
CALCULATING KEY RATIOS FOR FINANCIAL PRODUCTS

USING AUTOMATIC DIFFERENTIATION

AND MONTE CARLO SIMULATION

ESBEN BISTRUP HALVORSEN

Abstract. A library for higher order, multivariate automatic differentiation

is combined with a library for Monte Carlo simulation, and the theoretical

background, implementation, usage and performance are discussed.

Contents

1. Introduction 1
2. Monte Carlo simulation 3
3. Derivatives 4
4. Differentiation in practice 9
5. Implementation 14
6. Discussion 23
References 30

1. Introduction

There is an increasing need for computation in the world of finance. Not only is
the number of financial products continuously growing, but so is the need to forecast
their values into the future. Key ratios and simulations of future developments can
provide the insight needed to make the right decisions, and enormous computational
resources are devoted to calculating key ratios and simulating scenarios as quickly
and precisely as possible.

This project implements and discusses a framework for automatic differentia-
tion of mathematical functions, including Monte Carlo simulated functions. The
framework allows key ratios to be computed accurately rather than approximated
by numerical differentiation (shocking), which is customary in the financial sector.
The integration with Monte Carlo simulated functions makes the framework useful
for the computation of key ratios, since many pricing functions do not have a closed
formula but must be simulated.

The implementation is made in Haskell by overloading functions. This means
that it is not necessary to modify any existing mathematical functions in order to
obtain their derivatives. Said differently, the framework can be considered a plug-
in that provides extra functionality for computing derivatives of existing functions.
In addition, the implementations of automatic differentiation and Monte Carlo
simulation have been kept apart so that, if desired, one can use one without the
other.

Date: December 12, 2012.
This project was completed under the auspices of the HIPERFIT group at DIKU with Martin

Elsman as supervisor.

1

2 ESBEN BISTRUP HALVORSEN

Performance and completeness have not been essential in this project. In con-
trast, the project should only be seen as a first step towards a complete framework
for calculating key ratios for financial products. The discussion part of this paper
presents ideas for additional steps in this direction.

The main part of the project is about automatic differentiation, since the integra-
tion with Monte Carlo simulation is almost a formality. We have used Conal Elliot’s
beautiful differentiation [3] as the starting point for the implementation. Unfortu-
nately, Elliot’s description is incomplete, and his own implementations in [5] are
either flawed or quite far from the original paper, so we have made a number of
adjustments to make things work. As it turned out, the resulting code actually
became simpler from the corrections.

1.1. Organization. The paper is organized as follows. Section 2 gives a short
presentation of Monte Carlo simulated functions. Section 3 introduces higher or-
der derivatives for multivariate functions as linear maps and discusses some of the
differentiation rules. Section 4 discusses various techniques for implementing differ-
entiation in practice, including two versions of automatic differentiation. Section 5
describes the Haskell code which constitutes the implementation part of this project
and gives a few examples of how to use the implementation. Finally, Section 6 dis-
cusses correctness, performance and various other aspects of the implementation
and gives suggestions for future development.

1.2. Contributions. The main contributions of this project are:

• An implementation of automatic differentiation combined with Monte Carlo
simulation.

• Corrections and simplifications of Conal Elliot’s implementations [5] of
Beautiful differentiation [3], making the implementation both correct and
true to the original article; see the discussion in Section 6.1.

• Generalizations (6.1) and (6.2) of the chain rule in a formulation with
derivatives as linear maps together with a complexity analysis and sug-
gestions for performance improvements.

1.3. Related work. The subject of automatic differentiation has been discussed
for decades and is treated in an abundance of literature. Wengert [12] introduced
the forward and backward accumulation techniques (see Section 4.3) all the way
back in 1964, and Iverson [6] implemented a derivative operator for the APL lan-
guage back in 1979. Karczmarczuk [8] came up with the idea of a lazy derivative
towers for higher order derivatives in 2001, but restricted to the one-dimensional
case. Pearlmutter and Siskind [11] showed in 2007 how to handle higher order
derivatives for multivariate functions using dual numbers (see Section 4.4), and
Elliot [3] extended Karczmaczuk’s derivative towers in 2009 to the multivariate
case using linear maps over general vectors spaces. Among other interesting liter-
ature on the subject, we find the collection [1] of articles from the proceedings of
the SIAM Workshop on the Automatic Differentiation of Algorithms in 1996, and
some recent books by Griewank and Walther [4] and Naumann [10]. The web site
http://www.autodiff.org is devoted to automatice differentiation and contains
a long list of additional literature on the subject. No literature that we are aware
of combines multivariate, higher order automatic differentiation with Monte Carlo
simulation.

1.4. Prerequisites. The reader is assumed to be knowledgeable about basic linear
algebra, calculus and probability theory. This includes norms and linear maps of
finite-dimensional R-vector spaces; higher order differentiation and integration of
multivariate functions; and probability distributions and expected values. The

CALCULATING KEY RATIOS USING AD AND MC 3

reader is also assumed to be familiar with the standard features in Haskell and
have a good understanding of Haskell’s type system.

1.5. Notation. Throughout this text, R denotes the set of real numbers, and Rk

denotes the set of k-tuples from R considered as a k-dimensional, normed vector
space over R. We will generally use the letters U , V and W to denote R-vector
spaces of finite dimension. A map f from a set A to a set B is denoted f : A→ B.
When dealing with vector spaces, we write U (V in place of U → V to emphasize
that the map is linear. Such a map can be represented by a matrix, and we will
freely interchange a linear map with its matrix representation. In particular, we will
sometimes write fx and gf in place of f(x) and g ◦ f , respectively, when applying
a linear map f : U (V to a vector x ∈ U or composing it with another linear
map g : V (W . This is to emphasize that applications and compositions of linear
maps are obtained by multiplications of matrices by vectors or other matrices.

2. Monte Carlo simulation

There is no general consensus in the literature on what exactly defines the term
“Monte Carlo”. Some sources use the term for any simulation procedure that
involves taking (independent) samples from a probability distribution and using
them to obtain an estimate for something that cannot otherwise be found with a
closed formula. Other sources denote such procedures by “stochastic simulation”
and reserve the word “Monto Carlo” to the special case in which the aim of the
stochastic simulation is to find an integral of a mathematical function or an expected
value of a probability distribution. See [18] for further details.

In this project we will consider Monte Carlo simulated functions: that is, math-
ematical functions whose values cannot be found by a closed formula but must be
calculated as the average of a collection of samples. Many examples of functions
with no closed formula arise when taking integrals: the integral of a function does
not always have a closed formula even though the function itself does. Using Monte
Carlo simulation to find integrals is a typical scenario in the world of finance.

Suppose that X1, . . . , XN are independent and identically distributed random
variables drawn from some distribution with expected value µ and variance σ2.
The law of large numbers says that the sample average

SN =
1

N

N∑
i=1

Xi

converges in probability (and almost surely) to µ as N tends to infinity. The central
limit theorem states that the distribution of SN as N grows actually approximates
a normal distribution with mean value µ and variance σ2/N . This implies that SN

displays a 1/
√
N convergence, meaning that a quadrupling of N halves the error of

the approximation to µ. This is not a very good convergence ratio: it takes a lot
of samples to get precise results! The curse of dimensionality makes this problem
even more apparent in higher dimensions. In some situations, it may therefore be
better to use random variables that are dependent or even not random at all; see
the discussion in Section 6.3 on page 28.

Now, suppose that we want to simulate a function f(x). We do not have a closed
formula for f(x), but we can simulate a distribution whose mean value is exactly
equal to f(x). Computing f(x) can therefore be done by drawing samples from
this distribution and taking the average. The aforementioned results ensure that
we can use the average to approximate the function value and that we can compute
the number of samples needed to obtain a sufficiently small error.

4 ESBEN BISTRUP HALVORSEN

The typical way to simulate a probability distribution is by drawing samples
from a simple and well-known probability distribution, for example the uniform
distribution on [0; 1], and transforming the samples using a known function. Thus,
we can approximate a function value f(x) by a formula in the form

f(x) ≈ 1

N

N∑
i=1

f̂(x,wi), (2.1)

where the wi are drawn independently from a simple and well-known probability

distribution, which is transformed by the function f̂(x,−) to a distribution with
mean value f(x).

As an example, consider the function f : [a; b] → R defined as an integral of
another function:

f(x) =

∫ x

a

g(t)dt

We can approximate f(x) by drawing samples wi from the uniform distribution on
[0; 1] and using (2.1) with

f̂(x,wi) = (x− a)g(a+ (x− a)wi)

The intuition is that the a + (x − a)wi are uniformly distributed on the interval

[a;x], and that 1
N

∑N
i=1 g(a+ (x− a)wi) therefore is the average value of g on this

interval, wherefore its product with the length x−a of the interval is the area under
the graph of g. This idea is known as the sample mean method

As another almost canonical example, consider the constant π. We can ap-
proximate π by drawing samples wi = (wi1, wi2) from the uniform distribution on
[0, 1]× [0, 1] and using (2.1) with

f̂(wi) =

{
4, if w2

i1 + w2
i2 < 1

0, else

(Note that f̂ does not depend on x since we are simulating a constant.) The intu-
ition is as follows: the ratio of the area of a circle with a square that circumscribes
it is π/4. Thus, if we throw darts at random against the square and compute the
ratio of darts that fall inside the circle, this ratio will approximate π/4. Multiply
by 4 to obtain π. (For simplicity, the example here only considers the top right
corner of the unit circle .) This idea is know as the hit or miss method and can be
used to compute the area of any irregular volume.

All in all, implementing a machinery to handle Monte Carlo simulated functions
is quite easy: we just need to handle functions that are defined as in (2.1). Choosing
the right Monte Carlo method and deciding how many samples to use to obtain the
desired precision is a much harder task. We will not concern ourselves with this
problem here but simply leave it to the user of the system.

3. Derivatives

The derivative of a function f at a point x is a measure for the local changes of
function values f(x) happening around x. More precisely, the derivative of f at x
gives a linear approximation to f in a neighborhood of x. In order to have concepts
such as “linearity“, “approximation” and “neighborhood” available, we restrict the
functions under investigation to those of type f : Rk → R`. From a financial point
of view, this is not a restriction at all, since any collection of key ratios we can
think of can be described as a finite-dimensional vector over R.

This section introduces derivatives for functions f : Rk → R`. The purpose is
not to give a precise mathematical definition of derivatives but to strengthen the
reader’s intuition for what derivatives really are, and how and why the derivation

CALCULATING KEY RATIOS USING AD AND MC 5

rules work. Having a clear understanding of the dual role of derivatives as numbers
as well as of linear functions is important for a large part of this text.

3.1. One-dimensional derivatives. The traditional way of describing the deriv-
ative of a simple, one-dimensional function f : R → R at a point x ∈ R is as a
number f ′(x) ∈ R which is the slope of the tangent line to the graph of f at x.
This slope can be found as the limit of the slope of nearby secant lines:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(3.1)

When this limit exists, f is differentiable at x.
When f is differentiable at x, we can approximate the value of f at points in a

neighborhood of x as

f(x+ h) ≈ f(x) + f ′(x)h (3.2)

where the approximation becomes better the smaller h is. For fixed x, we see that
the approximation is linear in h. The term f ′(x)h indicates how much the function
value changes, approximately, when the argument changes by h.

The idea that the derivative should be a number in R does not generalize to
higher dimensions. A more general way to define the derivative of f at a point
x is as a linear map f ′(x) : R (R which takes h ∈ R as input and returns the
number f ′(x)h ∈ R. With this interpretation, we should really write f ′(x)(h)
rather than f ′(x)h to emphasize that f ′(x) is a function and not a number. But
since linear maps can be represented by matrices, we can think of the term f ′(x)h
as the multiplication of the 1× 1-matrix f ′(x) by the one-dimensional vector h.

3.2. Multivariate derivatives. The description of derivatives as linear maps can
easily be extended to the multivariate case. Indeed, the approximation in (3.2)
makes sense for a general f : Rk → R` when we think of f ′(x) as a linear map
Rk (R` which we can apply to a vector h ∈ Rk. Making this idea more precise,
we define the derivative of f at x as a linear map f ′(x) : Rk (R` such that

lim
‖h‖→0

‖f(x+ h)− f(x)− f ′(x)h‖
‖h‖

= 0 (3.3)

where ‖ · ‖ denotes the usual Euclidean norm. If such a linear map f ′(x) exists,
then it is unique, and we say that f is differentiable at x. Since linear maps from
Rk to R` can be represented by `×k-matrices, we can think of f ′(x) both as a map
and as a matrix. Represented as a matrix, f ′(x) is called the Jacobian of f at x.
The entries of this matrix are the partial derivatives of f at x, and the (i, j)-entry
is denoted ∂fi/∂xj , where f = (f1, . . . , f`) are the coordinate functions of f and
x = (x1, . . . , xk) are the coordinates of x.

The interpretation of (3.2) is clear, even in the multivariate case: if we are
currently at the point x and know the function value f(x), then moving in direction
h (from x to x + h) leads to a change in function value which can be (linearly)
approximated by f ′(x)h.

As an example, consider the function f : R2 → R3 given by

f(x1, x2) = (x1 sinx2, x1x
2
2, 1 + x2).

The derivative of f at a point x = (x1, x2) is given by

f ′(x1, x2) =


∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

∂f3
∂x1

∂f3
∂x2

 =

sinx2 x1 cosx2
x22 2x1x2
0 1



6 ESBEN BISTRUP HALVORSEN

which we can think of as representing a linear map R2 (R3. Thus, if we move
away from (x1, x2) in direction (h1, h2), the approximate change in f can be found
as sinx2 x1 cosx2

x22 2x1x2
0 1

(h1
h2

)
=

h1 sinx2 + h2x1 cosx2
h1x

2
2 + h22x1x2

h2



3.3. Higher order derivatives. If f : U → V is a function and the derivative
f ′(x) of f at x is defined for all x ∈ U , we can define the general derivative f ′ of f
as the map f ′ : U → (U (V) which takes a vector x ∈ U and returns the linear
map f ′(x) : U (V . We can now ask for derivatives of the function f ′ and repeat
the process. The second order derivative f ′′(x), if it exists, should be a linear map
U ((U (V), which takes a vector h ∈ U and gives a linear map f ′′(x)h : U (V ,
which can be used as a linear approximation of f ′(x+ h) in relation to f ′(x):

f ′(x+ h) ≈ f ′(x) + f ′′(x)h.

Since U ' Rk and V ' Rl for some k and `, we can think of this approximation as
taking place in the vector space of `× k-matrices or, equivalently, the vector space
of linear maps U (V whose vector space structure is induced by the vector space
structure on V . One can think of f ′′(x) either as a linear map U ((U (V) or
as a three-dimensional ` × k × k-matrix. The general second order derivative is a
map f ′′ : U → (U ((U (V)).

Repeating this indefinitely, we determine the types of all the higher order deriva-
tives:

f : U →V
f ′ : U →(U (V)

f ′′ : U →(U ((U (V))

f ′′′ : U →(U ((U ((U (V)))

...

The interpretation is always the same: the n’th order derivative f (n)(x) at x is a
linear map that can be used to approximate the local behavior of f (n−1) around x
as

f (n−1)(x+ h) ≈ f (n−1)(x) + f (n)(x)h,

where the approximation becomes better the smaller ‖h‖ is.
Continuing the example from before with the function f : R2 → R3, we saw that

its derivative was a function f ′ : R2 → (R2 (R3) given by

f ′(x1, x2) =

sinx2 x1 cosx2
x22 2x1x2
0 1

 .

CALCULATING KEY RATIOS USING AD AND MC 7

The derivative of f ′ at the point (x1, x2) can be represented by a three-dimensional
3×2×2-matrix. Splitting the matrix up into parts corresponding to the three coor-
dinate functions f1, f2, f3, we can depict the matrix by its three 2× 2-submatrices:

∂2f1
∂x21

∂2f1
∂x1∂x2

∂2f1
∂x2∂x1

∂2f1
∂x2∂x2

 =

(
0 cosx2

cosx2 −x1 sinx2

)


∂2f2
∂x21

∂2f2
∂x1∂x2

∂2f2
∂x2∂x1

∂2f2
∂x2∂x2

 =

(
0 2x2

2x2 2x1

)


∂2f3
∂x21

∂2f3
∂x1∂x2

∂2f3
∂x2∂x1

∂2f3
∂x2∂x2

 =

(
0 0
0 0

)

When applying the 3 × 2 × 2-matrix to a point (h11, h12), the result is a 3 × 2-
matrix:

f ′′(x1, x2)

(
h11
h12

)
=

h12 cosx2 h11 cosx2 − h12x1 sinx2
h122x2 h112x2 + h122x1

0 0

 .

This matrix represents a change in f ′(x1, x2) when (x1, x2) is changed by (h11, h12)
to (x1 + h11, x2 + h12). When applied to a direction (h21, h22) the result is a
vector in R3 representing the change of the change in f when using the derivative
f ′(x1 + h11, x2 + h12) to approximate f compared to the change in f when using
the derivative f ′(x1, x2) to approximate f :

f ′′(x1, x2)

(
h11
h12

)(
h21
h22

)
=

h12h21 cosx2 + h11h22 cosx2 − h12h22x1 sinx2
h12h212x2 + h11h222x2 + h12h222x1

0

 .

We have now seen the definition of higher order derivatives for multivariate func-
tions. In practice, one would only apply these definitions directly to a few, basic
“building block” functions. For other and more complex functions, one would break
down the function into simple components whose derivatives can be found, and then
combine these simple derivatives into a derivative for the entire function. The re-
mainder of this section discusses how this is possible using differentiation rules for
sums, products and function composition.

3.4. The sum rule. Given two functions f, g : U → V their sum f + g : U → V is
defined by (f + g)(x) = f(x) + g(x). If f and g are both differentiable at a point
x, then so is f + g. From the previous approximations, we see that, for h ∈ U ,

(f + g)(x+ h) = f(x+ h) + g(x+ h)

≈ f(x) + f ′(x)h+ g(x) + g′(x)h

= (f + g)(x) + (f ′ + g′)(x)h

where the approximation becomes better the smaller h is. Thus, we have obtained
the sum rule:

(f + g)′ = f ′ + g′. (3.4)

8 ESBEN BISTRUP HALVORSEN

3.5. The product rule. Suppose that ∗ : U × V → W is a continuous, bi-linear
function: that is, linear in both variables. If U = V = W = R this could, for
example, be ordinary multiplication. Given two functions f : A→ U and g : A→ V ,
we can define f ∗ g : A → W by (f ∗ g)(x) = f(x) ∗ g(x). If f and g are both
differentiable at a point x, then so is f ∗ g. From the previous approximations, we
see that, for h ∈ A,

(f ∗ g)(x+ h) = f(x+ h) ∗ g(x+ h)

≈ (f(x) + f ′(x)h) ∗ (g(x) + g′(x)h)

= f(x) ∗ g(x) + f(x) ∗ g′(x)h+

f ′(x)h ∗ g(x) + f ′(x)h ∗ g′(x)h

= (f ∗ g)(x) + (f(x) ∗ g′(x) + f ′(x) ∗ g(x))h+ f ′(x)h ∗ g′(x)h

where the approximation becomes better the smaller ‖h‖ is. Here, we have exploited
continuity of ∗ to get the approximation, and we have overloaded the ∗ symbol by
thinking of f(x) and g(x) as constant functions A → U and A → V , respectively.
Since f ′(x)h ∗ g′(x)h has two occurrences of h, the limit for this term divided by
‖h‖ will tend to 0 as ‖h‖ tends to 0. Consequently we can (and should) ignore this
term, and so we obtain

(f ∗ g)(x+ h) ≈ (f ∗ g)(x) + (f(x) ∗ g′(x) + f ′(x) ∗ g(x))h

where the approximation becomes better the smaller ‖h‖ is. Thus, thinking of f
and g as functions A → (A → U) and A → (A → V), respectively, where the last
argument from A is ignored, we have

(f ∗ g)′ = f ∗ g′ + f ′ ∗ g (3.5)

When “∗” denotes ordinary multiplication on R, this is known as the product rule.

3.6. The chain rule. Given two functions f : U → V and g : V → W , we can
define the composition g ◦ f : U →W by (g ◦ f)(x) = g(f(x)). If f is differentiable
at x and g is differentiable at f(x), then g ◦ f is differentiable at x. From the
previous approximations, we see that, for h ∈ U ,

(g ◦ f)(x+ h) = g(f(x+ h))

≈ g(f(x) + f ′(x)h)

≈ g(f(x)) + g′(f(x))f ′(x)h

= (g ◦ f)(x) + (g′ ◦ f)(x)f ′(x)h

where the approximation becomes better the smaller ‖h‖ is. Here, the first ap-
proximation exploits differentiability of f at x as well as continuity of g at f(x)
(which follows immediately from differentiability of g at f(x)), and the second ap-
proximation exploits differentiability of g at f(x) as well as linearity of f ′(x). Note
that we use the multiplicative notation (g′ ◦ f)(x)f ′(x) to compose the linear maps
(g′ ◦ f)(x) : V (W and f ′(x) : U (V instead of writing (g′ ◦ f)(x) ◦ f ′(x). If we,
for functions p : A → (B → C) and q : A → (C → D), define q ◦̂ p : A → (B → D)
to be the function (q ◦̂ p)(x) = q(x) ◦ p(x), then we can write the above as

(g ◦ f)′ = (g′ ◦ f) ◦̂ f ′. (3.6)

This is known as the chain rule.
The chain rule is actually the only general rule we ever need, because every func-

tion can be expressed as compositions of more elementary functions. In particular,
the sum and the product rules from above are instances of the chain rule. For ex-
ample, the sum f + g of two functions f, g : U → V can be considered the result of
a series of function applications x 7→ (x, x) 7→ (f(x), g(x)) 7→ f(x) + g(x): that is,

CALCULATING KEY RATIOS USING AD AND MC 9

f +g is the composition of a map given by x 7→ (x, x); coordinate-wise applications
of f and g given by (x, y) 7→ (f(x), g(y)); and addition given by (x, y) 7→ x+ y. If
we know the derivatives of these three elementary functions, the chain rule gives us
the combined derivative of f + g, namely f ′ + g′.

3.7. A toolbox of rules. Our goal is to be able to find the derivative of any
formula appearing in the world of finance. The chain rule is a major step toward
achieving this goal. With this rule at hand, we can combine expressions whose
derivatives we already know into expressions whose derivatives we can find using
the rule. As mentioned, this includes sums and products, and hence also differences
and quotients. In order to be able to find higher order derivatives, we must make
sure that we can apply the chain rule repeatedly. In (3.6) we encountered the
“lifted” function composition “◦̂”, so we need to make sure that we can differentiate
expressions involving that symbol. Fortunately, since we are only interested in
finding the derivatives of g ◦̂ f when f and g are in the form f : A→ (U (V) and
g : A→ (V (W), we can exploit that composition of linear functions is a bi-linear
operation. Thus, finding the derivatives of g ◦̂ f is already covered by the product
rule in (3.5).

With the chain rule at hand, all we need is a small set of elementary functions
whose derivatives we know and can express using the same set of functions and
the chain rule. These building block functions should include the constant func-
tions, the identity function, injection functions (R (R`), projection functions
(R` (R), the arithmetic operations (R × R → R) as well as all the well-known
functions R → R such as the exponential function, the logarithmic function, the
reciprocal function, square root, sine, cosine, tangent and so on. Note that we can
build arbitrary polynomials as sums and products of the identity function and the
constant functions. Note also that the injection and projection functions allow us
to put together expressions to form multivariate functions R` → Rk. Using these
building blocks we can, for example, construct the function f : R2 → R3 given by
f(x1, x2) = (x1 sinx2, x1x

2
2, 1 + x2) which was used as example in the above.

Finding the derivatives of the elementary functions requires a closer mathemat-
ical analysis which we will not go further into here. The important thing is that
they are well-known and can be expressed in terms of each other. Thus, we now
have the tools needed for finding all higher order derivatives of most multivariate
functions, and we can begin differentiating in practice.

4. Differentiation in practice

4.1. Symbolic differentiation. Symbolic differentiation is the act of applying the
differentiation rules described in Section 3 to a function in order to obtain a formula
for the derived function. The derived function can then be applied to the point(s)
we are interested in. This is the technique normally taught in high-school and
would probably be the first choice for many people.

From a practical point of view, however, symbolic differentiation is quite ineffi-
cient. The method produces a function which can be used to compute the derivative
at any point, and this may involve a lot of redundant computation, if we are just
interested in the derivative at a specific point. For example, the real-valued func-
tion x 7→ max(2, x3 expx) clearly has derivative 0 for negative values of x, but
symbolic differentiation would, nevertheless, compute a complete specification for
the derivative even if we are only interested in its value at x = −2

If one wants to implement symbolic differentiation as software, it has an even
larger drawback than bad performance: in order to find the derivative of an ex-
pression such as max(2, x3 expx), it is necessary to access and transform the source

10 ESBEN BISTRUP HALVORSEN

code. Not only is this inconvenient, but it also places restrictions on the source
code and may be straight out impossible.

There are solutions to this, of course. For example, one could overload all the
primitive functions and function constructs so that they carry with them infor-
mation about their derivatives. But this is no longer pure symbolic differentiation
then, since we are doing more than just investigating the specification of a function.
Automatic differentiation uses the overloading technique and will be discussed in
Section 4.3.

4.2. Numerical differentiation. The traditional way of computing derivatives
of functions in the financial sector is by numerical differentiation, sometimes also
called shocking. The idea is to approximate the derivative f ′(x) by calculating
function values in a neighborhood of x and using these to obtain f ′(x). The simplest
version of this is a two-point estimation for a function f : R→ R, where we “shock”
x with a small value h and find the slope of the secant line through (x, f(x)) and
(x+ h, f(x+ h)):

f ′(x) ≈ f(x+ h)− f(x)

h
. (4.1)

Note that this is simply an approximation to the limit in (3.1). Note also that h
can be negative which would mean that we are shocking x to the left rather than
the right. We could also shock x equidistantly to both sides in order to get an
approximation error that is not biased to one side:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
If f is multivariate, the same approach is still possible. In order to find the

partial derivative ∂fi/∂xj , we look at the i’th coordinate function fi and keep all
variables but xj fixed. This leads to a one-dimensional function for which we can
then apply (4.1). If we are looking for a directional derivative at x in direction
h (corresponding to the matrix multiplication f ′(x)h from Section 3.2), we can
consider instead the one-dimensional function r 7→ f(x + rh), r ∈ R, to which we
can apply (4.1).

The fact that the computation of a derivative by numerical differentiation in-
volves two computations of function values means that the number of computations
needed to compute an n’th derivative, à priori, grows exponentially with n. For
example, the approximation to the second order derivative of a function f : R2 → R
is given by

∂2f

∂x∂y
≈ f(x+ h, y + h)− f(x+ h, y)− f(x, y + h) + f(x, y)

h2

which requires calculation of four different function values.
If we differentiate multiple times by the same variable, however, it is possible

to re-use some of the intermediate function values. For example, if we differentiate
twice with respect to x, the above formula simplifies to

∂2f

∂x2
≈ f(x+ 2h)− 2f(x+ h) + f(x)

h2

which only requires three function values to be calculated. In general, the number
of function values needed to compute the n’th order derivative for the same variable
grows only linearly with n.

Most financial key ratios are defined as first, second or third order derivatives,
so the exponential growth in the computational complexity of finding n’th order
derivatives is not as big a problem as it may sound. The largest problem is accuracy:
too large values of h in (4.1) lead to inaccurate results; too small values of h lead
to rounding errors. It is impossible to find a generic h that gives the optimal

CALCULATING KEY RATIOS USING AD AND MC 11

amount of accuracy for all possible functions. Thus, one is required to use different
approximations for different functions, which either limits the set of such functions
or requires a time-consuming, dynamic analysis of the function. Alternatively.
one is required to use a better (but then probably also more time-consuming)
approximation than the one in (4.1).

Although numerical differentiation may not be the best method for finding
derivatives, it is quite standard in the financial sector. There are multiple rea-
sons for this. One reason is speed: it is plain and simple fast—at least as long as
we are only interested in lower order derivatives. The inaccuracy and limitations in-
curred by the use of numerical differentiation, as described above, are acceptable in
many situations. Another reason is that, in some situations, we are truly interested
in a formula such as (4.1) with a given fixed h, say h = 1, rather than the actual
derivative. This could be for historic reasons: some key ratios have been defined
before the time of computers using a formula such as (4.1), and hence it would
simply be wrong to use a better approximation for the derivative, even though the
true derivative is the original intent of the formula. It could also be that it is simply
more descriptive for the fluctuations of a pricing function to know the change in
value over a larger amount of time, rather than at an instant. For example, it may
be more informative to know the value of a portfolio tomorrow rather than in a
split second. Such “coarse” calculations are also less vulnerable to local anomalies
and non-differentiable points.

4.3. Automatic differentiation. Automatic differentiation is a technique to eval-
uate the derivative of a function specified by a computer program by exploiting the
observation in Section 3.7 that most functions are composed of a small set of ele-
mentary arithmetic operations and elementary functions.

The traditional way [12] of doing automatic differentiation is by a dynamic pro-
gramming technique where the partial derivatives of an expressions are found one
at a time using the chain rule at each step. If we use the chain rule starting with
the innermost functions and work our way out, this is known as forward accumu-
lation; if we start from the outside and work our way in, this is known as reverse
accumulation. See [9, 13] for further details.

As an example, consider again the function f : R2 → R3 given by

f(x1, x2) = (x1 sinx2, x1x
2
2, 1 + x2).

The straight line implementation of this function is an ordered sequence of primitive
steps:

t1 = x1

t2 = x2

t3 = sin t2

t4 = t22

t5 = t1t3

t6 = t1t4

t7 = 1 + t2

The triple (t5, t6, t7) is the output f(x1, x2) of the function. The complete derivative
f ′(x1, x2) is given by the set of partial derivatives ∂fi/∂xj for i = 1, 2, 3 and
j = 1, 2, which corresponds to the partial derivatives ∂tm/∂tn for m = 5, 6, 7 and
n = 1, 2. We already know that ∂tk/∂tk = 1 for all k, and we can use the primitive
differentiation rules to find ∂t`/∂tk for those tk that are variables in the definition
of t`.

12 ESBEN BISTRUP HALVORSEN

Forward accumulation uses the rule

∂tm
∂tn

=
∑

n≤k<m

∂tm
∂tk

∂tk
∂tn

where the sum is over the k’s such that tk is a variable in the definition of tm. The
rule is an immediate consequence of the chain rule. Using this rule, we can compute
the sequence

∂tn
∂tn

,
∂tn+1

∂tn
, . . . ,

∂tm
∂tn

which allows us to compute the derivatives ∂fi/∂xj for all i in one sweep. So,
for example, if we want to compute ∂fi/∂x2 for i = 1, 2, 3, which is the same as
∂tm/∂t2 for m = 5, 6, 7, we would compute as follows:

∂t2
∂t2

= 1

∂t3
∂t2

=
∂t3
∂t2

∂t2
∂t2

= cos t2 · 1 = cos t2

∂t4
∂t2

=
∂t4
∂t2

∂t2
∂t2

= 2t2 · 1 = 2t2

∂t5
∂t2

=
∂t5
∂t3

∂t3
∂t2

= t1 cos t2 = x1 cosx2

∂t6
∂t2

=
∂t6
∂t4

∂t4
∂t2

= t1 · 2t2 = 2x1x2

∂t7
∂t2

=
∂t7
∂t2

∂t2
∂t2

= 1 · 1 = 1

In order to find the remaining partial derivatives ∂fi/∂x1 for i = 1, 2, 3, we would
have to repeat the process using t1 in place of t2. In general, finding the complete
derivative of a map Rk → R` requires k sweeps.

Reverse accumulation uses the rule

∂tm
∂tn

=
∑

n<k≤m

∂tm
∂tk

∂tk
∂tn

where the sum this time is over the k’s such that tn is a variable in the definition
of tk. Using this rule, we can compute the sequence

∂tm
∂tm

,
∂tm
∂tm−1

, . . . ,
∂tm
∂tn

which allows us to compute the derivatives ∂fi/∂xj for all j in one sweep. So, for
example, if we want to compute ∂f1/∂xj for j = 1, 2, which is the same as ∂t5/∂tn
for n = 1, 2, we would compute as follows:

∂t5
∂t5

= 1

∂t5
∂t4

= 0

∂t5
∂t3

=
∂t5
∂t3

∂t5
∂t5

= t1 · 1 = t1

∂t5
∂t2

=
∂t3
∂t2

∂t5
∂t3

+
∂t4
∂t2

∂t5
∂t4

= cos t2 · t1 + 2t2 · 0 = x1 cosx2

∂t5
∂t1

=
∂t5
∂t1

∂t5
∂t5

= t3 · 1 = t3 = sin t2 = sinx2

CALCULATING KEY RATIOS USING AD AND MC 13

In order to find the remaining partial derivatives ∂fi/∂xj for i = 1, 2 and j = 1, 2,
we would have to repeat the process starting with t6 and t7 in place of t5. In
general, finding the derivative of a map Rk → R` requires ` sweeps.

The forward and reverse accumulation are two extreme methods of filling out
the Jacobian matrix of derivatives one column or one row at a time, respectively,
requiring k or ` sweeps for an ` × k-matrix. In general, the chain rule can be
traversed with any combination of forward or reserve accumulation. The problem
of computing the full Jacobian with a minimum number of operations is known as
the optimal Jacobian accumulation problem and is NP-complete [10].

The remainder of this section presents two examples of automatic differentiation
using forward accumulation.

4.4. Dual numbers. The dual numbers [11] are an extension D of the real num-
bers R obtained by adjoining an element ε with the property that ε2 = 0. The
construction is similar to that of the complex numbers, where one adjoins an ele-
ment i with the property that i2 = −1. A dual number is in the form a+ a′ε, and
addition and multiplication are given by

(a+ a′ε) + (b+ b′ε) = (a+ b) + (b+ b′)ε

(a+ a′ε)(b+ b′ε) = ab+ (ab′ + a′b)ε

where a, a′, b, b′ ∈ R. The dual numbers form a ring (an algebraic construction with
addition and multiplication) but not a field (a ring in which multiplication has an
inverse operation), since a′ε does not have an inverse for a′ 6= 0. We will not go
further into the algebraic details of the construction of dual numbers, but just take
for granted that the definition works and produces a ring.

Dual numbers enable a forward accumulation automatic differentiation technique
in a quite remarkable way. Given a differentiable function f : R → R with some
known specification of f(x), if we are able to extend the specification to a function
D→ D, the result will be a function satisfying

f(x+ ε) = f(x) + f ′(x)ε. (4.2)

For example, if f(x) = x2 + 3x+ 1, then

f(x+ ε) = (x+ ε)2 + 3(x+ ε) + 1

= x2 + 2xε+ 3x+ 3ε+ 1

= (x2 + 3x+ 1) + (2x+ 3)ε

= f(x) + f ′(x)ε

The same holds for functions where we do not have a closed formula as specification,
e.g. the trigonometric functions, or the exponential or logarithmic functions. For
these, we can just consider the Taylor expansions of the functions and do the same
computations. In an implementation, the algorithm behind such functions is of
course hidden, so we would have to manually specify how these functions should
operate on dual numbers.

It is not pure magic, of course, that derivatives pop out of the computations
with dual numbers: the ε corresponds to the h in (3.2), and the fact that ε2 = 0
corresponds to the fact that limh→0 h

2/h = 0.
The idea of using dual numbers to compute derivatives can easily be extended

to higher order derivatives. To do this, simply remove the equality ε2 = 0 and
generalize D to consist of power series in ε: that is, numbers in the form a+ a′ε+

14 ESBEN BISTRUP HALVORSEN

a′′ε2 + · · · , where a, a′, a′′, . . . ∈ R. In place of (4.2) we then get

f(x+ ε) = f(x) + f ′(x)ε+
1

2!
f ′′(x)ε2 +

1

3!
f ′′′(x)ε3 + · · · .

This is simply the Taylor expansion of f about x.
We can extend this even further to the multivariate case. Here we will need to

keep track of a collection of εi’s, one for each variable, and we then get

f(x1 + ε1, . . . , xk + εk) =
∑

i1,...,ik

1

i1! · · · ik!

∂i1+···+ikf

∂xi11 · · · ∂x
ik
k

εi1 · · · εik .

This formula also holds when the range of f is multi-dimensional; in this case, the
sum is coordinate-wise over vectors over D. The preceding section mentioned that
forward accumulation required k sweeps for functions Rk → R`; this is reflected in
the extra bookkeeping required to keep track of ε1, . . . , εk.

Dual numbers provide an elegant way of determining derivatives from function
specifications. However, the elegance is mostly mathematical: an implementation
to compute higher order derivatives of multivariate functions requires a lot of book-
keeping to keep track of all the εi’s and the factorials i1! · · · in! with which we need
to multiply in order to obtain the derivatives. A better solution is to go back to
the original definition in Section 3 of derivatives as linear maps and keep all these
in one single data structure. This is exactly the idea pursued in the next section
and in the implementation part of this project.

4.5. Beautiful differentiation. The computation of f(x + ε) for dual numbers
involves a computation of f(x) (the real part) simultaneously with a computation of
f ′(x) (the dual part) as well as higher order derivatives in the general case. Another
way of obtaining this is by keeping function values and derivatives together in a
single data structure and overloading all functions to work on such data structures.

Conal Elliot’s beautiful differentiation [3] introduces a data structure in which
any function value f(x) for a function f : U → V at a point x ∈ U is replaced by a
derivative tower for f at x containing f(x), f ′(x), f ′′(x), We use the notation
U . V for this data type. Thus, an element of type U . V will contain an element
from U (corresponding to f(x)), a linear map U (V (corresponding to f ′(x)), a
linear map U ((U (V) (corresponding to f ′′(x)), and so on. If we just want an
ordinary value in V which is not the result of a function application, we will think
of it as the result of an application of the identity function V → V .

A function g : V → W must be overloaded to a function U . V → U . W , so
that the overloaded function applied to the derivative tower for f at x produces the
derivative tower for g ◦ f at x containing (g ◦ f)(x), (g ◦ f)′(x), (g ◦ f)′′(x), The
key to this overloading is, of course, the chain rule. Further details are provided in
the next section where an implementation (somewhat modified compared to Elliot’s
implementation in [5]) of beautiful differentiation is described. See also Section 6.1
for a discussion on the correctness of Elliot’s implementation.

5. Implementation

The implementation consists of of five Haskell modules:

Functions: contains instances to lift functions so that we can work with them
as values.

Vectors: contains the definition and instances of a new class to model vector
spaces over a scalar field.

MCSim: contains the machinery to construct Monte Carlo simulated functions.
AutoDiff: contains an implementation of automatic differentiation. This is

the central part of this project.

CALCULATING KEY RATIOS USING AD AND MC 15

Finance: contains examples of financial pricing functions and key ratios cal-
culated using automatic differentiation and Monte Carlo simulation.

This section describes these modules, focusing primarily on the implementation
of automatic differentiation. Note that some of the ASCII characters in the code
examples of this section have been replaced by more human-friendly symbols. The
real code in the associated Haskell files is, of course, written in pure ASCII.

5.1. Functions. The Functions module is not directly related to automatic dif-
ferentiation, Monte Carlo simulation or any of the other themes of this project. It
is, in fact, just there for convencience, and this is the reason why it has been moved
to its own separate module.

The module contains instances of Num, Fractional, Floating and Ord for the
type a → b. This allows us, for example, to add, multiply and take reciprocals
and maximums of functions whenever these operations are defined for the function
values. Also, it allows us to apply mathematical functions to other mathematical
functions by defining this as simple function composition. Thus, we can, for ex-
ample, write an expression such as exp*sin(cos+2*id+1), which is both easier to
read and less verbose than what we would normally write:

*> exp*sin(cos + 2*id + 1) $ 3

-5.418932433500644

*> (\x → exp x*sin(cos x + 2*x + 1)) 3

-5.418932433500644

Note how the id function plays the role of the unknown variable when writing
functions in this way. For multivariate functions, we can replace id by projection
functions, and we can collect tuples of results using injection functions; we will use
this trick in the AutoDiff module.

We have implemented maximum and minimum functions for the Ord instance,
so that we, for example, can define max(sin, cos) to be the function whose value at
x is max(sinx, cosx). The implementation of Ord is not complete, however, since
we cannot make a general comparison operator for functions (because there is no
reasonable way to define, say, if sin < cos should be true or false).

5.2. Vectors. The Vectors module introduces the class Vector v s which we will
use to model vectors of type v over a scalar field of type s:

class Fractional s ⇒ Scalar s

class Scalar s ⇒ Vector v s | v → s where

zeroV :: v

(^+^) :: v → v → v

(*^) :: s → v → v

(Note that Elliot’s implementation [5] also has a negation function for vector spaces;
this is superfluous, since negation of a vector can be obtained by multiplication by
the scalar −1.) The | v → s in the class definition means that the scalar type s

is uniquely determined by the vector type v. In practice we will only use Double

as scalars.
If U and V are vector spaces, then their direct sum U ⊕ V is a vector space,

too, with the vector space operations defined component-wise. In general, for any
collection U1, . . . , Un of vector spaces, the direct sum

⊕n
i=1 Ui is a vector space. If

all Ui’s are identical and equal to U , we write Un in place of
⊕n

i=1 U . In this case, we
can model Un as a set of functions {1, . . . , n} → U with the vector space structure
induced by that on U . Thus, addition and scalar multiplication are defined on

16 ESBEN BISTRUP HALVORSEN

functions from the same operations on function values. (This is exactly what the
Num instance of a → b did in the Functions module.) We therefore define

instance Vector v s ⇒ Vector (a → v) s where

zeroV = const zeroV

(^+^) = liftA2 (^+^)

(*^) s = fmap (s *^)

Note that we have used the liftA2 function from the Control.Applicative mod-
ule to lift the binary function of addition.

To get started we just need a single vector space corresponding to the vector
space R over itself:

instance Vector Double Double where

zeroV = 0

(^+^) = (+)

(*^) = (*)

From this instance, we can, in one single step, build vector spaces of arbitrary
dimension, even infinite, by using the type a → Double for some indexing set of
type a. In practice, we will often use Int or String as indexing set, even though
we only need a finite set of indexes, for example {1, . . . , n} or {"x1", . . . , "xn"}; we
must then keep in mind only to evaluate the indexing functions on this set.

We could also have made an instance of Vector for pairs of vector spaces in order
to model U ⊕V , but then, to be able to build vector spaces of arbitrary dimension,
we would need to nest pairs indefinitely, which would make it cumbersome to work
with. Just having the simple instance for functions is much more general, and it is
all we ever need. as long as we are only working with vector spaces in the form R`.

For convenience, the helper function toC takes a list of vectors of type v and
turns them into a vector of type Int → v. (The “C” is for column since we think
of these maps as index maps into a column vector.) The function fromC makes
the opposite conversion, where one has to point out the requested indexes of the
column. We can now do things such as

*> let u = toC [3,1,4 :: Double]

*> let v = toC [2,7,1 :: Double]

*> let w = u ^+^ v

*> fromC w [1..3]

[5.0,8.0,5.0]

Note that we need to specify the type of (at least one of) the elements in the lists.
Otherwise Haskell cannot know what instance of Vector these should be interpreted
as (they could, for instance, have been constant functions of type a → Double

rather than just Double, due to the Num instance for functions).
The functions toMap and fromMap do exactly the same as toC and fromC except

that they use an arbitrary set for indexing. Thus, we can, for example, index
elements by variable names:

*> let u = toMap ["sigma", "x", "rho"] [3,1,4 :: Double]

*> let v = toMap ["x", "rho", "sigma"] [7,1,2 :: Double]

*> let w = u ^+^ v

*> fromMap w ["sigma", "x", "rho"]

[5.0,8.0,5.0]

CALCULATING KEY RATIOS USING AD AND MC 17

5.3. MCSim. The MCSim module contains the tools needed to define Monte Carlo
simulated functions: that is, functions in the form (2.1). The main function is

sim :: (Floating a) ⇒ [r] → (r → a) → a

sim ws f = sum (map (\w → f w) ws) / fromIntegral (length ws)

which takes an element of type [r] (corresponding to a list (w1, . . . , wN) of ran-
domly generated variables) and a function of type r → a (corresponding to the

function f̂(x,−)) and gives a result of type a (namely the average of the f̂(x,wi)’s).
What list of variables and what function to use is up to the user, but we provide
two functions, simUniforms and simNormals, that as the list of variables use a
list of n independent, randomly generated variables from the standard uniform and
standard normal distributions, respectively. These two functions require a random
generator as input in order to keep the implementation pure.

As a small test, let us try out the example with π from Section 2:

simPi :: (Num a, Ord a) ⇒ [a] → a → a

simPi [w1,w2] _ = if w1*w1 + w2*w2 < 1 then 4 else 0

testPi :: RandomGen g ⇒ g → Double

testPi g = sim (take 10000 $ tuples 2 $ randoms g) simPi 0

Here, tuples 2 collects the elements in a list in pairs of two. After compilation, we
can now estimate π with 10000 randomly generated variables, uniformly distributed
on [0; 1]2:

*> g ← getStdGen

*> testPi g

3.1376

Not the best approximation in the world—but this is as expected.

5.4. AutoDiff. We now proceed to the AutoDiff module which is the main part
of the implementation. It contains the implementation of automatic differentiation,
based on beautiful differentiation described in Section 4.5

Derivative towers. We implement derivative towers with a recursive data type in
Haskell:

data u . v = D v (u . (u (v))

In the implementation as well as in this text, the (symbol is just a type synonym
for→, which we use to distinguish linear maps from ordinary maps. This distinction
could come in handy in future optimizations of operations on linear maps; see the
discussion concerning optimization of linear maps in Section 6.3 on page 27.

An element of type u . v is in the form

D fx D f’x D f’’x D · · ·

where fx has type v, f’x has type u (v, f’’x has type u ((u (v) and so
on. The value of f and its derivatives at x is all we need to know in order to compute
the derivatives of arbitrary expressions involving f(x). Thus, the idea is that, in
an expression involving f(x), we replace f(x) by its entire derivative tower and
lift all the functions in the expression to work on derivative towers. This requires
lifting all the functions from Haskell’s Num, Fractional and Floating classes and
is discussed further below.

Before we proceed, we create a few “fixed” derivative towers, namely those for
the constant functions and for the identity function:

18 ESBEN BISTRUP HALVORSEN

constD :: Vector v s ⇒ v → u . v

constD x = D x (constD zeroV)

idD :: (Num v, Vector v s) ⇒ v → v . v

idD x = D x (constD id)

Note that the derivative of the identity function at any point, as we can see above,
is the identity function itself.

Derivative towers as vectors. We must ensure that vector space structures are pre-
served when going from values to derivative towers:

instance Vector v s ⇒ Vector (u . v) s where

zeroV = constD zeroV

(*^) s = \(D fx dfx) → D (s *^ fx) (fmapD (s *^) dfx)

(^+^) = liftA2 (^+^)

The function fmapD lifts a function to act on values inside a derivative tower, so that
scalar multiplication applies to all levels of a derivative tower. The use of liftA2
means that we have implemented an instance of Control.Applicative. The result,
in this case, is that addition of derivative towers is simply done coordinate-wise.

The sum rule and the product rule. The rule for ^+^ in the preceding states that
the derivative of a sum is the sum of the derivatives. This is the sum rule! The
preceding rule for *^ is a special instance of the product rule in which one factor is a
scalar. The real product rule, generalized to bilinear operators as it was introduced
in (3.5), is obtained by lifting the operator to derivative towers:

bilinearD :: Vector w s ⇒
(u → v → w) → (t . u) → (t . v) → (t . w)

bilinearD op dfx@(D fx df’x) dgx@(D gx dg’x) =

let u’ ‘opl‘ v = liftA2 op u’ (const v)

u ‘opr‘ v’ = liftA2 op (const u) v’

df’gx = bilinearD (opl) df’x dgx

dfg’x = bilinearD (opr) dfx dg’x

in D (fx ‘op‘ gx) $ (df’gx ^+^ dfg’x)

This is probably the most complicated function in the entire implementation—
which is not so bad, after all.

Derivative towers as random variables. In order to integrate automatic differentia-
tion with Monte Carlo simulation, we need to be able to generate random derivative
towers. This can be obtained with an instance of the Random class:

instance (Random v, Vector v s) ⇒ Random (u . v) where

random g = let (z, g’) = random g

in (constD z, g’)

randomR (D x _,D y _) g = let (z,g’) = randomR (x,y) g

in (constD z, g’)

For simplicity, we have also made a Random instance for the type t . u → v . w of
functions between derivative towers. This instance simply creates random derivative
towers and turns them into constant functions.

These instances are all we need in order to use the Monte Carlo simulation
framework in MCSim on derivative towers!

CALCULATING KEY RATIOS USING AD AND MC 19

The chain rule. The chain rule will be “hidden” inside an operation used to over-
load functions to work on derivative towers. We begin by implementing the lifted
function composition ◦̂ from (3.6). As discussed in Section 3.7, we will only use the
operation in the bilinear case, meaning that we can implement it quite easily:

infix 2 ^.^

(^.^) :: (Vector v s, Vector w s) ⇒
(a . (v (w)) → (a . (u (v)) → (a . (u (w))

(^.^) = bilinearD (.)

We next define an operator that can be used to construct overloaded versions
of functions. The operator takes the usual function as its first argument and,
recursively, the overloaded derivative as its second argument. The derivative should
work according to the chain rule (3.6):

infix 1 ./

(./) :: (Vector v s, Vector w s) ⇒
(v → w) → (u . v → u . (v (w)) → (u . v) → (u . w)

(g ./ g’) dfx@(D fx df’x) = D (g fx) $ (g’ dfx) ^.^ df’x

Compared to Elliot’s implementation in [5], not only is this a simplification—it
is also correct! See Section 6.1 for further details on the problems with Elliot’s
implementation.

We finally also define a special version of ./ that can be used for one-dimensional
functions, which is what we encounter most often:

infix 1 |>-<|

(|>-<|) :: (Vector s s, Vector v s) ⇒
(s → s) → (u . s → u . s) → (u . s) → (u . s)

g |>-<| g’ = g ./ (liftD . g’)

See further below for examples of how to use these functions.

Lifting functions to derivative towers. With the sum, product and chain rule in
place, it only remains to implement overloaded versions of the elementary functions.
Our elementary functions consist mostly of those defined by the Num, Fractional
and Floating classes, so we need to make new instances of these for the u . v

type. Using the |>-<| operation from above, this is quite straightforward:

instance (Num s, Vector v s, Vector s s) ⇒ Num (v . s) where

fromInteger = constD . fromInteger

(+) = liftA2 (+)

(*) = bilinearD (*)

negate = negate |>-<| -1

abs = abs |>-<| signum

signum = signum |>-<| 0

instance (Fractional s, Vector v s, Vector s s)

⇒ Fractional (v . s) where

fromRational = constD . fromRational

recip = recip |>-<| -recip sqr

instance (Floating s, Vector v s, Vector s s)

⇒ Floating (v . s) where

pi = constD pi

20 ESBEN BISTRUP HALVORSEN

exp = exp |>-<| exp

log = log |>-<| recip

sqrt = sqrt |>-<| recip (2 * sqrt)

sin = sin |>-<| cos

cos = cos |>-<| -sin

...
...

This implementation is not completely correct! The absolute and signum functions
are not differentiable at 0, but are here, nonetheless, implemented with derivative 0
at this point. The logarithm function is not even defined for negative values, but is
here implemented with a derivative that is. All this is for simplicity only and could
easily be fixed in various ways, but which solution to choose is a bit unclear and
depends on the usage; see the discussion in Section 6.2. Note that the reciprocal
and square root functions are defined in terms of themselves, meaning that the
points where the functions are not defined automatically become points where the
derivatives are not defined.

There are still a few functions missing before we can construct all the expressions
that we want. The maximum and minimum functions will certainly be needed when
creating pricing functions. These can be obtained by simply creating an instance
of Ord for derivative towers:

instance (Vector u s, Vector s s, Ord s) ⇒ Ord (u . s) where

compare dfx dgy = compare (val dfx) (val dgy)

Note, however, that the maximum and minimum functions are not differentiable
on the line (x, x); see Section 6.2.

The injection and projection functions are implemented according to how we
model multi-dimensional vector spaces in the Vectors module:

injD :: (Eq a, Vector v s) ⇒ a → u . v → u . (a → v)

injD i = let inject v k = if k == i then v else zeroV

in inject ./ (const . constD) inject

projD :: Vector v s ⇒ a → u . (a → v) → u . v

projD i = ($ i) ./ (const . constD) ($ i)

Note that the injection and projection functions do not know what indexing set they
inject into or project from, respectively, so we need to keep track of that ourselves
(which should not be too hard to do). The helper functions makeVars and setVars

make it easy to set up multiple variables as projections and collect multiple results
as injections; see the implementation for further details.

We now have all the functions we need to start playing. Let us first try out the
simple one-dimensional function f : R→ R given by sin(cosx) at the point x = 3.

*> let D fx (D f’x (D f’’x _)) = sin(cos) (idD (3 :: Double))

*> fx

-0.8360218615377305

*> f’x 1

-7.743200279648704e-2

*> f’’x 1 1

0.5598543107302792

Here we have extracted the derivative f ′(x) applied to 1 and second derivative
f ′′(x) applied to 1 and 1. These are the values that would traditionally constitute

CALCULATING KEY RATIOS USING AD AND MC 21

the first and second order derivatives. The function derivatives extracts these
values for us and puts them into a list:

*> take 3 $ derivatives $ sin(cos) (idD (3 :: Double))

[-0.8360218615377305,-7.743200279648704e-2,0.5598543107302792]

As a test, we can compare these values to the theoretical (symbolically derived)
values:

*> [sin(cos) 3, (-cos(cos)*sin) 3, (-sin(cos)*sin*sin-cos(cos)*cos) 3]

[-0.8360218615377305,-7.743200279648704e-2,0.5598543107302792]

A perfect match! And certainly a better result than would have been possible with
numerical differentiation.

The multivariate case is slightly more complicated to use. As an example, let
us consider the function f : R2 → R3 given by f(x1, x2) = (x1 sinx2, x1x

2
2, 1 + x2),

which we have already encountered in many previous examples:

*> :{

*| let { [x1,x2] = makeVars [1,2];

*| y = [x1 * (sin x2), x1 * sqr(x2), 1+ x2];

*| df = setVars [1,2,3] y;

*| [x1r, x2r] = [3, 4 :: Double];

*| dfx = df $ idD (toC [x1r, x2r]);

*| D fx (D f’x (D f’’x _)) = dfx

*| }

*| :}

First we check that the function actually computes ordinary values correctly, by
comparing to the theoretical results we have obtained in the previous sections:

*> fromC fx [1,2,3]

[-2.2704074859237844,48.0,5.0]

*> [x1r*sin x2r, x1r*sqr(x2r), 1 + x2r]

[-2.2704074859237844,48.0,5.0]

Next we check the first derivatives:

*> fromC (f’x (toC [1,0])) [1,2,3]

[-0.7568024953079282,16.0,0.0]

*> fromC (f’x (toC [0,1])) [1,2,3]

[-1.960930862590836,24.0,1.0]

*> [sin x2r, sqr(x2r), 0]

[-0.7568024953079282,16.0,0.0]

*> [x1r*cos x2r, 2*x1r*x2r, 1]

[-1.960930862590836,24.0,1.0]

Finally, we check the second derivatives:

*> fromC (f’’x (toC [1,0]) (toC [1,0])) [1,2,3]

[0.0,0.0,0.0]

*> fromC (f’’x (toC [1,0]) (toC [0,1])) [1,2,3]

[-0.6536436208636119,8.0,0.0]

*> fromC (f’’x (toC [0,1]) (toC [1,0])) [1,2,3]

[-0.6536436208636119,8.0,0.0]

*> fromC (f’’x (toC [0,1]) (toC [0,1])) [1,2,3]

[2.2704074859237844,6.0,0.0]

22 ESBEN BISTRUP HALVORSEN

*> [cos x2r, 2*x2r, 0]

[-0.6536436208636119,8.0,0.0]

*> [-x1r*sin x2r, 2*x1r, 0]

[2.2704074859237844,6.0,0.0]

And so on. For each higher order derivative, there are more and more values to
pick out in order to verify that the entire derivative is correct. Note, however, that
we could also just have obtained a directional derivative straight away by choosing
vectors different from [0,1] and [1,0] in the above. See the test function test23

in the implementation for examples of this.

5.5. Finance. The module Finance contains some examples of financial calcula-
tions based on automatic differentiation and Monte Carlo simulation.

We have hard-coded some of the well-known Greeks [16] as derivatives with
respect to variables indexed by certain names such as sigma, tau or S. This makes
it easy to retrieve specific partial derivatives. For example, Vega is the first order
partial derivative of an option’s value with respect to the volatility of the underlying
asset. In other words, Vega measures the sensitivity to volatility. Volatility is most
often denoted σ, and the vega function computes the first order derivative with
respect to the variable indexed by sigma. A more advanced example is Vera, which
is the second order partial derivative with respect to the volatility σ and the interest
rate r. The vera function computes the second order derivative with respect to the
variables indexed by sigma and r. And so on.

We can now define the mathematical functions that we are interested in. It is
important to note that there is no need to modify the function definition in order
to use it on derivative towers instead of ordinary values. For example, the following
function is a standard payoff function for call options, based on the simulation
framework provided by the MCSim module:

simCallOptionPayOff g s k r t sigma =

let f w = exp(-r*t) * max (p-k) 0 where

p = s * exp((r - sqr(sigma)/2.0) * t + sigma * w * sqrt t)

in simNormals g (10^4) f

We can use this function in the usual way:

*> g ← getStdGen

*> simCallOptionPayOff g 48 45 0.05 (7/12) 0.2

5.412133199131258

Or we can do it using derivative towers:

*> :{

*| let { input = ["s","k","r","t","sigma"];

*| [s,k,r,t,sigma] = makeVars input;

*| df = simCallOptionPayOff g s k r t sigma;

*| [sr,kr,rr,tr,sigmar] = [48, 45, 0.05, 7/12, 0.2 :: Double];

*| dfx = df $ idD (toMap input [sr,kr,rr,tr,sigmar])

*| }

*| :}

*> val dfx

5.412133199131258

This result should be compared with the correct value 5.4374 . . . calculated by hand
using the Black–Scholes closed form. To get a more precise result, we would have
to use more iterations (104 is not very many) or more evenly spread out random

CALCULATING KEY RATIOS USING AD AND MC 23

numbers; see the discussion in Section 6.3 on page 28. (Note that it is possible to
get identical results even when random simulations are involved, since Haskell does
not generate new random variables the second time we call for them.) Now that we
are working with derivative towers instead of values, we can also obtain any desired
derivatives. For example, we can ask for Greeks using the predefined functions:

*> vega dfx

11.436902358084298

*> vera dfx

-5.167952437518108e-16

The test function testCallOptionPayOff compares these values to corresponding
values obtained by numerical differentiation.

6. Discussion

6.1. Correctness. Conal Elliot uses a set of specifications for automatic differ-
entiation to derive the implementation in [3]. In doing so, he is certain that the
implementation will satisfy the specifications, and no further proof of correctness
should ever be needed. Unfortunately, Elliot’s implementation is built in stages
(starting with one-dimensional, first order derivatives, then adding higher order
derivatives and then adding higher dimensions), and the derivations are only de-
scribed for some stages. In effect, the end result, which should be an implemen-
tation capable of handling multivariate, higher order derivatives, is not equipped
with a complete derivation of its implementation and hence does not come with any
guarantee for correctness. Indeed, the complete implementation is not thoroughly
described in [3], especially with regards to how to combine the extension to higher
order derivatives with the extension to multivariate functions.

To get the full story, I consulted Elliot’s implementation in the vector-space

library on Hackage [5]. The library comes in a multitude of versions, starting with
version 0.0 and ending (at the time of writing) with version 0.8.4. The later versions
are rather different from the description in [3], so I started with the earlier versions.
As it turned out, many of the implementations are flawed. Version 0.0 contains the
following implementation of the ./ operator:

(>*<) :: (b → c) → (b → (b (c)) → (a . b) → (a . c)

f >*< f’ = \ (D u u’) → D (f u) ((f’ u .) <$> u’)

The type of this is wrong, since the second argument f’ is just an ordinary func-
tion rather than the recursively defined overloaded version that works on derivative
towers. The result is that derivatives of order higher than 1 are not computed cor-
rectly. The following example computation shows that the second order derivative
of exp(x) is computed to be 0 for x = 3, which is wrong:

*> let D fx (D f’x (D f’’x _)) = exp(dId 3) :: (.) Double Double

*> fx

20.085536923187668

*> f’x 1

20.085536923187668

*> f’’x 1 1

0.0

In version 0.1, this has been fixed, and a slightly modified definition of the type
u . v has been introduced. The implementation now looks as follows:

(>-<) :: VectorSpace b s ⇒ (b → b) → ((a . b) → (a . s))

→ (a . b) → (a . b)

24 ESBEN BISTRUP HALVORSEN

f >-< f’ = \ b@(D b0 b’) → D (f b0) ((f’ b *^) . b’)

The types are now correct and the example from before gives the correct second
order derivative. But there is another problem: the function composition “.” is
not itself overloaded, and hence derivatives of non-trivial function compositions
will not be correct. The following example shows that the first-order derivative of
exp(expx) is computed to be 0 for x = 3, which is wrong:

*> let dfx = exp(exp 3) :: (.) Double Double

*> dVal dfx

5.284913114854943e8

*> dVal $ (dDeriv dfx) 1

0.0

In general, later versions of Elliot’s implementation seem to get more and more
details correct but are, at the same time, further and further away from the de-
scription in [3]. The conclusion must be that, even though the idea of deriving an
implementation from a set of specifications is good, it must be carried out to the
full extend for all parts of the code to be reliable. In practice, code evolves over
time and one cannot derive implementations from scratch at every step. A set of
tests that could be run at every step would have been of much more value than an
incomplete derivation of the implementation of a first version.

In my implementation, I have tried to follow the descriptions in [3] as closely as
possible while keeping the system as simple as possible, postponing, for now, issues
such as performance. I have fixed the problems in Elliot’s early implementations
and have done a significant amount of testing to see if the system works as intended.
Of course, even thorough testing does not provide the same sort of 100 % correctness
guarantee as a derivation from specifications, but on the other hand, humans make
mistakes, and a wide collection of tests are more likely to catch errors than a single,
human-made derivation on paper, especially when the derivation is not updated
along with every update of the implementation.

A few of the tests I have made during the implementation can be found in the
source code. In the AutoDiff module, the tests compare calculated derivatives to
theoretical results, whereas in the Finance module, the tests compare calculated
derivatives (key ratios) to values found by numerical differentiation (shocking). The
reader is encouraged to consult these tests and validate their correctness.

There is one problem in my implementation (as well as in Elliot’s) concerning
non-differentiable points. This is discussed below.

6.2. Non-differentiable points. The previous discussions (and the implementa-
tion) have completely ignored the fact that not all functions are differentiable at
all points. The signum and absolute functions, for instance, are not differentiable
at x = 0. The reciprocal function is not even defined for x = 0, and the logarithm
is not even defined for non-positive values.

There are several things we could do to handle such problems, some of which
will be discussed below. In the implementation, we have ignored these problems,
not because they are hard to fix, but because ignoring them yields simpler code and
because it is not quite clear what would be the desired way to fix the problems. Said
differently: it depends on the situation how such points should be handled. Thus,
to make the code ready for production, non-differentiable points should not only
be handled, but it should be possible for the user to choose between many different
alternatives for how to handle them. The remainder of this section contains some
suggestions for how to handle such points.

CALCULATING KEY RATIOS USING AD AND MC 25

Hard-coding values. One way of handling non-differentiable points is to simply hard
code a value for the derivative at such points. For example, the derivative of the
signum function is 0 for all points x 6= 0, so it would make sense to set it to 0 at
x = 0 too. This is, in fact, what we have done in the implementation (although not
because it is the best solution but because it is the simplest). It is less clear how to
handle the reciprocal function, since its value goes to ∞ and its derivative to −∞
as we approach 0 from the right, whereas its value goes to −∞ and its derivative
to −∞ as we approach 0 from the left. We cannot really fix the discontinuity of
the reciprocal function, and the only reasonable value for its derivative at x = 0 is
−∞ which may not be what we want.

Smoothing. Another solution would be to smoothen functions at critical points.
The signum function, for instance, could be smoothened by an arbitrarily often
differentiable function that, for some small ε > 0, is constantly equal to −1 on
]−∞;−ε], grows rapidly from −1 to 1 on]− ε; ε[and is constantly equal to 1 on
[ε;∞[. This is a somewhat dangerous solution, since the values of the derivative
around 0 will depend heavily on the choice of ε and of the smoothening function,
which makes results hard to predict. In some situations, however, smoothing is
quite desirable, because it allows a sudden and abrupt change in value to be pre-
dicted beforehand, since the change after smoothing occurs gradually over a longer
interval. This makes it possible to “look into the future” and predict changes at an
earlier stage, which is of value when analyzing risks of financial products. Note that
an implementation of numerical differentiation would not necessarily have problems
with non-differentiable points but would approximate a derivative in a way similar
to what we would obtain by smoothing.

Throwing errors or special values. The perhaps best and certainly the safest so-
lution would be simply to throw an error or a special value when a point of non-
differentiability is encountered. In a sense, this behavior is already built into the
reciprocal function, since Haskell returns Infinity when evaluating 1/0. (Note
that all derivatives of the reciprocal function are defined in terms of the reciprocal
function, so that we do not run into problems with higher order derivatives either.)
It would be straightforward to define the signum function such that its overloaded
derivative throws an error when passed 0 as argument.

6.3. Performance. Performance has not been a real consideration during this
project. We have overloaded functions so that they work on derivative towers
and this, of course, means that we need to carry around some more baggage when
evaluating functions. However, as long as we just evaluate function values without
asking for any derivatives, the extra baggage does not have any large influence on
performance in a lazy language like Haskell. In the implementation, function values
are wrapped inside a derivative tower, but only at the top level of the tower, and
as long as we just ask for function values and not any derivatives, no derivative
tower will need to be evaluated beyond the first level. Further, it will never be
necessary to look up any of the overloaded derivatives of functions, meaning that it
will be straightforward to evaluate a function value simply by using the old, non-
overloaded functions on the unwrapped values at the first level of the derivative
towers. In conclusion, the only prize we pay for simple function evaluation is the
prize of wrapping functions and values inside data structures, and that will only
impact performance by a constant factor.

When we look at derivatives of first order, we need to look up the overloaded
derived functions, and we need to move to the second level of the derivative towers to
find the derivative values. The latter is not so bad and only contributes a constant
factor to the time complexity as the number of function compositions grows. What

26 ESBEN BISTRUP HALVORSEN

really matters is the chain rule in (3.6) in the overloaded derived functions. A small
induction proof shows that, for a function in the form f = f1 ◦ · · · ◦ fn,

f ′ = (f ′1 ◦ f2 ◦ · · · ◦ fn) ◦̂(f ′2 ◦ f3 ◦ · · · ◦ fn) ◦̂ · · · ◦̂(f ′n−1 ◦ fn) ◦̂ f ′n (6.1)

When applied to an element x, this gives

f ′(x) = ((f ′1 ◦ f2 ◦ · · · ◦ fn)(x))((f ′2 ◦ f3 ◦ · · · ◦ fn)(x)) · · · ((f ′n−1 ◦ fn)(x))f ′n(x),

which is a composition of n linear maps constructed from
(
n
2

)
function compositions.

Thus, the computation of the derivative of a composition of n functions involves
composing

(
n+1
2

)
= O(n2) functions. This can be optimized quite a bit, however:

first of all, we can re-use the computation of (fk+1 ◦ · · · ◦ fn)(x) when computing
(fk ◦ · · · ◦ fn)(x); second, we can optimize the (outer) composition of linear maps
by representing them as matrices; third, we can compute the (inner) function com-
positions in parallel and combine the resulting matrices in a divide-and-conquer
manner. See the discussions below on memoization, optimization of linear maps
and parallelization for more detail on these optimization techniques.

Although the number of function compositions has substantial impact on the
time complexity, it is nothing compared to that of the order of the derivatives.
Here we consult Faà di Bruno’s formula [15] for a higher order chain rule:

∂n

∂x1 · · · ∂xn
(g ◦ f) =

∑
p∈P (n)

g|p|(f(x)) ·
∏
B∈p

∂|B|f∏
j∈B ∂xj

where P (n) is the set of partitions of {1, . . . , n} (that is, the set of non-empty,
disjoint subsets whose union is {1, . . . , n}) and |A| denotes the cardinality of the
set A. In the usual notation where derivatives are linear maps, this becomes

(g ◦ f)(n) =
∑

p∈P (n)

(g(|p|) ◦ f) ◦̂ ©̂
B∈p

f (|B|) (6.2)

where the big overloaded composition “©̂” runs over the subsets B of the parti-
tions p in P (n) ordered according to their largest element; for example, the partition
p = 1|24|3 (which is the short way of writing {{1}, {2, 4}, {3}}) in P (4) with this
ordering should be arranged as 1|3|24 and will therefore yield the overloaded com-
position f ′ ◦̂ f ′ ◦̂ f ′′. When applied to an element x, formula (6.2) gives

(g ◦ f)(n)(x) =
∑

p∈P (n)

(g(|p|) ◦ f)(x)
∏
B∈p

f (|B|)(x)

where the product is, in fact, a big composition of linear maps which can be repre-
sented as a product of matrices in the same order as in (6.2).

The total number of partitions in P (n) is the n’th Bell number [14], Bn, defined
recursively as

B0 = 1 and Bn+1 =

n∑
k=0

(
n

k

)
Bk.

Bell numbers are asymptotically lower bounded [2] by (n/e log n)n, and hence the
number of summands in the sum in (6.2) grows superpolynomially with n, which
is very bad news from a performance point of view. The big product of each sum-
mand is over at most n matrices and hence grows linearly with n which certainly
is acceptable. Overall, the performance is really bad, but again there is quite a bit
room for optimization: first of all, we can re-use computations (for example, the
overloaded composition f ′ ◦̂ f ′ ◦̂ f ′′ appears several times in the computation of a
fourth derivative); second, we can optimize the composition of linear maps by rep-
resenting them as matrices and combining them in a divide-and-conquer manner;
third, we can compute each summand in the sum in parallel and compute the sum

CALCULATING KEY RATIOS USING AD AND MC 27

in a divide-and-conquer manner. See the discussions below on memoization, opti-
mization of linear maps and parallelization for further details on these optimization
techniques.

The first order derivative of n function compositions and the n’th order deriv-
ative of one function composition are the two extremes. We should, of course,
investigate how the m’th order derivative of n function compositions looks and how
its implementation can be optimized and, perhaps, parallelized. This will be left
for future studies. The conclusion, for now, is that the implementation part of
this project, asymptotically, does not perform that bad when it comes to normal
function evaluation, and that lower order derivatives can be computed in a rea-
sonable amount of time whereas higher order derivatives offer a somewhat larger
performance challenge. The former is good news for financial calculations, because
the functions there tend to be complicated (composed of many smaller functions),
whereas the order of the derivatives we consider rarely exceeds 3. In any case, there
is ample opportunity for optimizations.

We conclude this section with a collection of suggestions for performance improve-
ments.

Optimizing zeros. The derivatives of a constant function is zero which itself is a
constant function. Thus, there is no need to compute any (higher order) derivatives
for a constant function as we already know they will be zero. A way to avoid
unnecessary computation is therefore to change the type of derivative towers to

u . v = D v (Maybe (u . (u (v)))

with the derivative being Nothing whenever the function is constant. It does not
require many changes to the implementation to accommodate for this changed type,
but the gain in performance may be significant. (Note that, in an expression such
as 3 sin(2x), both 3 and 2 are considered to be constant functions.)

Optimizing linear maps. There are a lot of linear maps involved in computing
derivatives and hence much to be gained from an efficient implementation of them.
A linear map can be represented as a matrix, and it may in some situations be
more efficient to represent linear maps as matrices rather than maps. Because one
can evaluate a matrix, it is, in a sense, possible to evaluate the linear map before
applying it, which allows the evaluation of the map to be re-used. In particular,
it is possible to evaluate the composition of linear maps before it is applied to
an element, simply by multiplying the corresponding matrices. Since matrix mul-
tiplication is associative, the composition of many linear maps can therefore be
performed in parallel in a divide-and-conquer way; see further below.

The later versions of Elliot’s implementation [5] try to optimize linear maps. The
implementation in this project does not, but it is prepared for such an optimization,
having used the different type u (v for linear maps instead of u → v. All that
remains to be done is to change the implementation of how such linear maps should
be created, applied, composed etc.

Memoization. Memoization is a technique in which the performance of a program
is improved by storing the results of function calls, thereby avoiding recalculation
of previously calculated values. The later versions of Elliot’s implementation [5]
contain some kind of memoization. There may be complications if memoization is
to be used in combination with parallelization; see below.

28 ESBEN BISTRUP HALVORSEN

Parallelization. As discussed above there are many opportunities for running some
of the computations in this project’s implementation in parallel. Which to pur-
sue will depend mainly on the usage of the system, but since we are mostly con-
cerned with financial calculations, it will most likely be more fruitful to consider
parallelizations that speed up computations of low order derivatives of complex
functions rather than high order derivatives of simple functions. (What makes a
function “complex” in this phrasing is simply that it is composed of many func-
tions.) There are challenges with respect to shared memory: if we allow memory to
be shared between processes, then we can re-use computations between processes
and exploit memoization. On the other hand, this may require some processes to
wait for others to finish which defeats the purpose of running things in parallel. The
optimal solution should probably investigate exactly which tasks should be spawned
as subprocesses and what information should be shared between processes. It may
be difficult or even impossible to find a work-efficient parallel algorithm, but it is
certainly worth investigating further.

Commutativity of differentiation. Differentiation with respect to different variables
does not depend on the order in which we differentiate. For example, ∂2f/∂x∂y =
∂2f/∂y∂x, meaning that, if one has already computed ∂2f/∂x∂y, there is no need to
also compute ∂2f/∂y∂x. In the setting of linear maps, this means that the three-
dimensional matrix representing f ′′(x, y) is symmetric around a diagonal plane.
This information could help save some computations in combination with optimiz-
ing linear maps or using memoization (see above).

Striking a balance between forward and reverse accumulation. Section 4.3 discussed
the NP-complete optimal Jacobian accumulation problem of finding the optimal
balance between forward and reverse accumulation. It will most likely not improve
performance of the implementation to try to solve an NP-complete problem during
execution, but perhaps there are fast approximation algorithms or randomized al-
gorithms that could help determine a better balance between forward and reverse
accumulation than the plain forward-mode implementation we have used. How ex-
actly to incorporate reverse accumulation into the beautiful differentiation setup is
not very clear, but it may be something worth investigating in the future.

Quasi-Monte Carlo simulation. The definition of Monte Carlo simulation requires
random elements to be drawn independently from a distribution. In some situations
it may be more efficient (meaning that it leads to a faster convergence) to draw
samples dependently or even deterministically. A low discrepancy sequence [17] is,
roughly speaking, a sequence with the property that any initial segment of points
in the sequence is evenly distributed, meaning that the probability of a point falling
into a specific set is about proportional to the size (or measure) of the set. Using
a low discrepancy sequence for Monte Carlo simulations is normally referred to as
quasi-Monte Carlo simulation.

Whether or not it is beneficial to use quasi-Monte Carlo simulation depends on
the function we want to simulate, and hence it should probably be left to the user
to decide. Whatever type of simulation the user chooses, the implementation of the
function needs not change very much, because the implementation of the function

f̂ from (2.1) can be kept independent of how the values of the wi’s are obtained. In
other words, only the few calls to MCSim where the simulation is made need change.
For example, in the implementation of simCallOptionPayOff, we can substitute
the call to simNormals with any other call that returns function values simulated
by drawing samples from a distribution, whether it is random or not.

In any case, quasi-Monte Carlo simulation is in use the financial world, and hence
should also be covered by the system in a future version.

CALCULATING KEY RATIOS USING AD AND MC 29

6.4. Other languages. The choice of Haskell as the language of implementation
is not completely arbitrary. First of all, not all languages would allow a recursive
type such as u . v = D v (u . (u (v)). Second, not all languages have lazy
evaluation, meaning that it would not be possible to have infinite constructs such
as derivative towers or the overloaded functions that work on them. The imple-
mentation depends heavily on these two features.

If we were to implement derivative towers in a language with a less tolerant type
system, we would have to change the data model. Standard ML, for instance, does
allow recursive types, including the above, but would not allow the construction of
a function that can process such a type, because the definition of u . v does not
refer to the same instance of itself. Standard ML would, however, make it possible
to work with the variant u . v = D v (u ((u . v)). This type is a version
of the derivative tower, in which the arguments to a linear function at a specific
level in the tower must also be given to the linear function at the next level. The
later versions of Elliot’s implementation [5] actually uses this type for derivative
towers. In languages that do not support recursive types whatsoever, we can still
get around the problems by throwing in a few “hacks”. Even in an object-oriented
language like Java, we could simulate (the above variant of) derivative towers by
having each level of the tower be an object equipped with a method that returns
the object for the next level.

If we were to implement the system in an eager language, we would also need
to make changes to avoid infinitely many redundant computations. Standard ML
is eager, but one can achieve lazy evaluation in various ways. The aforementioned
implementation in Java could even be considered “lazy” in some sense, since we
would not construct objects for the lower levels except if they are called for.

So, in general, anything is possible, but some languages are certainly more suited
for certain tasks than others. In this case, Haskell is an excellent choice.

6.5. Future work. The previous discussion shows that there are still many things
to do with respect to performance optimizations, handling non-differentiable points,
and so on. The entire Monte Carlo functionality could certainly also be extended
from just covering functions simulated as averages of other functions to handling
entire simulation scenarios. To make things even more applicable to financial cal-
culations, we could also include a calendar system and other mechanisms to handle
real-world problems. Finally, the way we handle multi-dimensional vector spaces
seems a bit clumsy: a nicer interface would be desirable.

However, all this was not the purpose of this project. The purpose was to provide
a proof-of-concept that automatic differentiation can be combined with Monte Carlo
simulation, which is very useful for valuating financial constructs. So if we set all
the nice-to-have features aside, where else can we go from here?

With a library for automatic differentiation and Monte Carlo simulation in place,
we can find key ratios for a multitude of financial products. Users of the system
must, however, still implement the pricing functions themselves. Jones et al. [7]
have introduced a combinator library that allows one to define financial products
and from the definition automatically derive appropriate pricing functions. If such
a library was added to the implementation, the only thing users would ever have to
do would be to provide the definitions of the desired financial products as well as
of the models to use for market observables and scenario calculations, after which
prices and key ratios would be readily available. Add some of the performance
optimizations above, and the user will not have to wait unnecessarily long for the
results. Throw in a library for chain fractions, and we can even provide results with
arbitrary precision and precise error estimates.

All this, and more, is left for future studies.

30 ESBEN BISTRUP HALVORSEN

References

[1] Computational differentiation: Techniques, applications and tools, SIAM, 1996.

[2] Daniel Berend and Tamir Tassa, Improved bounds on bell numbers and on moments of sums

of random variables., Probability and Mathematical Statistics 30 (2010), no. 2, 185–205.
[3] Conal Elliott, Beautiful differentiation, International Conference on Functional Programming

(ICFP), 2009.
[4] Andreas Griewank and Andrea Walther, Evaluating derivatives: Principles and techniques

of algorithmic differentiation, 2nd ed., SIAM, Philadelphia, 2008.

[5] Hackage, The vector-space package, http://hackage.haskell.org/cgi-bin/

hackage-scripts/package/vector-space, 2008–2012, [Online; accessed 18 November

2012].

[6] Kenneth E. Iverson, The derivative operator, Proceedings of the international conference on
APL: part 1 (New York, NY, USA), APL ’79, ACM, 1979, pp. 347–354.

[7] Simon L. Peyton Jones, Jean-Marc Eber, and Julian Seward, Composing contracts: an ad-

venture in financial engineering, functional pearl, ICFP, 2000, pp. 280–292.
[8] Jerzy Karczmarczuk, Functional differentiation of computer programs, Higher-Order and

Symbolic Computation 14 (2001), no. 1, 35–57.

[9] John Mount, Gradients via reverse accumulation, Tech. report, Win-Vector LLC, 2010.
[10] Uwe Naumann, The art of differentiating computer programs: An introduction to algorithmic

differentiation, SIAM, 2012.
[11] Barak A. Pearlmutter and Jeffrey Mark Siskind, Lazy multivariate higher-order forward-mode

ad, In Proceedings of the 2007 Symposium on Principles of Programming Languages, 2007.

[12] R. E. Wengert, A simple automatic derivative evaluation program, Commun. ACM 7 (1964),
463–464.

[13] Wikipedia, Automatic differentiation — wikipedia, the free encyclopedia, http:

//en.wikipedia.org/w/index.php?title=Automatic_differentiation&oldid=522047439,
2012, [Online; accessed 14 November 2012].

[14] , Bell number — wikipedia, the free encyclopedia, http://en.wikipedia.org/w/

index.php?title=Bell_number&oldid=516743822, 2012, [Online; accessed 19-November-
2012].

[15] , Faà di bruno’s formula — wikipedia, the free encyclopedia, http://en.wikipedia.
org/w/index.php?title=Fa%C3%A0_di_Bruno%27s_formula&oldid=517416427, 2012, [Online;

accessed 19-November-2012].

[16] , Greeks (finance) — wikipedia, the free encyclopedia, http://en.wikipedia.

org/w/index.php?title=Greeks_(finance)&oldid=513955623, 2012, [Online; accessed 23-

November-2012].

[17] , Low-discrepancy sequence — wikipedia, the free encyclopedia, http:

//en.wikipedia.org/w/index.php?title=Low-discrepancy_sequence&oldid=521966320,

2012, [Online; accessed 21-November-2012].
[18] , Monte carlo method — wikipedia, the free encyclopedia, http://en.wikipedia.org/

w/index.php?title=Monte_Carlo_method&oldid=520937170, 2012, [Online; accessed 14 No-

vember 2012].

E-mail address: esben@math.ku.dk

