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ABSTRACT

Heap is one of the most important fundamental data struc-
tures in computer science. Unfortunately, for a long time
heaps did not obtain ideal performance gain from widely
used throughput-oriented processors because of two reasons:
(1) heap property decides that operations between any par-
ent node and its child nodes must be executed sequentially,
and (2) heaps, even d-heaps (d-ary heaps or d-way heaps),
cannot supply enough wide data parallelism to these proces-
sors. Recent research proposed more versatile asymmetric
multicore processors (AMPs) that consist of two types of
cores (latency-oriented cores with high single-thread perfor-
mance and throughput-oriented cores with wide vector pro-
cessing capability), unified memory address space and faster
synchronization mechanism among cores with different ISAs.
To leverage the AMPs for the heap data structure, in this
paper we propose ad-heap, an efficient heap data structure
that introduces an implicit bridge structure and properly ap-
portions workloads to the two types of cores. We implement
a batch k-selection algorithm and conduct experiments on
simulated AMP environments composed of real CPUs and
GPUs. In our experiments on two representative platforms,
the ad-heap obtains up to 1.5x and 3.6x speedup over the
optimal AMP scheduling method that executes the fastest
d-heaps on the standalone CPUs and GPUs in parallel.
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1. INTRODUCTION

Heap (or priority queue) data structures are heavily used
in many algorithms such as k-nearest neighbor (kNN) search,
finding the minimum spanning tree and the shortest path
problems. Compared to the most basic binary heap, d-heaps
[19, 38], in particular implicit d-heaps proposed by LaMarca
and Ladner [23], have better practical performance on mod-
ern processors. However, as throughput-oriented processors
(e.g. GPUs) bring higher and higher peak performance and
bandwidth, heap data structures did not reap benefit from
this trend because their very limited degree of data paral-
lelism cannot saturate wide SIMD units.

Recently, more and more programs can obtain perfor-
mance improvements from heterogeneous computing which
combines multiple different symmetric multicore processors
(e.g. CPUs and throughput-oriented accelerators) into one
system. At the same time, asymmetric multicore proces-
sors (AMPs) were proposed and received a lot of atten-
tion. The AMPs normally consist of two types of cores
(latency-oriented cores with high single-thread performance
and throughput-oriented cores with wide vector processing
capability) and unified memory address space with cache
coherence. Compared with standalone symmetric multi-
core processors and loosely-coupled heterogeneous systems,
the AMPs promised higher overall performance, energy effi-
ciency and flexibility to broader applications with single-ISA
[3, 21, 35] and multi-ISA [10] configurations. Those expected
benefits come from three aspects: (1) the two types of cores
can execute tasks of various characteristics in parallel, (2)
unified memory address space saves the cost of memory copy
or address mapping between separate address spaces, and
(3) tightly-coupled design reduces context switching over-
head.

To leverage the AMPs, previous research has concentrated
on various coarse-grained methods that exploit task, data
and pipeline parallelism in the AMPs. However, it is still
an open question whether or not the new features of the
emerging AMPs can expose fine-grained parallelism in fun-
damental data structure and algorithm design. And can new
designs outperform their conventional counterparts plus the
coarse-grained parallelization is a further question.

In this paper, we propose a new heap data structure called
ad-heap (asymmetric d-heap). The ad-heap introduces an
implicit bridge structure — a new component that records
deferred random memory transactions and makes the two
types of cores in the AMPs focus on their most efficient
memory behaviors. Thus overall bandwidth utilization and
instruction throughput can be significantly improved.



We evaluate performance of the ad-heap by using a batch
k-selection algorithm on two simulated AMP platforms com-
posed of real CPUs and GPUs. The experimental results
show that compared with the optimal AMP scheduling method
that executes the fastest d-heaps on the standalone CPUs
and GPUs in parallel, the ad-heap achieves up to 1.5x and
3.6x speedup on the two platforms, respectively.

2. PRELIMINARIES
2.1 Implicit d-heaps

Given a heap of size n, where n # 0, a d-heap data struc-
ture [19, 38] lets each parent node has d child nodes, where
d > 2 normally. To satisify cache-line alignment and reduce
cache miss rate, the whole heap can be stored in an implicit
space of size n + d — 1, where the extra d — 1 entries are
padded in front of the root node and kept empty [23]. Here
we call the padded space “head” of the heap. Figure 1 shows
an example of the implicit max-d-heaps while n = 12 and
d = 4. Notice that each group of the child nodes starts from
an aligned cache block.
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Figure 1: The layout of a 4-heap of size 12.

Because of the padded head, each node has to add an
of fset = d — 1 to its index in the implicit array. Given
a node of index i, its array index becomes i + of fset. Its
parent node’s (if ¢ # 0) array index is [(¢ — 1)/d| + of fset.
If any, its first child node is located in di + 1 + of fset and
the last child node is in array index di + d + of fset.

Given an established non-empty max-d-heap, we can ex-
ecute three typical heap operations:

e insert operation adds a new node at the end of the
heap, increases the heap size to n+1, and takes O(log, n)
worst-case time to reconstruct the heap property,

e delete-maz operation copies the last node to the posi-
tion of the root node, decreases the heap size ton — 1,
and takes O(dlog,n) worst-case time to reconstruct
the heap property, and

e update-key operation updates a node, keeps the heap
size unchanged, and takes O(dlog, n) worst-case time
(if the root node is updated) to reconstruct the heap
property.

The above heap operations depend on two more basic op-
erations:

e find-mazchild operation takes O(d) time to find the
maximum child node for a given parent node, and

e compare-and-swap operation takes constant time to
compare values of a child node and its parent node,
then swap their values if the child node is larger.

2.2 Asymmetric Multicore Processors

Compared to symmetric multicore processors, the AMPs
offer more flexibilities in architecture design space, thus many
AMP architectures have been proposed. To leverage mature
CPU and GPU architectures, we use a CPU-GPU integrated
AMP model for evaluating the ad-heap proposed in this pa-
per. Representatives of this model include AMD Accelerated
Processing Units (APUs) [8, 2], Intel Ivy Bridge multi-CPU
and GPU system-on-chip [13], Echelon heterogeneous GPU
architecture [20] proposed by nVidia, and many mobile pro-
cessors (e.g. nVidia Tegra [28], Qualcomm Snapdragon [30]
and Samsung Exynos [32]).

Figure 2 shows a block diagram of the AMP chip used in
this paper. The chip consists of four major parts: (1) a group
of Latency Compute Units (LCUs) with hardware-controlled
caches, (2) a group of Throughput Compute Units (TCUs)
with shared command processors, software-controlled scratch-
pad memory and hardware-controlled caches, (3) shared mem-
ory management unit, and (4) shared global DRAM. For
simplicity, only four LCUs and two TCUs are drawn in the
Figure 2.
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Figure 2: The block diagram of an AMP.

The LCUs can be seen as CPU cores that have higher
single-thread performance due to out-of-order execution, branch
prediction and large amounts of caches. The TCUs can be
seen as GPU cores that execute massively parallel lightweight
threads on SIMD units for higher aggregate throughput.
The two types of compute units have completely different
ISAs and separate cache sub-systems. Each compute unit
has its own set of instruction issue units, while all TCUs
share one set of command processors.

Compared to the loosely-coupled CPU-GPU heterogeneous
systems, the emerging CPU-GPU integrated AMPs make
expected differences in hardware architecture and program-
ming model.

From the perspective of the AMP hardware, the two types
of compute units share single unified address space instead of
using separate address spaces (i.e. system memory space and
GPU device memory space). The benefits include avoiding
data transfer through connection interfaces (e.g. PCle link)
and letting TCUs access more memory by paging memory
to and from disk. Further, the consistent pageable shared
virtual memory can be fully or partially coherent, meaning
that much more efficient LCU-TCU interactions are possible
due to eliminated heavyweight synchronization (i.e. flushing
and GPU cache invalidation).



From the perspective of the programming model, synchro-
nization mechanism among compute units is redefined. Re-
cently, several CPU-GPU fast synchronization approaches
[9, 22, 25] have been proposed. In this paper, we implement
the ad-heap operations through the synchronization mecha-
nism designed by the HSA (Heterogeneous System Architec-
ture) Foundation. According to the current HSA design [22],
each compute unit executes its task and sends a signal ob-
ject of size 64 Byte to a low-latency shared memory queue
when it has completed the task. Thus with HSA, LCUs
and TCUs can queue tasks to each other and to themselves.
Further, the communications can be dispatched in the user
mode of the operating systems, thus the traditional “GPU
kernel launch” method (through the operating system kernel
services and the GPU drivers) is avoided and the LCU-TCU
communication latency is significantly reduced. Figure 3
shows an example of the shared memory queue.
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Figure 3: A shared memory queue.

3. AD-HEAP DESIGN

3.1 Performance Considerations

We first conduct analysis on the degree of parallelism of
the d-heap operations. We can see that the insert opera-
tion does not have any data parallelism because the heap
property is reconstructed in a bottom-up order and only the
unparallelizable compare-and-swap operations are required.
On the other hand, the delete-max operation reconstructs
the heap property in a top-down order that does not have
any data parallelism either, but executes multiple (log,n in
the worst case) lower-level parallelizable find-maxchild op-
erations. For the update-key operation, the position and the
new value of the key decides whether the bottom-up or the
top-down order is executed in the heap property reconstruc-
tion. Therefore, in this paper we mainly consider accelerat-
ing the heap property reconstruction in the top-down order.
After all, the insert operation can be efficiently executed in
serial because the heap should be very shallow if the d is
large.

Without loss of generality, we focus on an update-key op-
eration that updates the root node of a non-empty max-d-
heap. To reconstruct the heap property in the top-down or-
der, the update-key operation alternately executes the find-
maxchild operations and the compare-and-swap operations
until the heap property is satisfied or the last changed par-
ent node does not have any child node. Notice that the swap
operation can be simplified because the child node does not
need to be updated in the procedure. Actually its value
can be kept in thread register and be reused until the final
round. Algorithms 1 and 2 show pseudo codes of the update-
key operation and the find-mazchild operation, respectively.

Imagine the whole operation is executed on a wide SIMD
processor (e.g. GPU), the find-mazchild operation can be ef-

Algorithm 1 Update the root node of a non-empty max-
d-heap.

1: function UPDATE-KEY (xheap, d, n, newv)

offset +—d—1 > offset of the implicit storage
3 140 > the root node index
4 v — newv > the root node value
5: while di +1 < n do > if the first child is existed
6: (maxi, maxv) < FIND-MAXCHILD (xheap, d, n, i)
7.

8

9

if maxv > v then > compare
heapli + of fset] + mazxv > swap

: i < maxi

10: else

> the heap property is satisfied
11: break
12: end if

13: end while

14: heapli + of fset] < v
15: return

16: end function

Algorithm 2 Find the maximum child node of a given par-
ent node.

1: function FIND-MAXCHILD (xheap,d, n, )

2: of fset +—d—1

3: starti <— di + 1 > the first child index
4: stopi < MIN(n — 1,di + d) > the last child index
5: maxi < starti

6: maxv < heap[mazi + of fset|

T for i = starti + 1 to stopi do

8: if heapli + of fset] > mazv then

9: maxi < 1

10: maxv < heap[mazi + of fset]

11: end if
12: end for

13: return (mazi, mazv)

14: end function

ficiently accelerated by the SIMD units through a streaming
reduction scheme within much faster O(log d) time instead
of original O(d) time. And because of wider memory con-
trollers, one group of w continuous SIMD threads (a warp
in the nVidia GPUs or a wavefront in the AMD GPUs) can
load w aligned continuous entries from the off-chip memory
to the on-chip scratchpad memory (the shared memory in
the CUDA terminology or the local memory in the OpenCL
terminology) by one off-chip memory transaction (coalesced
memory access). Thus to load d child nodes from the off-chip
memory, only d/w memory transactions are required.

A similar idea has been implemented on the CPU vector
units. Furtak et al. [15] accelerated d-heap find-maxchild
operations by utilizing x86 SSE instructions. The results
showed 15% - 31% execution time reduction, on average,
in a mixed benchmark composed of the delete-max opera-
tions and insert operations while d = 8 or 16. However,
the vector units in the CPU cannot supply as much SIMD
processing capability as in the GPU. Further, according to
the previous research [4], moving vector operations from the
CPU to the integrated GPU can obtain both performance
improvement and energy efficiency. Therefore, in this paper
we focus on utilizing GPU-style vector processing but not
SSE/AVX instructions.

However, other operations, in particular the compare-and-
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Figure 4: The layout of the ad-heap data structure.

swap operations, cannot obtain benefit from the SIMD units
because they only need one single thread, which is far from
saturating the SIMD units. And the off-chip memory band-
width is also wasted because one expensive off-chip memory
transaction only stores one entry (lines 8 and 14 in the Algo-
rithm 1). Further, the rest threads are waiting for the single
thread’s time-consuming off-chip transaction to finish. Even
though the single thread store has a chance to trigger a cache
write hit, the very limited cache in the throughput-oriented
processors can easily be polluted by the massively concur-
rent threads. Thus the single thread task should always be
avoided.

Therefore, to maximize the performance of the d-heap op-
erations, we consider two design objectives: (1) maximizing
throughput of the large amount of the SIMD units for faster
find-mazchild operations, and (2) minimizing negative im-
pact from the single-thread compare-and-swap operations.

3.2 ad-heap Data Structure

Because the TCUs are designed for the wide SIMD oper-
ations and the LCUs are good at high performance single-
thread tasks, the AMPs have a chance to become ideal plat-
forms for operations with different characteristics of paral-
lelism. We propose ad-heap (asymmetric d-heap), a new
heap data structure that can obtain performance benefits
from both of the two types of cores in the AMPs.

Compared to the d-heaps, the ad-heap data structure in-
troduces an important new component — an implicit bridge
structure. The bridge structure is located in the originally
empty head part of the implicit d-heap. It consists of one
node counter and one sequence of size 2h, where h is the
height of the heap. The sequence stores the index-value pairs
of the nodes to be updated in different levels of the heap,
thus at most h nodes are required. If the space requirement
of the bridge is larger than the original head part of size
d — 1, the head part can be easily extended to md +d — 1
to guarantee that each group of the child nodes starts from
an aligned cache block, where m is a natural number and
equal to [2(h + 1)/d] — 1. Figure 4 shows the layout of the
ad-heap data structure.

3.3 ad-heap Operations

The corresponding operations of the ad-heap data struc-
ture are redesigned as well. Again, for simplicity and with-
out loss of generality, we only consider the update-key oper-
ation described in the sub-section 3.1.

Before the update-key operation starts, the bridge is con-
structed in the on-chip scratchpad memory of a TCU and
the node counter is initialized to zero. Then in each itera-
tion (lines 6-12 of the Algorithm 1), a group of lightweight

SIMD threads in the TCU simultaneously execute the find-
mazchild operation (i.e. in parallel load at most d child
nodes to the scratchpad memory and run the streaming re-
duction scheme to find the index and the value of the max-
imum child node). After each find-mazchild and compare
operation, if a swap operation is needed, one of the SIMD
threads adds a new index-value pair (index of the current
parent node and value of the maximum child node) to the
bridge and updates the node counter. If the current level
is not the last level, the new value of the child node can
be stored in a register and be reused as the parent node of
the next level. Otherwise, the single SIMD thread stores
the new indices and values of both of the parent node and
the child node to the bridge. Because the on-chip scratchpad
memory is normally two orders of magnitude faster than the
off-chip memory, the cost of the single-thread operations is
negligible. When all iterations are finished, at most 2h + 1
SIMD threads store the bridge from the on-chip scratchpad
memory to the continuous off-chip memory by [(2h+1)/w]
off-chip memory transactions. The single program multiple
data (SPMD) pseudo code is shown in Algorithm 3. Because
the streaming reduction is a widely used building block, here
we do not give out parallel pseudo code of the find-mazchild
operation. After the bridge is dumped, a signal object is
transferred to the TCU-LCU queue.

Triggered by the synchronization signal from the queue,
one of the LCUs sequentially loads the entries from the
bridge and stores them to the real heap space in linear time.
Notice that no data transfer, address mapping or explicit co-
herence maintaining is required due to the unified memory
space with cache coherence. And because the entries in the
bridge are located in continuous memory space, the LCU
cache system can be efficiently utilized. When all entries
are updated, the whole update-key operation is completed.
The pseudo code of the LCU workload in the update-key
operation is shown in Algorithm 4.

Refer to the command queue in the OpenCL specification
and the architected queueing language (AQL) in the HSA
design, we list the pseudo code of the update-key operation in
Algorithm 5. Notice that the main difference between the
current OpenCL-style queue and the emerging HSA-style
queue is that the former is always triggered by an LCU and
the latter can be triggered by an LCU or a TCU with very
low communication cost.

We can see that although the overall time complexity is
not reduced, the two types of compute units more focus on
the off-chip memory behaviors that they are good at. We
can calculate that the number of the TCU off-chip mem-
ory access needs hd/w + (2h + 1) /w transactions instead of



Algorithm 3 The SPMD TCU workload in the update-key
operation of the ad-heap.

Algorithm 4 The LCU workload in the update-key opera-
tion of the ad-heap.

1: function TCU-WORKLOAD(xheap, d, n, h, newv)
tid < GET-THREAD-LOCALID()

3 140

4 V < newv

5: xbridge <~ SCRATCHPAD-MALLOC(2h + 1)
6: if tid = 0 then
7.

8

9

bridge[0] + 0 > initialize the node counter
end if
while di +1 < n do
10: (mazi, maxv) < FIND-MAXCHILD (xheap, d, n, i)
11: if maxv > v then
12: if tid = 0 then > insert a index-value pair
13: bridge[2 * bridge[0] 4+ 1] < ¢
14: bridge[2 * bridge[0] + 2] + mazv
15: bridge[0] + bridge[0] + 1
16: end if
17: i < maxi
18: else
19: break
20: end if

21: end while

22: if tid = 0 then  © insert the last index-value pair

23: bridge[2 * bridge[0] 4+ 1] < ¢

24: bridge[2 * bridge[0] + 2] + v

25: bridge[0] + bridge[0] + 1

26: end if

27: if tid < 2h + 1 then > dump the bridge to off-chip
28: heapltid] < bridge[tid]

29: end if

30: return

31: end function

h(d/w + 1) in the d-heap. For example, given a 7-level 32-
heap and set w to 32, the d-heap needs 14 off-chip memory
transactions while the ad-heap only needs 8. Since the cost
of the off-chip memory access dominates execution time, the
practical TCU performance can be improved significantly.
Further, from the LCU perspective, all read transactions
are from the bridge in continuous cache blocks and all write
transactions only trigger non-time-critical cache write misses
to random positions. Therefore the LCU workload perfor-
mance can also be expected to be good.

3.4 ad-heap Simulator

Because the HSA programming tools for the AMP hard-
ware described in this paper are not currently available yet,
we conduct experiments on simulated AMP platforms com-
posed of real standalone CPUs and GPUs. The ad-heap
simulator has two stages:

(1) Pre-execution stage. For a given input list and
a size d, we first count the number of the update-key op-
erations and the numbers of the subsequent find-mazchild
and compare-and-swap operations by pre-executing the work
through the d-heap on the CPU. We write Ny, Ny, N, and
N to denote the numbers of the update-key operations, find-
maxchild operations, compare operations and swap opera-
tions, respectively. Although the Ny and the N. are numer-
ically equivalent, we use two variables for the sake of clarity.

(2) Simulation stage. Then we execute exactly the same
amount of work with the ad-heap on the CPU and the GPU.

1: function LCU-WORKLOAD (xheap, d,n, h)
2: m<+ [2(h+1)/d] -1

3: of fset <+~ md+d—1
4: xbridge < xheap
5: for i = 0 to bridge[0] — 1 do
6: index < bridge[2 x i + 1]
7 value + bridge[2 * i + 2]
8: heaplindex + of fset] + value
9: end for
10: return

11: end function

Algorithm 5 The control process of the update-key opera-
tion.
1: function UPDATE-KEY (xheap, d, n, h, newv)
2: QLtoT < CREATE-QUEUE()
: QTtoL + CREATE-QUEUE()

3

4 Tpkt < TCU-WORKLOAD(xheap, d, n, h, newv)

5: Lpkt < LCU-WORKLOAD(xheap, d,n, h)

6: QUEUE_DISPATCH_FROM_LCU(Q LtoT, T'pkt)

7: QUEUE_DISPATCH_FROM_TCU (T'pkt,QTtoL, Lpkt)
8 return

9: end function

The work can be split into three parts:

e The CPU part reads the entries in IV, bridges (back
from the GPU) and writes N, (N, + 1) values to the
corresponding entry indices. This part takes T.. time
on the CPU.

e To simulate the LCU-TCU communication mechanism
in the HSA design, the CPU part also need to execute
signal object sends and receives. We use a lockless
multi-producer single-consumer (MPSC) queue pro-
gramming tool in the DKit C++ Library [6] (based on
multithread components in the Boost C++ Libraries
[1]) for simulating the AMP queueing system. To meet
the HSA standard [18], our packet size is set to 64 Byte
with two 4 Byte flags and seven 8 Byte flags. Further,
packing and unpacking time is also included. Because
each GPU core (and also each TCU) needs to execute
multiple thread groups (thread blocks in the CUDA
terminology or work groups in the OpenCL terminol-
ogy) in parallel for memory latency hiding, we use 16
as a factor for the combined thread groups. Therefore,
2N, /16 push/pop operation pairs are executed for N,
LCU to TCU communications and the same amount
of TCU to LCU communications. We record this time
as Teq.

e The GPU part executes Ny find-mazchild operations
and N, compare operations and writes INV,, bridges from
the on-chip scratchpad memory to the off-chip global
shared memory. This part takes Ty time on the GPU.

After simulation runs, we use overlapped work time on the
CPU and the GPU as execution time of the ad-heap since
the two types of cores are able to work in parallel. Thus the
final execution time is the longer one of T + Ty and Tyec.



Table 1: The Machines Used in Our Experiments

System Machine 1

Machine 2

CPU AMD A6-1450 APU
4 cores/1.0 GHz/Jaguar

CPU cores/clock rate/architecture
CPU peak single precision throughput 32 GFLOPS

CPU max thermal design power 8 W (shared)
System memory/channels/bandwidth

GPU execution units/architecture
GPU vector units/clock rate
GPU peak single precision throughput 102.4 GFLOPS
GPU scratchpad memory

GPU memory /bandwidth

GPU max thermal design power
GPU driver version

Operating system

Compiler and library

ad-heap simulator implementation

8 W (shared)
13.11 Beta

3.4 GB DDR3L-1066/1/8.5 GB/s (shared)
GPU AMD Radeon HD 8250 (intergrated)

2 compute units/Graphics Core Next

128 Radeon cores/400 MHz

128 KB (64 KB per compute unit)
0.6 GB DDR3L-1066/8.5 GB/s (shared)

Ubuntu Linux 12.04
g++ 4.6.3 and OpenCL 1.2
C++ and OpenCL

Intel Core i7-3770

4 cores/3.4 GHz/Ivy Bridge
217.6 GFLOPS

W

32 GB DDR3-1600,/2/25.6 GB/s
nVidia GeForce GTX 680

8 multiprocessors/Kepler

1536 CUDA cores/1006 MHz
3090.4 GFLOPS

384 KB (48 KB per multiprocessor)
2 GB GDDR5/192.2 GB/s

250 W

304.116

Ubuntu Linux 12.04

g++ 4.6.3 and CUDA 5.0

C++ and CUDA

Because of the features of the AMPs, costs of device/host
memory copy and GPU kernel launch are not included in our
timer. Notice that because we use both the CPU and the
GPU separately, the simulated AMP platform is assumed to
have accumulated off-chip memory bandwidths of the both
processors. Moreover, we also assume that the GPU sup-
ports the device fission function defined in the OpenCL 1.2
specification and cores in the current GPU devices can be
used as sub-devices which are more like the TCUs in the
HSA design. Thus one CPU core and one GPU core can
cooperate to deal with one ad-heap. The simulator is pro-
grammed in C++ and CUDA/OpenCL.

4. PERFORMANCE EVALUATION

4.1 Testbeds

To benchmark the performance of the d-heaps and the
ad-heap, we use two representative machines: (1) a laptop
system with an AMD A6-1450 APU, and (2) a desktop sys-
tem with an Intel Core i7-3770 CPU and an nVidia GeForce
GTX 680 discrete GPU. Detailed specifications are shown
in Table 1.

4.2 Benchmark and Datasets

We use a heap-based batch k-selection algorithm as bench-
mark of the heap operations. Given a list set consists of a
group of unordered sub-lists, the algorithm finds the kth
smallest entry from each of the sub-lists in parallel. One of
its applications is batch £NN search in large-scale concurrent
queries. In each sub-list, a max-heap of size k is constructed
on the first k£ entries and its root node is compared with the
rest of the entries in the sub-list. If a new entry is smaller,
an update-key operation (i.e. the root node update and the
heap property reconstruction) is triggered. After traversing
all entries, the root node is the kth smallest entry and the
heap contains the k& smallest entries of the input sub-list.

In our ad-heap implementation, we execute heapify func-
tion (i.e. the first construction of the heap) on the GPU and
the root node comparison operations (i.e. to decide whether
an update-key operation is required) on the CPU. Besides
the execution time described in the ad-heap simulator, the
execution time of the above two operations are recorded in

our timer as well.

According to capacity limitation of the GPU device mem-
ory, we set sizes of the list sets to 22 and 22° on the two ma-
chines, respectively, data type to 32-bit integer (randomly
generated), size of each sub-list to the same length [ (from
2! to 221, and k to 0.11.

4.3 Experimental Results

Primary Y-axis-aligned line graphs in Figures 5(a)—(e)
and 6(a)—(e) show the selection rates of the d-heaps (on
the CPUs and the GPUs) and the ad-heap (on the simu-
lators) over the different sizes of the sub-lists and d values
on the machine 1 and the machine 2, respectively. In all
tests, all cores of the CPUs are utilized. We can see that
for the performance of the d-heaps in all groups, the mul-
ticore CPUs are almost always faster than the GPUs, even
when the larger d values significantly reduce throughputs of
the CPUs. Thus, for the conventional d-heap data struc-
ture, the CPUs are still better choices in the heap-based
k-selection problem. For the ad-heap, the fastest size d is
always 32. On one hand, the smaller d values cannot fully
utilize computation and bandwidth resources of the GPUs.
On the other hand, the larger d values lead to much more
data loading but do not bring the same order of magnitude
shallower heaps.

Secondary Y-axis-aligned stacked columns in Figures 5(a)—
(e) and 6(a)—(e) show the execution time of the three parts
(CPU compute, CPU queue and GPU compute) of the ad-
heap simulators. On the machine 1, the execution time of
the GPU compute is always longer than the total time of the
CPU work, because the raw performance of the integrated
GPU is relatively too low to accelerate the find-mazchild
operations and the memory sub-system in the APU is not
completely designed for the GPU memory behaviors. On the
machine 2, the ratio of CPU time and GPU time is much
more balanced (in particular, while d = 32) due to the much
stronger discrete GPU.

Figures 5(f) and 6(f) show aggregated performance num-
bers include the best results in the former 5 groups and the
optimal scheduling method that runs the fastest d-heaps on
the CPUs and the GPUs in parallel, respectively. In these
two sub-figures, we can see that the ad-heap obtains up to
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Figure 5: Selection rates and ad-heap execution time over different sizes of the sub-lists on the machine 1.
The line-shape data series is aligned to the primary Y-axis. The stacked column-shape data series is aligned

to the secondary Y-axis.

1.5x and 3.6x speedup over the optimal scheduling method
when the d value is equal to 32 and the sub-list size is equal
to 2'® and 29, respectively. Notice that the optimal schedul-
ing method is also assumed to utilize accumulated off-chip
memory bandwidths of the both processors.

We can see that among all the candidates, only the ad-
heap maintains relatively good performance stabilities while
problem size grows. The performance numbers support our
ad-heap design that gets benefits from main features of the
two types of cores while the CPU d-heaps suffer with wider
find-mazchild operations and the GPU d-heaps suffer with
more single-thread compare-and-swap operations.

S. RELATED WORK

To the best of our knowledge, the ad-heap described in
this paper is the first fundamental data structure that ob-
tained good performance from fine-grained frequent inter-
actions in the emerging AMPs. In contrast, the prior work
has concentrated on exploiting coarse-grained parallelism or
one-side computation in the AMPs. The current literature
can be classified into four groups: (1) eliminating data trans-
fer, (2) decomposing tasks and data, (3) pipelining, and (4)
prefetching data.

Eliminating data transfer over PCle bus is one of the
most distinct advantages brought by the AMPs, thus its in-
fluence on performance and energy consumption has been
relatively well studied. Research [11, 31, 37, 26] reported
that various benchmarks can obtain performance improve-

ments from the AMD APUs because of reduced data move-
ment cost. Besides the performance benefits, research [34,
27] demonstrated that non-negligible power savings can be
achieved by running programs on the APUs rather than the
discrete GPUs because of shorter data path and the elimina-
tion of the PCle bus and controller. Further, Daga and Nut-
ter [12] showed that using the much larger system memory
makes searches on very large B+ tree possible. Compared
with the prior work, our ad-heap not only takes advantage of
reduced data movement cost but also utilizes computational
power of the both types of cores.

Decomposing tasks and data is also widely studied in
heterogeneous system research. Research [21, 36] proposed
scheduling approaches that map workloads onto the most
appropriate core types in the single-ISA AMPs. In recent
years, as GPU computing is becoming more and more impor-
tant, scheduling on multi-ISA heterogeneous environments
has been a hot topic. StarPU [5], Qilin [24], Glinda [33] and
HDSS [7] are representatives that can simultaneously exe-
cute suitable compute programs for different data portions
on CPUs and GPUs. As shown in the previous section, we
found that 8-heap is the best choice for the CPU and 32-
heap is the fastest on the GPU, thus the optimal schedul-
ing method should execute the best d-heap operations on
both types of cores in parallel. However, our results showed
that the ad-heap is much faster than the optimal scheduling
method. Thus scheduling is not always the best approach,
although task or data parallelism is obvious.
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Figure 6: Selection rates and ad-heap execution time over different sizes of the sub-lists on the machine 2.
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to the secondary Y-axis.

Pipelining is another widely used approach that divides
a program into multiple stages and executes them on most
suitable compute units in parallel. Heterogeneous environ-
ments further enable pipeline parallelism to minimize serial
bottleneck in Amdahl’s Law [17, 29, 14, 26]. Chen et al. [9]
pipelined map and reduce stages on different compute units.
Additionally, pipelining scheme can also expose wider de-
sign dimensions. Wang et al. [37] used CPU for relieving
GPU workload after each previous iteration finished, thus
overall execution time was largely reduced. He et al. [16] ex-
posed data parallelism in pipeline parallelism by using both
CPU and GPU for every high-level data parallel stage. Ac-
tually, in the ad-heap, the find-maxzchild operation can be
seen as a parallelizable stage of its higher-level operation
delete-max or update-key. However, the ad-heap is different
from the previous work because it utilizes advantages of the
AMPs through frequent fine-grained interactions between
the LCUs and the TCUs.

Prefetching data can be considered with heterogene-
ity as well. Once GPU and CPU share one cache block,
the idle integrated GPU compute units can be leveraged
as prefetchers for improving single thread performance of
the CPU [39, 40], and vice versa [41]. Further, Arora et
al. [4] argued that stride-based prefetchers are likely to be-
come significantly less relevant on the CPU while a GPU is
integrated. If the two types of cores shared the last level
cache, the ad-heap can naturally obtain benefits from het-
erogeneous prefetching, because the bridge and the nodes

to be modified are already loaded to the on-chip cache by
the TCUs, prior to writing back by the LCUs. Because of
the legacy CPU and GPU architecture design, in this paper
we choose focusing on an AMP environment with separate
last level cache sub-systems. Conducting experiments on a
shared last level cache AMP can be an interesting future
work. Additionally, our approach is different from the pre-
vious work since we see both TCUs and LCUs as compute
units as well but not just prefetchers.

6. CONCLUSIONS

In this paper, we proposed ad-heap, a new efficient heap
data structure for the AMPs. We conducted empirical stud-
ies based on the theoretical analysis. The experimental re-
sults showed that the ad-heap can obtain up to 1.5x and
3.6x performance of the optimal scheduling method on two
representative machines, respectively.

To the best of our knowledge, the ad-heap is the first fun-
damental data structure that efficiently leveraged the two
different types of cores in the emerging AMPs through fine-
grained frequent interactions between the LCUs and the
TCUs. Further, the performance numbers also showed that
redesigning data structure and algorithm is necessary for
exposing higher computational power of the AMPs.

7. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful comments on this paper.



8.
1]

2]

3]

[4]

[5]

[6]

[7]

(10]

(1]

(12]

(13]

REFERENCES

D. Abrahams and A. Gurtovoy. C++ Template
Metaprogramming: Concepts, Tools, and Techniques
from Boost and Beyond (C++ in Depth Series).
Addison-Wesley Professional, 2004.

AMD. White Paper: Compute Cores, jan 2014.

M. Annavaram, E. Grochowski, and J. Shen.
Mitigating amdahl’s law through epi throttling. In
Proceedings of the 32Nd Annual International
Symposium on Computer Architecture, ISCA 05,
pages 298-309, 2005.

M. Arora, S. Nath, S. Mazumdar, S. Baden, and

D. Tullsen. Redefining the role of the cpu in the era of
cpu-gpu integration. Micro, IEEE, 32(6):4-16, 2012.
C. Augonnet, S. Thibault, R. Namyst, and P.-A.
Wacrenier. Starpu: A unified platform for task
scheduling on heterogeneous multicore architectures.
Concurr. Comput. : Pract. Ezper., 23(2):187-198, feb
2011.

B. Beaty. DKit: C++ Library of Atomic and Lockless
Data Structures, 2012.

M. E. Belviranli, L. N. Bhuyan, and R. Gupta. A
dynamic self-scheduling scheme for heterogeneous
multiprocessor architectures. ACM Trans. Archit.
Code Optim., 9(4):57:1-57:20, jan 2013.

A. Branover, D. Foley, and M. Steinman. Amd fusion
apu: Llano. IEEE Micro, 32(2):28-37, 2012.

L. Chen, X. Huo, and G. Agrawal. Accelerating
mapreduce on a coupled cpu-gpu architecture. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 25:1-25:11, 2012.

E. Chung, P. Milder, J. Hoe, and K. Mai. Single-chip
heterogeneous computing: Does the future include
custom logic, fpgas, and gpgpus? In Microarchitecture
(MICRO), 2010 43rd Annual IEEE/ACM
International Symposium on, pages 225-236, 2010.
M. Daga, A. M. Aji, and W.-c. Feng. On the efficacy
of a fused cpu+gpu processor (or apu) for parallel
computing. In Proceedings of the 2011 Symposium on
Application Accelerators in High-Performance
Computing, SAAHPC ’11, pages 141-149, 2011.

M. Daga and M. Nutter. Exploiting coarse-grained
parallelism in b+ tree searches on an apu. In High
Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion:, pages 240-247,
2012.

S. Damaraju, V. George, S. Jahagirdar, T. Khondker,
R. Milstrey, S. Sarkar, S. Siers, I. Stolero, and

A. Subbiah. A 22nm ia multi-cpu and gpu
system-on-chip. In Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2012 IEEE
International, pages 5657, 2012.

M. Deo and S. Keely. Parallel suffix array and least
common prefix for the gpu. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’13, pages
197206, 2013.

T. Furtak, J. N. Amaral, and R. Niewiadomski. Using
simd registers and instructions to enable
instruction-level parallelism in sorting algorithms. In
Proceedings of the Nineteenth Annual ACM

(26]

(30]

Symposium on Parallel Algorithms and Architectures,
SPAA ’07, pages 348-357, 2007.

J. He, M. Lu, and B. He. Revisiting co-processing for
hash joins on the coupled cpu-gpu architecture. Proc.
VLDB Endow., 6(10):889-900, aug 2013.

M. Hill and M. Marty. Amdahl’s law in the multicore
era. Computer, 41(7):33-38, 2008.

HSA Foundation. HSA Programmer’s Reference
Manual: HSAIL Virtual ISA and Programming Model,
Compiler Writer’s Guide, and Object Format (BRIG),
0.95 edition, may 2013.

D. B. Johnson. Priority queues with update and
finding minimum spanning trees. Information
Processing Letters, 4(3):53 — 57, 1975.

S. Keckler, W. Dally, B. Khailany, M. Garland, and
D. Glasco. Gpus and the future of parallel computing.
Micro, IEEE, 31(5):7-17, 2011.

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P.
Jouppi, and K. I. Farkas. Single-isa heterogeneous
multi-core architectures for multithreaded workload
performance. In Proceedings of the 31st Annual
International Symposium on Computer Architecture,
ISCA ’04, pages 64—, 2004.

G. Kyriazis. Heterogeneous system architecture: A
technical review. Technical report, AMD, aug 2013.
A. LaMarca and R. Ladner. The influence of caches on
the performance of heaps. J. Exp. Algorithmics, 1, jan
1996.

C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting
parallelism on heterogeneous multiprocessors with
adaptive mapping. In Proceedings of the 42Nd Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO 42, pages 45-55, 2009.

D. Lustig and M. Martonosi. Reducing gpu offload
latency via fine-grained cpu-gpu synchronization. In
Proceedings of the 2018 IEEE 19th International
Symposium on High Performance Computer
Architecture (HPCA), HPCA 13, pages 354-365,
2013.

P. Mistry, Y. Ukidave, D. Schaa, and D. Kaeli. Valar:
A benchmark suite to study the dynamic behavior of
heterogeneous systems. In Proceedings of the Gth
Workshop on General Purpose Processor Using
Graphics Processing Units, GPGPU-6, pages 54—65,
2013.

N. Nishikawa, K. Iwai, and T. Kurokawa. Power
efficiency evaluation of block ciphers on gpu-integrated
multicore processor. In Y. Xiang, I. Stojmenovic,

B. Apduhan, G. Wang, K. Nakano, and A. Zomaya,
editors, Algorithms and Architectures for Parallel
Processing, volume 7439 of Lecture Notes in Computer
Science, pages 347-361. Springer Berlin Heidelberg,
2012.

nVidia. NVIDIA Tegra 4 Family GPU Architecture,
1.0 edition, feb 2013.

J. Pienaar, S. Chakradhar, and A. Raghunathan.
Automatic generation of software pipelines for
heterogeneous parallel systems. In High Performance
Computing, Networking, Storage and Analysis (SC),
2012 International Conference for, pages 1-12, 2012.
Qualcomm. Qualcomm Snapdragon 800 Product Brief,
aug 2013.



(31]

A. Sadrieh, S. Charissis, and A. Hill. An on-chip
heterogeneous implementation of a general sparse
linear solver. In Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW), 2013
IEEFE 27th International, pages 54—63, 2013.
Samsung. Enjoy the Ultimate WQXGA Solution with
Ezxynos 5 Dual, 2012.

J. Shen, A. L. Varbanescu, H. Sips, M. Arntzen, and
D. G. Simons. Glinda: A framework for accelerating
imbalanced applications on heterogeneous platforms.
In Proceedings of the ACM International Conference
on Computing Frontiers, CF ’13, pages 14:1-14:10,
2013.

K. L. Spafford, J. S. Meredith, S. Lee, D. Li, P. C.
Roth, and J. S. Vetter. The tradeoffs of fused memory
hierarchies in heterogeneous computing architectures.
In Proceedings of the 9th Conference on Computing
Frontiers, CF 12, pages 103-112, 2012.

K. Van Craeynest and L. Eeckhout. Understanding
fundamental design choices in single-isa heterogeneous
multicore architectures. ACM Trans. Archit. Code
Optim., 9(4):32:1-32:23, jan 2013.

K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez,
and J. Emer. Scheduling heterogeneous multi-cores
through performance impact estimation (pie). In
Proceedings of the 39th Annual International

(41]

Symposium on Computer Architecture, ISCA 12,
pages 213-224, 2012.

J. Wang, N. Rubin, H. Wu, and S. Yalamanchili.
Accelerating simulation of agent-based models on
heterogeneous architectures. In Proceedings of the 6th
Workshop on General Purpose Processor Using
Graphics Processing Units, GPGPU-6, pages 108-119,
2013.

M. A. Weiss. Data Structures and Algorithm Analysis.
Addison-Wesley, second edition, 1995.

D. H. Woo, J. B. Fryman, A. D. Knies, and H.-H. S.
Lee. Chameleon: Virtualizing idle acceleration cores of
a heterogeneous multicore processor for caching and
prefetching. ACM Trans. Archit. Code Optim.,
7(1):3:1-3:35, may 2010.

D. H. Woo and H.-H. S. Lee. Compass: A
programmable data prefetcher using idle gpu shaders.
In Proceedings of the Fifteenth Edition of ASPLOS on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XV, pages 297-310,
2010.

Y. Yang, P. Xiang, M. Mantor, and H. Zhou.
Cpu-assisted gpgpu on fused cpu-gpu architectures. In
Proceedings of the 2012 IEEE 18th International
Symposium on High-Performance Computer
Architecture, HPCA ’12, pages 1-12, 2012.



