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Abstract
We present an extension to a certified financial contract
management system that allows for templated declarative fi-
nancial contracts and for integration with financial stochastic
models through verified compilation into so-called payoff-
expressions. Such expressions readily allow for determining
the value of a contract in a given evaluation context, such
as contexts created for stochastic simulations. The templat-
ing mechanism is useful both at the contract specification
level, for writing generic reusable contracts, and for reuse
of code that, without the templating mechanism, needs to
be recompiled for different evaluation contexts. We report
on the effect of using the certified system in the context of
a GPGPU-based Monte Carlo simulation engine for pricing
various over-the-counter (OTC) financial contracts. The full
contract-management system, including the payoff-language
compilation, is verified in the Coq proof assistant and cer-
tified Haskell code is extracted from our Coq development
along with Futhark code for use in a data-parallel pricing
engine.

CCS Concepts
• Theory of computation → Program verification;
Logic and verification; • Software and its engineering
→ Correctness; Domain specific languages; Source code
generation;
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1 Background and Motivation
New technologies are emerging that have potential for seri-
ously disrupting the financial sector. In particular, blockchain
technologies, such as Bitcoins [17] and the Ethereum Smart
Contract peer-to-peer platform [23], have entered the realm of
the global financial market and it becomes essential to ask to
which degree users can trust that the underlying implementa-
tions are really behaving according to the specified properties.
Unfortunately, the answers are not clear and errors may result
in irreversible high-impact events.

Contract description languages and payoff languages are
used in large scale financial applications [15, 22], although for-
malisation of such languages in proof assistants and certified
compilation schemes are much less explored.

The work presented here builds on a series of previous
work on specifying financial contracts [1, 3, 7, 11, 20] and
in particular on a certified financial contract management
engine and its associated contract DSL [4]. This framework
allows for expressing a wide variety of financial contracts (a
fundamental notion in financial software) and for reasoning
about their functional properties (e.g., horizon and causal-
ity). As in the previous work, the contract DSL that we
consider is equipped with a denotational semantics, which
is independent of stochastic aspects and depends only on an
external environment ExtEnv : N × Label → R + B, which
maps observables (e.g., the price of a stock on a particular
day) to values. As the first contribution of this work, we
present a certified compilation scheme that compiles a con-
tract into a payoff function, which aggregates all cashflows
in the contract, after discounting them according to some
model. The result represents a single “snapshot” value of
the contract. The payoff language is inspired by traditional
payoff languages and is well suited for integration with Monte
Carlo simulation techniques for pricing. It is essentially a
small expression language featuring arithmetic and boolean
operators, a limited form of a looping construct, and enriched
with notation for looking up observables in the external envi-
ronment. We show that compilation from the contract DSL
to the payoff language preserves the cashflow semantics.

The contract language described in [4], deals with concrete
contracts, such as a one year European call option on the
AAPL (Apple) stock with strike price $100. The lack of
genericity means that each time a new contract is created
(even a very similar one), the contract management engine
needs to compile the contract into the payoff language and
further into a target language for embedding into the pricing
engine. As our second contribution, we introduce the notion
of a financial instrument, which allows for templating of
contracts and which can be turned into a concrete contract
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by instantiating template variables with particular values. For
example, an European call option instrument has template
parameters such as maturity (the end date of the contract),
strike, and the underlying asset that the option is based on.
Compiling such a template once allows the engine to reuse
compiled code, giving various parameter values as input to
the pricing engine.

Moreover, an inherent property of contracts is that they
evolve over time. This property is precisely captured by a
contract reduction semantics. Each day, a contract becomes a
new “smaller” contract, thus, for pricing purposes, contracts
need to be recompiled at each time step, resulting in a dra-
matic compilation time overhead. As a third contribution, we
introduce a mechanism allowing for avoiding recompilation
in relation to contract evolution. A payoff expression can
be parameterised over the current time so that evaluating
the payoff code at time 𝑡 gives us the same result (up to
discounting) as first advancing the contract to time 𝑡, then
compiling it to the payoff code, and then evaluating the
result. Most of the payoff languages used in real-world appli-
cations require synchronization of the contract and the payoff
code once a contract evolves [16, Contract State and Pricing
Synchronization]. In some cases, however, as we mentioned
earlier, it is important to capture the reduction semantics
in the payoff language as well. Our result allows for using a
single compilation procedure for both use cases: compiling a
contract upfront and synchronizing at each time step.

The contract analyses and the contract transformation
procedures form a core code base, which financial software
crucially depends on. A certified programming approach using
the Coq proof assistant allows us to prove the above desirable
properties and to extract certified executable code.

We summarize the contributions of this paper as follows:

∙ We present an extended domain-specific language for
expressing financial contracts, called CL, based on the
work by [4]. The extended contract language features
contract templates, also called instruments. The ex-
tension allows for parameterisation of contracts with
respect to temporal parameters.

∙ Inspired by traditional payoff languages, we develop a
payoff intermediate language, which we demonstrate
is well-suited for the integration with Monte Carlo
simulation techniques.

∙ We use the Coq proof assistant to develop a certified
compilation procedure of contract templates into a
parameterised payoff intermediate language.

∙ We further parameterise the compiled payoff expres-
sions with the notion of “current time” allowing for
capturing the evolution of contracts with the passage
of time.

∙ We develop the proof of an extended soundness theo-
rem in the Coq proof assistant. The theorem establishes
a correspondence between the time-parameterised com-
pilation scheme and the contract reduction semantics.

𝑐 ∈ Contr ::= zero | transfer(𝑝1, 𝑝2, 𝑎) | scale(𝑒, 𝑐)
| translate(𝑡, 𝑐) | ifWithin(𝑒, 𝑡, 𝑐1, 𝑐2)
| both(𝑐, 𝑐)

𝑒 ∈ Exp ::= 𝑜𝑝(𝑒1, 𝑒2, . . . , 𝑒𝑛) | obs(𝑙, 𝑖) | 𝑓 | 𝑏

𝑡 ∈ TExp ::= 𝑛 | 𝑣

𝑜𝑝 ∈ Op ::= add | sub | mult | lt | neg | cond | . . .

Figure 1: Syntax of contracts, contracts expressions,
and template expressions.

∙ We demonstrate how the parametric payoff code allows
for better performance due to avoiding recompilation
with the change of parameters.

2 The Contract Language
The contract language that we consider follows the style of
[4] and is a declarative contract language that allows for ex-
pressing contractual agreements among parties regarding im-
mediate and future cash flows between the parties. Contracts
may refer to observable values and cash flows may thereby
depend on the development of such observables, which may
include stock prices, interest rates, and decisions made by
parties.

We assume a countably infinite set of program variables,
ranged over by v. Moreover, we use n, i, f , and b to range
over natural numbers, integers, floating point numbers, and
booleans. We use 𝑝 to range over parties and 𝑎 to range over
assert symbols (e.g., EUR, USD, and so on). The contract
language is given in Figure 1; it follows closely the contract
language of [4], but is extended with template variables. Ex-
pressions (𝑒 ∈ Exp) may contain observables, which are inter-
preted in an external environment. A contract may be empty
(zero), a transfer of one unit (for simplicity) (transfer), a
scaled contract (scale), a translation of a contract into the
future (translate), the composition of two contracts (both),
or a generalized conditional ifWithin(𝑐𝑜𝑛𝑑, 𝑡, 𝑐1, 𝑐2), which
checks the condition cond repeatedly during the period given
by 𝑡 and evaluates to 𝑐1 if cond = true or to 𝑐2 if cond never
evaluates to true during the period 𝑡.

The main difference between the original version of the
contract language and the version presented here is the in-
troduction of template expressions (t), which, for instance,
allows us to write contract templates with the contract ma-
turity as a parameter. This feature requires refined reasoning
about the temporal properties of contracts, such as causality.
Certain constructs in the original contract language, such as
translate(𝑛, 𝑐) and ifWithin(cond, 𝑛, 𝑐1, 𝑐2), are designed
such that basic properties of the contract language, including
the property of causality, are straightforward to reason about.
In particular, the displacement numbers 𝑛 in the above con-
structs are constant positive numbers. For templating, we
refine the constructs to support template expressions in place
of positive constants. One of the consequences of adding
template variables is that the semantics of contracts now
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depends also on mappings of template variables in a template
environment TEnv : Var → N, which is also the case for many
temporal properties of contracts. For example, the type sys-
tem for ensuring causality of contracts [4] and the concept of
horizon are now parameterized by template environments.

Let us consider a few examples of contracts written in
English and expressed in CL.

Example 1. A European option is a contract that gives
the owner the right, but not the obligation, to buy or sell an
underlying security at a specific price, known as the strike
price, on the option’s expiration date (investopedia.com).

Let us take the expiration date to be 90 days into the future
and set the strike at USD 100. In CL, we can implement
the European option contract with the above parameters as
follows:

translate(90,
if(obs(AAPL,0) > 100.0,

scale(obs(AAPL,0) - 100.0, transfer(you, me, USD)),
zero))

Example 2. A Three month FX swap for which the pay-
ment schedule has been settled is easily expressed in CL:

scale(1.000.000,
both(

all[translate(22, transfer(me, you, EUR)),
translate(52, transfer(me, you, EUR)),
translate(83, transfer(me, you, EUR))],

scale(7.21,
all[translate(22, transfer(you, me, DKK)),

translate(52, transfer(you, me, DKK)),
translate(83, transfer(you, me, DKK))])))

In the swap-example, we have written all[𝑐1, · · · , 𝑐𝑛] as
an abbreviation for the contract both(𝑐1, both( · · · , 𝑐𝑛)).
We use the all shortcut with the translate combinator to
implement a schedule of payments.

Using the CL template extension, we can abstract some of
the contract parameters in Example 1 to template variables
(T for expiration date, and S for strike)1:

translate(T,
if(obs(AAPL,0) > S,

scale(obs(AAPL,0) - S, transfer(you, me, USD)),
zero))

This possibility for parameterisation plays well with how
users would interact with a contract management system.
Contract templates could be exposed to users as so-called
instruments, which a user can instantiate to contracts by
supplying concrete values for parameters.

We extend the denotational semantics from [4] to accom-
modate the idea of template expressions. The semantics for
the expression sublanguage stays unchanged, since such ex-
pressions do not contain template expressions. That is, the
1In our implementation, we focus on contract templates allowing
for template expressions to represent temporal parameters, such as
maturity. Other parameters, such as a strike, can be expressed as
constant observable values.

semantics for an expression 𝑒 ∈ Exp in Figure 1 is given by
the partial function ℰ J𝑒K : JΓK × Env ⇀ J𝜏K. On the other
hand, we modify the semantic function for contacts by adding
a template environment as an argument:

𝒞 J𝑐K : JΓK × Env × TEnv ⇀ Trace
Trace = N → Trans
Trans = Party × Party × Asset → R

As the original contract semantics, it depends on the ex-
ternal environment Env : N × Label → R ∪ B and variable
assignments that map each free variable of type 𝜏 to a value
in J𝜏K with JRealK = R and JBoolK = B. Given a typing
environment Γ, the set of variable assignments in Γ, written
JΓK, is the set of all partial mappings 𝛾 from variable names
to R ∪ B such that 𝛾(𝑥) ∈ J𝜏K iff 𝑥 : 𝜏 ∈ Γ. The typing rules
also remain the same for expressions and for contracts.

The semantics for template expressions 𝒯 J𝑡K : TEnv → N
is defined as follows:

𝒯 J𝑛K𝛿 = 𝑛 𝒯 J𝑣K𝛿 = 𝛿(𝑣)

We modify the semantics of contract constructors that
depend on template expressions in such a way that the corre-
sponding template expression is evaluated using 𝒯 J−K. For
example for the translate constructor, we have

𝒞 Jtranslate(𝑡, 𝑐)K𝛾,𝜌,𝛿 = delay(𝒯 J𝑇 K𝛿 , 𝒞 J𝑐K𝛾,𝜌,𝛿)

Where delay : N×Trace → Trace is an operation that delays
a given trace by a number of time steps (see [4, Figure 4]).

We define an instantiation function that takes a contract
and a template environment containing values for template
variables, and produces another contract that does not con-
tain template variables by replacing all occurrences of tem-
plate variables with corresponding values from the template
environment.

Definition 1 (Instantiation function).

inst : Contr × TEnv → Contr
inst(zero, 𝛿) = zero

inst(let 𝑒 in 𝑐, 𝛿) = inst(𝑐, 𝛿)
inst(transfer(𝑝1, 𝑝2, a), 𝛿) = transfer(𝑝1, 𝑝2, a)

inst(scale(𝑒, 𝑐), 𝛿) = inst(𝑐, 𝛿)
inst(translate(𝑡, 𝑐), 𝛿) = translate(𝒯 J𝑡K𝛿 , inst(𝑐, 𝛿))

inst(both(𝑐1, 𝑐2), 𝛿) = both(inst(𝑐1, 𝛿), inst(𝑐2, 𝛿))
inst(ifWithin(𝑒, 𝑡, 𝑐1, 𝑐2), 𝛿) =

ifWithin(𝑒, 𝒯 J𝑡K𝛿 , inst(𝑐1, 𝛿), inst(𝑐2, 𝛿))

We further define an inductive predicate that holds only for
contract expressions without template variables (Figure 2).
We call such contracts template-closed.

It is straightforward to establish the following fact.

Lemma 1. For any contract 𝑐 and template environment
𝛿, application of the instantiation function gives a template-
closed contract:

𝒯𝒞(inst(𝑐, 𝛿))
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𝒯𝒞(𝑐)

𝒯𝒞(zero)
𝒯𝒞(𝑐)

𝒯𝒞(let 𝑒 in 𝑐) 𝒯𝒞(transfer(𝑝1, 𝑝2, a))

𝒯𝒞(𝑐)
𝒯𝒞(scale(𝑒, 𝑐))

𝑛 is a numeral 𝒯𝒞(𝑐)
translate(𝑛, 𝑐)

𝒯𝒞(𝑐1) 𝒯𝒞(𝑐2)
𝒯𝒞(both(𝑐1, 𝑐2))

𝑛 is a numeral 𝒯𝒞(𝑐1) 𝒯𝒞(𝑐2)
𝒯𝒞(ifWithin(𝑒, 𝑛, 𝑐1, 𝑐2))

Figure 2: Template-closed contracts.

Lemma 2 (Instantiation soundness). For any con-
tract 𝑐, template environments 𝛿 and 𝛿′, external environ-
ment 𝜌, and any value environment 𝛾, the contract 𝑐 and
inst(𝑐, 𝛿) are semantically equivalent. That is, 𝒞 J𝑐K𝛾,𝜌,𝛿 =
𝒞 Jinst(𝑐, 𝛿)K𝛾,𝜌,𝛿′ .

The reduction semantics of the contract language presented
in [4] remains the same, although, we make additional as-
sumption that the contract expression is closed with respect
to template variables.

3 The Payoff Intermediate Language
The contract language allows for capturing different aspects
of financial contracts. We consider a particular use case for
the contract language, where one wants to calculate an esti-
mated price of a contract according to some stochastic model
by performing simulations. Simulations is often implemented
using Monte Carlo techniques, for instance, by evaluating a
contract price at current time for randomly generated possi-
ble market scenarios and discounting the outcome according
to some model. A software component that implements such
a procedure is called a pricing engine and aims to be very
efficient in performing large amount of calculations by ex-
ploiting the parallelism [2]. For this use case, one has to take
the following aspects into account:

∙ Contracts should be represented as simple functions
that take prices of assets involved in the contract (ran-
domly generated by a pricing engine) and return one
value corresponding to the aggregated outcome of the
contract.

∙ The resulting value of the contract should be discounted
according to a given discount function.

One way of achieving this would be to implement an inter-
preter for the contract language as part of a pricing engine. Al-
though this approach is quite general, interpreting a contract
in the process of pricing will cause significant performance
overhead. Moreover, it will be harder to reason about cor-
rectness of the interpreter, since it could require non-trivial
encoding in languages targeting GPGPU devices. For that
reason we take another approach: translating a contract from
CL to an intermediate representation and, eventually, to a
function in the pricing engine implementation language. We

call this intermediate representation a payoff language and
expressions in this language we call payoff expressions.

We would like the payoff language to contain fewer domain-
specific features and being closer to a subset of some general
purpose language, making a mapping from the payoff lan-
guage to a target language straightforward. We demonstrate
how payoff expressions can be translated to Haskell and
Futhark [8, 9] in Section 6.

il ::= now | model(𝑙, 𝑡) | if(il, il, il) | loopif(il, il, il, 𝑡)
| payoff(𝑡, 𝑝, 𝑝) | unop(il) | binop(il, il)

unop ::= neg | not
binop ::= add | mult | sub | lt | and | or | . . .

𝑡 ::= 𝑛 | 𝑖 | 𝑣 | tplus(𝑡, 𝑡)

The payoff language is an expression language (il ∈ ILExpr)
with binary and unary operations, extended with conditionals
and generalized conditionals loopif, behaving similarly to
ifWithin. Template expressions (𝑡 ∈ TExprZ) in this language
are extensions of the template expressions of the contract
language with integer literals and addition.

The semantics of payoff expressions is given in Figure 3.
We use the notation 𝒫 = (𝜌, 𝛿, 𝑡0, 𝑡, 𝑑, 𝑝1, 𝑝2) for the vector of
arguments to the semantic function. The following notation
𝒫[𝑡0 := 𝑡′

0] = (𝜌, 𝛿, 𝑡′
0, 𝑡, 𝑑, 𝑝1, 𝑝2) is used to show that the

respective argument in the vector receives a certain value. The
semantics depends on environments 𝜌 ∈ Env and 𝛿 ∈ TEnv
similarly to the semantics of the contract language. Payoff
expressions can evaluate to a value of type N, R, or B (in
contrast to the contract language for which the semantics
is given in terms of traces.). We add N to the semantic
domain, because we need to interpret the now construct,
which represents the “current time” parameter and template
expressions 𝑡𝑒. The semantics also depends on a discount
function 𝑑 : N → R. The 𝑡0 ∈ N parameter is used to add
relative time shifts introduced by the semantics of loopif;
𝑡 is a current time, which will be important later, when we
introduce a mechanism to cut payoffs before a certain point
in time.

The semantics for unary and binary operations is a straight-
forward mapping to corresponding arithmetic and logical
operations, provided that the arguments have appropriate
types. For example, JaddK (𝑣1, 𝑣2) = 𝑣1 + 𝑣2, if 𝑣1, 𝑣2 ∈ R.

The semantic function ℐℒ J−K considers only payoffs be-
tween two parties 𝑝1 and 𝑝2, which are given as the last
two parameters. More precisely, it considers payoffs from
party 𝑝1 to party 𝑝2 as positive and as negative, if payoffs
go in the opposite direction. Another way of defining the
semantics could be a bilateral view on payoffs. In this case
only cashflows to or from one fixed party to any other party
are considered. Then, the semantics for the payoff construct
would be defined as follows:

ℐℒ
q
payoff(𝑡, 𝑝′

1, 𝑝′
2)

y
𝜌,𝛿,𝑡0,𝑡,𝑑,𝑝

=

⎧
⎨
⎩

𝑑(𝒯 J𝑡K𝛿) if 𝑝′
2 = 𝑝

−𝑑(𝒯 J𝑡K𝛿) if 𝑝′
1 = 𝑝

0 otherwise
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ℐℒ J𝑖𝑙K : Env × TEnv × N × N × (N → R) × Party × Party ⇀ N ∪ R ∪ B

𝒫 = (𝜌, 𝛿, 𝑡0, 𝑡, 𝑑, 𝑝1, 𝑝2)

ℐℒ J𝑡𝑒K𝒫 = 𝒯 J𝑡𝑒K𝛿 + 𝑡0

ℐℒ J𝑢𝑛𝑜𝑝(𝑖𝑙)K𝒫 = J𝑢𝑛𝑜𝑝K (ℐℒ J𝑖𝑙K𝒫)

ℐℒ J𝑏𝑖𝑛𝑜𝑝(𝑖𝑙0, 𝑖𝑙1)K𝒫 = J𝑏𝑖𝑛𝑜𝑝K (ℐℒ J𝑖𝑙0K𝒫 , ℐℒ J𝑖𝑙1K𝒫)

ℐℒ Jmodel(𝑙, 𝑡𝑒)K𝒫 = 𝜌(𝑙, 𝒯 J𝑡𝑒K𝛿 + 𝑡0)

ℐℒ JnowK𝒫 = 𝑡

ℐℒ J𝑖𝑓(𝑖𝑙0, 𝑖𝑙1, 𝑖𝑙2)K𝒫 =
{︂

ℐℒ J𝑖𝑙1K𝒫 , if ℐℒ J𝑖𝑙0K𝒫 = 𝑡𝑟𝑢𝑒

ℐℒ J𝑖𝑙2, K𝒫 , if ℐℒ J𝑖𝑙0K𝒫 = 𝑓𝑎𝑙𝑠𝑒

ℐℒ
q
payoff(𝑡𝑒, 𝑝′

1, 𝑝′
2)

y
𝒫 =

⎧
⎨
⎩

𝑑(𝒯 J𝑡𝑒K𝛿) if 𝑝′
1 = 𝑝1, 𝑝′

2 = 𝑝2

−𝑑(𝒯 J𝑡𝑒K𝛿) if 𝑝′
1 = 𝑝2, 𝑝′

2 = 𝑝1

0 otherwise
ℐℒ Jloopif(𝑖𝑙0, 𝑖𝑙1, 𝑖𝑙2, 𝑡𝑒)K𝒫 = 𝑖𝑡𝑒𝑟(𝒯 J𝑡𝑒K𝛿 , 𝑡0), 𝑤ℎ𝑒𝑟𝑒

𝑖𝑡𝑒𝑟(𝑛, 𝑡′
0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℐℒ J𝑖𝑙1K𝒫[𝑡0:=𝑡′
0] ,

if ℐℒ J𝑖𝑙0K𝒫[𝑡0:=𝑡′
0] = 𝑡𝑟𝑢𝑒

ℐℒ J𝑖𝑙2K𝒫[𝑡0:=𝑡′
0] ,

if ℐℒ J𝑖𝑙0K𝒫[𝑡0:=𝑡′
0] = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝑛 = 0

𝑖𝑡𝑒𝑟(𝑛 − 1)(𝑡′ + 1),
if ℐℒ J𝑖𝑙0K𝒫[𝑡0:=𝑡′

0] = 𝑓𝑎𝑙𝑠𝑒 ∧ 𝑖 > 0

Figure 3: Semantics of payoff expressions.

4 Compiling Contracts to Payoffs
The contract language consist of two levels, namely construc-
tors to build contracts (𝑐 ∈ Contr) and expressions used
in some of these constructors (scale, ifWithin, etc.). We
compile both levels into a single payoff language. The com-
pilation functions 𝜏e J−K : Expr × TExprZ ⇀ ILExpr and
𝜏c J−K : Contr × TExprZ ⇀ ILExpr are recursively defined on
the syntax of expressions and contracts, respectively, taking
the starting time 𝑡0 ∈ TExprZ as a parameter.

𝜏e Jcond(𝑏, 𝑒0, 𝑒1])K𝑡0
= if(𝜏e J𝑏K𝑡0

, 𝜏e J𝑒0K𝑡0
, 𝜏e J𝑒1K𝑡0

)
𝜏e Jobs(𝑙, 𝑖)K𝑡0

= model(𝑙, tplus(𝑡0, 𝑖))
𝜏c Jtransfer(𝑝1, 𝑝2, 𝑎)K𝑡0

= payoff(𝑡0, 𝑝1, 𝑝2)
𝜏c Jscale(𝑒, 𝑐)K𝑡0

= mult(𝜏e J𝑒K𝑡0
, 𝜏c J𝑐K𝑡0

)

𝜏c JzeroK𝑡0
= 0

𝜏c Jtranslate(𝑡, 𝑐)K𝑡0
= 𝜏c J𝑐Ktplus(𝑡0,𝑡)

𝜏c Jboth(𝑐0, 𝑐1)K𝑡0
= add(𝜏c J𝑐0K𝑡0

, 𝜏c J𝑐1K𝑡0
)

𝜏c JifWithin(𝑒, 𝑡, 𝑐1, 𝑐2)K𝑡0
=

loopif(𝜏e J𝑒K𝑡0
, 𝜏c J𝑐0K𝑡0

, 𝜏c J𝑐1K𝑡0
, 𝑡)

tplus(𝑡1, 𝑡2) =
{︂

𝑡1 + 𝑡2 if 𝑡1, 𝑡2 are numerals
tplus(𝑡1, 𝑡2) otherwise

The important point to notice here is that all relative time
shifts in an expression in CL are accumulated to the 𝑡0 param-
eter. The resulting payoff expression only contains lookups in
the external environment where time is given explicitly, and
does not depend on nesting of time shifts as it was in the case
of translate(𝑡, 𝑐) in CL. Such a representation allows for a
more straightforward evaluation model.2 We also would like
to emphasise that acc and let constructs are not supported
by our compilation procedure. On the supported subset of
the contract language, the compilation functions 𝜏e J𝑒K, and
𝜏c J𝑐K are total. We use the smart constructor tplus that adds
two integer literals whenever it is possible or returns a syn-
tactic addition expression. This use of smart constructors is
useful not only for optimisation purposes; it also allows us
to overcome some difficulties in formalisation (see Remark 1
in Section 5).

Example 3. We consider the following contract (t0 and t1
denote template variables): the party “you” transfer to the
party “me” 100 USD in t0 days in the future, and after t1
more days “you” transfers to “me” an amount equal to the
difference between the current price of the AAPL stock and
100 USD, provided that the price of AAPL is higher then
100 USD (we use infix notation for arithmetic operations to
make code more readable).

c =
translate(t0,
both(scale(100.0, transfer(you,me)),

translate(t1,
if(obs(AAPL,0) > 100.0,

scale(obs(AAPL,0) - 100.0, transfer(you, me)),
zero)))

This contract compiles to the following code in the payoff
intermediate language:

e =
(100.0 * payoff(t0,you,me)) +
if (model(AAPL,t0+t1) > 100.0,

(model(AAPL,t0+t1) - 100.0) * payoff(t0+t1,you,me),
0.0)

As one can see, all nested occurrences of the translate con-
struct were accumulated from top to bottom. That is, in the
if case, we calculate payoffs and lookup for values of the
AAPL stock at time (t0+t1).

2The loopif construct still introduces relative time shifts similarly to
ifWithin. This makes code generation in a target language less trivial.
Potentially, it is possible to decompose loopif into an iteration and
a conditional expression. Also, in the case when number of iterations
of loopif is a number and not a template variable, it is possible to
completely unroll loopif into nested conditional expressions, making
all the indexing into the external environment explicit.
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To be able to reason about soundness of the compilation
process, one needs to make a connection between the seman-
tics of the two languages. For the expression sublanguage
of CL (𝑒 ∈ Exp) we can just compare the values that the
original expression and the compiled expression evaluates to.
In case of the contract language (𝑐 ∈ Contr) the situation is
different, since the semantics of a contract is given in terms
of a Trace, and an expression in the payoff intermediate
language evaluates to a single value. However, we know that
the compiled expression represents the sum of the contract
cashflows after discounting.

We assume a function HOR : TEnv × Contr → N that
returns a conservative upper bound on the length of a con-
tract. We often write 𝜏e J𝑒K0 = il, or 𝜏c J𝑐K0 = il to emphasise
that the compilation function returns some result. The value
environment JΓK is not relevant for the present development
and we will omit it. The compilation function satisfies the
following properties:

Theorem 4 (Soundness). Assume parties 𝑝1 and 𝑝2 and
discount function 𝑑 : N → R, environments 𝜌 ∈ Env, and
𝛿 ∈ TEnv.

(i) If 𝜏e J𝑒K0 = il and ℰ J𝑒K𝜌,𝛿 = 𝑣1 and ℐℒ JilK𝜌,𝛿,0,0,𝑑,𝑝1,𝑝2
=

𝑣2 then 𝑣1 = 𝑣2.
(ii) If 𝜏c J𝑐K0 = il and 𝒞 J𝑐K𝜌,𝛿 = tr, where tr : N →

Party × Party → R then
∑︀hor𝛿(𝑐)

𝑡=0 𝑑(𝑡) × tr(𝑡)(𝑝1, 𝑝2) = ℐℒ JilK𝜌,𝛿,0,0,𝑑,𝑝1,𝑝2

Theorem 4 makes an assumption that the compiled expres-
sion evaluates to some value. We do not develop a type system
for our payoff language to ensure this property. Instead, we
show that it is sufficient for a contract to be well-typed to
ensure that the compiled expression always evaluates to some
value (for details, we refer the reader to the typing rules for
the contract language in [4]).

Theorem 5 (Total semantics for compiled con-
tracts). Assume parties 𝑝1 and 𝑝2 and discount function
𝑑 : N → R, well-typed external environment 𝜌 ∈ Env, template
environment 𝛿 ∈ TEnv, and typing context Γ. The following
two properties hold:

(i) for any 𝑒 ∈ Exp, 𝑡0 ∈ TExprZ, 𝑡′
0 ∈ N, if Γ ⊢ 𝑒 : 𝜏

𝜏e J𝑒K𝑡0
= 𝑖𝑙, then

∃𝑣, ℐℒ JilK𝜌,𝛿,𝑡′
0,0,𝑑,𝑝1,𝑝2

= 𝑣, and 𝑣 ∈ J𝜏K

(ii) for any 𝑐 ∈ Contr, 𝑡0 𝑡′
0, if Γ ⊢ 𝑐 and 𝜏c J𝑐K𝑡0

= 𝑖𝑙, then

∃𝑣, ℐℒ JilK𝜌,𝛿,𝑡′
0,0,𝑑,𝑝1,𝑝2

= 𝑣, and 𝑣 ∈ R

Notice that Theorem 5 holds for any 𝑡0 ∈ TExprZ and 𝑡′
0 ∈

N. These parameters do not affect totality of the semantics
and can be arbitrary, since we assume that the external
environment is total. Theorems 4 and 5 together ensure
that our compilation procedure produces a payoff expression
that evaluates to a value reflecting the aggregated price of a
contract after discounting.

4.1 Avoiding recompilation
To avoid recompilation of a contract when time moves for-
ward, we define a function cutPayoff(). This function is de-
fined recursively on the syntax of intermediate language
expressions.

cutPayoff : ILExpr → ILExpr
cutPayoff(now) = now

cutPayoff(model(𝑙, 𝑡)) = model(𝑙, 𝑡)
cutPayoff(unop(il)) = unop(cutPayoff(il))

cutPayoff(payoff(𝑡, 𝑝1, 𝑝2)) =
if(𝑡 < now, 0, payoff(𝑡, 𝑝1, 𝑝2))

cutPayoff(binop(il1, il2)) =
binop(cutPayoff(il1), cutPayoff(il2))

cutPayoff(if(il1, il2, il3)) =
if(cutPayoff(il1), cutPayoff(il2), cutPayoff(il3))

The most important case is the case for payoff. The function
wraps payoff with a condition guarding whether this pay-
off affects the resulting value. For the remaining cases, the
function recurses on subexpressions and returns otherwise
unmodified expressions.

Example 6. Let us consider Example 3 again and apply
the cutPayoff() function to the expression e:

cutPayoff(e) =
(100.0 * disc(t0) * if(t0 < now, 0, payoff(you,me)) +
if (model(AAPL,t0+t1) > 100.0,

(model(AAPL,t0+t1) - 100.0) * disc(t0+t1) *
if(t1+t0 < now, 0, payoff(you,me)),

0.0)

Each payoff in the payoff expression is now guarded by
the condition, comparing the time of the particular payoff
with now. Notice that the templates variables t0 and t1 are
mapped to concrete values in the template environment.

To be able to state a soundness property for the cutPayoff()
function we again need to find a way to connect it to the
semantics of CL. Since cutPayoff() deals with the dynamic
behavior of the contract with respect to time, it seems natural
to formulate the soundness property in this case in terms
of contract reduction ([4, Figure 10]). The semantics of the
payoff language takes the “current time” 𝑡 as a parameter.
We should be able to connect the 𝑡 parameter to the step of
contract reduction.

Theorem 7 (Contract compilation soudness wrt.
contract reduction). We assume parties 𝑝1, 𝑝2, discount
function 𝑑 : N → R. For any well-typed and template-closed
contract 𝑐, i.e., we assume Γ ⊢ 𝑐, and 𝒯𝒞(𝑐), an external
environment 𝜌′ ∈ Env extending a partial external environ-
ment 𝜌 ∈ Envp, if 𝑐 steps to some 𝑐′ by the reduction rela-
tion 𝑐

𝑇=⇒𝜌 𝑐′, for some transfer 𝑇 ∈ Trans, such that

5:6



Certified Compilation of Financial Contracts PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

𝒞 J𝑐′K(𝜌′/1),∅ = trace, and 𝜏c J𝑐K0 = 𝑖𝑙, then

hor𝛿(𝑐′)∑︁

𝑡′=0

𝑑(𝑡′ + 1) × trace(𝑡′) = ℐℒ JcutPayoff(𝑖𝑙)K𝜌′,∅,0,1,𝑑,𝑝1,𝑝2

where 𝜌′/1 denotes the external environment 𝜌 advanced by
one time step:

𝜌′/1 = 𝜆(𝑙, 𝑖). 𝜌′(𝑙, 𝑖 + 1), 𝑙 ∈ Label, 𝑖 ∈ Z

From the contract pricing perspective, the partial external
environment 𝜌 contains historical data (e.g., historical stock
quotes) and the extended environment 𝜌′ is a union of the
two environments 𝜌 and 𝜌′′, where 𝜌′′ contains simulated data,
produced by means of simulation in the pricing engine (e.g.,
using Monte Carlo techniques).

Avoiding recompilation can significantly improve perfor-
mance especially on GPGPU devices. On the other hand,
additional conditionals are introduced, which results in a num-
ber of additional checks at run-time. We have investigated
the influence on performance of these additional conditions
for certain contracts. The results of experiments are given in
Section 6.2.

One also might be interested in the following property.
The following two ways of using our compilation procedure
give identical results:

∙ first reduce a contract (move time forward), compile it
to a payoff expression, then evaluate the payoff expres-
sion;

∙ first compile a contract to a payoff expression, apply
cutPayoff() to the payoff expression, and then evaluate,
specifying the appropriate value for the “current time”
parameter.

Let us introduce some notation first. We fix the well-typed
external environment 𝜌, the partial environment 𝜌′, which
is historically complete (𝜌′(𝑙, 𝑖) is defined for all labels 𝑙 and
𝑖 ≤ 0), and a discount function 𝑑 : N → R. Next, we assume
that contracts are well-typed, and closed with respect to
template variables, the compilation function is applied to
supported constructs only, and that the reduction function,
corresponding to the reduction relation, is total on 𝜌′ (see [4,
Theorem 11]). This gives us the following total functions:

𝑟𝑒𝑑𝜌′ : Contr → Contr
𝜏c J−K0 : Contr → ILExpr

These functions correspond to the contract reduction func-
tion and the contract compilation function. We also define
an evaluation function for compiled payoff expressions as a
shortcut for the payoff expression semantics.

evalAt− : N → ILExpr × Env × Disc → R + B
evalAt𝑡(𝑒, 𝜌, 𝑑) = ℐℒ J𝑒K𝜌,∅,0,𝑡,𝑑,𝑝1,𝑝2

for some parties 𝑝1 and 𝑝2. We know by Theorem 5 that
evalAt is total on payoff expressions produced by the compi-
lation function from well-typed contracts.

We summarise the property by depicting it as a commuting
diagram.

Theorem 8. The following diagram commutes:

Contr Contr

ILExpr ILExpr

R

red𝜌′

cutPayoff ∘ 𝜏cJ−K0 𝜏cJ−K0

evalAt1(−,𝜌,𝑑) evalAt0(−,𝜌/1,𝑑/1)

Here we write 𝜌/1 and 𝑑/1 for shifted one step external
environment and discount function, respectively.

The above diagram gives rise to the following equation:

evalAt1(−, 𝜌, 𝑑) ∘ cutPayoff ∘ 𝜏c J−K0 =
evalAt0(−, 𝜌/1, 𝑑/1) ∘ 𝜏c J−K0 ∘ red𝜌′

This property shows that our implementation can be used
in two different ways. Either a contract is compiled upfront
with cutPayoff() or a contract is reduced, at each time of
interest, to another contract, which is then compiled to a
payoff expression for evaluation. The second use case allows
for more flexibility for users. For example, one can develop
a system where users define contracts directly in terms of
CL working in a specialised IDE. The first case allows for
compiling upfront a set of predefined financial instruments
(or contract templates) avoiding recompilation when time
moves forward. Adding a new instrument is possible, but
requires recompilation.

The statements of Theorems 7 and 8 generalise in the obvi-
ous way to 𝑛-step reduction (by replacing one-step reduction
with 𝑛-step reduction, replacing environment shifts from 𝜌/1
to 𝜌/𝑛, and evaluating the compiled payoff expression at
𝑡 = 𝑛 instead of 𝑡 = 1). The crucial step for proving these
generalised theorems is to use the following theorem.

Theorem 9 (Soundness of cutPayoff() for 𝑛 time
steps). Assume parties 𝑝1 and 𝑝2, a discount function 𝑑 :
N → R, and a well-typed external environment 𝜌 ∈ Env. For
any well-typed and template-closed contact 𝑐 at a time step
𝑛 ∈ N, if 𝜏c J𝑐K0 = il and 𝒞 J𝑐K𝜌,∅ = tr then
∑︀hor𝛿(𝑐)

𝑡=𝑛
𝑑(𝑡) × tr(𝑡)(𝑝1, 𝑝2) = ℐℒ JcutPayoff(𝑖𝑙)K𝜌,∅,0,𝑛,𝑑,𝑝1,𝑝2

Theorem 9 expresses soundness of 𝑛-step cutPayoff() eval-
uation without explicitly mentioning contract reduction and
leads to a better proof structure in the Coq formalisation.
Intuitively, this theorem says that the sum of the trace start-
ing at 𝑛 instead of zero is exactly the value we obtain after
evaluating cutPayoff(𝑖𝑙) at current time 𝑡 = 𝑛.

Theorem 9 combined with the properties of 𝑛-step re-
duction gives us the proofs of Theorems 7 and 8. Our Coq
development (see Section 5) contains a full formalisation of
these generalised theorems.

5 Formalisation in Coq
Our formalisation in Coq3 extends the previous work [4]
by introducing the concept of template expressions and by
3The formalisation presented in this paper is available online: https://
github.com/annenkov/contracts. The repository includes the backends
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developing a certified compilation technique for translating
contracts to payoff expressions. The required modifications to
the denotational semantics have been presented in Section 2.
These modifications required us to propagate changes to all
the proofs affected by the change of syntax and semantics.
We start this section with a description of the original formal-
isation, and then continue with modifications and additions
made by the authors of this work.

The formalisation described in [4] uses an extrinsic en-
coding of CL. That means that syntax is represented using
Coq’s inductive data types, and a typing relation on these
raw terms are given separately. For example, the type of the
expression sublanguage is defined as follows.

Inductive Exp : Set :=
OpE (op : Op) (args : list Exp)

| Obs (l : ObsLabel) (i : Z)
| VarE (v : Var)
| Acc (f : Exp) (d : nat) (e : Exp).

One of the design choices in the definition of Exp is to make
the constructor of operations OpE take “code” for an operation
and the list of arguments. Such an implementation makes
adding new operations somewhat easier. Although, we would
like to point out that this definition is a nested inductive
definition (see [5, Section 3.8]). In such cases Coq cannot
automatically derive a strong enough induction principle,
which means that it needs to be defined manually. In the
case of Exp it is not hard to see, that one needs to add a
generalised induction hypothesis in case of OpE, saying that
some predicate holds for all elements in the argument list.

Although the extrinsic encoding requires more work in
terms of proving, it has a big advantage for code extraction,
since simple inductive data types are easier to use in the
Haskell wrapper for CL.

One of the consequences of this encoding is that semantic
functions for contracts Contr and expressions Exp are partial,
since they are defined on raw terms which may not be well-
typed. This partiality is implemented with the Option type,
which is equivalent to Haskell’s Maybe. To structure the usage
of these partial functions, we define the Option monad and
use monadic binding

bind : forall A B : Type,
option A → (A → option B) → option B

to compose calls of partial functions together. The functions
liftM: forall A B : Type,

(A → B) → option A → option B
liftM2 : forall A B C : Type,

(A → B → C) → option A → option B
→ option C

liftM3 : forall A B C D : Type,
(A → B → C → D) → option A → option B
→ option C → option D

allow for a total function of one, two, or three arguments to be
lifted to the Option type. The implementation includes poofs
generating Haskell and Futhark code along with the pricing engine
implementation in Futhark for benchmarking.

of some properties of bind and the lifting functions. These
properties include cases for which an expression evaluates to
some value.
bind_some : forall (A B : Type) (x : option A)

(v : B) (f : A → option B),
x >>= f = Some v
→ exists x’ : A, x = Some x’ ∧ f x’ = Some v

Similar lemmas were proved for other functions related
to the Option type. To simplify the work with the Option
monad, the implementation defines tactics in the Ltac lan-
guage (part of Coq’s infrastructure). The tactics option_inv
and option_inv_auto use properties of operations like bind
and liftM to invert hypotheses like e = Some v, where 𝑒 con-
tains the aforementioned functions. The implementation uses
some tactics from [21]. Particularly, the tryfalse tactic is
widely used. It tries to resolve the current goal by looking for
contradictions in assumptions, which conveniently removes
impossible cases.

The original formalisation of the contract language has
been modified by introducing the type of template expressions

Parameter TVar : Set.
Inductive TExpr : Set :=

Tvar (t : TVar)
| Tnum (n : nat).

We keep the type of variables abstract and do not impose
any restrictions on it. Although one could add decidability
of equality for TVar, if required, we do not compare template
variables in our formalisation. We modify the definition of the
type of contracts Contr such that constructors of expressions
related to temporal aspects now accept TExpr instead of nat
(If corresponds to ifWithin):

Translate : TExpr → Contr → Contr
If : Exp → TExpr → Contr → Contr → Contr.

We leave the other constructors unmodified.
Similarly to how we define an external environment,

we define a template environment as a function type
TEnv := TVar → nat. Such a definition allows for easier mod-
ification of existing code base in comparison with partial
mappings. According to the definitions in Section 2, we mod-
ify the semantic function for contracts, and the symbolic
horizon function, to take an additional parameter of type
TEnv. Propagation of these changes was not very problematic
and almost mechanical. Because the first attempt to param-
eterise the reduction relation with a template environment
led to some problems, we decided to define the reduction
relation only for template-closed contracts. In most cases it
is sufficient to instantiate a contract, containing template
variables using the instantiation function (Definition 1), and
then reduce it to a new contract. Although instantiation
requires a template environment containing all the mappings
for template variables mentioned in the contract, we do not
consider this a big limitation.

The definition of the payoff intermediate language (follow-
ing Section 4) also uses an extrinsic encoding to represent
raw terms as an inductive data type. We define one type
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for the payoff language expressions ILExpr, since there is no
such separation as in CL on contracts and expressions. The
definition of template expressions used in the definition of
ILExpr is an extended version of the definition of template
expressions TExpr used in the contract language definition.

Inductive ILTExpr : Set :=
ILTplus (e1 : ILTExpr) (e2 : ILTExpr)

| ILTexpr (e : TExpr).

Inductive ILTExprZ : Set :=
ILTplusZ (e1 : ILTExprZ) (e2 : ILTExprZ)

| ILTexprZ (e : ILTExpr)
| ILTnumZ (z : Z).

Notice that we use two different types of template expres-
sions ILTExpr and ILTExprZ. The former extends the definition
of TExpr with the addition operation, and the latter extends
it further with integer literals and with the corresponding
addition operation (recall that template expressions used in
CL can be either natural number literals or variables). The
reason why we have to extend TExpr with addition is that we
want to accumulate time shifts introduced by Translate in
one expression using (syntactic) addition. In the expression
sublanguage of CL, observables can refer to the past by neg-
ative time indices. For that reason we introduce the ILTExprZ
type.

The full definition of syntax for the payoff intermediate
language in our Coq formalisation looks as follows:

Inductive ILExpr : Set :=
| ILIf : ILExpr → ILExpr → ILExpr → ILExpr
| ILFloat : R → ILExpr
| ILNat : nat → ILExpr
| ILBool : bool → ILExpr
| ILtexpr : ILTExpr → ILExpr
| ILNow : ILExpr
| ILModel : ObsLabel → ILTExprZ → ILExpr
| ILUnExpr : ILUnOp → ILExpr → ILExpr
| ILBinExpr : ILBinOp → ILExpr → ILExpr → ILExpr
| ILLoopIf : ILExpr → ILExpr → ILExpr → TExpr → ILExpr
| ILPayoff : ILTExpr → Party → Party → ILExpr.

Notice that we use template expressions, which could repre-
sent negative numbers (ILTExprZ) in the constructor ILModel.
This constructor corresponds to observable values in the
contract language and allows for negative time indices corre-
sponding to access of historical data.

We could have generalised our formalisation to deal with
different types of template variables and added a simple
type system on top of the template expression language, but
we decided to keep our implementation simple, since the
main goal was to demonstrate that it is possible to extend
the original contract language to contract templates with
temporal variables.

All the theorems and lemmas described in the paper are
completely formalised in our Coq development. We use a
limited amount of proof automation in the soundness proofs.
The proof automation is used mainly in the proofs related

to compilation of the contract expression sublanguage, since
compilation is straightforward and proofs are relatively easily
to automate. Moreover, without the proof automation, one
would have to consider a large number of very similar cases
leading to code duplication. In addition to option_inv_auto
mentioned above, we use a tactic that helps to get rid of
cases where expressions (a source expression in Exp and a
target expression in ILEpxr) evaluate to values of different
types (denoted by the corresponding constructor).

Ltac destruct_vals :=
repeat (match goal with

| [x : Val |- _] ⇒ destruct x; tryfalse
| [x : ILVal |- _] ⇒ destruct x; tryfalse
end).

Here the Val and IVal types correspond to values of the
contract expression sublanguage and the payoff expression
language respectively. The tryfalse tactic searches for the
contradictions in the goal (see [21]).

Another tactic that significantly reduces the complexity
of the proofs is the omega tactic from Coq’s standard library.
This tactic implements a decision procedure for expressions
in Presburger arithmetic. That is, goals can be equations or
inequations of integers, or natural numbers with addition and
multiplication by a constant. The tactic uses assumptions
from the current context to solve the goal automatically.

The principle we use in the organisation of the proofs is to
use proof automation to solve the most trivial and tedious
goals and to be more explicit about the proof structure in
cases requiring more sophisticated reasoning.

Remark 1. The first version of the soundness proof was de-
veloped for the original contract language without template
expressions. The proof was somewhat easier, since the aggre-
gation of nested time shifts introduced by translate(𝑛, 𝑐)
constructs during compilation was implemented as addition
of natural numbers, corresponding to time shifts. In the pres-
ence of template expressions, the compilation function builds
a syntactic expression using the tplus constructor. There are
some places in proofs where it was crucial to use associativity
of addition to prove the goal, but this does not work for
template expressions. For example, tplus(tplus(𝑡1, 𝑡2), 𝑡3)
is not equal to tplus(𝑡1, tplus(𝑡2, 𝑡3)), because these expres-
sions represent different syntactic trees, although semantically
equivalent. Instead of restating proofs in terms of this seman-
tic equivalence (significantly complicating the proofs), we
used the following approach. The compilation function uses
the smart constructor tplus instead of just plain construction
of the template expression. This allowed us to recover the
property we needed to complete the soundness proof without
altering too much of its structure.

There are a number of aspects that introduce complications
to the development of proofs of the compilation properties.

∙ Accumulation of relative time shifts during compilation.
To obtain a general enough induction hypothesis we
have to generalise our lemmas to take as parameter
an initial time t0. The same holds for the semantics of
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loopif, since there is an additional parameter in the
semantics to implement iterative behavior.

∙ Presence of template expressions. The complications
we faced due to template expressions are described in
Remark 1. We have resolved these complications with
smart constructors, but template expressions still add
some overhead.

∙ Conversion between types of numbers. We use integers
and natural numbers (nat and Z type from the standard
library of Coq). In some places, including the seman-
tics of template expressions, we use a conversion from
natural numbers to integers. This conversion makes
automation with the omega tactic more complicated, be-
cause it requires first to use the properties of conversion,
which is harder to automate. With the accumulation
aspect, conversions add even more overhead.

∙ We use the definition of contract horizon in the state-
ment of the soundness theorems, which leads to addi-
tional case analysis in proofs.

5.1 Code Extraction
The Coq proof assistant allows for extracting Coq functions
into programs in some functional languages [14]. The imple-
mentation described in [4] supports code extraction of the
contract type checker and contract manipulation functions
into the Haskell programming language. We extend the code
extraction part of the implementation with features related to
contract templates and contract compilation. Particularly, we
extract Haskell implementations of the following functions:

∙ inst_contr function that instantiates a given contract
according to given template environment;

∙ fromExp function for compiling the contract expression
sublanguage;

∙ fromContr function for compiling contract language con-
structs;

∙ cutPayoff function for parameterising a payoff expres-
sion with the “current time”.

∙ ILsem semantic function for payoff expressions, which
can be used as an interpreter.

For supporting templates, we have updated the Haskell
front end and exposed the full contract language in a conve-
nient form. We have kept the original versions of extended
combinators, such as translate and within without changes
and added translateT and withinT combinators, which sup-
port template variables.

Our implementation contains an extended collection of
contract examples, examples of contract compilation, and
evaluation of resulting payoff expressions.

6 Code Generation
To exemplify how the payoff language can be used to produce
a payoff function in a subset of some general purpose language,
we have implemented a code generation procedure to Haskell
and Futhark, as illustrated in the following diagram:

Futhark

CL Payoff Language

Haskell
We make use of the code extraction mechanism described in
Section 5.1 to obtain a certified compilation function, which
we use to translate expressions in CL to expressions in the
payoff language.

6.1 The Haskell Backend
The code generation procedure is (almost) a one-to-one map-
ping of the payoff language constructs to Haskell expressions.
One primitive, which we could not map directly to Haskell
build-in functions was the loopif construct. We have solved
this issue by implementing loopif as a higher-order func-
tion in Haskell. The implementation essentially follows the
definition of the semantics of loopif in Coq:
loopif :: Int → Int → (Int → Bool) → (Int → a) → (Int → a) → a
loopif n t0 b e1 e2 = let b’ = b t0 in

case b’ of
True → e1 t0
False → case n of

0 → e2 t0
_ → loopif (n−1) (t0+1) b e1 e2

The resulting payoff function has the following signature:
payoff :: Map.Map ([ Char], Int) Double → Map.Map [Char] Int

→ Int → Party → Party → Double

That is, the function takes as parameters an external envi-
ronment, a template environment, the current time, and two
parties. The payoff function calls the payoffInternal func-
tion, which takes an additional parameter—an initial value
for the loopif function, which serves as a loop counter.

Example 10. We apply the code generation procedure to
the expression e from Example 3. Here is the result of code
generation:
module Examples.PayoffFunction where
import qualified Data.Map as Map
import BaseTypes
import Examples.BasePayoff

payoffInternal ext tenv t0 t_now p1 p2 =
(100.0 ∗ (if (X== p1 && Y== p2) then 1

else if (X== p2 && Y== p1) then −1 else 0)) +
(if ((100.0 < (ext Map.! ("AAPL",(0 + (tenv Map.! "t1") +

(tenv Map.! "t0") + 0+ t0)))))
then (((( ext Map.! ("AAPL",(0 + (tenv Map.! "t1") +

(tenv Map.! "t0") + 0+ t0))) ∗ 100.0)
∗ (if (X== p1 && Y== p2) then 1 else

if (X== p2 && Y== p1) then −1 else 0))) else 0.0)

payoff ext tenv t_now p1 p2 = payoffInternal ext tenv 0 t_now p1 p2

The external environment and the template environment
are represented using Haskell’s Data.Map, and Map.! is an infix
notation for the lookup function. To obtain the code above
we apply a simple optimisation, replacing the loopif with
zero as the first argument with the regular if. One could also
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add more optimisations to our Coq implementation along
with proofs of soundness.

A module declaring the payoff function can be used as
an ordinary Haskell module as a part of the development
requiring the payoff functions. For example, it could be used
in the context of the FinPar benchmark [2], which contains
a Haskell implementation of pricing among other routines.
Moreover, the cutPayoff() function can be used to obtain a
parameterised version of a payoff function in Haskell, allowing
us to reproduce the contract reduction behavior.

6.2 The Futhark Backend
Futhark is a data-parallel functional language for program-
ming nested, regular programs to be executed efficiently on a
GPU [8, 9]. The language has a rich core language, which pro-
vides a number of second-order functional array combinators,
such as map, reduce, filter, and scan, but it also provides
seemingly imperative features, including sequential loops and
array updates, which are based on a uniqueness type system
that allows for an efficient implementation of functional array
updates. On top of the core language, Futhark is enriched
with a higher-order module language, for which constructs are
compiled away at compile time due to a static interpretation
technique.

Generating code for Futhark is quite similar to the code
generation approach described for Haskell. With the Futhark
backend, however, the aim is to integrate generated payoff
functions with an efficient parallel Monte Carlo based pric-
ing engine, which is achieved by making the pricing engine
a parameterised module that takes as argument a module
containing a payoff-function.

Regarding the particular Futhark payoff function genera-
tion, the implementation differs from the Haskell implemen-
tation in two ways, namely (i) with respect to the representa-
tion of the loopif construct and (ii) with respect to external
environment access.

The first difference is related to the fact that Futhark does
not support recursive functions, but instead includes various
iteration constructs. The payoff language loopif construct
is therefore compiled into a Futhark while loop construct.
For example, consider the following payoff expression (corre-
sponding to a simple contract with a barrier):

loopif(model("AAPL", 0) <= 4000.0,
0.0, 2000.0 * payoff(0,X,Y), t)

This payoff expression is translated into the following frag-
ment of Futhark code:

let payoffInternal(ext : [][] f32, tenv : [] i32,
disc : [] f32, t0 : i32, t_now : i32) : f32 =

let t0 = loop t0 = t0
while (!( ext[t0,0] <= 4000.0) && (t0 < tenv[0])) do t0+1
in if (ext[t0,0] <= 4000.0)

then 0.0
else (2000.0 ∗ disc[t0])

let payoff ext tenv t_now = payoffInternal(ext,tenv,0,t_now)

The ext variable is a two-dimensional array containing model
data (the first index corresponds to time and the second

corresponds to an observable), tenv is an array with template
parameter values, and disc is an array containing discount
factors (indexed by time).

The second difference, which is related to the way we
work with the model data environment, is concerned with
translation of environment indexing to the form used in the
FinPar pricing code. For example, we translate time indices
100 and 200 in the following payoff expression

payoff(100,X,Y) + payoff(200,X,Y)

to 0 and 1 respectively. This reindexing corresponds to the
order in which time indices appear in a payoff expression.

The output of the generation procedure is a Futhark mod-
ule that can be directly passed to the parameterised Futhark
pricing engine module. A key feature of the implemented
template mechanism combined with the cutPayoff() function-
ality is that the code base needs to be compiled into efficient
GPU code only when new instruments are introduced; the
generated payoff expressions are generic with respect to the
time at which the price is calculated.

Table 1 shows the timings for pricing three different finan-
cial contracts using the FinPar Monte Carlo pricing engine [2].
The contracts include a vanilla European call option, which
allows a holder at some time 𝑡 to purchase a particular stock
at a predetermined price, and a discrete barrier option, which
forces a holder to exercise the option before maturity if any
of three particular underlying stocks at certain dates cross
certain barrier levels. Finally, the contracts include a double
vanilla European option, which allows a holder to exercise any
of two European options on two different underlying stocks.
The three contracts cover well the possible scope of supported
contracts, including the support for dealing with multiple
underlyings and multiple measurement days. Moreover, the
contracts are instances of real financial contracts appearing
in real financial portfolios.

The experiments were executed on a commodity MacBook
Pro laptop with a 2.7GHz Intel i7 CPU and an AMD Radeon
Pro 460 GPU using futhark-bench, which was configured to
report the average runtime of five different runs. Pricing of the
Vanilla option is based on 8388608 individual Monte Carlo
simulation paths, whereas pricing of the two other contracts
is based on 1048576 individual paths. The Fut-C column
shows timings for executables generated using futhark-c, the
CPU sequential-code compiler for Futhark. The Fut-OpCL
and the Fut-OpCL-Cut columns show timings for executables
generated with futhark-opencl and with the Fut-OpCL-Cut
column providing timings for the case where the cutPayoff()
functionality allows for pricing of the contract at different
times during the contract’s lifetime. The experiments show
that for the vanilla European option, a speedup of roughly
310 was achieved comparing the Futhark program compiled
into C (and further into x86 machine code) with a version
compiled into OpenCL using Futhark’s OpenCL backend.

There are a number of observations to draw from the
benchmark results. First, notice that the speedup obtained
from using the commodity GPU instead of the laptop CPU
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Table 1: Price timings in milliseconds. The measure-
ments show the time it takes to price three dif-
ferent financial contracts using the FinPar Monte
Carlo based generic pricing. The Fut-C column spec-
ifies sequential performance and the Fut-OpCL and
the Fut-OpCL-Cut specify parallel performance with
the Fut-OpCL-Cut column showing timings with the
cutPayoff() functionality enabled.

Fut-C Fut-OpCL Fut-OpCL-Cut
Vanilla option 6,779.4ms 21.4ms 21.7ms
Barrier option 1,521.7ms 54.7ms 55.1ms
Double option 983.0ms 12.4ms 12.3ms

ranges from a factor of 27 to a factor of 317.4 Second, notice
that the introduction of the cutPayoff() function in the Fut-
OpCL-Cut column has neglectable impact on performance.
We can therefore conclude that, at least for the contracts
represented by the three examples, the template feature
makes it possible to avoid recompilation of pricing code and
that the generalisation can have a dramatical positive effect
on the performance of risk calculations, each of which often
consists of thousands of pricing tasks.

7 Related Work
There is a large body of work related to using domain specific
languages for specifying and managing financial contracts
[4, 10, 11, 15, 19, 20, 22] and for specifying financial contract
payoff expressions [7]. Only parts of this work investigate the
certification aspects of the devised solutions [4]. Compared
to the previous work, the present work considers how declar-
ative certified contracts can be compiled into generic payoff
functions for efficient use in a practical pricing framework.

Another line of related work investigates the possibility
of implementing financial contracts on distributed ledgers
such as blockchains [6]. Included in this work is work on
establishing a certified foundation for executing programs
(also called smart contracts) on such architectures [18].

Finally, there is a large body of related work on developing
techniques for certifying implementations of programming
languages, including the seminal work on CompCert [13], a
fully certified compiler for the C programming language and
the verified LLVM project [24], which aims at providing a
pluggable toolkit for composing certified LLVM [12] compiler
phases.

8 Conclusion
This work extends the certified contract management system
of [4] with template expressions, which allows for drastic
performance improvements and reusability in terms of the
concept of instruments (i.e., contract templates). We consider
a practical application of the declarative contract specifica-
tions in the context of contract valuation (i.e., pricing). For
4The multi-underlying nature of the non-vanilla contracts results in
smaller speedups relative to the vanilla case due to the complexity
and the sequential dependencies involved in dealing with correlations
between underlyings.

the purposes of interacting with pricing engines, we introduce
a language for payoff expressions (the payoff intermediate
language). We have developed a formalisation of the payoff
intermediate language and a certified compilation procedure
in Coq. Our approach uses an extrinsic encoding, which al-
lows us to make use of Coq’s code extraction feature for
obtaining a correct implementation of the compiler function
that translates expressions in CL to payoff expressions. We
have introduced a parameterisation technique for payoff ex-
pressions allowing for capturing contract development over
time. The developed technique is consistent with the notion
of contract reduction from [4].

A number of important properties, including soundness of
the translation from CL to the payoff language have been
proved in Coq. We have exemplified how the payoff inter-
mediate language can be used to generate code in a target
language by mapping payoff expressions to a subset of Haskell
and Futhark. We have conducted performance measurements
with the generated Futhark code in the context of an efficient
parallel pricing engine and shown that, for three types of con-
tracts included in the experiment, the template scheme does
not significantly influence performance. On the contrary, the
template scheme allows for avoiding recompilation caused by
changes to an instrument’s parameters and by simplification
of a contract due to the passage of time.

There are number of possibilities for future work. First,
some work is needed for the payoff intermediate language to
support the expression-level accumulation functionality from
[4]. As part of a solution, one may consider generalising the
somewhat ad-hoc loopif construct and, instead, provide a
more general language construct for iteration, which could
involve compiling ifWithin to a combination of iteration and
conditions (resulting in simpler target code generation).

Second, the representation of traces as functions N →
Trans is equivalent to infinite streams of transfers. It would
be interesting to explore this idea of using streams further,
since observable values also can be naturally represented as
streams.

Finally, a possibility for future work is to formalise further
the infrastructure for working with external environment
representations. For instance, the reindexing scheme used in
our Futhark backend for accessing the external environment
is currently considered trusted code in the same way as the
Futhark pretty printing.
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