) → Exp e

ArrT e (R r) → Acc e r

ShT _ → Acc 1 IntT

SiT _ → Exp IntT

ViT _ → Acc 1 IntT

A couple of notes: The mapping says to convert scalar
arrays and singleton integers to Exp but this is not the
whole story. As I will explain later these types will be
converted to plain types if possible. Secondly, shapes
in TAIL are converted to vectors. This is an area of
compiler that still needs more work. In section 6 I
will discuss this problem in more detail.

This mapping is used when translating the types
in let- and lambda-expressions. Since values can
be used in different contexts that require different
types in Accelerate we also need rules for converting
between types. For this reason the APLACC compiler
has a set of type casting rules. Type casting of a
Haskell expression ε from type τ1 to τ2 takes the
following form:

(ε : τ1) τ2 = ε ′

where ε ′ is some expression of type τ2. The explicit
type of ε is sometimes left out if the type is obvious
from the context. Figure 3 shows the type casting
rules in APLACC. When casting from Plain to Exp we
also add a type signature since Haskell is not always
able to deduce the type of ε.

(ε : Plain κ) Exp κ = constant (ε :: κ)

(ε : Plain κ) Acc r κ = unit (constant (ε :: κ))

(ε : Exp κ) Acc 0 κ = unit ε

(ε : Acc 0 κ) Exp κ = the ε

(ε : τ) τ = ε

(ε : τ1) τ2 = fail

Figure 3: Type casting rules for converting expressions
from one type to another.

4.2 Translating Expressions

Rules for converting a TAIL expression e (in the form
a TAIL AST, see Figure 2) to a Haskell expression ε

takes the following form:

J e K E τ = ε

where E is an environment that maps identifiers to
their types and τ is the type context. The type con-
text specifies what type the resulting expression is
expected to have. For example should the expres-
sion I 5 in a Plain IntT context translate to just
the literal 5, while in a Exp IntT context it should
translate to constant (5 :: Int). This is where
the type casting rules are used.

Figure 4 shows the rules for translating TAIL ex-
pressions to Haskell expressions. In the rules, τ∗ de-
notes a TAIL type while τ represents the correspond-
ing Accelerate type as specified by the type mapping
shown in subsection 4.1. For any Accelerate type τ,
κτ denotes the base type of τ, e.g. κExp IntT = IntT.

When translating negations and let expressions
we use the function cancelLift. The function has the
following definition:

cancelLift (Exp κ) (constant (ε :: κ))

= (ε, Plain κ)

cancelLift τ ε = (ε, τ)

To see why the function is needed consider the fol-
lowing example:

let a:[double]0 = 5.4 in

reduce{[double],[0]}(addd, 0.0, [a, a])

Our type mapping says that [double]0 should be
converted to Exp Double. That means we will have

4

J Var x K E τ1 = (x : τ2) τ1 if E[x] = τ2, otherwise fail
J I i K E τ = (i : Plain IntT) τ

J D d K E τ = (d : Plain DoubleT) τ

J Inf K E τ = (infinity : Plain DoubleT) τ

J Fn x τ∗1 e K E τ2 = \x -> J e K E[x 7→ τ1] τ2

J Neg e K E τ1 = (-(ε) : τ2) τ1

where (ε, τ2) = cancelLift (Exp κτ1) (J e K E (Exp κτ1))

J Op x ι [~e] K E τ1 = (ε : τ2) τ1

where (ε, τ2) = convertOp x ι [~e] τ

J Let x τ∗1 e1 e2 K E τ2 = let x = ε :: τ3 in J e2 K E[x 7→ τ3] τ2

where (ε, τ3) = cancelLift τ1 (J e1 K E τ1)

J Vc [~e(n)] K E (Acc 1 κ) = use (fromList (Z :. n) [~ε]) :: Acc (Vector κ)

where ~ε = ε0, ε1, . . . , εn−1

εi = J ei K E (Plain κ)

Figure 4: Translation of TAIL expressions to Haskell code.

to lift the double to Exp using the constant func-
tion. But to be able to use a in the vector literal its
type needs to be plain Double. Since we cannot cast
from Exp to Plain we need to save a as Plain. Un-
fortunately, this does not work in every case. If we
instead of the literal 5.4 had firstSh(iotaSh(5))

the compilation would fail since firstSh returns an
Exp value we can’t convert a Plain Double.

Then we have the convertOp function that does all
the dirty work of translating function calls.

(ε, τ2) = convertOp x ι [~e] τ1

The input are the function name as a string, the in-
stantiation lists, the arguments and the expected type
of the result. The return value is a tuple with the re-
sulting Haskell expression and the actual type of the
expression which might not match the expected type
τ. What the function does is that it looks the function
name up in table of all available primitive functions.
If the function name is found, the table entry is a func-
tion that, given ι and τ1, returns information about
how to convert each of the arguments and what the
return type will be. The argument expressions are
then converted according the specification and the
everything is combined into the final expression.

When we have the translated the program, all that
is left is to plug the Haskell expression into a Haskell
module with the correct imports and main function
that uses an Accelerate backend to execute the pro-
gram.

5 Primitives

We should now a valid Haskell module that performs
the same computation as the TAIL input. The output
we get from the APLACC compiler cannot stand on its
own. To run the program we need Accelerate imple-
mentations of the primitive functions. The following
list shows which primitives have been implemented
and should work like their APL counterparts and
which primitives are still missing or only works for
some cases:

Fully implemented: add{i,d}, sub{i,d}, divd,
mul{i,d}, min{i,d}, max{i,d}, neg{i,d},
resi, i2d, iota, each, reduce, shape,
reshape0, reshape, cat, cons, snoc, zipWith,
rotate, transp, first.

Partially implemented: take and drop (does not
support negative arguments and taking more
elements than available by padding with default
element), reverse (does not work for scalar
arrays).

Not implemented: transp2.

Some of these primitives also have version that oper-
ates on shapes. They are: shapeSh, takeSh, dropSh,
consSh, snocSh, firstSh, iotaSh, rotateSh and
catSh. Since shapes are converted to arrays most of
these are just aliases of their non-shape counterparts.

5

As an example of a primitive function here is the
implementation of rotate:

rotate :: (Shape sh, Slice sh, Elt e)

=> Exp Int -> Acc (Array (sh :. Int) e)

-> Acc (Array (sh :. Int) e)

rotate n arr =

let sh = Acc.shape arr

m = Acc.indexHead sh

idx sh = Acc.lift

(Acc.indexTail sh :.

mod (Acc.indexHead sh + n) m)

in Acc.backpermute sh idx arr

6 Shapes

Until now we have treated shapes in TAIL as integer
vectors. But another possibility would be to convert
TAIL shapes into Accelerate shapes. Unfortunately,
there seem to be some road blocks. Consider how to
implement iotaSh. If we just blindly translate the
TAIL type we quickly run into trouble:

iotaSh :: Exp Int -> Exp (Z :. . . .)

In Accelerate the dimensionality of the shape is not
specified as a single integer but is instead derived
from the length of the snoc list.

While it may be difficut or even impossible to con-
struct arbitrary shape lists we can still optimize some
uses of shapes. Take for instance the following pro-
gram snippet:

let s:Sh(3) = shape{[int],[3]}(a) in

reshape{[int],[2,3]}(s, b)

Here we should convert a to be an Accelerate shape.
This is similar to the problem with Plain/Exp for
which we had the cancelLift function. Perhaps a simi-
lar solution could work in this case where instead of
to compiling to this:

let x = shToArray (ε) :: Acc (Vector Int)

we would cancel out the shToArray and instead com-
pile to something like the following:

let x = ε :: Exp DIMn

10 100 1,000 10,000 1 · 105 1 · 106

100
200
300
400
500
600

N

Ti
m

e
(µ

s)

Figure 5: Benchmark of the signal program for various
input sizes. The time measured is the time spent
executing on the GPU without counting the time
spent transferring data.

7 Performance

We would like to evaluate Accelerate as target for
compiling APL. Creating a meaningful benchmark
for GPU programs can be hard though. First one has
to decide what should actually be measured. If we
just measure the running time of the whole program
we will include time spent setting up the GPU and
transferring data which may dominate the time spent
actually computing the result. Even if one is only
measuring computation time on the GPU one has to
be careful that data isn’t getting generated on the
GPU.

With these things in mind I had a go at making a
tiny benchmark. I chose the signal program from
the APLTAIL test suite. The TAIL program can be seen
in Figure 6. The benchmark was run on a server with
a nVidia GeForce GTX 690. Running time was mea-
sured using the nvprof profiler. For each input size
the program was run three times and the average
of three running times was recorded. Only the time
spent running computation on the GPU was counted
in the total running time and not any data trans-
fer. The profiler shows amount of data transferred
to the GPU which confirmed that the data was not
generated on the GPU.

Figure 5 shows the result of the benchmark. We see
that the program is quite fast—even with 1 million
data points the running time is less than 1 milisec-
ond. For comparison the running time of the whole
program including setup was around 5 seconds, so
setting up the GPU takes a considerable amount of
time. The running time of the program seem to scale
well.

6

8 Conclusion and Future Work

I have presented a compiler that through a typed
intermediate language can compile a subset of APL
to Accelerate that can be run using a GPU.

Future work could be to increase the subset of APL
that can be compiled. Work is already being done
on APLTAIL compiler to make it accept more APL pro-
grams. This report also highlights some areas where
the APLACC compiler is still lacking. Implementa-
tion of the missing primitives and better handling of
shapes are things that could be worked on.

Finally it would be interesting to see the results of
a more comprehensive benchmark.

9 References

[1] Michael Budde. APL to Accelerate compiler
through a typed IL. URL: https://github.com
/mbudde/aplacc.

[2] Martin Elsman. APL Compiler targeting a typed
array intermediate language. URL: https://gi
thub.com/melsman/apltail.

[3] Martin Elsman and Martin Dybdal. “Compil-
ing a Subset of APL Into a Typed Intermediate
Language”. In: Proceedings of the 1st ACM SIG-
PLAN International Workshop on Libraries, Lan-
guages and Compilers for Array Programming.
ARRAY’14. ACM, 2014.

let v0:Sh(100) = iotaSh(100) in

let v3:Sh(101) = consSh(0,v0) in

reduce{[double],[0]}(addd, 0.00,

each{[double,double],[1]}(

fn v11:[double]0 => maxd(i2d(~50), v11),

each{[double,double],[1]}(

fn v10:[double]0 => mind(i2d(50), v10),

each{[double,double],[1]}(

fn v9:[double]0 => muld(i2d(50), v9),

zipWith{[double,double,double],[1]}(divd,

each{[int,double],[1]}(i2d,

drop{[int],[1]}(1,

zipWith{[int,int,int],[1]}(

subi, v3, rotateSh(~1,v3)))),

each{[double,double],[1]}(

fn v2:[double]0 => addd(0.01, v2),

each{[int,double],[1]}(i2d,v0)))))))

Figure 6: The signal test program.

7

https://github.com/mbudde/aplacc
https://github.com/mbudde/aplacc
https://github.com/melsman/apltail
https://github.com/melsman/apltail

	Introduction
	TAIL
	Accelerate
	From TAIL to Accelerate
	Translating Types
	Translating Expressions

	Primitives
	Shapes
	Performance
	Conclusion and Future Work
	References

