An OpenCL back-end for Accelerate

Martin Dybdal — dybber@dybber . dk
University of Copenhagen

6. May 2011

Abstract

Graphics processing units has recently been found useful outside their original domain. The newest
graphics hardware provides massive SIMD-parallelism through hundreds of cores. In fields such as
bioinformatics, computational finance and physics simulation, researchers are now using GPUs to speed
up their computations and the fastest super computers are being built using GPUs instead CPUs.

Accelerate [Lee+09; Cha+11] is a language embedded in Haskell for programming GPUs in a type-safe
and purely functional manner using algorithmic skeletons. Accelerate currently only targets NVIDIAs
CUDA platform, and are thus only possible to execute on CUDA hardware. In this report I present a
prototype implementation of a OpenCL back-end, which makes it possible to execute Accelerate code on
all OpenCL enabled devices, such as GPUs, x86/x86_64 CPUs and Cell processors. The prototype OpenCL
back-end does not yet perform as good as the CUDA back-end, when executed on similar hardware. I
have limited my self from performance tuning and I thus expect that the performance can get much better
by selecting better launch parameters for GPU code.

Together with the Accelerate back-end I present a Haskell binding for Accelerate that enables kernel
compilation, scheduling and memory management of OpenCL programs.

My contributions also include a set of suggested changes to the Accelerate framework. Most importantly,
I suggest that the code-generator for both the CUDA and the OpenCL back-end is modified to use quasi-
quotation. This will make the development easier, and makes certain alternative implementation strategies
feasible.

Contents

1 Introduction 2
2 GPGPU, CUDA and OpenCL 3
3 Accelerate 7
4 Implementation notes 10
5 Evaluation 13
6 Related Work 15
7 Future Work 16
8 Conclusion 17
9 Bibliography 18

AN OPENCL BACK-END FOR ACCELERATE

1 Introduction

1.1 Background

Graphical processing units (GPUs) have recently
been found useful outside their original field, of
computer graphics. In areas such as scientific com-
puting, bioinformatics and computational finance,
GPUs have been used to speed up computations.
Usage of GPUs for such general purpose problems
are commonly done through low-level interfaces,
with manual memory management, and a risk of
encountering segmentation faults hanging over
your head. Not only is programming with such
low-level interfaces prone to errors, but you also
have to be very careful when issuing jobs to the
GPU, as mayor performance penalties may occur.
Performance problems can stem from both mis-
aligned memory accesses or too few or too many
threads are issued to the GPU processors at once.

Accelerate! [Cha+11] is a high-level type safe
Haskell framework for executing data-parallel
programs on GPUs supporting NVIDIAs CUDA-
architure. Using Accelerate, many types of errors
are guaranteed not to occur, and the programmer
can focus on other problems than aligning memory
access properly.

The goal of this project has been to develop a
back-end for Accelerate that targets the OpenCL
framework. OpenCL is an open standard and not
locked to a specific vendor. This means that Accel-
erate programs will be able to be executed on wider
range of hardware devices. Many developers will
not have direct access to a machine with NVIDIA
GPUs and using OpenCL they will be able to test
and execute Accelerate programs locally on their
x86/x86_64 CPU. This also implies that a single
program can be executed on either or both CPUs
and GPUs. Not all problems are solved faster by
issuing them to the GPU, by using a heterogeneous
interface that supports both CPU and GPU pro-
gramming, it will be easier to decide and change
where the program is to be executed.

This report details my endeavour into the the-
ory of Accelerate programming and I will explain

1 Accelerate is available at http: //hackage .haskell.org/
package/accelerate

the necessary steps done in the development the
prototype OpenCL back-end. I will describe the ar-
chitecture of modern GPUs and the programming
interfaces CUDA and OpenCL in Section 2. In Sec-
tion 3 I will describe the architecture of Acceler-
ate. Section 4 will lay out the necessary steps for
creating the OpenCL back-end. I evaluate on my
implementation in Section 5.

1.2 Contributions

With this report I show that it is feasible to im-
plement a OpenCL back-end for Accelerate. My
contributions are:

e] have a extended an existing Haskell binding
to the OpenCL libraries, such that it is possible
for to access the necessary OpenCL functional-
ity from Haskell programs. The existing back-
end only made it possible to query certain plat-
form information, my extensions include: Cre-
ation, compilation and invocation of GPU pro-
grams (kernels), allocation and manipulation
of memory objects on the GPU, synchroniza-
tion primitives and querying additional infor-
mation.

e I provide a prototype implementation of a
OpenCL back-end for Accelerate. This pro-
totype does not cover all of Accelerates col-
lective operations and is not optimized. The
collective operations that remains to be im-
plemented does not need any functionality
that is not used by the collective operations
which work. The prototype implementation
thus demonstrates that it is feasible to execute
Accelerate programs through OpenCL.

e While developing the prototype implementa-
tion of the OpenCL back-end I have identified
some limitations of the Accelerate architecture,
and provided suggested changes to overcome
these limitations.

AN OPENCL BACK-END FOR ACCELERATE

2 GPGPU, CUDA and OpenCL

General purpose computing on graphics processing
units (GPGPU) is the technique of using GPUs
(graphical processing units) for applications com-
monly executed on CPUs. GPUs, as their name
reveals, where originally designed for computer
graphics, but in the beginning of the last decade
researchers found that they could speed up their
computations in fields as diverse as physics simu-
lation, image processing, computer vision, bioin-
formatics, computational finance, medical imaging
and relational databases, by issuing tasks to the
GPU [Har05].

GPUs are cost-effective for these domains, as
GPUs show a high degree of data parallelism,
which is a common characteristic of problems in
these domains. GPUs efficiency stems from their
SIMD parallel-architecture (single instruction, multi-
ple data) where collections of computational cores
execute the same instruction path on each their
own data item. For calculations with only limited
differences in control flow, this is a more efficient
use of the transistors.

Before this new usage of GPUs was uncovered,
the hardware-vendors put most of their work into
optimizing the speed of the hardware, not preci-
sion. Thus, errors in floating point operations was
common [HL04] and double precision operations
was not supported. After the interest in GPGPU
programming was awakened, hardware vendors
have improved on these deficiencies, though dou-
ble precision operations are still vastly costlier per-
formance wise than the same operations on single
precision values.

21 Programming interfaces

Originally, the only programming interfaces for
GPUs were based on concepts such as textures and
shader programs. Applications outside the graph-
ics domain had to be encoded to fit the models of
graphics programming interfaces such as OpenGL
or DirectX and developers needed deep knowledge
about the GPU-architecture [NVIO9b].

Several frameworks has since been developed for
GPGPU programming. NVIDIA developed CUDA

for its line of graphics cards and AMD/ATI de-
veloped the Stream SDK (initially called “Close
to metal”) for their cards. To break with the sit-
uation where there was no portable interface for
GPU-programming, Apple took initiative to the cre-
ation of OpenCL. OpenCL is an open standard for
programming heterogeneous systems with several
kinds of processors, both CPUs and GPUs. There
are OpenCL implementations available for, newer
NVIDIA and ATI GPUs, the x86 and x86_64 CPU-
architectures and the Cell processor.

Although CUDA and OpenCL are more gen-
eral than the graphics frameworks used previously,
they are still low-level interfaces in today’s terms.
The programmer himself is responsible for admin-
istering memory usage himself and manually mov-
ing data between main memory and GPU memory.
To write even simple programs it is large amounts
of surrounding code are necessary. This includes:
initialization of OpenCL and connected devices,
compilation of GPU specific code, invocation of
GPU-functions (kernels) and data-transfers to and
from the GPU. To use the GPU effectively, a certain
level of knowledge about the architecture of graph-
ics processing units is also necessary. For instance,
using the local caches incorrectly or misaligning
memory accesses between work items can cause
huge performance penalties.

2.2 OpenCL

The terminology of GPU programming is quite dif-
ferent from that connected with programs residing
on CPUs. In this section I will describe these differ-
ences and detail how a program is executed on a
GPU device. The issue of terminology is not helped
by the fact that OpenCL and CUDA uses each their
own set of terminology. I will not try to cover all
these differences here, and will mostly stick to the
terminology of OpenCL. Matt Harvey, developer
of a CUDA to OpenCL translator called Swan, has
summarised some of the terminology differences
in a talk named “Experiences porting from CUDA
to OpenCL” [Har09].

The execution of a GPU program has to be con-
ducted by an accompanied program executing on
the CPU. The traditional CPU is referred to as the

AN OPENCL BACK-END FOR ACCELERATE

Private Private Private Private Private Private
memory memory cee memory memory memory eee memory
Processing Processing | 0 0 | Processing Processing Processing | 0 | Processing
Element Element Element Element Element Element
L)
Compute Unit 1 Compute Unit
i + i
| Local Memory l | Local Memory l
v
Global device memory
Device
A
Host main memory
Host

Figure 1: OpenCL GPU terminology: Host, devices, compute units and processing elements. The arrows show the
possible path of data movement. By enqueuing read or write operations on the command queue, data can
be moved between host memory and device memory. Kernel code is responsible for moving data between

global, private and local memory.

host and the GPU is called the device. Other con-
cepts such as pointers or arrays are often prefixed
with either of these to specify where they reside. A
host pointer is thus a pointer pointing to host memory
and a device-side array is an array located in device
memory. Observe, that the OpenCL is not limited to
interfacing with GPUs, so the device and the host
might be the same hardware unit.

An OpenCL device is divided into compute units,
which are in turn divided into individual process-
ing elements. Processing elements performs the
actual computation on a GPU. How these concepts
are related is shown in Figure 1. Since modern
GPUs contains hundreds of processing elements,
GPU programs must be written such that their
work can be executed independently and in par-
allel on as many of these processing elements as
possible. The smallest unit of work on a GPU is in
OpenCL called a work-item and represents a single
thread of execution on a processing element. These
work-items are arranged into equal sized groups
called work-groups and work-groups are arranged
into an n-dimensional grid called an NDRange. A
work-group is executed on a single compute unit,

which provides shared memory accessible from all
processing elements of that compute unit.

Programming a GPU is done by writing kernel
programs or simply kernels. A kernel specifies the
work done by a single work-item of the complete
problem. It is the task of kernel program itself,
to find the subset of the data that it has to work
on. That is, all executions of the kernel receives ex-
actly the same arguments, but the kernel can query
where it is located in its work-group and NDRange
and use this information to select the appropriate
part of the input. When executing tasks on OpenCL
devices, it is common to divide the problem into
logically separate kernels scheduling them as their
dependencies are met.

Job scheduling in OpenCL is done through com-
mand queues assigned to each device. Kernels, mem-
ory accesses and synchronization between work-
groups are performed by enqueuing commands
to these queues. Synchronization inside the indi-
vidual work-groups are done through calls to a
barrier-function inside the kernel. These calls can
not occur inside conditionals and shall thus always
synchronize all work-items inside the work-group.

AN OPENCL BACK-END FOR ACCELERATE

OpenCL memory is segmented into memory ob-
jects (also called buffers), that stores linear arrays
of bytes. These memory objects are allocated and
manipulated from the host by enqueueing certain
commands in the command queue of the device.
When creating a memory object a reference to a
host-representation is returned. To hand these
as parameters to the kernels the function clSetK-
ernelArg is used. It is only through this function
that the host-representation of a memory object can
be passed to a kernel executing on the device. The
implication of this, is that memory object references
must be passed as direct arguments to kernels and
can not be passed together with other data inside
a struct. This limitation will give us some com-
plications that are not present when using CUDA,
and is the cause of the largest difference between
how the OpenCL and CUDA back-ends must be
implemented, see Section 4.3 which discusses how
arrays of tuples are handled.

I have extended an existing Haskell binding for
OpenCL, enabling allocation of device memory,
compilation and invocation of kernels and moving
data between main memory and device memory.
This interface will be described in Section 4.1.

2.3 Hardware

As OpenCL is not tied to any particular vendor,
there has to be a mapping between the actual hard-
ware platforms and the OpenCL API. It is impor-
tant to know the hardware particulars to get op-
timal performance out of the available hardware.
I will focus on NVIDIAs GPGPU devices, as it is
GPUs from this vendor we have available at the
department.

The architecture of NVIDIAs latest line of
GPGPU devices is named Fermi. The current Fermi
based GPUs consists of up to 512 cores grouped
into streaming multiprocessors (SM) of 32 cores each.
The Tesla NVIDIA C2050, which I have had avail-
able for this project are equipped with 448 cores,
giving 14 SMs. A streaming multiprocessor, is the
OpenCL equivalent of a compute unit. Shared be-
tween all SMs is an L2 Cache (768 KB) of global
memory [NVIO9b]. Figure 2 shows the structure of
a streaming multiprocessor in the Fermi architec-

sli5lls
IR
B

§

g

§

slislls
IR
B

g

8

g

(Interconnect Network)

Figure 2: Fermi Streaming Multiprocessor. The illustra-
tion is borrowed from NVIDIAs Fermi whitepa-
per [NVIO9b].

ture. All 32 cores share the same register file (in the
top) and 64 KB of local memory (at the bottom) is
used both as L1 cache and shared memory between
cores. The amount of memory used as cache and
as shared memory is configurable. Shared memory
and registers are local memory and private mem-
ory respectively in OpenCL terminology.

When executing an OpenCL NDRange of work-
groups on a Fermi architecture GPU, each work-
group is partitioned into warps which are groups
of 32 work-items. A group of this size matches
directly to a single streaming multiprocessor. All
work-items in a warp always executes exactly the
same instruction, this is called SIMD, single instruc-
tion, multiple data. Moreover, when warps are exe-
cuted by a SM it can execute two warps from the
same work-group simultaneously, as each SM have

AN OPENCL BACK-END FOR ACCELERATE

access to two schedulers and the register file can be
used for both of the two warps independently. This
is called SIMT (single instruction, multiple thread)
as two threads are executed on the same proces-
sor simultaneously. Each Streaming multiprocessor
can be assigned a certain number of warps (16-48
depending on the device), which it switches be-
tween executing. This is useful for hiding latency
endured by memory access or data dependencies
between instructions. Such dependencies can stall
the processor for up to 24 cycles [NVI09a].

Optimization considerations

Determining how the NDRange of work-items are
partitioned into work-groups are of importance
when optimizing for fast execution. There should
at least be as many work-groups as there are stream-
ing multiprocessor, to avoid having a stalled pro-
cessor. If work-groups have to wait for synchro-
nization with other work-groups it might also be
beneficial to have more than one work-group per
SM. In a NVIDIA presentation on OpenCL Optimiza-
tion [NVI09a], it is recommended to spawn at least
100 work-groups per streaming multiprocessor (for
large problems), if the program should scale well
on future devices.

The number of warps should also be considered,
as having enough available warps can hide latency
from memory transactions. Accessing global mem-
ory can stall a streaming multiprocessor for 400-
600 cycles, where as local memory access only par-
takes a couple of cycles [NVI09a]. This is not the
largest bottleneck though, as GPUs are presently
connected to the host through PCI Express ports
which have a throughput limit of 8-16 GB/s (de-
pending on the generation of the device). Accessing
global memory on the device can be done at 150
GB/s. The bottleneck of this has been observed by
the hardware vendors and AMD has developed a
line of products called AMD Fusion?> which com-
bines the CPU and the GPU into the same chip.
NVIDIA has also announced plans to develop such
Accelerated Processing Units, which is the general
term for this fusion of processor technologies.

2http://fusion.amd.com/

It is not always good for efficiency to have large
work-groups with many warps, as each streaming
multiprocessor has a limited amount of registers
and local memory. All work-items currently exe-
cuted on a SM shares the same register-file, and
work-groups are only assigned to a SM if there are
enough available registers for all of its work-items.
Thus, to get optimal occupancy, work-groups must
be sized such that the size of the register-file is
divisible by the total amount of needed registers.
A concrete example of this problem is shown in
the presentation mentioned above [NVI09a]. An
occupancy calculator created by NVIDIA is avail-
able as a spreadsheet on the NVIDIA website’.
The amount of registers and local shared mem-
ory needed by a compiled kernel function can be
queried through the OpenCL APL

Memory access patterns

Accessing global device memory are always done
in segments of 32, 64 or 128 bytes, and these ac-
cesses must be aligned such that segments are
placed in physical device memory with a segment,
starting on addresses that are a multiple of the seg-
ment size [NVI10]. When a warp gets executed,
the memory transaction of individual work-items
are coalesced such that the needed memory can be
fetched by a single memory transaction. To mini-
mize the number of memory transactions, it is thus
important to write kernels, such that nearby work-
items which are scheduled in the same warp, will
access memory in the same memory region. Pre-
vious architectures had strict rules for how data
accesses should be distributed. If simultaneous
operations on memory from a warp was out of se-
quence on such a device, all the operations was
performed as separate memory transactions. The
same would happen if accesses were not aligned
correctly. With the Fermi architecture, accesses are
cached such that out of order accesses can be coa-
lesced into single transactions and misalignments
can be handled as long as they do not cross 128 byte
boundaries. If a segment of 32 bytes are accessed
such that this access overlap two physical 32-byte

Snttp://developer.download.nvidia.com/compute/
cuda/CUDA_Occupancy_calculator.xls

AN OPENCL BACK-END FOR ACCELERATE

segments, the 64-byte segment containing both of
them are loaded from global memory instead.

These considerations are explained in detail in
“The CUDA C Programming Guide” by NVIDIA
[NVI10] and the guide “AMD Accelerated Parallel
Processing OpenCL™” [Adv11] covers the same
concepts for GPU devices by AMD.

3 Accelerate

Accelerate [Lee+09; Cha+11] is an array program-
ming language embedded in Haskell, providing
a purely functional, type safe interface to GPGPU
programming. It is a code-generating domain spe-
cific language (DSL), that uses Haskell primitives
to structure and specify the programs written in
the DSL. For instance, you can use Haskell let-
bindings and A-expressions either in the Haskell
level or in the level of the embedded language. As
an example, the following Accelerate function spec-
ifies how to compute a sum of an Accelerate array
on the GPU:

sum :: (IsNum e, Elt e)

=> Array DIM1 e

-> Acc (Array DIMO e)
sum xs = fold (+) O (use xs)

This has many resemblances to the equivalent pro-
gram working on Haskells built-in list type:

[e] > [e] -> e
foldl (+) O xs

sum ::
sum Xs =

I'will refer back to this example in the following sec-
tions where I explain the architecture of Accelerate.
For now, it should be enough to say that members
of the type class E1t are legal Accelerate array ele-
ments, and that the types of Accelerates arrays are
shape polymorphic. An array of type Array DIM1
Float is a vector of floating point values. The use
function doesn’t represent any computation per se,
but indicates that the argument array should be
moved from host-memory to GPU-memory.

3.1 The front-end

In Accelerate, as shown in the example above,
you write code using Haskell structures such as

let-bindings and A-expressions, like (+) above,
and higher-order functions such as map, fold and
zipWith. These programs are not executed directly,
but represents term-trees. It is the task of the front-
end to build these term trees and prepare them for
execution by the back-end.

Term-tree representation

Initially Accelerate constructs a term tree that is rep-
resented using higher-order abstract syntax (HOAS).
With a first order abstract syntax, uses of A-bound
variables would normally be represented by stor-
ing an identifier both at binding and use-sites. Ac-
celerates HOAS representation, represents these
relationships between A-binders and variable uses
by Haskell A-expressions. The implication is that
we get a nameless structure where we can use the
same syntax for lambda-abstractions in both the
surrounding Haskell program, and in the embed-
ded DSL.

The initial term tree generated by the sum func-
tion above, would turn into the following HOAS
term tree:

sum :: PreAcc Acc (Array DIMO Float)
sum xs = Fold add (Const 0) (Use xs)
where
add = \x y -> PrimAdd float
‘PrimApp¢ tup2 (x, y)
float = FloatingNumType (TypeFloat ...)
tup2 (a, b) = Tuple (NilTup ‘SnocTup‘ a

‘SnocTup‘ b)

The important part regarding the HOAS representa-
tion, is that the addition function is represented by
a Haskell function where its parameters are used
exactly as in Haskell. This makes this representa-
tion easy to use for human beings, but when it has
to be used in the code-generator, this representa-
tion is awkward. To deal with this, the Accelerate
front-end converts the HOAS term trees into an
equivalent representation, where uses of function-
parameters are instead represented with de Bruijn
indices. In this style, a lambda expression does not
mention the variable it binds, instead each use of a
variable is represented by a number signifying how
many binders are between the actual binding site.

AN OPENCL BACK-END FOR ACCELERATE

In the following example, the variable z is bound
by the outermost binder, and thus the number of
binders between the x and its binding-place is one
(represented as a Peano number).

sum = Fold add (Const 0) (Use xs)
where

add = (Lam (Lam

(Body (PrimAdd float
‘PrimApp‘ tup2 (x, y)
))))

x = Var (Succldx Zeroldx)

y = Var Zeroldx

float = FloatingNumType (TypeFloat ..)

Haskell as Meta-language

When constructing the term trees, Haskell condi-
tionals, higher order functions and other program-
ming structures can be used to generate Accelerate
term trees. Thus, these constructs serves as a meta-
language for Accelerate. This can be useful, for
instance to unroll loops executed on the device or
pre-compute constant terms.

Recovering sharing

Using let-bindings and A-expressions, program-
mers can reuse the result of a computation in sev-
eral places without computing it twice. When a let-
binding is used in an Accelerate program though,
the result is a term tree where the sharing intended
by the let-binding is discarded.

To recover from this problem a technique first
mentioned by Andy Gill [Gil09], is used in
Accelerate to find sub-expressions of the term
tree that originated from the same binding site.
This technique uses the GHC-specific module
System.Mem.StableName, which makes it possible
to retrieve a key for each Haskell thunk by the func-
tion makeStableName :: a -> I0 (StableName
a). If two such keys are identical, they were gen-
erated from the same object, but the opposite is
not usually true, because memory objects might be
moved around by the garbage collector between
two calls to makeStableName. To identify that
two sub-expressions originates from the same let-
binding, a map is constructed of all sub-expression

of the term-tree, indexed by their keys. If two sub-
expressions share the same StableName, they origi-
nated from the same binder.

As the StableName of an object can change, the
problem of work duplication is only reduced and
thus still occurs. Also, this can only recover values
bound by let-bindings and A-expresssions, but the
A-expressions are not turned into GPU-functions.
As explained in [MM10], this is undesirable, as the
same A-expression might be issued plenty of times
by a single kernel, thus leading to code explosion.
The article on Nikola by Geoffrey Mainland also
describes how A-sharing can be recovered.

Array-representation

When introducing the sum example above, I
briefly mentioned that Accelerates array type was
parametrised over its dimensionality. This means
that Arrays are shape-polymorphic. This idea is
taken from the Repa array framework [Kel+10].
Regular Haskell arrays are also shape-polymorphic,
the main difference is that regular Haskell arrays
are indexed by tuples, whereas Accelerate uses
snoc-lists. That is, lists where cons-operations at-
taches elements to the end instead of the beginning.
This is useful, as arrays are represented in row-
mayor order and thus increasing the second index
of a rank 2 array more frequently than the first in-
dex is more cache-friendly. That is, snoc presents
array indices in the normal order (where rows are
first) while giving easy access to most frequently
updated index (the column index).

Using a list-representation for indices, operations
can also be made shape-polymorphic.

The Accelerate snoc lists are defined by:

data Z = Z

data tail :. head = tail :. head

Where Z serves the purpose of nil and represents
a rank-0 dimensionality (a scalar) and the snoc-
operator : . adds a dimension. With these we can
understand the type of the fold-operator used in
the sum-example:

AN OPENCL BACK-END FOR ACCELERATE

fold :: (Shape ix, Elt a)
=> (Exp a -> Exp a -> Exp a)
-> Exp a
-> Acc (Array (ix :.
-> Acc (Array ix a)

Int) a)

The input array has a shape that at least are rank-
1, which is reduced by one dimension using the
operation specified as the first argument. This oper-
ation is assumed to be associative, as it would not
be possible to parallelise work if the operation was
to be applied from left-to-right or right-to-left. The
values of type Exp a are expressions in the HOAS
term tree, with value-type a.

This representation also makes it possible to
write other interesting array-operations. Acceler-
ate for instance provides a replicate-function that
allows an array of any dimensionality to be repli-
cated in arbitrary new dimensions.

Host arrays

Arrays on the host are represented as unboxed ar-
rays, where all elements are placed in a continuous
memory region. This is a satisfiable way storing
arrays over primitive types, as they do not have
the storage overhead of boxed arrays and can be
mapped directly to C-arrays compatible with the
CUDA back-end. The drawback of unboxed arrays
is that when evaluating one of them, all elements of
the array are forced to be evaluated. As host-arrays
are passed directly to a back-end, which often will
need to copy the entire array to other devices, this
is not a problem, we will have to fully evaluate the
elements nonetheless.

Arrays over tuples, could be stored in the same
way as for primitive values, but instead they are
stored as pairs of arrays. This is due to alignment
inefficiencies that can occur using such a represen-
tation. This problem, and how it is handled will be
explained in detail in Section 4.3.

To make the array representation dynamic in
terms of element types, type families are used. An
introduction to type families are found in [KPS10],
but they are basically a way of providing functions
on the type-level and adding associated data type
definitions to type class instances. Part of the type
class is depicted her:

class ArrayElt e where
type ArrayPtrs e

indexArr :: ArrayData e -> Int -> e
ptrsOfArr :: ArrayData e -> ArrayPtrs e
...

Elements e of this type class, are those who can
be used as array elements in Accelerate arrays (the
Elt type class mentioned previously is only sug-
aring some of the complexity away). The type Ar-
rayPtrs e is then given a concrete type for each
element type, making it possible to do this differ-
entiation in representation.

3.2 The CUDA back-end

Unexecuted accelerate programs are represented
as values of type Array a => Acc a. To obtain the
array a they are executed by one of several back-
ends. The current version of Accelerate provides
a CUDA back-end and a reference back-end that
executes the accelerate programs directly on the
CPU. A back-end for LLVM should also be in the
works.

The CUDA back-end is structured in three parts:
code-generation, memory management and exe-
cution. I will detail each of these in the following
sections.

Host—device data transfer

As mentioned when introducing the sum example
program, the programmer is obligated to insert use
around arrays that are used in Accelerate expres-
sions. These use statements are used to discover
which input arrays needs to be transferred to the
device, even before code generation. These trans-
fers are done simultaneously with code-generation
and kernel compilation, since host-device transfers
are limited by the speed of the PCI Express bus (see
section 2.3). Thus hiding the latency of memory
transfers somewhat.

Code-generation

For each of the collective array operations of Ac-
celerate, a static skeleton of the kernel code is pro-
vided. The skeleton is parametrised over the struc-

AN OPENCL BACK-END FOR ACCELERATE

__global__ void map (ArrOut d_out, const Arr
const Ix gridSize
const Ix globalld
for (Ix idx = globalld; idx < shape; idx

In0 d_in0, const Ix shape) {

blockDim.x * gridDim.x;
blockDim.x * blockIdx.x + threadIdx.x;

+= gridSize) {

set(d_out, idx, apply(get0(d_in0, idx)));

X
Figure 3: CUDA skeleton ke

ture of the input and output arrays. As an example,
the CUDA kernel code for the map operation is
shown in Figure 3. To instantiate this kernel for a
particular input and output type, the types of the
input array (ArrIn0) and output array (ArrQut), as
well as type of individual input elements (TyIn0)
and output elements (TyOut) must be defined. In
addition three operation working on these types
must be defined: set, get0 and apply.

The getter and setter methods retrieves values of
type TyInO from the input array and writes values
of type TyOut to the output array, respectively. The
apply function performs the actual mapping, and
thus maps inputs of type TyInO to elements of type
TyOut. That is, apply performs the operation of the
A-abstraction mapped over the array.

In the example, a single work-item applies the
function to more than one element in the array;,
striding over the array until all array items are cov-
ered. This is done, as CUDA devices can limit the
amount of allowed number of work groups and
work items per work group, thus limiting the num-
ber of work-items. It should be noted that this
limitation is only specified for CUDA, the OpenCL
specification [Khr10] places no limitations on the
maximum allowed work groups in an NDRange.

3.3 Execution

Execution of kernels are scheduled by traversing
the term tree bottom up executing one kernel at
a time. Blocking until each is kernel is finished
executing. The Fermi architecture supports simul-
taneous execution of several kernels, and doing so
can keep the GPU occupied, hiding latency due to
memory transactions (see section 2.3). This could
be optimized by constructing a dependency graph
over the kernel outputs, such that all kernels with-
out unmet dependencies can be scheduled simul-

10

rnel for the map operation.

taneously. This would complicate the back-end
further, as manual synchronization points would
have to be inserted.

4 Implementation notes

The OpenCL back-end I have developed for Ac-
celerate is a modification of the CUDA back-end.
Some parts, for instance the code-generator for ex-
pressions, mapped seamlessly between the two
frameworks, other modifications have been more
involved. In this section I will focus on the part of
the transition to OpenCL that was required larger
modifications of the back-end structure.

4.1 Interfacing with OpenCL

A Haskell interface to OpenCL is a necessary step
towards an OpenCL back-end. My hopencl module
was initially based on work by Matthew William
Cox* and certain modules still contain some of his
code. I have removed some inefficiencies from the
parts of the library he had implemented, such as
always requesting all information about devices
and platform by many separate API calls, each API
call are relatively slow and most of the information
are rarely needed. With his the programmer was
limited to querying information about the particu-
lar OpenCL platform and its devices, so that might
have been his goal with the binding.

His version of the module was heavily limited,
as it did not support creation, compilation or exe-
cution of kernel programs, allocation and manip-
ulation of memory objects, or enqueuing synchro-
nization barriers on the command queues. I have
extended on this basic implementation, to support

4The version I based my module on is found at
http:/ /gitorious.org/hopencl/

AN OPENCL BACK-EN

these necessary operations of the OpenCL frame-
work. It is still far from a full implementation of the
OpenCL standard, though sufficient for the needs
of Accelerate.

When programming OpenCL a minimum set of
objects are always needed to execute code on the
GPU, at least context, platform, device, command
queue and kernel objects are necessary. In addi-
tion, memory objects are needed to transfer data
between the host and the device. Instead of requir-
ing the user to manually deallocate these objects,
I'have used functionality found in the Haskell for-
eign function interface, to attach finalisers to these
objects, such that they are released as soon as the
garbage collector determines they are out of scope.
This is done by using ForeignPtrs and associated
methods, newForeignPtr and withForeignPtr.

Memory objects are parametrized with a phan-
tom type signifying the element type of arrays. This
makes it possible to ensure that the values read or
written to such arrays are of the correct types. This
would also make it possible to type check kernel
arguments in future versions of the library where
OpenCL kernels are analyzed by the Haskell inter-
face.

Alternatives

Other Haskell OpenCL interfaces exists. Open-
CLRaw? is a package which contains bindings for
the complete OpenCL specification, version 1.0.
The bindings has though not been updated to the
current version, version 1.1 of the specification. As
the name suggests, OpenCLRaw, is a raw low-level
import of the specification. Thus, only providing
limited type safety and no automatised memory
deallocation.

In January 2011, Benedict R. Gaster from AMD
presented a library made internally at AMD to sup-
port OpenCL programming within Haskell [Gas11].
Their library is a low-level framework when com-
pared to Nikola, Obsidian and Accelerate, and has
most in common with my hopencl library, which
it could have replaced. In addition to the function-
ality I have provided with hopencl, they also pro-
vide a some what higher level interface, where they

Shttp:/ /hackage.haskell.org/package/OpenCLRaw

11

D FOR ACCELERATE

use a reader-monad to avoid passing the OpenCL
context, device list, command queues etc. around.
Further more, they have created a OpenCL quasi-
quoter for writing kernels directly within Haskell.
This OpenCL interface would be the ideal way to
interface with OpenCL from Accelerate, but as it
now they are still preparing for releasing it on Hack-
age, and I therefore had to develop my own library.
When it is released, it might be beneficial to move to
this OpenCL interface, to reduce the maintenance
work required for having several OpenCL mod-
ules.

4.2 Rewriting CUDA kernels in OpenCL

CUDA C, the kernel language of CUDA, is actually
based on C++ and not C. In contrast OpenCL C is
based on the C99 standard. This means the tran-
sition from the CUDA back-end to OpenCL back-
end is not as pleasant as it could be. C++ supports
both ad-hoc polymorphism (function overloading)
and parametric polymorphism through templates
which is not found in C, and both are used in the
implementation of the CUDA back-end to write in-
dex transformations that operates on indexes of any
dimensionality. It is for instance necessary when
looping through a 2-dimensional array using a

To tackle the problem of not having parametric
polymorphism, I have created concrete instantia-
tions of the functions for each of its possible inputs
up to some maximum dimensionality. At the time
of code generation, the actual dimensionality of the
arrays are known. Therefore we can solve the prob-
lem of not having ad-hoc polymorphism by letting
the code generator select the correct overloading of
the function for us.

Another way of handling this, would be to dy-
namically generate the exact required function in
the code-generator. This would indeed be possi-
ble, but the Accelerate code-generator is written
by entering abstract syntax trees of generated code
directly, which is unpleasant to work with. The
amount of code written in this way should be lim-
ited as much as possible, as making even small
changes later on will require a lot of work.

Using this redirection approach should not incur
any performance problems, as these functions are
easily inlined by the kernel compiler. An approach

AN OPENCL BACK-END FOR ACCELERATE

where an extra dimensionality-argument are given
to kernels, and the correct implementation is se-
lected at run-time would incur more over head, as
conditionals are expensive on SIMD architectures.

4.3 Handling arrays of tuples

The Accelerate implementation for CUDA handles
arrays over tuples, by unzipping the arrays and
storing one array for each element type of the tu-
ple. For instance, a pair of floats is stored as two
float arrays. This is done to avoid performance
degradation due to misaligning the elements in
memory, which could happen if they were stored
as an array of structs. As explained in section 2.3,
even Fermi GPUs are sensitive to such problems,
if the structs crosses the wrong boundaries (e.g., a
128 byte boundaries). The structs could of course
be padded to avoid alignment errors, but then the
amount of unused data transferred to and from the
GPU would be drastically increased.

The approach of using a struct with arrays, as the
CUDA back-end, does not fit with OpenCL. With
CUDA, pointers to device arrays can be given to
kernels by enclosing them within a struct. Looking
back at the map example on Figure 3, if the input
to the map operation is a tuple of floats, we define
ArrIn0 as the following struct:

typedef struct { float* al; float* a0; }

It is then possible to transfer these arrays two arrays
independently, and then hand over this struct, con-
taining the two device pointers, to the kernel. This
is not possible with OpenCL, where all memory ob-
jects needed in a kernel, must be given as a direct ar-
guments to the kernel through the c1SetKernelArg
function. There are two possible solutions:

The first possible solution is to remove the indi-
rection of the struct, by giving each array of
the struct as a separate argument of the kernel.
This would indeed be possible, but then the
number of kernel arguments will be variable
depending on the element types. We would
not be able to store the kernels as static algo-
rithmic skeletons, where only a few surround-
ing definitions are variable. We would again

12

be facing the problem of having to write large
amounts of C-code through its abstract syntax,
rather than its actual syntax.

The second alternative is to encode tuples of ar-
rays within a single OpenCL array, but in a
way that doesn’t have performance problems
caused by alignment errors. This can be done
by placing two arrays after each other in the
same OpenCL memory object, making sure
that all arrays starts at correctly aligned in-
dexes.

The latter approach is more prone to errors, but
is feasible to implement under the circumstances,
so it is what I have selected. I have not mad a
full implementation of this feature, because of time
constraint, but a prototype implementation shows
that it is possible.

With this approach an array of 2-tuples is thus
represented as an array of the first elements fol-
lowed by an array of second elements, both placed
inside the same OpenCL memory object. The sec-
ond array must be placed such that eventual align-
ment restrictions are obeyed. The approach taken
by OpenCL is to place all memory objects at a 256
byte boundary [NVI09a], thus by placing the sec-
ond array at a similar boundary (a multiple of 256
byte distance from the beginning of the memory
object), we will avoid inefficiencies due to align-
ment.

The selected solution has other implications
though, to map host arrays to device array refer-
ences, I use a table indexed by host pointers. As
host arrays are represented using Haskell type fam-
ilies (see section 3.1), where only pointers are de-
fined for elements with scalar elements, we are
unable to use these pointers to index the table of
composite arrays. This was not a problem with
the CUDA back-end because each device memory
object could only be accessed through the pointer
of a single host array.

I therefore suggest that the ArrayElt type class
(see Section 3.1) is extended, with methods for com-
paring and acquiring array hashes:

egArrayData : ArrayData e
-> ArrayData e

-> Bool

AN OPENCL BACK-END FOR ACCELERATE

hashArrayData :: ArrayData e -> Int64

It will then be possible to store arrays of arbitrary
types in a hash table. Implementing these func-
tions are easy for the primitive element types as the
equality comparison can map directly to compar-
ing host-pointers and the hash could be obtained
by casting the host pointer to an integer. For tuples,
these functions can map directly to the values ob-
tained from calling down to the sub-arrays. These
changes are made in my prototype implementation.
Currently, the size of arrays are represented sev-
eral times and often passed along to device alloca-
tion and accessor functions. Instead this size could
be saved as part of the arrays, I will therefore also
suggest that the ArrayElt type class is extended
with a function for obtaining the size of arrays.

sizeArrayData :: ArrayData e -> Int

This operation is also necessary for certain mem-
ory access functions, for instance when indexing
into an array, it now necessary to know the length
of the first array in a memory object to determine
where the second array begins. Again, this function
maps directly to the underlying array representa-
tion and is thus not problematic to implement.

4.4 Use of texture buffers

A similar problem to the above occurs in CUDA
back-end, when accessing arrays through an index-
ing operator inside expression code. Such arbitrary
look-ups are done by placing the indexed array in a
texture buffer and letting the kernel obtain the val-
ues from there [Cha+11]. This is possible, as texture
buffers does not need to be specified as a kernel
argument, and the binding can thus be established
in without going through this interface.

This feature of handing over arrays without
going through kernel arguments, are not pos-
sible in OpenCL. Texture buffers (called image-
objects in OpenCL) must also be passed through
clSetKernelArg, as any other kernel argument.

The possible solutions for implementing the in-
dexing operator is the same the above: adding a
variable number of arguments to functions or al-
ways passing a static argument array which can
contain arbitrary arrays that needs to be indexed.

I have not made any attempt at implementing,
though it should be possible to adapt the solution
from above to also handle this operation.

4.5 Code-generation using quasi-quotation

As noticed through the previous sections, program-
ming the Accelerate code-generator through the
abstract syntax heavily limits which solutions are
feasible for the encountered problems. The ker-
nel code for the Accelerate fold-function would
require outrageous amounts of code, if it should be
implemented by typing in the abstract syntax tree.

A better alternative to writing the abstract syn-
tax directly, and still having the possibility of dy-
namically changing the structure of generated code
(such as the number of arguments), is to use a quasi-
quoter. Geoffrey Mainland has extended GHC
with this functionality [Mai07] and developed C
and CUDA quasi-quoters which he uses for Nikola
[MM10].

As mentioned in Section 4.1, AMD have devel-
oped an OpenCL quasi-quoter which could be used.
It is though not released yet and I therefore tried
to develop my own, based on Mainlands C and
CUDA quasi-quoters. This is not a hard task, as the
only neccessary changes from C99 to OpenCL C, is
the addition of __local, __constant and __global
qualifiers. A problem occured though, as the C
quasi-quoter and Accelerate use two different C
libraries for their AST definitions and are thus con-
flicting. They use different abstract syntax defini-
tions. It would thus require a complete rewrite,
also of the expression code-generator to obtain to
implement this.

Based on which of the C libraries that AMDs
quasi-quoter have originated from, using it for Ac-
celerate can be either a small or large task.

5 Evaluation

In this section I will discuss the performance on
some simple Accelerate programs. As the complete
Accelerate language have not been implemented,
these programs are not realistic examples of what
you might use Accelerate for. In particular, the lack
of array of tuples and the indexing-operator, makes

13

AN OPENCL BACK-END FOR ACCELERATE

it impossible to run the Black-Scholes option pric-
ing and sparse-matrix vector multiplication exam-
ples, which were used to measure the performance
of the CUDA back-end in [Cha+11].

I have executed all benchmarks on a computer
equipped with a Tesla C2050, containing 448
streaming processors of 1150 Mhz each. This is
hosted by two quad-core Intel Xeon® X5550 CPUs
X5550 (64-bit, 2.66 GHz) with hyper-threading and
24 GB of memory.

All measurements have been done using the
Haskell Criterion package ® by Bryan O’Sullivan
and each measurement is the mean over 100 re-
peated experiments. Each example program has
been tested with input arrays ranging from hav-
ing 2 million to 20 million single precision floating
point values. The graphs on Figure 4 contain error
bars on each measurement.

5.1 Benchmarks

I have benchmarked the OpenCL back-end against
the CUDA back-end, as the goal of the OpenCL
back-end is to get a back-end with equal perfor-
mance of the CUDA back-end when executed on
GPU hardware, but with the ability to move com-
putations freely to other platforms than NVIDIAs
CUDA architecture. I have disabled the persistent
cache of compiled kernels in the CUDA back-end,
to make a fair comparison against the OpenCL
back-end where this functionality was not imple-
mented. All benchmarks thus executes all stages of
both the Accelerate front-end and back-ends.

I have executed benchmarks on four different
programs. Three of them are implemented as
single kernels, namely: map-plus, which adds a
constant expression to all elements of an array,
fold-sum which calculates the sum over an array;,
and saxpy which uses zipWith to calculate the stan-
dard function oz + y of the Basic Linear Algebra
Subprograms (BLAS) package (the saxpy program
is shown in Figure 5. The results of executing these
three programs are shown on Figure 4(a), Figure
4(b) and Figure 4(c).

The results are not particularly satisfying, as the
CUDA versions of the programs performs almost

bhttp:/ /hackage.haskell.org/package/ criterion

14

Time (ms)

Time (ms)

Time (ms)

Time (ms)

60 80 100 120 140

40

TTT[T T T[T T T[T T T[T T [TTT]

20

60 80 100

Dl I LU\ L L L L B L

200 300 400 500

100

200

150

100
\xwxw|xwxw|xwxw|xwxw|xwx

map-plus

T T A T N N S N R
2 1 6 8 10 12 1 16 18 20

Number of elements (millions)

(@)

fold-sum

lllllllllllllllllllllllllllllllllll
1 6 8 10 12 14 16 18 20

Number of elements (millions)

(b)

saxpy

[TT T[T T T[T T T[T T T [TTT

1 6 8 10 12 14 16 18 20

Number of elements (millions)

(©

dotp

'_.

o

1 6 8 10 12 14 16 18 20

Number of elements (millions)

(d)
Figure 4

— OpenCL

—= CUDA

. = OpenCL

© == CUDA

— OpenCL

—= CUDA

— OpenCL

—= CUDA

AN OPENCL BACK-END FOR ACCELERATE

saxpy :: Float -> Vector Float
-> Vector Float -> Acc (Vector Float)
Saxpy a Xs ys =
zipWith (\x y -> constant a * x + y)
(use xs) (use ys)

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)
dotp xs ys =
let xs’ = use xs
ys’ = use ys

in fold (+) O (zipWith (%) xs’ ys?’)

Figure 5: Accelerate programs for computing the SAXPY-
operation and vector dot product.

an order of magnitude better than the OpenCL ver-
sion of the same kernels. When problem size in-
creases the difference between the OpenCL and
CUDA back-ends gets even more significant.

To test how the back-end behaves when several
kernels has to be invoked, I have also benchmarked
a program computing the vector dot product of
two single-precision floating point vectors. The
program is shown in Figure 5 The results of this ex-
periment is shown in Figure 4(d). Again the CUDA
version beats the OpenCL back-end by almost an
order of magnitude.

5.2 Discussion

The similarity and amount of shared code between
the CUDA and OpenCL back-end limits the num-
ber things that can have caused the increased prob-
lems in running time. The code-generator and
front-end of both back-ends are almost identical,
these parts should therefore not cause any extra
work for OpenCL back-end. The implemented ker-
nel functions for the tested kernels are also close to
identical. Especially is it worth to notice that almost
no changes were necessary between the CUDA
and OpenCL version of the zipWith kernel, even
though the SAXPY program, which only executes
this kernel, is the one with largest performance dif-
ferences between the CUDA and OpenCL versions.
The amount of host-device data-movement is also
the same for both instances.

In the OpenCL back-end I have limited myself

from optimizing the launch parameters for the ker-
nels, thus I have only selected legal grid and work-
group sizes and not used time on optimizing them
such that to increase occupancy and decrease the
amount of memory transfers between global and
local memory. This might be the explanation for
the observed performance difficulties.

Alternatively, there might be differences in the
implementation of OpenCL and CUDA architec-
ture, but I would not think that such large differ-
ences should be observed.

6 Related Work

There has recently been shown quite some inter-
est in Haskell-embedded DSLs for programming
GPGPUs. In addition to Accelerate, there has been
released two other frameworks for GPGPU pro-
gramming, namely Obsidian [Svell] and Nikola
[MM10], both targeting the CUDA platform.

6.1 Obsidian

Obsidian [Svell] is an array manipulation lan-
guage, for GPGPU programming embedded as a
DSL in Haskell. The language provides a set of ar-
ray operations, which can be composed to specify
a CUDA kernel executed on a device. The ker-
nels which one can write this way are limited to
1-dimensional arrays with at most 512 elements.
The latter constraint are due to the maximum al-
lowed items in a work-group, because Obsidian are
always executed as a single work-group. This is a
rather hard limitation, and is probably due to the
complexity of code-generation when all composed
operations are to be performed the same operation.
The use of algorithmic skeletons in Accelerate, has
the property that each of them can be written stati-
cally and be optimized independently.

To obtain maximum parallelism in Obsidian pro-
grams, it is some times necessary to add explicit
synchronization steps in between composed opera-
tions, such that results are written to the compute
units shared memory. This need effects that pro-
grammer, as he needs a deep understanding of how
each Obsidian construct maps to generated code,
as he otherwise might not get the expected speed
up due to parallelism.

15

AN OPENCL BACK-END FOR ACCELERATE

6.2 Nikola

Nikola [MM10] is like Obsidian an Accelerate a
code-generating DSL, for the CUDA platform em-
bedded within Haskell. Nikola programs speci-
fies term trees much in the same style of Accel-
erate, where sharing introduced with Haskell let-
bindings can be recovered in the same way as
done in Accelerate (see Section 3.1), in addition
A-abstractions are recovered to avoid code explo-
sion when the same A-abstraction is issued mul-
tiple times. Many of the same constraints as for
Accelerate programs, applies to Nikola programs.
For instance, closures are disallowed and the only
higher-order functions are those built in to the li-
brary.

The CUDA back-end of Nikola is however quite
different than the one of Accelerate. Nikola pro-
grams are like Obsidian limited to a single gener-
ated kernel function. This limitation makes some
programs in-expressible with Nikola. When ker-
nels are executed on the GPU, the amount of mem-
ory needed for output has to be known before hand.
Thus, the values of all parameters influencing the
size of the output arrays must be known before-
hand and collapsing two computations into a sin-
gle kernel might be troublesome, as the output of
the first operation might determine the size of the
output of the next operation.

These limitations are somewhat alleviated by the
fact that Nikola programs can embed CUDA kernel
code directly, thus making it possible to get around
the limitations of Nikola. This is made possible
through a quasi-quotation library and the use of
Template Haskell. Template Haskell also allows
CUDA programs to be compiled on either Haskell
compile-time or at runtime.

6.3 CUDA x86

A motivation for this project has been the possibil-
ity of executing the same Accelerate programs on
both x86/x86_64 hardware development machines
and on Fermi GPU equipped computers. This will
also be possible in the future through the use of the
CUDA backend, as The Portland Group is develop-
ing x86 implementation of CUDA 7 which should
be released this year.

"nttp://wuw.pgroup.com/resources/cuda-x86.htm

7 Future Work

7.1 Implementation and optimization

The current version of the OpenCL back-end does
not support all accelerate operations. Specifically
are segmented fold-operations and all scan oper-
ations not handled in my back-end and OpenCL
kernel skeletons remains to be implemented.

To simplify the task of developing the back-end,
I have also disabled some features of the CUDA
back-end before transitioning it to OpenCL. For
instance, the CUDA back-end stores compiled ker-
nels in a persistent store on the disk, such that com-
pilation is not necessary when the same program
are executed several times.

7.2 Support out of order scheduling

Modern GPGPU devices (such as Fermi based
GPUs) supports simultaneous execution of several
kernel functions. Currently, both the CUDA and
the OpenCL back-ends executes kernels in a block-
ing manér. Creating a dependency graph between
kernel results, would make it possible to schedule
several kernels for a single device. This has some
complications though, as synchronization now has
to be done manually by inserting barriers to the
device command queue.

7.3 Scheduling kernels for several devices

Large super computers are being built using GPU
hardware, the primary compute power of both the
fastest existing super computer and number three
on the top500 list of super computers®, are NVIDIA
Fermi GPUs. These super computers are of course
clusters of many independent machines, but sev-
eral GPUs are present in each machine. It would
be a worthwhile extension to support execution of
Accelerate programs using several GPUs simulta-
neously.

The Fermi equipped machine that have been
available for me is equipped with four NVIDIA
Tesla C2050 GPUs, but my implementation of the
OpenCL back-end only executed kernels on one of
them at a time.

8http: / /www.top500.org/

16

AN OPENCL BACK-END FOR ACCELERATE

7.4 Quasi-quotation based
code-generation

As explained in Section 4.5, the Accelerate code-
generator would be improved by building it with
a quasi-quoter instead of writing abstract syntax
directly. This would make the development and
optimization of the Accelerate framework easier
and more efficient. Many of the decisions made
for the OpenCL back-end should be reconsidered if
such a change was made, as their might be easier or
more efficient ways by the use of quasi-quotation.

7.5 Task partitioning and device selection

OpenCL supports programming of heterogenous
systems, systems with several kinds of processors,
each with their own OpenCL implementation’. Se-
lecting the correct device for a given problem has a
noticeable impact [GO11]. Currently, the implemen-
tation does only make little effort to select the most
appropriate effort and does not provide the user
of the framework a way for making any cleverer
selection. In the paper “A Static Task Partition-
ing Approach for Heterogeneous Systems Using
OpenCL” [GO11] an approach for selecting devices
for different parts of a computation is presented.
Improving the device selection-algorithm of the
presented OpenCL-back-end for Accelerate would
give a substantial performance improvement. It
currently just selects the device with the highest
number of FLOPS but as explained in [GO11], this
is not all that matters. For example, memory trans-
fer speed is also a concern.

9For running multiple OpenCL frameworks side-by-side
on the same machine, look at the OpenCL extension called
cl_khr_icd

8 Conclusion

I have presented a new prototype back-end for the
Accelerate language, that targets the OpenCL plat-
form. This new back-end makes it possible to ex-
ecute Accelerate code on all OpenCL enabled de-
vices, such as GPUs, x86/x86_64 CPUs and Cell
processors. Previously, only NVIDIA CUDA de-
vices were targeted.

When executed on similar hardware, the new
prototype OpenCL back-end does not perform as
good as the CUDA back-end, when executed on
similar hardware. I have limited my self from per-
formance tuning the back-end and I thus expect
that performance profiling will show that better ker-
nel launch parameters, can be selected such that the
GPU occupancy will increase and/or the amount
of memory transactions decreased. Other possible
explanations have been ruled out by the fact that
the CUDA and OpenCL back-end shares much of
their functionality and the generated kernel code
are largely similar.

Together with the Accelerate back-end, I have
presented a Haskell binding for Accelerate. The
binding enables kernel compilation, scheduling
and memory management of OpenCL programs.

My contributions also include a set of suggested
changes to the Accelerate framework. Most impor-
tantly, I suggest that the code-generator for both
the CUDA and the OpenCL back-end is modified
to use quasi-quotation. This will make the devel-
opment easier, and makes certain alternative im-
plementation strategies feasible. I also suggest that
A-sharing in the style of Mainland et al. [MM10] is
implemented.

17

AN OPENCL BACK-END FOR ACCELERATE

9 Bibliography

[Adv11]

[Cha+11]

[Gas11]

[Gil09]

[GO11]

[Har05]

[Har09]

[HLO4]

[Kel+10]

Advanced Micro Devices. AMD Acceler-
ated Parallel Processing OpenCL™. 2011.

M.M.T. Chakravarty et al. “Accelerat-
ing Haskell array codes with multicore
GPUs". In: Proceedings of the sixth work-
shop on Declarative aspects of multicore
programming. ACM. 2011, pp. 3-14.

Benedict R. Gaster. Making OpenCL™
Simple With Haskell. 2011. URL:
http://developer.amd. com/zones/
OpenCLZone / publications / assets/
MakingOpenCLSimplewithHaskell
pdf.

A. Gill. “Type-safe observable sharing
in Haskell”. In: Proceedings of the 2nd
ACM SIGPLAN symposium on Haskell.
ACM. 2009, pp. 117-128.

Dominik Grewe and Michael O’Boyle.
“A Static Task Partitioning Approach
for Heterogeneous Systems Using
OpenCL”. In: Compiler Construction. Ed.
by Jens Knoop. Vol. 6601. Lecture Notes
in Computer Science. Berlin, Heidel-
berg: Springer Berlin / Heidelberg,
2011. Chap. 16, pp. 286-305. ISBN: 978-
3-642-19860-1.

M. Harris. “Mapping computational
concepts to GPUs”. In: ACM SIG-
GRAPH 2005 Courses. ACM. 2005, 50—
es.

Matt Harvey. Experiences porting from
CUDA to OpenCL. 2009. URL: http :
/ /[www . uk /
disco / mew20 / presentations / GPU _
MattHarvey.pdf.

K. Hillesland and A. Lastra. “GPU
floating-point paranoia”. In: Proceed-
ings of GP2 (2004).

G. Keller et al. “Regular, shape-
polymorphic, parallel arrays in
Haskell”. In: Proceedings of the 15th
ACM SIGPLAN international conference

cse . scitech . ac .

18

[Khr10]

[KPS10]

[Lee+09]

[Mai07]

[MM10]

[NVI09a]

[NVIO9b]

[NVI10]

[Svell]

on Functional programming. ACM. 2010,
pp- 261-272.

Khronos OpenCL Working Group. The
OpenCL Specification, Version 1.1, Revi-
sion 36. 2010.

Oleg Kiselyov, Simon Peyton, and Jones
Chung chieh Shan. Fun With Type Func-
tions, Version 3. 2010.

S. Lee et al. “GPU kernels as data-
parallel array computations in Haskell”.
In: Workshop on Exploiting Parallelism us-
ing GPUs and other Hardware-Assisted
Methods (EPAHM 2009). Citeseer. 2009.

G. Mainland. “Why it’s nice to be
quoted: quasiquoting for haskell”. In:
Proceedings of the ACM SIGPLAN work-
shop on Haskell workshop. ACM. 2007,
pp. 73-82.

G. Mainland and G. Morrisett. “Nikola:
embedding compiled GPU functions
in Haskell”. In: Proceedings of the third
ACM Haskell symposium on Haskell.
ACM. 2010, pp. 67-78.

NVIDIA. OpenCL Optimization Webinar.
2009. URL: http : / / developer .
download . nvidia . com / CUDA /
training /NVIDIA _ GPU _ Computing _
Webinars _ Best _ Practises
OpenCL_Programming.pdf.

NVIDIA. Whitepaper: NVIDIA’s Next
Generation CUDA™ Compute Architec-
ture: Fermi™. 2009. URL: http : / /
. com / content / PDF /
fermi_white_papers/NVIDIA_Fermi_
Compute _Architecture_Whitepaper .
pdf.

NVIDIA. The CUDA Programming
Guide, Version 3.2. 2010.

J. Svensson. “Obsidian: GPU Kernel
Programming in Haskell”. In: (2011).

For _

www . nvidia

