
Pricing composable contracts on the GP-GPU

Joakim Ahnfelt-Rønne
Michael Flænø Werk

Department of Computer Science

University of Copenhagen

August 17, 2011

Abstract

We present a language for specifying stochastic processes, called
SPL. We show that SPL can express the price of a range of finan-
cial contracts, including so called exotic options with path depen-
dence and with multiple sources of uncertainty. Jones, Eber and
Seward previously presented a language for writing down finan-
cial contracts in a compositional manner [JES00], and specified a
pricer for these contracts in terms of an abstract financial model
and abstract stochastic processes. For the subset of prices that
do not require nested forecasting, these can be specified in SPL,
and we show an example of how to do this. The ease of writ-
ing a model that matches reality and the speed of computing
the expected price is then highly dependent on the properties of
SPL.

SPL is declarative in the sense that it is agnostic of the com-
putational model. It is designed with the goal of matching the
notation used in mathematical finance, which allows a high level
specification of stochastic processes. The language is embedded
in Haskell, and we have given the language formal semantics in
terms of the probability monad [Gir82], as well as a type system
in terms of Haskell’s type system. We provide an implementation
of SPL that performs Monte Carlo simulation on the GP-GPU,
and we present data indicating that this implementation scales
linearly with the number of available cores.

1

Resumé

Vi præsenterer et sprog kaldet SPL, hvormed man kan specificere
stokastiske processer. Vi viser at SPL kan udtrykke prisen af en
række financielle kontrakter, inklusiv s̊akaldte eksotiske optioner
der er afhængige af værdierne i et tidsinterval og hvor adskillige
kilder til usikkerhed indg̊ar. Jones, Eber og Seward har tidligere
presenteret et sprog hvori man kan skrive financielle kontrakter
ved at sammensætte mindre kontrakter [JES00], og beskrevet
hvordan prisen af disse fastsættes ved hjælp af en abstrakt finan-
ciel model og abstrakte stokastiske processer. Den delmængde af
priser som ikke kræver indlejret estimering af fremtidige værdier
kan beskrives i SPL, og vi viser et eksempel p̊a hvordan dette
kan gøres. Hvor nemt det er at skrive modellen s̊a den passer til
markedet og hvor hurtigt man kan udregne den forventede pris
af kontrakten kommer p̊a den m̊ade til at afhænge meget af hvad
SPL tilbyder.

SPL er deklarativt i den forstand at beregningsmodellen ikke er
synlig i specifikationen af stokastiske processer. Målet har været
at lægge notationen tæt op af den der bliver brugt i finansverde-
nen, for p̊a den m̊ade at gøre sproget tilgængeligt for eksperter
i feltet. Sproget er defineret som et bibliotek til Haskell, og vi
har givet det en formel semantik i form af sansynlighedsmon-
aden [Gir82], samt et typesystem i form af Haskell’s typesystem.
Vi viser en implementation af SPL der laver Monte Carlo simu-
lering p̊a GP-GPU’en og vi præsenterer data der indikerer at
simuleringen skalerer lineært med antallet af multiprocessorer.

2

Contents

1 Introduction 7
1.1 Background . 8

1.1.1 Financial contracts and pricing 8
1.1.2 Pricing methods . 12
1.1.3 Composing contracts 12
1.1.4 GP-GPU and Monte Carlo simulation 15
1.1.5 The problem . 15

1.2 Our solution . 16
1.3 Results . 19
1.4 Acknowledgements . 19
1.5 Preliminaries and notation . 20

2 Common financial contracts 21

3 Composable contracts 23
3.1 Concepts and terminology . 23
3.2 Implementing the abstract pricer 24
3.3 The combinators . 26
3.4 The two versions . 29

4 Goals for a stochastic processes language 32
4.1 Matching the domain . 32

4.1.1 Stochastic processes 33
4.1.2 Distributions . 33

4.2 Composability and reuse . 34
4.2.1 Composable processes for composable pricing 34
4.2.2 Discretization as a separate concern 34

4.3 Supporting a wide range of contract prices 34
4.3.1 Conditionals . 34
4.3.2 Multiple sources of uncertainty 34
4.3.3 Forecasting . 35
4.3.4 Aggregation . 35

4.4 Having clear semantics . 35

3

4.5 Yielding efficient implementations 35

5 Probabilistic functional programming 36
5.1 Discrete distributions . 37
5.2 Symbolic representation . 39
5.3 Stochastic processes . 40
5.4 Monte Carlo simulation . 42
5.5 Summary . 43

6 Array languages targeting GP-GPUs 44

7 A stochastic process language - SPL 46
7.1 Language design . 47

7.1.1 Built-in constructs . 47
7.1.2 Prelude functions . 50
7.1.3 Haskell’s bindings vs. sample and trace 52
7.1.4 Semantics . 52

7.2 Implementing a CC model . 55
7.2.1 Decisions based on the (expected) future 56

8 Implementation 59
8.1 Employed Haskell extensions 60

8.1.1 GADTs . 60
8.1.2 Type families . 62

8.2 High level code . 62
8.2.1 A running example . 64

8.3 Low level code . 65
8.3.1 De Bruijn indexing . 65
8.3.2 Low level syntax tree 68

8.4 Translation from high level to low level code 70
8.4.1 Distributions . 71
8.4.2 Simple lookups . 72
8.4.3 Lookups on accumulating processes 73
8.4.4 Top level functions of arbitrary arity 74
8.4.5 Low level code for the running example 76

8.5 OpenCL device architecture 76
8.6 Translation from low level code to OpenCL code 79

8.6.1 Quasi quotation for C-like languages 79
8.6.2 Preserving (some) typing with phantom types 79
8.6.3 The simple cases of Intermediate 80
8.6.4 The primitive distributions Uniform and Normal . . . 80
8.6.5 The Split and Use constructs 81
8.6.6 The Accumulator loops 81
8.6.7 Wrapping it up . 82

4

8.6.8 OpenCL code for the running example 83
8.7 Execution on the GP-GPU(s) 84

8.7.1 Execution of the kernels 85
8.7.2 Result aggregation . 86

9 Correctness 88
9.1 Test strategy . 88
9.2 Structured language tests . 89
9.3 Pricing tests . 91

9.3.1 Zero coupon discount bond 92
9.3.2 Underlying sanity check 92
9.3.3 European call options 93
9.3.4 Asian call options . 93
9.3.5 Lookback options . 93
9.3.6 Basket options . 94

9.4 Choice based on future value 94
9.5 Summary . 95

10 Benchmarks 96
10.1 Hardware and software configurations 96
10.2 Scalability . 97
10.3 How far can we go . 98
10.4 Scheduling and result gathering overhead 100
10.5 Performance of selected SPL constucts 101

10.5.1 De-nesting of loops . 101
10.5.2 Skip . 102

11 Future work 104

12 Conclusion 106

A Benchmark data 111

B Selected SPL modules 119
B.1 Module Language.SPL . 119
B.2 Module Language.SPL.Syntax 126
B.3 Module Language.SPL.Semantics 128
B.4 Module Language.SPL.Intermediate 130
B.5 Module Language.SPL.OpenCL.Compiler 134
B.6 Module Language.SPL.OpenCL.Runner 142

C Unit test code 146
C.1 Module Language.SPL.Test.UnitTests 146

5

D Pricing test code 150
D.1 Module Language.CC.Test.PricingTest 150
D.2 Module Language.SPL.Test.AsianTest 153
D.3 Module Language.SPL.Test.LookbackTest 154
D.4 Module Language.SPL.Test.BasketTest 156

6

Chapter 1

Introduction

Back in 2000, S. Jones, J-M. Eber and J. Seward [JES00] showed the benefits
of writing financial contract using their domain specific language, which we
will refer to as composable contracts, or CC . CC allows domain experts to
compose a wide range of contract using either cash, predefined observables or
other CC contract as ingredients, written in a syntax close to plain English.

The benefit of doing this is that the contracts become unambiguous by
construction, which in turn makes it feasible to build applications that work
for all of the contracts that can be expressed in the language, rather than
building ad-hoc code for each new type of contract.

We will focus on one such application, namely the pricing of financial
contracts. Part of this work is already done – CC comes with formal valua-
tion semantics that specifies the price of any CC contract in the language.
However, the semantics are abstract in the sense that it’s given in terms of
an abstract stochastic process data type and an abstract financial model.
The stochastic processes are used to model the value of the observables and
the price of the contracts, capturing the uncertainties within. The abstract
model encapsulates those of the financial concepts that may need tuning to
reflect the real world, such as discounting and currency exchange.

In order to provide the stochastic processes and make it possible to
implement financial models, we have developed a separate domain specific
language for stochastic processes called SPL (short for Stochastic Process
Language) and used it to provide an implementation of the CC valuation
semantics. The need for a separate language is due to that, although CC
provides a way to write financial contracts, domain specific knowledge is still
needed to implement the financial model and observables. Our approach to
solve this problem is to allow the model and observables to be specified
in SPL. SPL uses stochastic processes and distributions as basic types and
is designed to look familiar to people trained in mathematical finance. We
provide an example implementation of the abstract model and show how this
may be used to obtain known good prices for standard financial contracts.

7

We have developed an OpenCL Monte Carlo simulating back end for
SPL. Each simulation runs in complete isolation, and thus scales in a straight-
forward manner on the GP-GPU.

1.1 Background

1.1.1 Financial contracts and pricing

A financial contract is a set of conditions for the exchange of tradable assets
between two parties - the holder and the counter-party. Commonly used
tradable assets are cash and stocks but financial contracts themselves may
also be traded. The condition that financial contracts are defined in terms of
other tradable assets or measurable numbers has led to the names derivative
and underlying where the financial contract or is called derivative and the
tradable assets or numbers it depends on are called either underlyings or
observables1.

Financial derivatives are traded on a great scale on the world’s financial
markets. [Hul09] estimates the market size for derivatives to be above 600
trillions in June 2007, which is why accurate valuation methods are a major
concern. The price or value of a contract is the value one would expect
to obtain as the holder of the contract. Let’s take a look at some simple
contract and try to build up an intuition of how to find the corresponding
expected price.

Perhaps the simplest contract is the one that immediately give the holder
a certain asset. This could be the contract that pays out $100 right away.
The value of acquiring this contract is obviously $100. But what is the
value of the contract that pays out $100 two years after the contract is
engaged? This depends on the interest rate related to the dollars. Assuming
a continuously compounded fixed annual risk-free interest rate of 5%, the
future value of $100 has the present value of $100 · e−2·0.05 = $90.5. We will
have to do this kind of discounting whenever we are dealing with a contract
that exchange assets in the future.

It is often the case that the future value of underlying assets are uncer-
tain in the present time. As an example, this is the case when using foreign
exchange or stocks as underlyings. To handle these uncertainties it is com-
mon to think of the underlyings as stochastic processes. A stochastic process
can be seen as a function from time to a distribution, where the distribution
describes the probability of all the possible values the underlying may have
at that time. Below are two particular stochastic processes, U and W:

1We have only seen the term observables used in the context of the formal contract
languages [JES00, JE03].

8

Ur,v,S(t) = Se(r−1/2v2)t+vW(t)

W(0) = 0

W(t+ ∆t) = W(t) +N
√

∆t

The underlying processes Ur,v,S is defined using the other process W
called a Wiener process or a Brownian motion. The component that makes
the above two functions stochastic is the standard normal distribution N
with mean 0 and variance 1. The time is represented as a non-negative real
number representing years after the present time. Note that the plus in the
Brownian motion operates on distributions as do some of the operators in
the model of the underlying. We also have that the zero in the base case of
the Brownian motion is representing the distribution that is certain to be
zero. This kind of overloading seems to be common in finance.

The process Ur,v,S models a standard underlying assuming again a fixed
risk-free interest rate r and a volatility v and initial value S on the un-
derlying. The standard underlying is constructed such that the expected
discounted value of any future value of the underlying is S, written

E(Ur,v,S(t) · e−tr) = S

Note the word expected in the sentence above. Whenever a contract de-
pends on uncertain underlyings or observables, its price will become proba-
bilistic, as modelled with the distributions. This is no good in the situation
where one need to decide whether to buy a contract for a given price. This
is better determined based on the expected value of the price distribution.
The expected value of a distribution is the average of the possible values
weighed by their probabilities.

Figure 1.1 shows the wild nature of a Brownian motion, which is con-
tinuous, but not differentiable at any point. It also illustrates how the
underlying process Ur,v,S depends on the Brownian motion and is influenced
by the volatility.

9

Figure 1.1: The graph shows one possible trace of the Brownian motion to-
gether with four standard underlying configurations based on the Brownian
trace. The plot also shows the expected future values for the underlyings
based on an interest rate of 5 and 10 percent. A large volatility creates
large divergences from the expected value when the Brownian is far from
zero. Larger interest rates gives a larger expected future values regardless
of the Brownian value, even though this will be neglected, if the underlying
is later discounted using the same rate.

Consider a more sophisticated contract - the European call option. This
kind of contracts give the holder the option to buy the underlying for a
fixed price, called the strike price, at the maturity time of the contract.
The value of option contracts are never negative, as the holder is assumed
to behave rationally and only exercise the option if the underlying value is
larger than the strike price. This is reflected in the valuation by taking the
maximum of the profit and zero. In the same way as arithmetic operators
are overloaded for distributions, we assume that “pointwise” arithmetic op-
erations are available for stochastic processes. We can write the process that
describes the future value of the European call option as a function of the
maturity time.

10

EuropeanProcess = max(0, Ur,v,S − Strike)

In order to price the option, we only need to know the current price at a
fixed maturity t0, which is why we do a lookup in the process and discount
the value distribution.

EuropeanProcess(t0) · e−t0r

This method of pricing a European call option, by doing calculations
directly on the stochastic processes, is illustrated in figure 1.2.

Figure 1.2: The plots in this graph illustrates the steps involved in finding
the present value of an European call. The underlying process is U0.1,0.5,2

using the same Brownian trace as in figure 1.1. The strike price is 2.2
and the maturity time is 3. The value of the European call option is
discounted(0). The strike price is lifted to a process that is always certain
to be the strike price. Subtracting the strike process from the underlying
is simple a matter of subtracting the graphs, and the same goes for taking
the maximum of the value and the zero process. The discounted process is
given by: discounted(t) = (max(0,underlying− strike))(t0) · e(t−t0)r, where
t0 = 3.

11

1.1.2 Pricing methods

In the particular future assumed in figure 1.2, the European call option
would certainly have the value of 0.5. However, not being psychic, we cannot
assume a particular future, but must account for all possible futures. We
thus need to find the expected value of the option, which is the average value
in all possible futures, weighted by their probability.

Monte Carlo simulation provides a simple way of approximating this.
As done in figure 1.2 we simulate a random future by sampling from all
the primitive distributions involved in the computation. This will reduce
the distribution to a simple arithmetic expression on real values. We then
repeat this experiment and take the arithmetic average of the simulated
results and calculate the standard deviation.

While the Monte Carlo simulation method is simple, it is also rather
slow. An alternative pricing technique is to describe and solve the pric-
ing problem using partial differential equations. An example of this is the
Black-Scholes method which can price European-style options using a closed
formula. When such faster methods exist they are naturally preferable, but
we do not have such formulas for all contracts. One of the strengths of the
Monte Carlo method is that it allows pricing of contracts that are based
on multiple stochastic underlyings and of contracts whose payoff depends
on the path or history of the underlyings rather than just the value at pay-
off time [Hul09]. These conditions are present in basket options and Asian
options respectively.

Another benefit of the Monte Carlo method is that each simulation is in-
dependent of the other simulations, which make the method embarrassingly
parallel. This concludes our three reasons for choosing the Monte Carlo
method right from the start:

• It versatile enough that it can price a wide range of financial contracts.

• It is sufficiently simple that we dare to price all these contracts, even
with our limited financial knowledge.

• We can expect that an implementation will scale well on a massively
parallel architecture, which would help remedy the performance issues.

1.1.3 Composing contracts

The two papers [JES00] and [JE03] present a domain specific language em-
bedded in Haskell for specifying financial contract, in form of a combinator
library. The following example shows a contract composed from these com-
binators for a particular European call option:

call :: Contract

call = at t0 ((underlying ‘and‘ give strikePrice) ‘or‘ zero)

12

where

strikePrice = scale 2.2 (one USD)

underlying = scale underlyingO (one USD)

underlyingO = -- Observable defined elsewhere

The signature reveals that we have defined a contract. This is done
using the at combinator at top level using two arguments of type Date and
Contract respectively.

The date is the maturity time and the contract arguments describes the
conditions for the rest of the call option, at the time of acquisition. The
semantics of at t c is that the holder will acquire c at time t.

The sub contract c is, in this case, defined using or, which lets the
contract holder choose either c1 or c2. When combined with the zero

contract, this which does nothing, this captures the option of acquiring a
subcontract.

The call contract is defined using and, which gives the holder both of its
argument contracts. In terms of the European call option, the holder will
now receive both the call contract and the contract give strikePrice.

one k is the contract that pays the holder one unit in currency k.
scale o c multiplies all the exchanged quantities in c with the value of the
observable o. strikePrice is therefore the contract that pays the holder
2.2 USD.

The give combinator reverse the rights and obligations between the
holder and the counter-party of the contract. The consequence in this case
is, that give strikePrice obligates the holder to pay the counter-party 2.2
USD - the strike price. The reward of this is the underlying contract which
is one USD scaled by the value of the underlying observable.

It may initially seem unnecessary involved to described a standard con-
tract using all these tiny operators. However, the ability to build increasingly
complex contracts based on simpler ones makes it possible to define a rich
catalogue of contracts, and to easily extend this catalogue as needed. The
user is free to define new combinators and standard contract templates as
exemplified below:

usd :: Obs Double -> Contract

usd o = scale c (one USD)

europeanCall :: Obs Double -> Obs Double -> Contract

europeanCall u strike =

at t0 ((usd u ‘and‘ give (usd strike)) ‘or‘ zero)

The CC combinators have also been given composable valuation seman-
tics, which describes how to convert a CC contract into a stochastic process,
modeling the value of the contract.

13

The valuation semantics of at t c is that of being the value of c at time
t discounted to a present value, according the financial model in use. The
valuation semantics of or c1 c2 is the maximum taken on the two stochastic
processes resulting from valuating c1 and c2. and is defines likewise as the
sum on the two resulting processes and give is negating the value of its
argument. Observables in CC are convertible to processes, and the valuation
semantics of scale o c is simply the meaning of multiplying o with the
valuation of c. The last combinator we have seen is one k which exchange
the value of one k to the currency used in the valuation of the outer contract.
This again is done according the financial model in use.

Applying these semantics to the discounted European call option from
section 1.1.2 might yield the process:

max(0, Ur,v,S − 2.2) · e−t0r

This is when the valuation is done in USD with a model using standard
continuous discounting.

So why would we want to use CC when it seems just as easy to write
the stochastic valuation processes as to write the corresponding contract?
The benefits from using CC are many:

CC is declarative The combinator at t c describes that c should be ac-
quired at time t. Writing the corresponding price processes one would
need to decide how the future value of c should be discounted, which
leads to the next point.

Replaceable financial model There are several ways to model discount-
ing and exchange rates which in CC is encapsulated in the model.
This allows the users to refine or replace this model without changing
the contract or to price contract using several different models.

Contract management A financial contract is a legal document enforcing
the parties to exchange assets and should be kept somewhere. Hav-
ing the legal contract formulated in CC eliminates the chances of a
mismatch between the legal contract and the derived price process.

When a great portion of a company’s assets are financial contracts,
the need for a smart asset management system emerges. Such systems
are provided by LexiFi2, SimCorp3 and others from the financial in-
dustry. It is also convenient to automate payments etc. relating to the
contract. However, as previously noted the focus of this master thesis
is on the pricing aspect.

2http://lexifi.com
3http://simcorp.com

14

A single pricing semantics Using the composable semantics we only need
to implement the pricer once, being able to price all CC contracts. It
is arguably easier to verify that one pricer is correct rather than having
to do this verification every time a new type of contract is written.

1.1.4 GP-GPU and Monte Carlo simulation

Both the CUDA [NVI07] and the OpenCL [Khr08] platform provide a so
called single instruction, multiple data (SIMD) architecture. As the name
indicates, this is a platform where the all compute units execute the same
(single) instructions simultaneously but are capable of using different (mul-
tiple) data in the calculations. Matrix addition is a simple example of a
calculation suitable for the SIMD architecture. Adding two m × n arrays
may be performed in parallel using mn compute devices, each doing an
addition, but on different elements.

The thing that makes matrix addition well suited for SIMD is its data
parallel nature. Each scalar in the two matrices might be pairwisely isolated
during the computation. Whenever we see this kind of data parallelism in a
computation there is a good chance that an efficient SIMD implementation
can be made. The process of distributing the data out to the compute
devices and the reverse process of recombining the data will often imply
some work which is not an inherent part of the original calculation. It is in
general more beneficial to carry out longer distributed calculations to hide
the overhead of distributing and recombining the data.

Monte Carlo simulation is a data parallel computation where the par-
allel data is the seeds used to simulate different results in each simulation.
Using Monte Carlo simulation to find the expected value of our pricing dis-
tributions often results in rather long simulations, especially compared to
the small amount of data that needs to be distributed (the seeds). As an
example, consider the simulation that estimates the maximum value of a
Brownian motion in one year’s time. Using a time step of 1/365 would
let each parallelized simulation calculate 365 normally distributed random
values.

The only real problem we seem to have left is the stage after the individ-
ual simulations have finished, where the results should be combined to an
average value and a standard deviation. We will look into that in chapter 6.

1.1.5 The problem

As we have already seen, CC expresses prices as stochastic processes. How-
ever, the stochastic processes themselves, as well as the financial model,
are left abstract, except from the interface to them required by the pricer.
Figure 1.3 gives an overview of these interfaces. The abstract specifications
give us the freedom to choose our own implementations, which in the case

15

of the financial model needs to be highly tuned to match the real world. To
computer scientists, the mathematics behind constructing a financial model
likely seems rather arcane; conversely, the details of constructing a com-
putationally feasible implementation of such a financial model may seem
rather arcane to the quantitative analysts. Ideally then, we would like to
separate these two concerns so that each can be handled by the experts in
their domain.

Figure 1.3: The components of CC relevant to pricing. The articles pro-
vides a representation of the composable contracts and an implementation
of the abstract pricing algorithm (both green). The pricer also requires
a financial model and a representation of stochastic processes (both with
dashed lines), both of which are abstract in the definition of the pricer.
The requirements of the interfaces for these are shown as inner boxes. The
arrows connect components to their usage site.

Since path dependent prices are especially well suited to Monte Carlo
simulation, we will use these as a show case, even though they are not
currently supported by the CC library.

1.2 Our solution

We have seen in figure 1.3 that stochastic processes and a financial model
is required in order to use the pricer for composable contracts. Since the fi-
nancial model also requires stochastic processes, specifying these is a natural
place to begin.

16

CC already defines an interface for stochastic processes. However, the
implementation of the financial model will require more than is provided
by this interface; for example, there is no way to introduce the uncertainty
required for modelling observables.

There are also a range of options that cannot be expressed in CC , such
as contracts whose payoff depends on the history of values of the observable.
If CC is to be extended to cover these cases, it will require a richer set of
stochastic processes.

As we are not experts in the financial domain, there is little point in
trying to build a realistic financial model. Instead, it should be made fea-
sible for domain experts to implement and experiment with such models.
In order to achieve this, we need some way to write down stochastic pro-
cesses that reflects the notation used in finance, and which is simultaneously
computationally feasible.

This is indeed our main contribution: a domain specific language for
writing down stochastic processes, and an implementation for it that does
Monte Carlo simulation on massively parallel hardware. We call this lan-
guage SPL, short for stochastic process language.

The point of domain specific languages is to make it easy to express
domain specific knowledge. For example, recall the definition of the standard
underlying:

Se(r− 1
2
v2)t+vW(t)

We can write this stochastic process down in SPL quite effortlessly:

s * exp ((r - 0.5 * v^2) * time + v * brownian)

Like the underlying, this is a specification of a stochastic process. It’s
defined in terms of the simpler brownian and time processes, which are in
turn defined via lower level primitives that we shall see in chapter 7.

One of the types of contract we would like to price is Asian options,
whose payoff is defined as the average over a time interval. Like brownian

and time, the cummulative running average is defined in the prelude for
SPL, so given an underlying process we can simply say:

average underlying

An option would typically require the holder to pay a premium when
exercising the option:

average underlying - exercisePrice

And since the holder is assumed to be rational, she will never choose to
exercise if the payoff becomes negative:

17

max_ 0 (average underlying - exercisePrice)

Whatever the payoff is, it’s not worth as much to get the money sometime
in the future as it is to get it instantly. We therefore need to factor in the
discounting e−tr:

exp (-time * r)

Finally, we need to decide on an exercise date, in essence looking up the
payoff at the exercise time in the stochastic process. This lands us at the
final SPL definition:

asian underlying rate exercisePrice exerciseTime = payoff

where

payoff = lookup exerciseTime process

process = discount * option

discount = exp (-time * rate)

option = max_ 0 (average underlying - exercisePrice)

Looking up into a stochastic process yields a distribution – in this case
the distribution of all possible payoffs. In order to make a decision on
whether or not to buy the option, we need to know the payoff on average.

To be confident in the result, we want to run a lot of simulations, and we
thus compile our function for the GP-GPU with an appropriate time step,
say 1/365. We can delay our decision on the parameters that are simple
values, to just before the GP-GPU kernels are invoked. Let’s assume that
we can model the price of crude oil by giving appropriate parameters to the
underlying as defined earlier:

> asianOilPrice <- compile (1/365) (asian oil)

This yields a function asianOilPrice that when given the remaining
arguments for the partially applied function asian, namely the rate, exercise
price and exercise time, yields the average payoff and the standard deviation:

> asianOilPrice 0.05 100 1

5.03 ± 7.45

Note that the numbers printed here are purely for illustration – we will
price Asian options and other types of financial contracts with realistic pa-
rameters in chapter 9.

SPL is, like CC , a DSL embedded in Haskell. The code we have just
seen is thus simply Haskell code using a library. We reuse the flexible syntax
and type system of Haskell to provide the syntax and type system of our
domain specific language. There is thus less work to be done to provide an
implementation and less chance of introducing errors into it.

18

1.3 Results

We have designed an embedded domain specific language for continuous
stochastic processes called SPL (chapter 4 and 7). We have given it formal
semantics in terms of the probability monad, and used Haskell’s type system
to provide type safety.

We have provided an implementation of the language that performs
Monte Carlo simulation on the GP-GPU (chapter 8), and whose performance
scales linearly with the number of available processing elements (chapter 10).

We have implemented and tested pricers in SPL for European-style op-
tions, including European options, Asian options, Lookback options and
Basket options (chapter 9). Some of these are examples of path dependent
contracts and contracts with multiple sources of uncertainty which are dif-
ficult to price without Monte Carlo simulation [BBG97]. Although we have
not tested Barrier options, we speculate that we could also price those, since
we support path dependence and conditional logic. CC has no construct for
path dependence, and SPL can thus price contracts that cannot be expressed
in CC .

We can’t price American/Bermudan-style options (section 7.2). When
making a choice that depends on the future value of a process, the current
semantics of SPL assumes that we can see into the future and determine
which of all possible events will occur. Assuming the non-existence of psy-
chics, what is needed instead is the expected value. We are thus unable
implement the pricer for this set of CC financial contracts.

We have provided an implementation of the CC pricer in terms of SPL,
as well as an example financial model (section 7.2). It is incomplete due to
the issue with American/Bermudan-style options.

Our approach has been inspired by multiple domain specific languages
including CC (chapter 3), probabilistic functional programming libraries
(chapter 5) and array languages (chapter 6), and we have investigated these
in the context of pricing financial contracts.

1.4 Acknowledgements

This master thesis would not have been possible without the generous guid-
ance from multiple members of the HIPERFIT research center. In particu-
lar, Mogens Steffensen (IMF), Carl Balslev Clausen (SimCorp), Martin Els-
man (SimCorp), Dirk Bangert (Bangert Research) and Rolf Poulsen (IMF)
all helped us understand the financial concepts required to produce this the-
sis. We wish to thank our supervisor, Ken Friis Larsen, who suggested the
subject and provided a large amount of input and feedback. Jørgen Thor-
lund Haahr, Ramon Soto Mathiesen and Manijeh Elsa Modi all provided
valuable feedback on drafts. Finally, David B. Thomas, Geoffrey Mainland,

19

Manuel M. T. Chakravarty and Martin Dybdal were all very helpful in pro-
viding early access to and answering inquiries about their libraries.

1.5 Preliminaries and notation

We assume that the reader is familiar with lambda calculus and the pro-
gramming languages Haskell [Jon02] and C [ISO99]. Any major extensions
used will be explained along the way. We will occasionally show an interac-
tion with an interactive Haskell interpreter, with the input marked by a >

and the output following immediately after.

20

Chapter 2

Common financial contracts

This chapter describes the types of financial contracts that will be used in
this thesis and points out to what degree they are expressible in CC and
priceable in SPL. There are many types of financial contracts, but we are
only going to focus on some of the common ones. The contracts are all
derivatives expressed in terms of one or more underlying assets. Note that
the naming convention is rather arbitrary, and has no actual geographical
implications.

European call options gives you the option at a single pre-determined
point in time, called the exercise time or maturity time, to buy the
underlying asset for a fixed price, called the strike price.

American call options gives you the option at any point during a time
interval to buy the underlying for a fixed price.

Bermudan call options gives you the option at several points in time to
buy the underlying asset for a fixed price. The name alludes to being
somewhere between European and American options.

Asian call options comes in at least two varieties, fixed strike and floating
strike. Fixed strike gives you the option at a single pre-determined
point in time1 to receive the difference between the strike price and
the underlying’s average price over a pre-determined period of time.
Floating strike gives you the option at a single pre-determined point in
time to buy the underlying for the average price over a pre-determined
period of time, possibly multiplied by some constant.

Lookback call options are like Asian call options, except that the maxi-
mum or minimum is used rather than an average.

Put options are similar to call options, but instead of giving you the option
to buy the underlying, they give you the option to sell it.

1At least in European-style options.

21

Basket options are options that depend on multiple, possibly correlated,
underlyings, such as by their weighted sum or average. These are also
known as rainbow options.

Barrier options are options that either begin or expire based on events
of the underlying observable, such as its price surpassing or dropping
below a certain threshold.

The Asian, Lookback, Barrier and Basket options are so called exotic
options, whereas European and American options are called vanilla options
because they depend only on the value of a single observable and only at
exercise time.

Now let us take quick look into whether these contract are expressible
in CC and priceable SPL.

The European options are simple to express in CC and are priceable
in SPL. There exist closed formulas to do the same, at least for the most
common underlyings. We take advantage of this to test the correctness of
our pricer in section 9.3.

It is also simple to express American options in CC as the language
have specific features for these. But the pricing of American options is
somewhat more involved compared to the European-style and are therefore
not priceable in SPL. We will return to this problem in the end of section 7.2.

The Bermudan option provides the contract holder with several exercise
times, but not a continuous period of time as in the American option. This
is harder to express in CC than the American option as one would need to
model this using a nesting as deep as the number of exercise times.2 We
cannot price Bermudan options for the same reason that we cannot price
American options as will be pointed out in section 7.2.

Asian, Lookback and Barrier options are all path dependant, in that they
depend on the underlying value on times other than the exercise time. We
can price these, and in general, these are hard to price without resolving to
Monte Carlo simulation [BBG97], and are thus ideally suited to showcase
our implementation of SPL.

The Basket options rely on multiple underlyings which is not a problem
to express in either CC or SPL.

2The newer library[JE03] can express this without nesting if the exercise times can be
captured in a expression such as t mod 30 = 0.

22

Chapter 3

Composable contracts

In the introduction, we saw an example of using the CC combinators to
define a financial contract and argued why it is beneficial to use combinators
to do so. The specific set of combinators we refer to when writing CC ,
are the ones defined in [JES00]. Peyton and Eber wrote a followup on this
paper [JE03], presenting a slightly modified set of contract combinators. We
explain in the end of this chapter why we chose to use the older combinators.
This is after a somewhat detailed look at the original paper from 2000.

3.1 Concepts and terminology

A CC contract is composed using four ingredients:

Observables provides a way to bring numbers from the real world into the
contracts. As the contracts must be legally enforceable, observables
are limited to the kind of quantities that we can agree on how to
measure. This could the temperature in Paris, the 1-month LIBOR
rate1 or simply a real number. Their value is per definition known in
the present, but the future value of observables are in general unknown.

Currencies are used to express the currency of the assets traded. The
observables cannot inject numbers directly into a contract but only
scale numbers in existing contracts, which in the end must be given
in a specific currency. Every contract that has a value different from
zero is therefore expressed in a currency.

Times are used to model the horizon or expiry time of a contract, which
are not only used to end the contract, but also to specify when certain
actions should take place. We will look into that shortly.

1The LIBOR (London Interbank Offered Rate) is a reference rate published daily by
the British Bankers’ Association

23

Sub-contracts is the last recursive ingredient, which is an important part
of the composability.

The conditions specified in a CC contract are first realized after the
contract is acquired. This makes the acquisition time important, as
the conditions taking place before that time are discarded. The conditions
referred to here, consist of the obligations2 to receive or pay cash to the other
party of the contract as well as to make decisions imposed by the contract.

The horizon of a contract is the time the contract will expire. The
horizons are not a present part of the CC AST but a static feature deter-
mined by the function H given in figure 7 in [JES00] or the overview table
in section 3.3. A contract cannot be acquired after the horizon but an ac-
quired contract may give the holder a new contract with a new horizon that
extends the horizon of the original contract. A contract may never expire in
which case we say that the horizon is infinite, reflected in the type below:

H : Contract→ DAT E ∪ {∞}

3.2 Implementing the abstract pricer

The compositional valuation semantic given in figure 4 in [JES00] may also
be seen as an abstract implementation of the valuator or pricer. It is abstract
in the sense that it presumes the presence of a financial model3 and a data
type for stochastic processes. The model and this data type needs to be
implemented, in order to get a fully functional pricer implementation as
illustrated in figure 1.3 from the introduction.

The stochastic process data type should conceptually model a function
from time to a distribution:

PR a : DAT E → DIST a

This does not necessarily mean that it should be implemented as a func-
tion but it should provide the apply or lookup operation, which we here
denote using standard mathematical function notation. The process data
type should also come along with standard arithmetic operations, condition-
als4 and two constructors:

2The original article[JES00] referred to the condition of having to receive cash or make
a choice as a right an having to pay as a obligation. We refer to both of these conditions
as obligations as the party involved is not left with a choice.

3The paper in discussion actually use a slightly different definition of the concept
“financial model” as it includes the stochastic process primitives in the definition but not
the observables. We prefer to think of the observables as part of the model, but not the
stochastic process data type.

4This is not a explicit requirement in the original paper, but the side condition in figure
4 imposes this or a similar requirement.

24

	 : PR a→ PR b
⊕ : PR a→ PR b→ PR c
if · then · else : PR B→ PR a→ PR a→ PR a
K : a→ PR a
time : DAT E → PR R

K(a) promotes the constant a to the stochastic processes always certain
to be a and time is the process always yielding the current time. This API
is specified in figure 6 in the article.

The modelM should first of all implement the three functions for doing
discounting, exchange rates and to calculate the so called snell envelope
which is used to price American style options where the holder have the
right to exercise the option in a continuous period of time.

dicstk : DIST R→ PR R
exchk : CURRENCY → PR R
snelltk : PR R→ PR R

The valuation semantic uses the function shown below to convert CC
observables into values of the abstract stochastic process data type.

V[[]] : Obs a→ PR a

Figure 5 in the paper provides a partial implementation of this function,
which allow the contract designer to construct constant observable values
and do arithmetic on the observables corresponding to what is required
for the process data type. But these constructors and operations cannot
introduce the stochastic elements of observables and V[[]] still lacks support
for the observables modelling real world numbers.

This is the last thing that is needed in the model. A function that con-
verts the remaining real world or stochastic observables supported by the
model into the process data type. As these observables are bound to measure
numbers, this function should have the type Obs Real→ PR R. This should
finish the implementation of V[[]] and we now have a fully functional imple-
mentation of the valuation function, provided all the functionality mentioned
above.

Ek[[]] : Contract→ PR R

The valuation function converts a CC contract into the process specifying
the price of the contract over time, expressed in currency k. It really is
parametric of the modelM, but we will continue to use the notion from the
two papers, where this is not present in the notation.

25

3.3 The combinators

The valuation semantics are defined in the original paper using side condi-
tions that limits the domain of the resulting price process. For and this is
done as

Ek[[c1‘and‘c2]] = Ek[[c1]] + Ek[[c2]] on {t | t ≤ H(c1) ∧ t ≤ H(c2)}
Ek[[c1]] on {t | t ≤ H(c1) ∧ t > H(c2)}
Ek[[c2]] on {t | t > H(c1) ∧ t ≤ H(c2)}

Recall that the stochastic process data type conceptually is a function
from time to a distribution. The definition above defines the price process
for (c1‘and‘c2) in terms of three processes each defined with their own time
domain. These processes need to be combined into a single process. This
is why we suggested the if-then-else operator to be part of the abstract
stochastic process data type.

The overview table, given shortly, explicitly uses the if-then-else op-
erator, but we will use the definition below to ease the notation

Ak(c, v) = if time ≤ K(H(c)) then Ek[[c]] else K(v)

Ak(c, v) is like Ek[[c]] except that it becomes K(v) when c expires. This
allow us to write the valuation semantic for the and combinator as

Ek[[c1 ‘and‘ c2]] = Ak(c1, 0) +Ak(c2, 0)

This definition is not completely right as Ek[[c]] should be undefined for
times after H(c). We will not be explicit about this in the table below, but
this should be a concern for one implementing Ek[[]].

The table below gives an overview of all the CC combinators. Each
combinator is shown together with its type, a short description, its horizon
and valuation semantic, and a plot illustrating how the valuation process
could look like, compared to the value of its arguments.

zero :: Contract

This contract imposes no obligations
on any of the parties. Its price is there-
fore zero at all times.

H(zero) =∞
Ek[[zero]] = 0

26

one :: Currency -> Contract

one k2 pays the holder one unit of k.
The value of this contract expressed
in currency k is the exchange rate be-
tween k and k2 captures by the model
function exch. The exch used in the
plot to the right uses some volatility in
its model. The contracts are priced in
DKK.

H(one k2) =∞
Ek[[one k2]] = exchk(k2)

get :: Contract -> Contract

get c let the holder acquire c at time
H(c). Nothing happens until then.
The values of the contract is the dis-
counted expected value at H(c) as il-
lustrated to the right.

H(get c) = H(c)

Ek[[get c]] = dics
H(c)
k (Ek[[c]](H(c))

if H(c) 6=∞

anytime :: Contract -> Contract

Acquiring anytime c at time t obli-
gates the holder to acquire c between
t and H(c). Our current implemen-
tation of SPL is not expressive enough
to implement the model function snell,
which is why no plot is provided.

H(anytime c) = H(c)

Ek[[get c]] = snell
H(c)
k (Ek[[c]])

if H(c) 6=∞

27

truncate :: Date -> Contract -> Contract

truncate t c is like c except that the
horizon may have been expedited.

H(truncate t c) = min(t,H(c))

Ek[[truncate t c]] = Ek[[c]]

give :: Contract -> Contract

give c is equivalent to c where the
obligations have been swapped for the
two parties. This is why the value of
give c is the negated value of c as il-
lustrated to the right.

H(give c) = H(c)

Ek[[give c]] = −Ek[[c]]

and :: Contract -> Contract -> Contract

When acquiring c1 ‘and‘ c2 the holder
acquire both c1 and c2 except the ones
that are expired.

H(c1 ‘and‘ c2) = max(H(c1), H(c2))

Ek[[c1 ‘and‘ c2]] = Ak(c1, 0)+Ak(c2, 0)

or :: Contract -> Contract -> Contract

When acquiring c1 ‘or‘ c2 the holder
must acquire either c1 or c2 except the
ones that are expired.

H(c1 ‘or‘ c2) = max(H(c1), H(c2))

Ek[[c1 ‘or‘ c2]] =
max(Ak(c1,−∞),Ak(c2,−∞))

28

then :: Contract -> Contract -> Contract

c1 ‘then‘ c2 lets the holder acquire
first c1 and then c2 at time H(c1), if
H(c2) > H(c1). If c1 has expired at
acquisition time of (c1 ‘then‘ c2) then
c2 must be acquired.

H(c1 ‘then‘ c2) = max(H(c1), H(c2))

Ek[[c1 ‘then‘ c2]] =
if time < K(H(c1))
then Ek[[c1]] else Ek[[c2]]

scale :: Obs Double -> Contract -> Contract

scale o c is equivalent to c where all
the payments have been multiplied by
o.

H(scale o c) = H(c)

Ek[[scale o c]] = V[[o]] ∗ Ek[[c]]

3.4 The two versions

As mentioned in the beginning of this chapter there are two different versions
of the CC combinators. The one we are using are those described in the
paper from 2000 [JES00] and the other version mentioned, is the combinators
from the 2003 paper [JE03]. We will here look at how the new version
mainly extends the expressiveness of the older version and then return to
cost of this, seen in an implementation context. The 2003 paper is very
sparse in its comparison of the new reviewed library to the older one and
does not mention the extra implications involved in implementing the new
combinators as discussed below.

The 2003 version removes the four combinators truncate, then, get and
anytime from the 2000 version but introduces four new, shown below. The
2003 combinators are typeset in italic.

cond :: Obs Bool→ Contract→ Contract→ Contract
when :: Obs Bool→ Contract→ Contract
anytime :: Obs Bool→ Contract→ Contract
until :: Obs Bool→ Contract→ Contract

These are all combinators that deal with time, but this is no longer done

29

using the horizon but using the Boolean observable argument. Say we want
to write the contract where c is acquired at time 5, this could be done by
when (time == 5) c, using the new combinators. This corresponds to get

(truncate 5 c) using the old library. Using the new combinators, it is no
longer valid to talk about the horizons or expiry time. The horizons served
at least two purposes in the old combinator definition. First, they provided
a mechanism for letting an ongoing contract come to an end. Secondly, they
provided the combinators then, get and anytime with information, thereby
serving as an alternative to an extra argument.

The first usage mentioned are captured in the 2003 version by the com-
binator until o c, that will abandon the contract at the first time o becomes
true. But until is even stronger than that as the abandon-time is not a con-
stant but an observable. This could for instance allow one to implement the
exotic option type where the option is cancelled if the underlying breaches
a certain barrier5.

The second usage of horizons in the 2000 library is captured in the 2003
version by replacing the combinators that relied on the horizon with new
ones. anytime is one of these which is now taking a Boolean observable at its
first argument. Where the old anytime c required the holder to acquire c at
anytime up until expiry, the new anytime o c allows the holder to acquire c
at times where o is true. This allows the exercise times to be something more
complicated than just a single time period. The new version of anytime does
not require the holder to acquire the sub contract eventually and it seems
impossible to model a latest time where c must be acquired. This is not a
problem when modelling American options, but it would be if we actually
wanted the old semantics of anytime c, where the holder must acquire c

eventually.
when o c on the other hand does not have this problem as c must be

acquired as soon as o becomes true. This combinators is therefore a stronger
variant of the older get.

The last new combinator cond o c1 c2 choose c1 if o is true at acquisi-
tion time and c2 otherwise. This combinator may be seen as a variant of
then from the old library, but it is stronger as is allows contract to model
conditionals dependent on observables.

We have seen that the 2003 library version, for the most part, are more
expressive than the older version. This new expressiveness comes from the
new conditional combinator and because time dependent combinators have
been changed from using a static constant time to using a dynamic uncertain
varying time. But this flexibility comes at a price when implementing the
valuation semantic for when, anytime and until. The pricing implementa-
tion of these is delegated to the model functions disck, snellK and the new
function absorbk. These three functions share the same signature

5This is called a up-and-out barrier option

30

PR B× PR R→ PR R

Compared to the old model interface we now have a stochastic process
of Booleans where we had a static time before. This is problematic when
doing discounting as we need to know the time in which we should discount
from, either as a contract or as a distribution. To find this distribution we
need to scan over the process o and for each time t note the probability
of o(t) ∧ (∀t′ < t : ¬o(t′)). This scan property states that the Boolean
observable is true for the first time. The problem is that this does not
terminate as we need to know these probabilities for infinitely large values
of t. We might however stop the search in the special case where there exists
a t for which o(t) is certain to be true as this would make the scan property
false for any larger t′, but the search is still infinite in the general case. The
2003 paper gives an example of calculating disc£(time = 3,K(10)). But
this example utilizes the fact that V[[time = 3]](3) is certain to be true.

Implementing absorbk yields the exact same problems and we do not have
a clear picture of all the challenges that would emerge when implementing
the new snell compared to the old version.

The implementation difficulties discussed in this section, is the reason
why we chose to use the old composing contract library. But even if we
did find a solution to the termination problem, there are still some factors
that makes the new library less suited for our choice of numerical model, us-
ing Monte Carlo simulation running on a GP-GPU. Using the Monte Carlo
setting, we could imagine each thread on the GP-GPU computing the dis-
counted value of a brownian motion, at time t. Doing this computation,
each thread would be running a loop going though the iteratively defined
brownian process, until time t is reached. This is efficient on a GP-GPU
as all the threads are running the same amount of loops. But had t been
stochastic, we would have had the case where all the threads would need
to wait until the last one had finished. By having a contract language that
limits all the lookup times to be non stochastic, we know that all lookups
will run efficiently in parallel.

We have the same concern regarding when. This combinator expresses
a condition based on a stochastic value. This would split the GP-GPU
simulations threads into different code branches which, on the GP-GPU
architecture implies, that all threads run both branches, performance wise.

31

Chapter 4

Goals for a stochastic
processes language

As we have seen in chapter 3, we need to provide a language for stochastic
processes in order to implement the pricer. At the very least, pointwise
arithmetic operators are required, but many other features are implicitly
required in order to make implementing the financial model feasible. In this
chapter, we’ll attempt to identify these requirements.

4.1 Matching the domain

Pricing financial contracts is a subtle process and is best left to the domain
experts, namely quantitative analysts. However, the concepts from math-
ematical finance, such as stochastic processes, are not readily available in
general purpose languages. Consequently, a non-trivial translation from fi-
nancial concepts to runnable programs is required. Doing this manually is
error prone and time consuming, and it’s therefore vital to make financial
concepts available either on the library or language level.

The closer the library or language models the notation used by the do-
main experts, the less manual translation is needed. The converse also holds;
it’s easier to understand what the program does if it uses a familiar notation.
The combination of these two properties allows for quick prototyping.

As a small example of what we want to achieve, it should be straightfor-
ward define the Brownian motion and the standard underlying, as defined
in the introduction.

Section 4.1.1 and 4.1.2 describe two concepts that are prevalent in quan-
titative analysis, and as such should be supported by the language.

32

4.1.1 Stochastic processes

By now the need for stochastic processes should be clear; however, some
details are still missing.

Continuous time

Stochastic processes can be seen as a function from time to a distribution.
When using this interpretation, we will write p(t) for looking up the dis-
tribution at time t in process p. In high level specifications, as opposed to
those tied to a specific computational model, the time is usually a (non-
negative) real number, and we thus have continuous-time stochastic pro-
cesses [BBG97].

Infinite processes

It does not always make sense to talk about the end time of a process.
Stochastic processes are thus often specified as being infinite, which conse-
quently should be supported. In the end, we usually want to look up at a
specific time, or in a specific time interval, but this decision is best deferred
so that the same process can be reused for lookups at different times.

Arithmetic operators

The arithmetic operators required by the CC pricer are a given. However,
pointwise perhaps needs some explanation when talking about continuous
time processes; what we mean is that for any arithmetic operator ⊕, for any
two processes p and q, at any time t, (p⊕ q)(t) = p(t)⊕ q(t).

4.1.2 Distributions

Many stochastic processes are specified in terms of distributions, and can
be seen as functions from time to a distribution. The properties of the
distributions thus directly affect the properties of the stochastic processes.

Continuous sample space

Continuous distributions such as N allows us to more closely match the
mathematical specification of distributions and stochastic processes with
the specifications written in the language.

Dependent distributions

Dependent distributions and stochastic processes are required to compose
larger distributions and processes from smaller ones, such as specifying the
standard underlying in terms of a Brownian motion.

33

4.2 Composability and reuse

It’s important that complex prices can be built from simpler parts, that
can be designed, reasoned about, and tested in isolation. This increases
confidence in the system and reduces development time.

4.2.1 Composable processes for composable pricing

The pricer for composable contracts builds prices for large contracts by
composing the prices of smaller contracts. Consequently, the stochastic
processes in which prices are expressed must be composable.

4.2.2 Discretization as a separate concern

The concern of specifying stochastic processes should be separated from the
concern of choosing a computational model, discretization, etc. This allows
the components to be reusable across computational models. A price can
be defined as a stochastic process once, and then be queried using the best
computational models available for that process and query.

4.3 Supporting a wide range of contract prices

If only the price of a few financial contracts are expressible in the language,
there is little advantage over writing an ad-hoc pricer for each. There is
work involved in creating a language for at least two parties; the language
designers must design and implement the language, and the domain experts
must learn the language and implement pricers. The language approach is
thus only worthwhile when the work involved in specifying ad-hoc pricers
for each financial contract outweighs the cost of creating the language. The
more prices that can be expressed in the language and the easier it is to
learn and use, the greater the chance that this balance will tip in favour of
creating the language. It is thus important that we can express the price a
wide range of financial contracts.

4.3.1 Conditionals

Conditionals was implicitly required to implement the CC pricer. Addi-
tionally, pricing certain options such as barrier options requires conditional
logic. We thus need a way to express this logic.

4.3.2 Multiple sources of uncertainty

Financial contracts like basket options may depend on multiple underlyings,
each of which is likely to contribute its own source of uncertainty. CC

34

supports these and we thus need to be able to specify prices in terms of
multiple sources of uncertainty.

4.3.3 Forecasting

In order to price American and Bermuda style options, we need to determine
whether or not to exercise the option at any given time. In order to do this,
we need a way to query the expected value of the stochastic process in the
future.

4.3.4 Aggregation

As we have already seen in the introduction, pricing Asian options requires
taking the average over a process in a time interval. Lookback options and
other path dependent prices are similar, but require other aggregations than
the average. We thus need a sufficiently general aggregation construct to
support these financial contracts.

4.4 Having clear semantics

In order to properly reason about what a program in any language does,
formal semantics is required. In this case, there are already a range of
probabilistic languages to borrow from, whose semantics are clearly defined.

4.5 Yielding efficient implementations

Management of large portfolios of financial contracts and high frequency
trading both require efficient pricing to be feasible. Additionally, it’s conve-
nient when developing pricing code, that the price can be obtained almost
instantly, both for prototyping and running automated tests. If the lan-
guage is not designed with this in mind, it might not be possible to build
an efficient implementation in practice.

35

Chapter 5

Probabilistic functional
programming

We have seen that the pricing of financial contracts requires a great deal
of probabilistic programming. The CC library presumed the existence of a
data type for stochastic processes in its implementation of the pricer and it
assumes that every observable is convertible to a stochastic process. Prob-
abilistic calculations are also required to implement the discounting and
currency exchange in the model as this again needs to be done on stochastic
processes.

This is all needed to price CC contracts: a probabilistic programming
library providing stochastic processes as well as functionality to find the ex-
pected value of these processes at certain times. The library would also need
to be powerful enough to implement the desired observables and financial
model. In the end, we would like to find the expected value efficiently, and
our approach will be to calculate it on the GP-GPU. This means that we
need to eventually translate the probabilistic programs into GP-GPU code,
and in turn this means that the bulk of the computation required to find
the expected value must be symbolic.

Our initial plan was to find a suitable Haskell library or embedded lan-
guage for probabilistic functional programming, give it a back end that could
simulate expected values using GP-GPUs, and use it to price CC contract.
As it turned out, we did not find any existing library suitable and ended
up building our own probabilistic language, namely SPL. Nevertheless, this
chapter provides insight into how these libraries or languages function in
general, point out their differences and compare them to our specific needs.
We will later use concepts from this chapter to explain SPL.

36

5.1 Discrete distributions

Erwig and Kollmansberger describes in [EK06a] a probabilistic functional
programming library for Haskell. The basic idea is to represent a distribution
as a list of all possible outcomes (the sample space) coupled with their
probability, which is a real number between 0 (impossible) and 1 (certain):

data Dist a = D [(a, Probability)]

When using the library, distributions are not constructed directly via
the D data constructor, but are instead constructed via a set of provided
functions. For example, given a list of values, uniform constructs a discrete
uniform distribution; that is, a distribution with a finite number of equally
probable values. We might thus define flips of a balanced coin as:

data Coin = Heads | Tails

flip :: Dist Coin

flip = uniform [Heads, Tails]

Printing this distribution would allow us to verify probabilities:

> flip

Heads 50%

Tails 50%

Independent distributions can be combined via the joinWith function.
For example, we might want to know what the distribution of flipping two
coins is:

both a b = [a, b]

flip2 = joinWith both flip flip

Again, we can view the probability of each combination by printing it:

> flip2

[Heads, Heads] 25%

[Heads, Tails] 25%

[Tails, Heads] 25%

[Tails, Tails] 25%

We might like to know how often Tails occurs at least once during two
flips of a coin. The library provides an implementation of Functor Dist, so
we can use fmap for this1:

1Since this is a predicate, you may prefer: flip2 ?? any (== Tails).

37

> fmap (any (== Tails)) flip2

False 25%

True 75%

Note that the list representation has many equivalent ways of represent-
ing distributions. In fact, the distribution above is internally stored as D

[(False, 0.25), (True, 0.25), (True, 0.25), (True, 0.25)]. The
pretty printer performs normalization, which collates equivalent values by
summing their probabilities. If the sample space is small, normalization can
prevent the representation from exploding.

We may design a game of tossing coins as follows: The player tosses a
coin. If the coin comes out heads, he gains a point and then tosses the coin
again; if the coin comes out tails, he gets no more points and his turn is
over.

However, whether or not we toss another coin is now dependent on the
previous coin toss. This dependency is expressed via the monadic bind
operator >>=. To complete the monad, return a constructs the distribution
consisting only of a single value, a, with probability 1; a so called degenerate
distribution. With this, we can model the distribution of scores in our game:

toss :: Integer -> Dist Integer

toss 0 = return 0

toss n = do

coin <- flip

case coin of

Heads -> do

score <- toss (n - 1)

return (score + 1)

Tail -> return 0

The question is then, what are the probabilities of getting each score?
To make the game finite, we limit the maximum number of tosses:

> toss 5

0 50%

1 25%

2 12.5%

3 6.25%

4 3.125%

5 3.125%

We might make the additional rule that people with a history of bad luck
gets to retry indefinitely whenever their score is even. Instead of altering
the definition of toss, we can add a guard2:

2At least in principle; we have not run this last example, because the implementation
we’ve used here does not seem to handle guards correctly.

38

> do score <- toss 5; guard (odd score)

1 50%

3 25%

5 25%

Internally, guard False generates the impossible distribution repre-
sented by D []. Guards are essentially filters on the sample space, and as
with filters, a narrow predicate will remove most of the results generated so
far. Since the results must be generated before they can be filtered, guards
are often more costly than simply generating a smaller distribution from the
beginning. On the other hand, guards are sometimes more convenient.

5.2 Symbolic representation

With the list representation, every joinWith and >>= creates the Cartesian
product of the distributions. If the sample space grows similarly, normaliza-
tion is not enough to prevent the exponential growth resulting from a linear
number of applications of these operators. Keeping a large list in memory is
at best detrimental to performance and at worst simply not possible. In an
effort to reduce the memory usage, a symbolic representation was presented
in [Lar11].

The representation of distributions is very different from what we have
seen so far:

data Dist a where

Certainly :: a -> Dist a

Choice :: Probability -> Dist a -> Dist a -> Dist a

Fmap :: (a -> b) -> Dist a -> Dist b

Join :: Dist (Dist a) -> Dist a

This example uses GADTs, which we will return to later, but for now
the important thing to notice is that the internal representation is a data
structure containing the operations required to compute the distribution,
and not a flattening of the distribution itself. Often the expected value
(mean weighted by probability) of the distribution is the query itself. In-
stead of flattening the distribution and then computing the expected value,
this representation allows the lazy unfolding of the distribution, keeping the
memory usage constant. The reduced memory usage leads to a large con-
stant speed-up, although the asymptotic computation time is unchanged.

The distribution still forms a monad, and it’s straightforward to express
uniform, so we can run most of the previous examples unchanged. Guards
are missing from this definition, but could likely be added easily.

Note that not all computational steps are kept symbolic in this repre-
sentation. In particular, the a -> b in Fmap is an arbitrary Haskell function
and is thus beyond inspection (and therefore optimization) by the library.

39

5.3 Stochastic processes

Probabilistic functional programming has been applied to counter-intuitive
problems that map directly to distributions, such as the Monty Hall Problem
[EK06a] and the Flu Test False Positive Problem [Kid07]. However, it has
also been used to model distributions that change over time, such as tree
growth [EK06a], predator/pray populations and genome evolution [EK06b].
These are called stochastic processes.

The approach taken by Erwig and Kollmansberger is to model stochas-
tic processes as a list of distributions, [Dist a]. A transition function
a -> Dist a is then iterated a number of times, producing a list of the
distribution at each time step. For example, we may model the price of a
fictive asset that goes up or down by 1 with equally probability at each time
step as follows:

price :: Double -> Dist Double

price s = uniform [s - 1, s + 1]

We can observe the evolution of the price by iterating the price transi-
tion function using the built-in operator *.. The example below shows the
possible ways for the price process to evolve from time 0 to time 3, starting
at value 5:

> (3 *. price) 5

[5 100%,

4 50%

6 50%,

3 25%

5 50%

7 25%,

2 12.5%

4 37.5%

6 37.5%

8 12.5%]

Although the output is normalized, the internal representation may not
be. In that case, the size of the representation grows exponential with the
number of steps we take, as visualized in figure 5.1.

40

Figure 5.1: Internal non-normalized representation for each step of (3 *.

price) 5. The probabilities are represented by the number of paths leading
to each sample divided by the total number of paths leading to that depth.

The opportunities for normalization is visualized on the left in figure 5.2.
In this case we’re fortunate that the sample space only grows linearly, which
leads to a linear growth in a normalized representation as visualized on the
right.

Figure 5.2: The opportunities for normalization (on the left, in bold) and
the internal normalized representation (on the right) for each step of (3

*. price) 5.

This specific example yields a recombining binomial tree [JE03], since
every node has two branches, and going down and then up or up and then

41

down will lead to the same node. When applicable, this is an efficient
representation.

In this example and the examples mentioned, the time step is implied in
the definition of the processes. Consequently, two processes are only combin-
able, if defined using the same time step. The list representation of processes
are therefore non-composable when the time step is not a universal constant.
A composable process definition, still using discrete time, with time steps,
will therefore require processes to be defined parametrically according to the
time step.

The libraries mentioned in this chapter only provide constructors for
discrete distributions. However, some stochastic processes are specified in
terms of continuous distributions. An example of this is the Brownian mo-
tion3 W, which is specified in terms of the continuous standard normal
distribution N and may be formulated like this:

W0 = 0

Wt+∆t = Wt +N
√

∆t

Although N can be approximated discretely via a series of equally likely
yes/no questions (a binomial distribution), the sample space, being an ap-
proximation of the real numbers, quickly grows too large to store in a list.

As we have already seen, many financial pricing problems are specified
in terms of the Brownian motion and are themselves continuous stochastic
processes. As such, it would be natural to offer continuous distributions and
stochastic processes as the building blocks of a language for the financial
domain.

5.4 Monte Carlo simulation

Instead of constructing a list representing the exact distribution, we can use a
pseudo random number generator (PRNG) to pick random samples from the
distribution, and thus avoiding the computation of the entire distribution.
This approach is called Monte Carlo simulation, and is often used in pricing
financial contracts [Hul09].

The idea is that every time we find a primitive distribution, we pick
one of the samples from the sample space, at a chance corresponding to its
probability. The law of large numbers says that as we increase the number of
random samples, the mean of the random samples approaches the expected
value of the distribution.

As an example, consider the asset price example from section 5.3. We
may select a subset of the time series at random via Monte Carlo simulation,
as visualized in figure 5.3.

3Sometimes called a Wiener process.

42

Figure 5.3: Randomly selected subset (in bold) of all possible time series.

[Kid07] uses monad transformers to build a probability monad simi-
lar to the one in which we did coin flipping. One of these transformers
enable Monte Carlo simulation for any distribution defined via the other
monad transformers, separating the concerns of specifying the distribution
and querying it. Consequently, the distribution of stochastic process can be
specified once and then later computed exactly or sampled via Monte Carlo
simulation.

5.5 Summary

The libraries covered above does not allow us to extract the calculations
involved in building distributions. This makes us unable to translate the
computations on distributions into GP-GPU code for doing Monte Carlo
simulation. [EK06a, EK06b, Kid07] do not use a symbolic representation at
all, and it would not be possible to make them do so while preserving the
monadic bind. [Lar11] is not symbolic in its argument to fmap which takes
an arbitrary Haskell function of type a -> b. This shows that both Monad

as well as the weaker class Functor is not viable instantiations for the Dist

data type when Dist needs to be fully symbolic.
All of the libraries use discrete distributions. This is not a problem in

general, but as we have seen in section 4, continuous distributions like N
are needed, and having to decide on a discretization early is problematic.
Representing stochastic processes as lists of distributions is also not ideal in
our case, because this requires early discretization of the time step.

We will instead design a separate embedded probabilistic language that
attempts to fulfil all of the requirements specified in chapter 4.

We will present this language in chapter 7, just after the next chapter
where we present two embedded languages for performing calculations on
the GP-GPU directly from Haskell.

43

Chapter 6

Array languages targeting
GP-GPUs

In an effort to provide a high level interface to programming for GP-GPUs,
several embedded array languages for Haskell have been proposed. Amongst
these are Nikola [MM10] and Accelerate [CKL+11], which will be discussed
in this section.

GP-GPUs provide a massively parallel computational model with shared
memory, where every thread runs the same code, but with different param-
eters. As such, it’s easy to see how a function like map – which applies the
same function to every element – fits into this model. However, even aggre-
gating functions like fold and scan can be efficiently implemented [CBZ90].
We will cover GP-GPUs in more detail in section 8.5.

Since GP-GPUs have their own memory separate from that accessible
from the CPU, it’s necessary to have a strategy for copying arrays from the
host to the device and back. Nikola does this both ways automatically when-
ever an array expression is evaluated, while Accelerate makes the memory
region of an array explicit in the type system and provides instructions for
copying.

Nikola and Accelerate are both deeply embedded into Haskell, meaning
that while they provide Haskell functions and types on the surface, they
internally capture and store the computational steps in a data structure.

The idea is that instead of having the library functions directly compute
the result array, they instead compute a syntax tree that can then later be
transformed, translated and evaluated.

Haskell makes this very convenient by making it possible to instantiate
the Num type class for custom types, providing overloads for common oper-
ators like +, - and *. Syntactically, code that only uses the operators from
this type class (or any of the other suitable type classes) is the same whether
they work on Integer, Double or a custom type like Exp Float in Nikola.

Functions in both languages are represented directly by Haskell func-

44

tions. This approach is called higher order abstract syntax, or HOAS. We
will return to it in chapter 8.

However, the sharing implied by Haskell bindings is not readily observ-
able in the computed syntax tree. In effect, everything is inlined where
it’s used. In order to prevent recomputation and code size growth due to
this, Nikola discovers sharing via stable names [Gil09, SME99] in the IO
monad, which allows reification of let bindings. In order to capture function
application syntactically, a special version of $ is supplied.

Note that we can only use a deeply embedded language if we use the
operators it provides. In particular, if we wanted to use Nikola or Accelerate
to speed up the probabilistic libraries discussed in chapter 5, we would be
stuck with functions internally using Haskell’s plain operators for scalar
types, like +, - and *, and not those of Nikola or Accelerate. We would thus
need to maintain the deep embedding all the way up to the surface of the
probabilistic language.

While our initial plan was to pursue this option, we could not get the
tests of either library to run on our hardware. Geoffrey Mainland kindly
fixed this issue for Nikola on our system, but by then we were working
on a different approach. Whether or not the language we propose can be
implemented in terms of Nikola or Accelerate is thus postponed as future
work.

However, our approach to embedding is heavily inspired by that of these
languages. We will return to this in chapter 8.

45

Chapter 7

A stochastic process
language - SPL

We will now return to the requirements identified in chapter 4 and attempt
to specify a language that fulfils them.

We have already seen languages that each solved a subproblem of what
we want to achieve. While it’s tempting to conclude that we can simply
combine these languages to provide a complete solution – indeed, this was
our initial plan – it isn’t quite as straightforward as one could hope for. The
languages for probabilistic functional programming, we have seen so far, do
not make all the computational steps inspectable; thus it is not possible to
translate these computational steps into operations in the array languages
for the GP-GPU.

Part of the ingenuity of the array languages visited in chapter 6 is their
approach to embedding into Haskell. However, to provide a higher level
language for distributions and stochastic processes, the embedding must be
redone for this higher level language. In any case, our approach to embed-
ding will be heavily inspired by these array languages.

In order to do Monte Carlo simulation, it would be necessary to find
or implement a pseudo random number generator that supports the array
languages, since this is likely a significant part of the computation involved.

The benefit of using an array language, in this context, would then pri-
marily be the generation of GP-GPU code. Since this in itself is a signifi-
cant part of the implementation, it could still be a good idea to use them.
However, the implementation (and thus optimization) of the higher level
language would need to be expressed in terms of array operations, which
imposes some restrictions compared to the lower level C code.

Combined with not being able to run the array languages for the first
part of the project, this prompted us to simply build and implement a
separate language, reusing ideas from, but not the implementation of, these
languages.

46

7.1 Language design

In this section we present the language design of SPL, as motivated by
chapter 4.

7.1.1 Built-in constructs

As mentioned in section 4.1.2, we need distributions with continuous sample
space. For this purpose, we assume the existence of the type of real numbers,
called Real. We can then specify some built-in continuous distributions:

uniform, normal :: Dist Real

The standard normal distribution is provided due to its prevalence in
finance, such as in the definition of the Brownian motion. The standard
uniform distribution is provided because there are many implementations
of pseudo random number generators available that sample from a uniform
distribution, and as such it is likely the most efficient basis from which to
build other distributions1.

As mentioned in section 4.1.2, we need to be able to express that one
distribution depends on another, for which we have the following construct:

sample :: Dist a -> (Dist a -> Dist b) -> Dist b

This is similar to the monadic bind used to serve the same purpose in
[EK06a]. However, the monadic bind would have type Dist a -> (a -> Dist b)

-> Dist b and thus require that the given function took something of type
a, which we wouldn’t be able to reify; hence the type above.

As mentioned in section 4.1.1, arithmetic operators are required to im-
plement the pricer. For Dist Real we provide instances of the standard
type classes Num, Fractional and Floating2. This gives us arithmetic op-
erators like +, -, *, / etc. as well as pi, exp, etc. This allows us to treat
Dist Real as a Haskell built in number type, save for pattern matching.

In order to support CC and barrier options, we need conditional logic
as mentioned in section 4.3.1. We would prefer to implement the Ord type
class, but unfortunately the operators return a naked Bool. Instead, we
provide the following type class and an instance Ordered Dist Real, with
semantics and operator precedence corresponding to that of the Ord type
class:

1Indeed, we use it in our implementation of normal, see section 8.
2The naming of the Floating type class is a bit unfortunate, because although we will

use a floating point discretization of the real numbers, there’s nothing inherently floating
point about providing π etc.

47

class Ordered a b where

min_,

max_ :: a b -> a b -> a b

(.<.),

(.<=.),

(.>.),

(.>=.),

(.==.),

(./=.) :: a b -> a b -> a Bool

For Dist Bool we provide the below type classes and instances for
If_ Dist and Boolean Dist. These correspond to the if statement and
the usual boolean operators:

class If_ a where

if_ :: a Bool -> a b -> a b -> a b

class Boolean a where

(.||.) :: a Bool -> a Bool -> a Bool

(.&&.) :: a Bool -> a Bool -> a Bool

not_ :: a Bool -> a Bool

Additionally, we provide pair types via the following type class and an
instance for Pair Dist:

class Pair a where

pair :: a b -> a c -> a (b, c)

first :: a (b, c) -> a b

second :: a (b, c) -> a c

Constants of type Double and Bool can be lifted to distributions via an
instance of the following type class:

class ToConstant a where

type ConstantType a

constant :: ConstantType a -> a

In SPL, time is modelled as a non-negative real number, yielding continuous-
time processes as mentioned in section 4.1.1. A stochastic process is concep-
tually a function from a time to a distribution, and this concept is realized
in the following operator, which takes a time and a process and returns the
distribution of the process at that time:

lookup :: Dist Time -> Process a -> Dist a

48

Note that the time can be determined at runtime, as is evident from the
type of the time parameter.

The same interpretation of processes can be used to construct them:

closed :: (Dist Time -> Dist a) -> Process a

Note that no end time is specified; this is an infinite process as specified
in section 4.1.1.

As mentioned in section 4.3.4, in order to support path dependent pro-
cesses we need to aggregate over time intervals. We provide one part of this
functionality via the following construct which defines a process from an-
other process by accumulating over it. The following operator is somewhat
similar to the to scanl in Haskell3, except that operator also takes the time
difference between the previous process value and the current:

prefix ::

(Dist Time -> Dist a -> Dist b -> Dist a) ->

Dist a -> Process b -> Process a

Note that these processes are also infinite. The other part of aggregating
over a time interval is provided by the following function that skips ahead
in a process by a specified amount of time:

skip :: Dist Time -> Process a -> Process a

Processes may run in parallel via the following operator, which is anal-
ogous to Haskell’s zip:

zip :: Process a -> Process b -> Process (a, b)

In order to express that one process depends on another, we have the
following construct:

trace :: Process a -> (Process a -> Process b) -> Process b

Again, the type seems similar to the monadic bind, but isn’t for the same
reason that the type of sample isn’t.

We shall later see that the internal representation is fully symbolic, and
also how to separately specify the global time step. This concludes the built-
in constructs of the language. The next section will focus on how common
functionality can be expressed in terms of these.

3The prefix name is derived from its similarity to the exclusive prefix sum.

49

7.1.2 Prelude functions

We can define the process whose value is the current time by passing the
identity function to closed:

time :: Process Time

time = closed id

We may define the weighted binary choice and discrete uniform distri-
butions from the constructs we have already seen as follows:

choice :: Dist Real -> Dist a -> Dist a -> Dist a

choice q d1 d2 = if_ (uniform .<. q) d1 d2

choose :: [Dist a] -> Dist a

choose [d] = d

choose (d:ds) = choice uniformly d (choose ds)

where

uniformly = 1 / fromIntegral (length (d:ds))

The prefix construct can be used to express map for processes by ignor-
ing the delta time and accumulator and simply applying the given function
to the value of the process at a given point. The initial value needs not be
defined since it’s never used:

map :: (Dist a -> Dist b) -> Process a -> Process b

map f = prefix (_ _ d -> f d) undefined

Having this we can apply unary Dist a operators to Process a. Since
we would also like to apply binary and ternary operators, we define the
lifting functions for Process a as specified by [JES00]. Before we do this,
it is convenient to specify the equivalent of curry and uncurry in Haskell:

uncurry f v = f (first v) (second v)

curry f a b = f (pair a b)

We right-iterate pairs to emulate n-tuples:

uncurry3 f v = uncurry (f (first v)) (second v)

curry3 f a b c = f (pair a (pair b c))

zip3 a b c = zip a (zip b c)

And finally it’s straightforward to define the lifting functions:

lift = map

lift2 f p1 p2 = map (uncurry f) (zip p1 p2)

lift3 f p1 p2 p3 = map (uncurry3 f) (zip3 p1 p2 p3)

50

Using these, we implement the same type classes for Process Real and
Process Bool as we have for Dist Real and Dist Bool, meaning that
operators such as +, -, *, ... are pointwise operations on processes.

Since prefix is exclusive of the initial value, we might also like a variant
that is inclusive. The definition here is a bit tricky, since we use a pair to
delay the output by one time step in order to push in the initial value:

inclusivePrefix f v p = map first (prefix f’ (pair v v) p)

where

f’ dt a v = pair (second a) (f dt (second a) v)

We specified the Brownian motion as an iterative process. In particular,
it is a function that is iterated over an initial value with the ∆t. We therefore
define the iterative construct:

iterative :: (Dist Time -> Dist a -> Dist a) -> Dist a -> Process a

iterative f i = inclusivePrefix (\dt a _ -> f dt a) i time

Note that we don’t care about the process argument, but the time process
is as good as any. Recall the definition of the Brownian motion:

W0 = 0

Wt+∆t = Wt +N
√

∆t

This is now straightforward to write down:

brownian :: Process Real

brownian = iterative (\dt w -> w + normal * sqrt dt) 0

The prefix construct also allows us to aggregate over a stochastic pro-
cess. We can define the cumulative moving average of a process by dividing
the sum of the values seen so far by the number of time steps taken so far:

average process = process ‘trace‘ \p -> total p / count p

where

total = prefix (_ a v -> a + v) 0

count = prefix (_ a _ -> a + 1) 0

Note that we use trace here to ensure that total and count are looking
at the same time series of the process.

The Brownian motion and the average are components of the Asian
option price, but we have now reached the border between common func-
tionality that belongs in the prelude and the specifics of the Asian option
price. We shall return to the pricing of these options later.

51

Representation concerns

In the above we have ignored a detail, namely the requirement that all
type parameters to Dist and Process must be instances of our Type. This
constraint ensures that only types representable on the target platforms are
used. The instances provided are Type Real, Type Bool and (Type a, Type b)

=> Type (a, b):

class Typeable a => Type a where

splType :: a -> SPLType

toDist :: a -> Dist a

The splType is analogous to Haskell’s Data.Typeable.typeOf, and toDist

ensures that we can convert any value of Type a => a into Dist a. The
Typeable a constraint is used in the conversion to intermediate code, which
will be covered in chapter 8.

For the sake of readability, we will leave these constraints out of this
document, but they are present in the full code listing in appendix B.

7.1.3 Haskell’s bindings vs. sample and trace

While sample and trace ensures that all occurrences of the bound variable
refer to the same sample or time series during any evaluation of the body,
using Haskell’s bindings allows the occurrences to be different samples or
time series. The latter semantics is required; otherwise we could not reuse
eg. brownian to introduce multiple sources of uncertainty. When the bound
value is only used in one place, the difference in semantics is not observable,
which makes it possible to use Haskell’s more convenient bindings quite
often.

7.1.4 Semantics

Given a finite uniform discretization of the time:

[0, delta .. end]

We can give semantics to SPL in terms of any probability monad that
can provide the following distributions:

class Monad m => ProbabilityMonad m where

uniform’ :: m Real

normal’ :: m Real

Note that all of the libraries we have seen in chapter 5 can provide
discretized versions of these. Our representation actually requires that Real

52

is discretized as Double, although this is an implementation artefact and
not an inherent limitation.

We’re going to use the abstract syntax representation given in section
8.2, but it’s a direct representation of the built in constructs, and the names
are the same modulo capitalization except for Certain, Unary, Binary and
Ternary that provide constants, unary, binary and ternary operators respec-
tively. We can now give the semantics of stochastic processes that defines
them as distributions of time series:

process :: ProbabilityMonad m => Process a -> m [a]

process p = case p of

Closed f ->

mapM (distribution . f . Certain . Double) [0, delta .. end]

Prefix f i p | usesAccumulator f -> do

i’ <- distribution i

p’ <- process p

let accumulate a v =

distribution (f (toDist delta) (toDist a) (toDist v))

l <- scanM accumulate i’ p’

return (tail l)

Prefix f i p -> do

p’ <- process p

mapM (distribution . f (toDist delta) undefined . toDist) p’

Zip p1 p2 -> do

p1’ <- process p1

p2’ <- process p2

return (zip p1’ p2’)

Trace p f -> do

p’ <- process p

let s = Closed (\(Certain (Double t’)) -> toDist (index t’ p’))

process (f s)

The case for Prefix examines the function to see if it uses the accu-
mulator argument. This is only required due to the use of undefined in
the definition of map, and is possible because our representation is com-
pletely inspectable. The usesAccumulator function is defined in module
Language.SPL.Syntax. Other than that, it is either an application of scanM
or mapM. The former function is not part of the standard Haskell prelude,
but is straightforward to define for all monads, which is done in module
Language.SPL.Semantics.

The semantics would be simpler if map was simply built in; then you
could regard the first case as the semantics for prefix and the second case
as the semantics for map, thus removing the need for usesAccumulator.

The case for Trace uses a Closed process to lift a time series into a
process. Note that the pattern match on Certain (Double t’) works pre-

53

cisely because the case for Closed calls f with exactly that structure, and
f is never called elsewhere. The index function should simply look up into
the time series at the specified time; however, our internal representation
of time (namely Double) unfortunately leaks here, and incurs a little bit of
noise to convert it into an integer that can be used as an index into the list:

index t l = l !! floor (t / delta)

The semantics for distributions are straightforward. Note however that
unaryOperator, binaryOperator and ternaryOperator simply convert the
symbolic operators into the corresponding operators from the Haskell pre-
lude. Note that all operators are strict, including the if statement:

distribution :: ProbabilityMonad m => Dist a -> m a

distribution d = case d of

Uniform -> uniform’

Normal -> normal’

Certain (Double v) -> return v

Certain (Bool v) -> return v

Lookup t p -> do

t’ <- distribution t

p’ <- process p

return (index t’ p’)

Sample d f -> do

d’ <- distribution d

distribution (f (toDist d’))

Unary o d -> do

d’ <- distribution d

return (unaryOperator o d’)

Binary o d1 d2 -> do

d1’ <- distribution d1

d2’ <- distribution d2

return (binaryOperator o d1’ d2’)

Ternary o d1 d2 d3 -> do

d1’ <- distribution d1

d2’ <- distribution d2

d3’ <- distribution d3

return (ternaryOperator o d1’ d2’ d3’)

The semantics for skip are given as a transformation on the syntax tree
in section 8.2.

54

7.2 Implementing a CC model

Part of the initial purpose of SPL was to provide a language well suitable
for implementing CC models. As described in section 3.2, this involves
implementing the three functions exch, disc and snell. We group these
functions together to form a Model type in Haskell

data Model = Model {

modelExchange :: Currency -> Currency -> Process Real,

modelDiscount :: Currency -> Contract -> Time -> Process Real,

modelSnell :: Currency -> Contract -> Time -> Process Real}

Recall that the abstract pricer E[[]] finds the price process of a contract
given a model and a currency. As we are implementing this using the SPL
Process type as the CC stochastic process data type, we obtain a pricer
having the signature

price :: Model -> Currency -> Contract -> Process Real

Now let us defined a simple financial CC model. This is an easy task
when first provided the three essential functions defined further below.

model :: Model

model = Model exchange discount snell

exchange defines the time varying exchange rate between two currencies.
This function must obey two properties given in [JES00]

exchk(k) = K(1)

exchk2(k1) · exchk3(k2) = exchk3(k1)

and as a consequence of this also

exchk2(k1) · exchk1(k2) = exchk1(k1) = K(1)

As we only support the currencies DKK and USD, this only leaves us
one process to implement

exchange :: Currency -> Currency -> Process Real

exchange a b | a == b = 1

exchange DKK USD = max_ 0 (5.268 + brownian * 0.1)

exchange USD DKK = 1 / exchange DKK USD

55

The rate for exchanging DKK to USD is starting from 5.268, but is
from then on given some fluctuation increasing over time modelled by the
Brownian motion. The rate will never drop below zero. We have simple
taken this exchange rate out of the thin air. In a real setting, this model
should be implemented by a financial expert.

We implement a discounting model assuming a continuous fixed risk-free
interest rate of 5%.

discount :: Currency -> Contract -> Time -> Process Real

discount currency contract t =

let p = price model currency contract in

let discounter = exp (-0.05 * (constant t - time)) in

let discounted = always (lookup (constant t) p) * discounter in

if_ (time .<=. constant t) discounted 0

The discounting function first finds the non-discounted price process p

using the pricer together with the model we are about to define. It then
calculates the discounting factor process, discounter, discounted from time
t. This factor is then multiplied on the process always yielding the future
pay out value at time t. We have ensured that the price after t is zero
even though this is undefined in the abstract semantics. Note that the type
class function constant is used in two different settings. It is first used to
convert the time t to a constant process and later to convert the time to a
distribution.

We still need a definition of snell as required by the model and this will
be the topic of the following subsection.

7.2.1 Decisions based on the (expected) future

The snell envelope implementation given below is not correct. We bring
it here anyway, to illustrate the problem of pricing contracts with multiple
exercise times, when using Monte Carlo simulation.

snell :: Currency -> Contract -> Time -> Process Real

snell currency contract end =

let p = price model currency contract in

let discounted t = exp (-0.05 * (constant end - always t)) * p in

let envelope t = maximum_ t (constant end) (discounted t) in

if_ (time .<=. constant end) (closed envelope) 0

As in discount, we first calculate the price process p of the contract. We
then construct the function envelope that given a potential exercise time
t, finds the maximum price from t to end after discounting the value back
to time t. Finally this function is converted into a process using the closed

constructor.

56

The intuition behind this implementation is, that the contract holder
will not exercise the contract at time t, if there exists a later exercise time
that would yield a larger profit, even after discounting that value back to
time t. The problem behind this intuitions is, that this is only true, if
the contract holder can see into the future. We assume the holder to be
completely rational but not psychic. The right intuition is therefore better
stated as: The holder will not exercise the contract at time t if the holder
expects a later exercise time that would yield a larger profit.

The rational holder could instead try to estimate the future using simula-
tions, as we do. An approach to calculating the right price is therefore to do
the same i.e. do simulations in our simulation. This is achieved by replacing
p in the definition of discounted t by a new process, say expectedP t,
simulating the possible futures starting with the value of p at time t.

It is unfortunately not possible to express nested simulation directly
in SPL. But as SPL is a embedded language, it is possible to generate
or unroll an SPL program that does a fixed number of nested simula-
tions. The problem is just, that the program size will be proportional
to splitsexerciseT imes where splits is the number of nested iterations and
exerciseT imes is the number of exercise times in the exercise period. We
do therefore not only see an exponential run time but also an exponential
code size. The exponent exerciseT imes would usually be (expiryT ime −
acquisitionT ime)/deltaT ime which should consolidate the point, that this
is not a practical solution.

We thereby have to conclude that SPL is not a suitable language for
implementing the CC model function snell. This is unfortunate as SPL was
actually designed to implement CC . But the problem gets even worse as our
limitation is not limited to snell. As we do the Monte Carlo simulation in
time steps we effectively reduce the exercise period of an American option
to a finite number of exercise times thereby reducing the American option to
a Bermudan options. In itself, this is not a problem as the simulation is an
approximation after all. But it made us realize that the psychic problems
do not only originate from the use of the CC combinator anytime. The
Bermudan option are also expressible in CC as shown below:

get (truncate 0 (c ‘or‘ (

get (truncate 1 (c ‘or‘ (

get (truncate 2 (c ‘or‘ zero))))))))

The missing implementation of snell could be handled by taking anytime

out of the CC language, but it is far worse that we cannot handle special
combinations of get, truncate and or, as this makes the supported subset
of the CC language non-composable. The CC programs that we do not
support, are those expressing contracts where the holder needs to base a
choice upon a expected future values. This is the case in the Bermudan op-

57

tion given above, but let us look at the symbols contract having this problem

c1 ‘or‘ (get truncate t c2)

This contract lets the holder choose whether to take c1 or the contract
that yields c2 at time t. The rational choice is here to pick the option that
has the highest expected price. Using simulation, this can be determined
by pricing c1 and get truncate t c2 in two different simulations and then
compare the expected prices. Our current implementation performs one
combined simulation where each simulation experiment will yield the price
for the choice that has the highest price within the experiment. This is
again an exploitation of future knowledge which results in upper bound
prices compared to the right prices.

We leave this problem to future work, but we do have an idea that might
lead such work in the right direction. What if we say that the current CC
to SPL pricer implemented is perfectly fine, and instead point our fingers at
the SPL semantics. Is it arguably never correct to utilize future value when
modelling a stochastic process. We thereby need to change the semantics to
use expected values whenever a future value is requested by lookup. This is
especially the case when looking up future values on traced processes as they
represent a specific reality, where one should be certain about the present
and the past, but not the future.

Based on the argument above we might say, that the problems described
in this section is simply a product of bad semantics for SPL and that the
semantics should be fixed such that future lookups in traces would yield
expected values. Implementing such a changed semantics with Monte Carlo
simulation would require nested simulations or preferably something more
clever. There have been several solutions for doing this for American op-
tions [LS01, Hul09], but they might be hard to implement efficiently on a
GP-GPU as the simulation experiments are no longer independent in these
approaches. Another challenge is to construct the process representing the
uncertain future starting from the present value of the trace, which is needed
to calculate the expected future.

58

Chapter 8

Implementation

We have already seen the interface for the built-in constructs and the prelude
functions of SPL. This chapter explains how we translate these constructs
via intermediate representations so that they can be run on GP-GPUs in
the end. Figure 8.1 gives an overview of the relations between SPL, the
intermediate representations and the execution targets.

Note that we will not attempt to recover sharing as in Nikola, in part
due to the semantics introduced in section 7.1.3, which requires re-evaluation
of at least the random parts of stochastic terms not explicitly sampled or
traced. It would be possible to recover the sharing and produce C functions
rather than using C’s strict bindings, but this approach will be left to future
work.

59

Figure 8.1: SPL interfaces, internal representations and targets. The green
boxes are the exported interfaces in which SPL programs are written, the
blue boxes are the different syntaxes we manage internally and the red
boxes are the execution targets.

8.1 Employed Haskell extensions

In this chapter, we are going to use some extensions to Haskell. The two
major ones are generalized algebraic data types (GADTs) [PJVWW06] and
type families [SPJCS08], both of which will be explained in this section.

8.1.1 GADTs

Ordinary algebraic data types in Haskell are defined via the data construct.
Consider the following small language:

data Term

= Constant Integer

| Add Term Term

| Pair Term Term

The data constructors represent integer constants, integer addition and
a constructor for 2-tuples. Unfortunately we may construct terms that are
nonsensical given this interpretation. For example,

60

Add (Pair (Constant 1) (Constant 2)) (Constant 3)

Since integer addition is not defined for pairs, we might like to prevent
the construction of such terms. Adding a type parameter to Term gets us
some of the way:

data Term a

= Constant Integer

| Add (Term Integer) (Term Integer)

| Pair (Term x) (Term y)

In reality, the x and y type variables used in the Pair constructor would
require a separate extension to enable existential types and an explicit quan-
tifier. However, there is no way to specify, for example, that when Constant

is given an Integer it returns a Term Integer. If Constant was a function,
we might express that as follows:

Constant :: Integer -> Term Integer

In fact, this is the exact syntax that GADTs provide. We can now specify
a typed syntax tree as follows:

data Term a where

Constant :: Integer -> Term Integer

Add :: Term Integer -> Term Integer -> Term Integer

Pair :: Term x -> Term y -> Term (x, y)

Thus it’s no longer possible to construct a term that tries to do integer
addition on pairs, because Pair returns a term of pair type and the type of
Add requires terms of integer type. We can use this type information when
writing our interpreter:

interpret :: Term a -> a

interpret (Constant i) = i

interpret (Add x y) = interpret x + interpret y

interpret (Pair x y) = (interpret x, interpret y)

Note that we never refer to the type parameter a in the definition of Term.
Just as data constructors can be thought of as functions, type constructors
can be thought of as functions on the type level. A kind is the “type of a
type”. For types like Integer and Bool, the kind is *. For type constructors
with one parameter, the kind is * -> *, because when given a type of kind
* it produces another type of kind *. For a type constructor with two
parameters, the kind is * -> * -> *, and so on and so forth. Our final
definition of Term is as follows:

61

data Term :: * -> * where

Constant :: Integer -> Term Integer

Add :: Term Integer -> Term Integer -> Term Integer

Pair :: Term x -> Term y -> Term (x, y)

8.1.2 Type families

Type families take the idea of type level functions one step further, by not
being limited to the construction of types. Later on we are going to use
heterogeneous lists constructed from iterated pairs and () as a terminator.
For example, the type of a two-element list might be (((), Int), Bool).
We could construct the type level function that finds the type of the leftmost
element (Int in this case):

type family LeftmostOf :: * -> *

type instance LeftmostOf ((), b) = b

type instance LeftmostOf (a, b) = LeftmostOf a

Type families can be used in most places where an ordinary type can be
used. Along with type families comes equality constraints, written a ~ b.
For example, the following two constraints hold:

LeftmostOf (((), Int), Bool) ~ Int

LeftmostOf ((), String) ~ String

Like type class constraints, equality constraints can be written in any
context. We will use this ability later on. The Of suffix will be used in type
family names to make it easy to spot where they are used.

Type families can be associated with type classes. In that case, the type
family declaration is placed inside the type class declaration and the instance
declaration is placed inside the type class instances, with the family and
instance qualifiers dropped for type families. They are slightly restricted
for the purpose of better error messages, but the details are not important
for understanding this chapter.

8.2 High level code

In order to do compilation at a later stage, we need to capture all of the
computational steps required to sample from the distributions. One way
of representing computation is to specify it in a programming language.
Indeed, the internal representation of Dist and Process are syntax trees
comprising a small language for stochastic computation. The main defini-
tions are given in module Language.SPL.Syntax, while the operators are
given in module Language.SPL.Operator.

62

data Dist :: * -> * where

Normal :: Dist Real

Uniform :: Dist Real

Lookup :: Dist Time -> Process a -> Dist a

Sample :: Dist a -> (Dist a -> Dist b) -> Dist b

Certain :: Constant a -> Dist a

Unary :: UnaryOperator a1 a2 ->

Dist a1 -> Dist a2

Binary :: BinaryOperator a1 a2 a3 ->

Dist a1 -> Dist a2 -> Dist a3

Ternary :: TernaryOperator a1 a2 a3 a4 ->

Dist a1 -> Dist a2 -> Dist a3 -> Dist a4

TagD :: Int -> Dist a

data Process :: * -> * where

Closed :: (Dist Time -> Dist a) -> Process a

Prefix :: (Dist Time -> Dist a -> Dist b -> Dist a) ->

Dist a -> Process b -> Process a

Zip :: Process a -> Process b -> Process (a, b)

Trace :: Process a -> (Process a -> Process b) -> Process b

TagP :: Int -> Process a -> Process a

The Normal, Uniform, Lookup, Sample, Closed, Prefix, Zip, Skip and
Trace constructors correspond exactly to their namesakes in lowercase from
section 7.1.1.

Certain are for constants of type Real and Bool. Unary, Binary and
Ternary are for built-in unary, binary and ternary operators respectively.
These include the if-statement and the constructor and destructors for pairs.

The Closed and Prefix constructors accept arbitrary functions from
distributions to distributions. This is called higher order abstract syntax,
or HOAS, and is also used in Nikola and Accelerate. It allows us to keep
a type preserving one-to-one mapping between the functions we provide
and the representation we use. In turn, we can preserve these types as we
transform the syntax tree and translate it to (typed) lower level code.

Having functions in the tree may look like a problem because we can’t
directly look under the arrow of a function, which would be necessary in
order to translate it to a language outside Haskell. However, it’s possible
to reify such functions given some internal representation of variables in the
syntax tree. Consider a syntax tree for untyped lambda calculus:

data Term = Lambda String Term | Apply Term Term | Variable String

Given a function f :: Term -> Term, applying f to any Term will ob-
viously yield a syntax tree we can inspect. To reify the function, we can
apply f to a fresh variable, and then wrap it in a lambda abstraction:

63

let body = f (Variable "x") :: Term in

Lambda "x" body :: Term

By doing this simple eta-expansion, we arrive at an inspectable repre-
sentation of the function. In our syntax tree, TagD and TagP serves roughly
the same purpose as Variable above. We will return to their exact use in
section 8.4.

The skip function is implemented as a transformation on the syntax
tree. Recall that it skips a given amount of time into a process:

skip :: Dist Time -> Process a -> Process a

skip t process = case process of

Closed f -> Closed (\t’ -> f (t + t’))

Prefix f d0 p ->

Prefix f (Lookup t (inclusivePrefix f d0 p)) (skip t p)

Zip p1 p2 -> Zip (skip t p1) (skip t p2)

Trace p f -> Trace p (skip t . f)

TagP tag p -> TagP tag (skip t p)

For the Closed process that is directly a function from time to a distri-
bution, we simply add the skip time to the input time. For prefix we skip
by fast forwarding the initial value by the skip time, as well as skipping on
the process prefixed over. The remaining cases simply recursively skip on
their process arguments.

We have chosen to use Double as the discretization of Real, mainly for
its availability on modern GP-GPUs:

type Real = Double

8.2.1 A running example

In order to give an intuition of the various representations and translation
steps that we will look at in this chapter, we will now go through the trans-
lation of lookup 5 brownian, but first recall the definition of brownian:

brownian = iterative (\dt w -> w + normal * sqrt dt) 0

To make the representation readable, we’re going to use Haskell’s where
clause to give names to subterms – to arrive at the actual representation,
simply perform substitution. The following is the code generated in the high
level language by the prelude functions:

brownian5 = Lookup (Certain (Double 5)) outer

where

64

The inclusivePrefix (see section 7.1.2) used in the definition of iterative
has introduced an outer Prefix and pairs for delaying the stream of values
by one time step:

outer = Prefix first undefined inner

inner = Prefix f initial undefined

The initial value 0 is also duplicated by inclusivePrefix:

first _ _ = Unary First

initial = Binary Pair zero zero

zero = Certain (Double 0)

The iterated function \dt w -> w + normal * sqrt dt is straightfor-
ward, except that it does not use the value of the (undefined) process:

f dt w _ = Binary Pair (Unary Second w) (add w dt)

add w dt = Binary Add (Unary Second w) (product dt)

product dt = Binary Mult (Unary Sqrt dt) Normal

We will return to this example later in this chapter and translate it
further until we reach our target, the OpenCL code.

8.3 Low level code

In order to split up the compilation into smaller tasks, we introduce an
intermediate language that is slightly closer to the target language. The
idea is to make sampling via a pseudo random number generator (PRNG)
and looping explicit at this level, removing the concept of processes and
distributions. Additionally we would like to reify functions at this point,
so that they can be inspected when doing the final translation to OpenCL
code.

Before we can continue to the language itself, we must introduce one of
the core concepts it uses, namely de Bruijn indexing.

8.3.1 De Bruijn indexing

In the standard notation for lambda calculus, we may write down the fol-
lowing term:

λx. (λy. (λz. z) y) (λw.w x)

In this notation, the binder for a variable is the closest lambda in the
syntax tree above the variable occurrence that mentions the variable name.
This gives us a lot of choice in naming variables, and gives rise to alpha-
equivalence between lambda terms. De Bruijn indexing [dB72] abolishes

65

variable names and instead uses natural numbers. These numbers indicate
how many binders to skip when searching the syntax tree upwards to find
the appropriate binder for a variable occurrence. This removes the choice
in naming and makes checking for alpha equivalence a simple matter of
checking for syntactic equivalence. Figure 8.2 compares the syntax trees
and notations.

λx

apply

λy

apply

λz

z

λw

apply

y w x

λx. (λy. (λz. z) y) (λw.w x)

λ

apply

λ

apply

λ

0

λ

apply

0 0 1

λ (λ (λ 0) 0) (λ 0 1)

Figure 8.2: Standard notation (on the left) vs. de Bruijn indexing (on the
right). The dashed arrows connect variable occurrences to their binders.

A concrete benefit of the latter representation is that the environment
can be a list of values, indexed by a natural number (the de Bruijn index),
instead of the traditional finite map from names to values.

In particular, we can encode the required environment for an expression
in the type system as a homogeneous list using iterated pairs . Consider the
Haskell let-statement:

let x = e1 :: a in e2 :: b

We may introduce a type Term env a where env is the type of the re-
quired environment and a is the result type of the term. We can then
introduce a let statement like the following:

Let :: Term env a -> Term (env, a) b -> Term env b

66

The variable name is nowhere in sight, since we assume de Bruijn index-
ing. Like Haskell’s let statement, this would provide a binding to the first
term during the evaluation of the second term. This is evident in the type,
since the second term’s environment type is extended with the result type
of the first term. In other words, the environment is typed.

Our representation of environments uses nested pairs. The empty envi-
ronment is represented by the unit type (). The Term type constructor is
comparable to Haskell’s function types in the sense that the types a -> b

and Term (env, a) b both specify that a value of b can be produced given
a value of type a. Some examples of this relationship are given in figure 8.3.

Haskell type Corresponding Term type

c Term () c

b -> c Term ((), b) c

a -> b -> c Term (((), a), b) c

Figure 8.3: Some examples of Haskell types and their corresponding Term

types starting from an empty environment ().

As in [Cha09], we encode de Bruijn indexes as Peano numbers, with
additional type information about the required environment and the variable
type:

data Index :: * -> * -> * where

Zero :: Index (env, a) a

Succ :: Index env a -> Index (env, b) a

This Index type is used to index into an environment to find the ap-
propriate value of the right type. At index Zero, the outermost pair of the
environment must contain the appropriate value. When increasing the index
by 1 with Succ, we’re allowed to extend the environment with a value of
any type of our choosing. We can use these indexes to perform lookups in
the environment:

peek :: Index env a -> env -> a

peek Zero (_, a) = a

peek (Succ n) (environment, _) = peek n environment

The logic is that if the index is Zero, we’re at the right position in the
environment and we’re guaranteed to find a value of the appropriate type
there. If the index is Succ n then we peel off a layer of the environment
and recursively peek into the smaller environment with a smaller index (ie.
decreased by 1). We will use this function later on.

67

8.3.2 Low level syntax tree

We will now define the syntax tree of the low level code, which will be the
result of the translation from high level code described in the next section.
The definition is given in module Language.SPL.Intermediate.

The Intermediate data structure

The low level syntax tree is defined as the data type Intermediate env a.
Note that there is an extra parameter env compared to the the high level
syntax tree. This is because terms in the low level language may contain
variables. The env is the type of environment required to provide values for
these variables:

data Intermediate :: * -> * -> * where

The uniform and normal distributions, constants, unary, binary and
ternary1 operators are still built into this language:

Uniform, Normal :: Intermediate env Double

Constant :: Constant a ->

Intermediate env a

Unary :: UnaryOperator a b ->

Intermediate env a ->

Intermediate env b

Binary :: BinaryOperator a b c ->

Intermediate env a ->

Intermediate env b ->

Intermediate env c

If :: Intermediate env Bool ->

Intermediate env a ->

Intermediate env a ->

Intermediate env a

The env specifies that any environment can be used here.
The language has strict let bindings (using de Bruijn indexing):

Let :: Intermediate env a ->

Intermediate (env, a) b ->

Intermediate env b

Variable :: Index env a ->

Intermediate env a

In addition, we have operators for splitting the current PRNG and stor-
ing one of them for later use via Split and Use:

1The if statement is the only ternary operator we have.

68

Split :: Intermediate (env, StdGen) a -> Intermediate env a

Use :: Index env StdGen -> Intermediate env a -> Intermediate env a

We will return to the exact use for these operators in section 8.4.
We will use the “S.” prefix to distinguish elements of the high level code

from those of the low level code.
Finally, we have an accumulating loop. The Prefix name alludes to

that these loops always stem from one or more S.Prefixes in the high level
code:

Prefix :: Bool ->

Intermediate env S.Time ->

Accumulator env a ->

Intermediate env a

The first argument keeps track of whether or not the current time is
referred to anywhere in the process, which will be used later on. The second
parameter is the lookup time, which is used to calculate the number of
iterations to take in the loop. The third argument will be explained below.

The Accumulator data structure

When a S.Prefix accumulates over another S.Prefix in the high level code,
such as taking the average of a brownian, we don’t want to incur a quadratic
performance penalty by creating a nested loop. Instead we would like to run
the two prefixes in lockstep, taking one iteration of the inner S.Prefix and
then use the value to take one iteration of the outer S.Prefix, thus creating
only a single loop. For this purpose we create a data structure to represent
nested loops:

data Accumulator :: * -> * -> * where

The most complicated constructor is the one describing a S.Prefix from
the high level code:

Accumulate ::

Intermediate (((env, S.Time), a), b) a ->

Bool ->

Maybe (Intermediate env a) ->

Maybe (Accumulator env b) ->

Accumulator env a

The first argument is the body of the accumulator function from S.Prefix.
It requires an environment containing the ∆t, the accumulated value so far
and the current value of the accumulated process. The second argument

69

records whether or not the ∆t argument is used. The third and fourth argu-
ment is the initial value and accumulated process respectively, or Nothing

when they are not in use.
Processes that have been S.Zipped has a direct representation in this

data structure:

Zip ::

Accumulator env a ->

Accumulator env b ->

Accumulator env (a, b)

When we know the lookup time, any Closed process is simply a distri-
bution, which gets translated to Intermediate as:

Expression ::

Bool ->

Intermediate (env, S.Time) a ->

Accumulator env a

The boolean argument again keeps track of whether or not the current
time is referred to inside the process.

Finally we have Splitting and Using which are analogous to Split and
Use respectively:

Splitting ::

Accumulator (env, StdGen) a ->

Accumulator env a

Using ::

Index env StdGen ->

Accumulator env a ->

Accumulator env a

We are now ready to translate the high level code into this representation.

8.4 Translation from high level to low level code

The translation code is provided in module Language.SPL.Intermediate.
We are going to use the same approach as Accelerate [Cha09] in order to

convert HOAS to de Bruijn indexing. In particular, a lot of care is needed
when constructing TagD, because the index used is a plain Int and thus
guarantees nothing about the type of value it refers to. In contrast, the
Variable uses a type safe index (temporarily stored in the Layout) so,
if we do the conversion right, we will preserve the types from the HOAS
representation.

70

In order to minimize surface area of this hazard, we introduce the fol-
lowing function which ensures that the tag created has the right Int index
pointing to a corresponding Index of the right type in the Layout:

distTag ::

Layout env env’ ->

(S.Dist a, Layout (env, a) (env’, a))

distTag layout =

(S.TagD (size layout), increase layout ‘Push‘ Zero)

This ensures that a tag created is always matched by a type safe index
entry in the layout of the same type. As long as we use this layout in the
right place, we are safe. A similar function is defined for TagP.

In order to get the type safe index out of the layout again, a project

function is provided. Given that the layout is constructed correctly, it’s safe
to use, and will otherwise result in a runtime error.

8.4.1 Distributions

The conversion is done using a function that takes a layout and a distribution
and returns the corresponding low level code:

convert’ :: Layout env env -> S.Dist a -> Intermediate env a

convert’ layout term = case term of

In the case of Sample, we use the strict let binding from the intermediate
code. This ensures that we have performed the side effect of picking a ran-
dom element from the distribution, and thus use the same value everywhere
the variable is used:

S.Sample e f ->

Let (convert’ layout e) (convert’ layout’ (f tag))

where

(tag, layout’) = distTag layout

The tag introduced by this is handled by projecting the Int to an
Index env a for use in the Variable:

S.TagD tag ->

Variable (project (size layout - tag - 1) layout)

Except for S.Lookup, the rest of the cases are either straightforward
recursive cases or one to one mappings. In the case of S.Lookup we need
to translate a S.Process a, which is done by a separate function that is
covered in the next to sections:

S.Lookup e p ->

lookup layout e p

71

8.4.2 Simple lookups

Since the lookup function has a lookup time, it can get away with converting
the otherwise infinite stochastic process into a simple sampling of a value in
many cases:

lookup :: Layout env env -> S.Dist S.Time -> S.Process a -> Intermediate env a

lookup layout time process = case process of

For the S.Closed case, it is a simple matter of performing the lookup
directly, by treating the process as a function from the lookup time to a
distribution:

S.Closed f ->

convert’ layout (f time)

The S.Zip case is a simple recursive case.
The S.Trace case is more involved. We have to ensure that everywhere

the traced process is used, we get to look at the same time series. Assuming
a PRNG with mutation, our approach to ensuring this is to:

• Create a new PRNG state from the current PRNG state.

• Store the new PRNG state in the environment.

• Inline the traced process at all usage sites.

• Use a fresh copy of the stored PRNG state whenever the execution
reaches these.

• Use stack semantics to return to the previous PRNG state when the
execution reaches the end of the code for the inlined process.

Only part of this approach is visible in the translation, since the PRNG
state is a runtime value. The key thing to notice here is that S.TagP contains
the process to be inlined and requires a PRNG state to be available in the
environment:

S.Trace p f ->

Split -- Will create the new PRNG state

(lookup layout’ time (f tag))

where

(tag, layout’) = processTag layout p

S.TagP tag p ->

Use -- Will use the stored PRNG state locally

(project (size layout - tag - 1) layout)

(lookup layout time p)

72

The last case is when we have a S.Prefix. In this case, we might need
to introduce a loop to iterate or accumulate over a process. We introduce an
accumulator function that builds a tree of nested applications of S.Prefix,
in order to emit efficient loop code later on. The prefix case is as follows:

p@(S.Prefix _ _ p’) ->

Prefix

(usesTimeInProcess p’)

(convert’ layout time)

(accumulator layout p)

Note that we perform a search in the tree here to discover whether or
not the current time is referred to anywhere. This information is utilized
later in the translation from low level code to OpenCL code.

8.4.3 Lookups on accumulating processes

The accumulator function looks like:

accumulator :: Layout env env -> S.Process a -> Accumulator env a

accumulator layout process = case process of

In this function, the case for S.Prefix is the most complicated. It
requires that we can look into the body of the accumulating function to see
which of the variables are used:

examine :: (Dist a -> Dist a1 -> Dist a2 -> Dist a3) -> (Bool, Bool, Bool)

examine f =

let (x1, x2, x3) = (-4, -3, -2) in

let body = f (TagD x1) (TagD x2) (TagD x3) in

(varUsedInDist x1 body, varUsedInDist x2 body, varUsedInDist x3 body)

Note that the negative indexes and tags created here don’t escape from
the function. We can now implement the case for S.Prefix:

S.Prefix f e p ->

First we convert the initial value and the accumulated process:

let accumulator’ = accumulator layout p in

let initialValue = convert’ layout e in

Then we create tags for the three parameters for the accumulator func-
tion, and use these in the conversion of the function itself:

73

let (timeTag, layout’) = distTag layout in

let (accumulateTag, layout’’) = distTag layout’ in

let (valueTag, layout’’’) = distTag layout’’ in

let f’ = convert’ layout’’’ (f timeTag accumulateTag valueTag) in

Then we analyse which of the variables the function uses:

let (useDt, useAccumulator, useProcess) = S.examine f in

Finally we use a Maybe type to distinguish between used and unused
variables when creating the Accumulate node:

Accumulate

f’

useDt

(if useAccumulator then Just initialValue else Nothing)

(if useProcess then Just accumulator’ else Nothing)

The S.Zip, S.Trace and S.TagP cases are recursive and analogous to
the ones in lookup.

When we reach S.Closed, we note whether or not the current time is
used in the process, create a tag for it to perform a lookup:

p@(S.Closed _) ->

let (tag, layout’) = distTag layout in

Expression (usesTimeInProcess p) (lookup layout’ tag p)

This concludes the translation from high level code to low level code.
However, we might like some of the parameters of the distribution to be de-
cided dynamically, rather than statically fixing them during the translation.
This is the topic of the next section.

8.4.4 Top level functions of arbitrary arity

Since compilation takes time, it’s beneficial to be able to reuse compiled
code. In order to do this, we translate top level functions rather than just
distributions, so that the compiled code can be run with different param-
eters. We will thus translate high level code functions with types like the
following:

Dist a -> Dist b

Process a -> Dist b

Dist a -> Process b -> Dist c -> Dist d

74

Ie. any function with distribution and process parameters that yields a
distribution in the end. Note that the parameters can only be instantiated
to values – it’s thus not possible to supply new code after the translation.

We introduce the following type class, whose purpose is to extend convert’

to work on n-ary functions:

class Translate env a where

translate’ ::

Layout env env ->

a ->

Intermediate (EnvironmentOf env a) (ResultOf a)

The EnvironmentOf and ResultOf are type families, respectively yield-
ing the environment type and result type of low level code that is translated
from high level code:

type family EnvironmentOf env a

type family ResultOf a

The base case is the plain distribution, which requires nothing of its
environment:

instance Translate env (S.Dist a) where

translate’ = convert’

The environment for such a distribution has no extra requirements, and
the result type is the the same as that of the sample space of the distribution:

type instance EnvironmentOf env (S.Dist a) = env

type instance ResultOf (S.Dist a) = a

Given that we can translate something, we can also translate it with one
additional distribution parameter:

instance Translate (env, a) b => Translate env (S.Dist a -> b) where

translate’ layout f = translate’ layout’ (f tag)

where

(tag, layout’) = distTag layout

Note that we add the parameter type to the environment type. The
result type is that of the recursive case:

type instance EnvironmentOf env (S.Dist a -> b) = EnvironmentOf (env, a) b

type instance ResultOf (S.Dist a -> b) = ResultOf b

The case for process parameters is similar.

75

8.4.5 Low level code for the running example

Recall the example from section 8.2.1, namely lookup 5 brownian. The
following is the translation to the low level language. To make it readable,
we will pretty print the type safe de Bruijn Indexes used in Variable as
natural numbers.

The lookup allows us to fix the end time of the loop:

brownian5’ = Prefix True (Constant (Double 5)) outer

where

The outer prefix is a map, and thus doesn’t use its initial value or ∆t.
The inner prefix uses ∆t and an initial value, but does not need a process:

outer = Accumulate first False Nothing (Just inner)

inner = Accumulate f True (Just initial) Nothing

The function that just takes the first element of the value from the inner
process is now simply an expression with a free2 variable:

first = Unary First (Variable 0)

The initial value is basically identical to the high level code:

initial = Binary Pair zero zero

zero = Constant (Double 0)

The iterated function is also quite similar, but now it’s just the function
body with free variables:

f = Binary Pair (Unary Second (Variable 1)) add

add = Binary Add (Unary Second (Variable 1)) product

product = Binary Mult (Unary Sqrt (Variable 2)) Normal

Note how the syntax tree is now a first order data structure with no
functions blocking the view from what’s going on inside.

8.5 OpenCL device architecture

OpenCL is a standard for massively parallel computation [Khr08]. It is
supported by massively parallel hardware (GP-GPUs) from both AMD and
NVIDIA, and is similar to the NVIDIA-specific CUDA platform.

Figure 8.4 shows a simplified model of the OpenCL device architecture.
Every device has a large global memory that can be accessed by all threads.

2Not completely free, since it’s recorded in the environment type.

76

The threads are partitioned into work groups, each group running on a single
compute unit. When a thread executes, it executes on one of the processing
elements within this compute unit. The threads in a work group share the
vastly smaller local memory.

Figure 8.4: Simplified OpenCL device architecture.

The host, in our case the CPU running the Haskell program, is respon-
sible for allocating global and local memory and starting the threads. The
threads themselves can’t allocate any additional memory and can’t start
additional threads.

The computation model is a so called single instruction, multiple data
model, better known as SIMD. In particular, threads executing simulta-
neously on the same compute unit execute the same instructions. This is
possible because all threads execute the same program. If the execution
of some threads diverge, such as when they are in different branches of an
if-statement or loops for more iterations, then the other threads are simply
suspended while the first ones finish diverging.

The entry point in the program that all threads execute is called a kernel.
It’s written in a C-like language with certain restrictions and extensions; in
particular, both function pointers and recursion are disallowed [Khr08].

A small program may look like this:

kernel void f(global float* a, local float* b, float c) {

size_t global_work_size = get_global_size(0);

size_t global_thread_id = get_global_id(0);

size_t local_work_size = get_local_size(0);

size_t thread_id_within_work_group = get_local_id(0);

// ...

}

The kernel keyword specifies that this function is an entry point. Such
a function must return void. The first argument is a pointer to some float-

77

ing point numbers in global memory, as indicated by the global keyword.
Similarly, the local keyword specifies that the second argument is a pointer
to something in local memory. The last argument is a single value that is
neither in local nor global memory. There is no restriction on the number or
order of arguments, but any pointer arguments to a kernel must be declared
to belong to a specific memory region, such as the global or local memory.

There may be multiple functions in the source code, and any number of
those may be marked as kernels. It’s also possible to include code via the
#include directive, if the appropriate include directories are specified when
compiling the source code.

Certain features are only available via extensions, such as IEEE 754 dou-
ble precision floating point numbers, which can be enabled by the #pragma

OPENCL EXTENSION cl_khr_fp64 : enable directive.
When executing a kernel from the host, it is necessary to specify the

total number of threads that will be executed, called the global work size,
as well as the number of threads in each thread group, called the local work
size. For each pointer argument to the kernel it is also necessary to specify
how much memory to allocate. Global memory can also be initialized from
the host before executing the kernel, as well as copied back into the host
memory after the kernel has finished executing.

These numbers can be queried from within the thread, as is evident from
the code example. The threads also have a global and a local ID, queried
with get_global_id(0) and get_local_id(0) respectively3.

Tasks like kernel execution and data transfer is performed asynchronously.
For each device, any number of event queues can be created, and tasks are
enqueued into these queues. When enqueueing tasks you can specify a list
of events to wait for before the task executes. Tasks fire a completion event
when they are done executing, and these events can be used to order data
transfers and execution of kernels.

There are several other memory regions, such as registers and private
memory, which are local to the individual process elements and used at the
discretion of the compiler when no memory region is specified. It should also
be noted that depending on the implementation, access to global memory
may be cached, but in general it can be assumed that access to local memory
is much faster than to global memory.

On most OpenCL targets, accessing shared memory in specific patterns
is required in order to get optimal performance. Our approach is to bypass
such difficulties simply by not using shared memory at all for the bulk of
the computation.

To use OpenCL from Haskell we use the HOpenCL library developed
by Martin Dybdal (unpublished), which is a one-to-one mapping of the
OpenCL C API to Haskell functions, providing a friendlier and less error

3The 0 specifies the first dimension, which is the only for the purpose of this thesis.

78

prone interface (eg. using lists instead of the (size, pointer) pairs required in
the C API). However, the library uses finalizers for resource management,
which is problematic because the resources on the device may run out before
the finalizers are executed. By choosing to use this library, we unfortunately
inherit this weakness.

8.6 Translation from low level code to OpenCL
code

This section describes the translation from low level code to OpenCL code.
The code for this translation step is given in module Language.SPL.OpenCL.Compiler.

8.6.1 Quasi quotation for C-like languages

In order to generate OpenCL code, we have extended the C quasi quoter
[Mai07] used in Nikola to support OpenCL’s variant of C. Like in Nikola,
this allows us to write C code in special quotation marks, while splicing in
code and values generated elsewhere in the Haskell program. Syntax errors
for the C code is then reported at Haskell compile time4.

8.6.2 Preserving (some) typing with phantom types

Since the C syntax tree we generate is untyped, we can’t be sure that the
generated code will type check, even if the syntax tree we generate it from is
fully typed. However, to get some help from the compiler, we use phantom
types for variable names and C expressions:

newtype Name a = Name String

newtype Expression a = Expression Exp

Note that the type variables are not used on the right hand side of the
definitions. At runtime, these are just String and Exp respectively, but
until then we can use the type variables to capture type information.

Since C (thankfully) uses names and not de Bruijn indexing for variables,
we need to generate suitable names and connect them to our de Bruijn in-
dexes. Our approach is to store the generated names in an environment
indexable by the type safe de Bruijn indexes. For this purpose, we con-
vert the iterated pair representation of the environment by wrapping each
element in the Name type using the following data type family:

data family Named :: * -> *

data instance Named () = NamedEmpty

data instance Named (env, b) = NamedBind (Named env) (Name b)

4C type errors are not caught until OpenCL compile time, however.

79

Creating a modified version of peek that can perform lookups in the
name environment is straightforward:

peek :: Index env a -> Named env -> Name a

peek Zero (NamedBind _ a) = a

peek (Succ n) (NamedBind environment _) = peek n environment

A key advantage of these phantom types is that we can define the fol-
lowing type preserving functions for working with variables:

assign :: Name a -> Expression a -> M ()

bind :: String -> Expression a -> M (Name a)

use :: Name a -> M (Expression a)

These are for generating C code for destructively updating, creating and
initializing a variable, and getting the C expression that uses a variable
respectively. Note that the String in bind is for supplying a friendly prefix
for the variable name; a unique suffix is generated automatically.

The M monad is used for collecting generated statements, keeping track
of used variables and pair types, and generating fresh suffixes for variable
names. It’s the Writer monad transformed with StateT.

8.6.3 The simple cases of Intermediate

The translation of constants and unary and binary operators is a straight-
forward one-to-one translation. Recall that the If statement is strict in all
its arguments; we use the select OpenCL intrinsic to implement this.

The Let and Variable constructs insert and look up names in the en-
vironment respectively, and map to the corresponding C constructs. We
generate unique names and declare all variables in the top of the generated
code block, so there is little to think of in terms of scoping.

8.6.4 The primitive distributions Uniform and Normal

To generate (pseudo) random samples from the Uniform and Normal distri-
butions we have employed the MWC64X [Tho11] pseudo random number
generator for OpenCL. Like most PRNGs, it samples from an uniform distri-
bution of integers, in this case the 232 first natural numbers. We convert this
to a standard uniform distribution between 0 and 1 by division. We then
use the Box-Muller method [GM58] to convert these to standard normal
distributions.

80

8.6.5 The Split and Use constructs

The compiler keeps a stack of C variable names referring to PRNG states
internally. The topmost variable on the stack is used whenever a call to the
PRNG is generated. The Split construct uses the state from the current
topmost variable to generate a new PRNG state by randomization of the
internal state, and stores it in a new variable. The Use construct performs a
deep copy (by assignment) of this new variable and pushes it onto the stack
for the translation of its body.

8.6.6 The Accumulator loops

As discussed in section 8.3.2, we want to run nested prefixes in lockstep
rather than generating nested loops whenever possible. Most of that work
was already done when generating the Accumulator trees, since everything
in such a tree can run in lockstep. However, we would like to go even
further and move as much code out of the loop as possible, ideally removing
the loop altogether. This is crucial optimization because every use of lift,
lift2, etc. introduces a Prefix in the high level code, and thus creates an
Accumulate node.

Every Accumulator node is in exactly one of the following categories.
Note that we never reorder nodes within these categories, but only move the
categories around as whole pieces:

The nodes that must be inside a loop. If the node is an Accumulate

node and it mentions the accumulator variable, then we (likely) cannot
move it out of the loop, because the accumulator variable may change
every iteration. If the node sits between two nodes that cannot be
moved out of the loop, then it also (likely) cannot be moved out of
the loop, because it’s a function of input that (likely) changes each
iteration, and a fresh result is (likely) needed every iteration.

The nodes that can be moved to after the loop. If this node is not
in the first category, and no nodes above it is in the first category,
then it can be moved to after the loop because only the last result it
generates will ever be used, and nothing it depends on can be moved
below it.

The nodes that can be moved to before the loop. If this node is not
in the first category, but a node above it is in the first category, then
it can be moved to before the loop given that it does not depend on
anything that varies over time. Otherwise it must stay inside the loop,
because a fresh result is (likely) needed every iteration. The only two
things that varies over time in this context (and which are not in the
first category) are the current time, Uniform and Normal.

81

We move the nodes according to these rules. Consequently, if the first
category is empty, then the loop is empty and can be eliminated entirely.

The example in figure 8.5 has nodes in all three categories (colored black,
blue and red respectively).

Whenever we generate a loop for a stochastic process, we must choose a
∆t. A preferred time step has already been supplied to the compile function
at this point, but the end time for the loop might not be divisible by this
time step. We find the largest number not greater than the time step that
divides the end time and use that in the loop.

Accumulate

Zip

Accumulate

Expression

Accumulate

Zip

Accumulate Expression

Figure 8.5: Example of an Accumulator tree. If node a depends on node
b, there’s an arrow from a to b. Assume that the black Accumulate nodes
require the accumulator variable; then they must stay in the loop, and
so must the black Zip. Assume that the blue nodes do not require the
accumulator variable; then they can be moved to after the loop. Assume
that the red nodes requires neither the accumulator variable nor the current
time, and are not stochastic; then they can be moved to before the loop.

8.6.7 Wrapping it up

To the top of every generated program, we add a directive enabling the
double precision floating point type:

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

82

We include the code for the PRNG and for taking the mean and standard
deviation:

#include "random.cl"

#include "sum.cl"

For every pair type encountered, we generate a struct with two fields
first and second with types corresponding to the first and the second
element of the pair. The name of the struct is pair_n1_n2_t where n1 and
n2 are the names of the types of the first and the second element respectively.

The kernel function itself takes a seed for the PRNG, shared memory
buffers for emitting the final result, and then as many arguments as the
compiled function had. Inside the function we initialize the time step and
the PRNG, and declare all variables used. Then comes the code we generated
for the stochastic computation, and as the last thing a call to emit_result

with the result of the computation.

8.6.8 OpenCL code for the running example

As an example, recall the example from section 8.2.1, namely lookup 5

brownian. We generate the following OpenCL code5:

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

#include "random.cl"

#include "sum.cl"

struct pair_double_double_t {

double first;

double second;

};

kernel void simulate(ulong seed, local double* local_means, local

double* local_standard_deviations, global

double* global_means, global

double* global_standard_deviations)

{

double time_step = 0.1;

struct generator_t generator = initialize(seed);

struct pair_double_double_t accumulator_5;

double accumulator_6;

double delta_0;

double end_1;

double normal_7;

double step_3;

5This is the verbatim output of compile 0.1 (lookup 5 brownian) with the
printDebug flag on in Language.SPL.OpenCL.Runner.

83

double steps_2;

double time_4;

end_1 = 5.0;

time_4 = end_1;

steps_2 = ceil(end_1 / time_step);

delta_0 = steps_2 == 0 ? time_step : end_1 / steps_2;

accumulator_5 = (struct pair_double_double_t) {0.0, 0.0};

time_4 = -delta_0;

for (step_3 = 0; step_3 <= steps_2; step_3 += 1) {

time_4 += delta_0;

normal_7 = normal(&generator);

accumulator_5 = (struct pair_double_double_t) {accumulator_5.second,

accumulator_5.second +

sqrt(delta_0) *

normal_7};

}

accumulator_6 = accumulator_5.first;

emit_result(accumulator_6, local_means, local_standard_deviations,

global_means, global_standard_deviations);

}

The code contains the calculation of the ∆t to best fit the preferred time
step. Then there is the actual loop, which generates a new sample from the
normal distribution each iteration and updates the accumulator variable for
the Brownian motion accordingly. The pair type that was introduced by
inclusivePrefix has a type declaration and uses the literal syntax for
struct values, as well as field accessors. One of the optimizations from
section 8.6.6 is (barely) evident in this simple example; the code for what
was originally map first has been moved out of the loop.

8.7 Execution on the GP-GPU(s)

Since we want to run functions with any number of parameters, we need to
take another look at converting function types. The code for this section is
in module Language.SPL.OpenCL.Runner. We introduce a type family for
this purpose:

type family FunctionOf :: * -> *

When we have instantiated all parameters and are left with a distribu-
tion, all that’s left is to execute the simulation and get the result back:

type instance FunctionOf (Dist a) = IO SimulationResult

84

Parameters can only be instantiated to values, which we encode in the
type system by stripping away Dist and Process recursively:

type instance FunctionOf (Dist a -> b) = a -> FunctionOf b

type instance FunctionOf (Process a -> b) = a -> FunctionOf b

We also do this translation at the value level. This involves building up
a function corresponding to the type that converts each argument to the
HOpenCL’s KernelArg type, and builds the IO monad that executes the
simulation in the base case. This is handled by the Function and Arguments

type classes.

8.7.1 Execution of the kernels

Figure 8.6 shows the tasks that make up the execution of the Monte Carlo
simulation. We perform the same steps on all OpenCL devices and then
aggregate the results on the host in the end. First we run the simulation
kernel, which runs the generated OpenCL code and computes the mean and
standard deviation of each work group. Then we run the collector kernel
which aggregates the work group mean and standard deviation to a device
global mean and standard deviation. Finally we copy this result from the
device to the host.

We use events in order to make sure that the results have been produced
before they are consumed. In OpenCL, every enqueued task has a comple-
tion event, and every task can wait on any number of events before starting,
so long as they are from the same event queue. The host can wait on events
from all command queues, and does so before aggregating the results.

85

Figure 8.6: This figure shows the event scheduling. For every OpenCL de-
vice there is an OpenCL command queue (blue), in which kernel execution
and memory transfer tasks are scheduled. The tasks (yellow) are ordered
via events (arrows from source to listener).

8.7.2 Result aggregation

In the end, the results of each individual thread must be combined into a
mean and standard deviation. This is done in parallel on the GP-GPU;
first the thread of the simulator kernel cooperate to generate a mean and a
standard deviation for each work group, and then another kernel is executed
whose threads cooperate to compute a mean and a standard deviation by
combining those of the work groups on the device. When multiple devices
are used, the host does a similar combination of the results from the devices.
The algorithm is sketched in figure 8.7.

The final result is a SimulationResult containing the mean and stan-
dard deviation. This data structure and related functions can be found
in module Language.SPL.SimulationResult. The Show instance for this
type produces the string m ± s where m is the mean and s is the standard
deviation, as seen in section 1.2.

86

Figure 8.7: This figure shows the calculation of the mean for 2 work groups
with 8 simulation results each. The reduction in local memory (on the left)
and global memory (on the right) use the same merging algorithm: every
iteration of the algorithm, every two adjacent values are combined into a
single value (their mean). An array is used to hold the result, and over
time less and less elements are in use (those that aren’t are colored grey).
The algorithm stops when there is only a single element left, at index 0.
The result is then sent to the next aggregator; first to the device global
aggregator and then to the final result aggregator on the host.

87

Chapter 9

Correctness

Using computer programs in the financial industry to price derivatives re-
quires great confidence that the programs do in fact calculate what the pro-
grammer or domain expert had in mind. We have tried to accommodate this
in the design of SPL. A SPL program is simply a model of a random variable
written in a way that mimics the conceptual understanding of mathematical
stochastic distributions and processes. The programmer should not be too
concerned about writing these stochastic calculations efficiently as this is
the job of the compiler. Furthermore, the programmer will never have to
write the error prone code to carry out the simulation to find an expected
value of the specified distribution, as this is the very evaluation semantics
of SPL. We hope that these factors will add enough transparency between
developed SPL programs and the underlying conceptual understanding such
that the domain expert may be easily convinced, that the programs are in
fact correct.

But program correctness is a little help if the language implementation
is not, and this is the topic we are going to cover in this section. We would
have liked to formally prove that our OpenCL implementation is a correct
implementation of SPL. That is, to show that the C-code generated form
the SPL syntax do in fact obey the SPL semantics when evaluated according
to the OpenCL specification. This seems to be a serious challenge, which we
have found our self unable to overcome and we have instead chosen to take
an experimental approach to justify the correctness of our OpenCL SPL
compiler.

9.1 Test strategy

We first of all want to test the correctness of the OpenCL back end for SPL
as this is also a prerequisite for the correctness of the CC pricer using SPL.
It is however also a concern, that the CC pricer do in fact produce the right
SPL code. But we feel quite confident that this is the case, as it is almost

88

identical to the implementation given in the paper [JES00]. This is despite
the fact that we recently discovered an error in this pricer, when pricing
contracts having choices based on future values. This is so because we see
the error as an result of a bad understanding of our own SPL semantics,
rather than a result of producing the wrong pricing code.

We do on the other hand consider the OpenCL back end to be far more
error prone, which is why we only do systematic testing of the SPL language.

We are using two Haskell test frameworks to carry out the tests. The first
is QuickCheck [CH00], which is used to test that a function or parametric
property is correct, given a reference implementation. The second one is
HUnit, which is a Haskell clone of the JUnit framework, seen for Java. The
HUnit tests are all simple, just testing that a calculated result matches the
expected result.

We had actually hoped to integrate this test with Haskell cabal, such that
the tests could be run using cabal test. But as the used GP-GPU memory
is first freed by the time the Haskell finalizers run, we cannot include this
many tests in one execution. This turned out to be a very annoying problem,
as it forced us to run the tests in small chunks. These chunks may all be
started individually from the Haskell module Language.SPL.Test.Tests.

The comparison of simulated results needs to tolerate some error margin,
whenever the simulated distribution models uncertainties. We will, in this
case, use a error margin of 1% of the largest two compared values.

The next section describes our systematic testing of all the language
constructs, as well as some of the prelude functions. These tests are highly
synthetic, trying to provoke errors to occur in the border cases of the various
language constructs. The subsequent section, do in contrary, describe several
more realistic pricing test where the known good results are drawn from
either closed formulas or other financial papers. Section 9.4 describes a test
that confirms the problem described in 7.2.1, that we cannot price contracts
having a choice containing subcontracts looking into the future.

Our OpenCL SPL implementation does not have any known error at the
time of writing and all the tests are running successfully, except for the test
in section 9.4 showing our known error.

9.2 Structured language tests

The language unit tests are organized in seven groups holding more than
a hundred small test cases in total. The seven groups are briefly covered
below without mentioning of the trivial cases. The actual unit tests can be
found in module Language.SPL.Test.UnitTests included in appendix D.

Dist constructs
This groups consist of eight tests, testing all the basic Dist constructs

89

except for the unary and binary operators. We first test that nor-
mal and uniform yields an expected value of 0 and 0.5 respectively.
Lookup is tested utilizing that \t -> lookup t time is the identity on
Dist Double. For sample it is tested that uniform ‘sample‘ \d -> d - d

yields an expected value of exactly zero. We do also test that just sub-
tracting two uniform from each other without sampling do not give
an expected value of zero.

Unary operators
This test group tests each of the unary operators with one or two input
values each. The input values are chosen such that one operator could
not be potentially mistaken as another. The ternary if_ is also tested
here.

Binary operators As above this groups tests all the binary operators.

Process constructs
In this test group we test the Always, Closed, Trace and Zip. Prefix
and skib are covered directly here but has gotten their own test groups
because they are implemented using several optimizing special cases.

The OpenCL interpreter does not handle processes at top level which
is why the tested processes have been prepended with a lookup at a
specific time. The SPL Process AST does not contain operators on
processes directly, but all the operators on distributions can be lifted to
work pointwise on processes using Prefix and Zip and the pair type.
This is why we do not test the operators exhaustively for processes
but only provide a few cases for unary and binary operators and for
the ternary if operator.

Accumulator optimizations
Prefix is a powerful and versatile construct. In its strongest form
it can be used to implement aggregates like integral in a time step
varying environment. It is also used to implement time step indifferent
aggregates like maximum and the even simpler, but most important
function map, that ignores both the delta time and the accumulator
value.

The conversion from SPL to Intermediate detects which of the formal
parameters in the accumulator function that are used in the function
body. This information is then used in the OpenCL compiler to de-nest
loops and to move loop invariant code out of the loops and to only cal-
culate the current loop time when needed. This is why it is important
to test different variations of using/ignoring the accumulator function
parameters for various processes using nested Prefix’s.

We have not systematically exhausted all of these combinations as
there are quite a few. This would be a good point to gain additional

90

confidence in the OpenCL implementation by writing a more complete
set of test cases for Prefix.

skip
skip is not part of the SPL AST but it is not a prelude function either
as it is implemented as a rewriting on the non-exposed SPL AST.

This test group tests skip in conjunction with various process con-
structions.

Properties
During the design and implementation of SPL the set of build-in con-
structs and prelude functions has changed a whole lot. In its cur-
rent form SPL have gotten the general construct Prefix built-in,
which is the backbone for implementing derived skeleton functions
map and iterative but also the higher level functions integrate and
brownian. The current Prefix handle the initial accumulator values
as if it was a value from the past. While this favour the implemen-
tation of map it makes the implementation of iterative somewhat
more involved and it is definitely something to keep in mind when
implementing functions like integrate.

But regardless of which functions that is implemented using which and
of the way we chose to handle delta times in the various functions, we
have had a few properties in mind though out the process that wanted
to provide. These properties are tested here:

Prefix at time zero:
lookup 0 (prefix f d0 p) ≡ f dt d0 (lookup 0 p)

PrefixInclusive at time zero:
lookup 0 (prefixInclusive f d0 p) ≡ d0

Brownian starts at zero:
lookup 0 brownian ≡ constant 0

Integrate p is zero at time 0:
lookup 0 (sum p) ≡ 0

Integrate is correct on constant processes:
lookup t (sum (always k)) ≡ constant k * t

9.3 Pricing tests

While the test described in the last section was very focused on testing the
individual constructs of SPL and the prelude exploiting implementations
details when it seemed beneficial, the tests presented in this section takes
an overall proof of concept approach to show that SPL can in fact be used
for what it’s designed for. This is of course to simulate the expected price for

91

a brood range of financial contracts. This is probably the test the financial
experts would be more concerned about at it shows that we can find good
estimated prices compared to known good results.

This test does not only serve to boost the confidence in the OpenCL
back end’s correctness, it also acts as a showcase of how to model well known
contracts in SPL. We have tested four contract types which are covered in
the next four sections.

9.3.1 Zero coupon discount bond

A zero coupon discount bond that at time t pays out k amount in DKK,
can be expressed using the Composing Contract combinators like this:

zcb t k = get (truncate t (scale (constant amount) (one DKK)))

When priced using a constant continuous rate model with rate r we
should find the exact value ke−rt. We have tested this property using
Haskell’s QuickCheck with t ∈ [0; 20], k ∈ R+ and r ∈ [0; 2].

The code can be found in module Language.CC.Test.PricingTest.

9.3.2 Underlying sanity check

To model the European call options presented in the next subsection we
needed to model what is often referred to at a standard underlying based on a
given initial price, a volatility and the risk free interest rate. Specifically this
is the underlying that the closed form Black-Scholes formula subsumes. We
asked Mogens Steffensen from the Mathematics department of Copenhagen
University to provide us with such an underlying and he encouraged us to
do this little test presented here.

The underlying is modelled as

Se(r− 1
2
v2)t+vW(t)

where t is the time, S is the initial price, r is the rate, v is the volatility
andW(t) is a brownian motion. A property that any sane underlying should
full fill is:

The current value of receiving an underlying at any future time
t is S

or formulated differently, on average, it should be worth the same to
receive an underlying today or in the future.

The contract is expressed in CC while the underlying is expressed in
SPL

92

underlying s r v =

always s * exp (always (r - 0.5 * v ^ 2) * time

+ always v * brownian)

contract t s r v =

get (truncate t (scale (underlying s r v)))

As earlier we use QuickCheck to test that the price of contract t s r v

is in fact s.
The code can be found in module Language.CC.Test.PricingTest.

9.3.3 European call options

We have already seen how to model an European call options in CC . In this
test we take such a contract price it that test the price against the closed
Black-Scholes formula. Black-Scholes formula as well as the CC European
call options contract are parametrized over the initial price, the strike price,
the maturity time, the rate and the volatility. This is also the parameters
in our QuickCheck property.

The code can be found in module Language.CC.Test.PricingTest.

9.3.4 Asian call options

The Asian call options is the first contract type for which we do not know a
closed formula to calculate reference prices, and we have therefore searched
the literature to find some reference prices. We are using the prices given in
table 1 in [And98].

The payout of an Asian call options is calculated as the average of the
underlying subtracted the strike price in a given period. The CC combi-
nators cannot express such aggregation over processes in its current form,
which is why our Asian call options is modelled purely in SPL. The time for
using QuickCheck as also past, as we now only have reference prices for 9
configurations.

The code can be found in module Language.SPL.Test.AsianTest.

9.3.5 Lookback options

The lookback options are similar to the Asian options, except they use
another aggregating function than the average; in this case the maximum.
We test both fixed strike and floating strike lookback options, using the
prices given in table 3 and 4 in [And98].

The code can be found in module Language.SPL.Test.LookbackTest.

93

9.3.6 Basket options

We price a basket option with two correlated underlyings and a variable rate
model. Our SPL code is a port from the corresponding R program from
[Ano10] and is compared to the results of that simulation. CC supports
both multiple underlyings and a variable rate model, but we wanted to test
SPL in isolation here.

The code can be found in module Language.SPL.Test.BasketTest.

9.4 Choice based on future value

We discussed in section 7.2.1 our problems involved in pricing contract giving
the holder a choice that should be taken based on expected future values.
The American options is highly based on this kind of choices, which is why
we do not support the CC anytime combinator. But it is still possible
to express CC contract which is not rejected by our pricer, but instead
given a incorrect, unnatural high price. This test experimentally verifies the
existence of this error in our CC pricer.

Consider the game that always pays the player $2 with a 25% probability.
Then consider the observable where a 6 faced die is rolled at every point

in time. The observable value is three whenever a six is rolled and zero
otherwise. This is modelled in SPL as the process

die :: Observable Double

die = always $ choice (1/6) 3 0

The expected value of this observable is 1
6 · 3 = 1

2 at every point in time.
Now consider the contract that gives you the choice of receiving $1 or to get
the value of die paid in dollars

cashOrPlay :: Contract

cashOrPlay = one USD ‘or‘ scale die (one USD)

The holder of this contract will not have a hard time to make up her
mind, as the present value of an observables, per definition, is certain. The
holder would therefore simple choose the $3 when a six is rolled and take the
1$ other wise. The value of the contract is therefore 5

6 · 1 + 1
6 ∗ 3 = 5+3

6 = 4
3 .

Now consider the slightly modified contract where the holder have the
choose between 1$ now or the contract that let the holder get the value of
the die observable in the future.

cashOrPlayLater :: Contract

cashOrPlayLater =

one USD ‘or‘ get (truncate 1 (scale die (one USD)))

94

Any rational holder would now choose the 1 dollar now as the expected
future value of the other option only is $0.5. The value of the modified
contract is therefore $1.

These are the two experiments carried out in this test. We test that the
expected value of payOrPlay is 4

3 and that the expected value of payOrPlayLater
is 1 when prices in USD using the SPL pricer. The contract was prices using
a zero discounting model. The expected price have been simulated on both
of the interpreters and the OpenCL back. The first test ran successfully but
the second test resulted in simulations results of around 1.33 ± 0.75 for all
three simulators, which of course should have been 1± 0.

The result is not surprising at this point, as it confirms the problems
discussed in section 7.2.1.

9.5 Summary

We have tested a range of base cases and combinations of slightly more
complex cases from SPL, to capture isolated problems and to ensure that
fixed bugs did not get reintroduced. We have tested pricers for European-
style options, both vanilla and exotic (with path dependence and multiple
sources of uncertainty), in part to show that SPL can be used to price a wide
range of financial contracts, and in part to have complex examples with the
potential to highlight bugs that only occur with a non-trivial combination of
the language constructs. Indeed, the failing test case in section 9.4 is derived
from a more complex example of pricing American options. The European
call options were tested with QuickCheck with a wide range of parameters
up against the known-good Black-Scholes formula, while the other pricers
were only tested against the results we could find in the literature. Except
for the one case mentioned, all tests pass (tested on fermi01, see figure 10.1).

95

Chapter 10

Benchmarks

While the previous section layed out the basis for the correctness of the
OpenCL SPL back end, this section will focus upon the efficiency of the
back end. This chapter presents four results from running four different
benchmarks, all of them solely measuring the execution time from running
SPL programs on the OpenCL back end. The justification for this is that we
can compile a function, which can then be re-run with different parameters,
thus being able to get arbitrarily many different results per compilation1.

Our main result is that the simulation scales with the number of cores
on the GP-GPU. We don’t see any obstacles that would prevent us from
using multiple devices, and the implementation has support for it, but we
have not been able to verify this, and thus leave it to future work.

The second result is that we can efficiently overcome the simulation
limit that prevents us from running more than about a million simulations
per invocation. This is simply done by invoking the OpenCL kernel queue
several times from Haskell and then combine the results.

Using the memory on the GP-GPU may severely slow things down when
done improperly. The third result shows that computing the average result
and standard deviation, which uses the local and global memory, only makes
up about a fifth of the total scheduling/collection overhead.

Finally, we test the asymptotic performance of loop de-nesting and skip-
ping, whose implementations are not entirely straightforward.

10.1 Hardware and software configurations

Figure 10.1 shows the hardware we have used to run the benchmarks on. We
have used fermi01 for the majority of the benchmarks, but as this became
unavailable near the end of the project, we have run some benchmarks on
mem-beast1. Unless otherwise noted, fermi01 has been used.

1The compilation takes less than a second in all cases we have tried, except in the case
of generating exponential code for the nested simulation.

96

Hostname: fermi01 mem-beast1

Devices: 4×Tesla C2050 2×GeForce GTX 460

OpenCL: 1.0 CUDA 1.0 CUDA

Driver version: 275.21 260.19.26

Compute units: 14 7

Total number of cores: 448 336

Work group size: 1024 (maximum) 1024 (maximum)

Global memory: 2687 MiB 1023 MiB

Local memory: 48 KiB 48 KiB

Figure 10.1: Hardware and software configurations.

10.2 Scalability

It is common when testing whether a program scales, to investigate how
the number of used cores influence the execution time for a fixed amount of
work. In this scenario full scalability or utilization is achieved when doubling
the amount of cores halves the execution time.

We do however not know how to tell OpenCL to only use a certain
amount of the cores on the device but we can exploit the fact that threads
in one work group all are scheduled on the same multiprocessor. The Tesla
C2050 card used in our benchmarks have 14 multiprocessors on board which
means that running a kernel with a work group count of 14 should take no
longer than having only 1, if full utilization is meet. Running 15 work
groups on the other hand would take twice as long as the last work group
would have to wait until the other 14 groups had been executed in parallel.
Fortunately, this is exactly the picture we see on in figure 10.2.

The experiment is carried out using an Asian Call option parametrized
as indicated in the table below.

Option type Initial price Rate Volatility Strike price

Asian call 100 0.05 0.2 100

We have not chosen the Asian option for any particular reason. The
Asian option runs only one loop in each simulation thread. In this case we
are having an iteration for each day in fire years which is 1825 iterations as
may be seen in the table below.

Work group size Group count Multiplier Time step Lookup time

512 {2 . . . 42} 1 1/365 5

97

Figure 10.2: This graph shows the pricing times for an asian call option
valuated using 1024 to 21504 simulations. The number of simulations are
indexed by the work group count to show the correlation with the 14 mul-
tiprocessors on the Tesla C2050 device. The graph shows that we may add
simulations from additional work groups without increasing the executions
time until the point where the work groups count reach the next multi-
ple of 14. Each pricing experiment have been performed 101 times. The
minimum, maximum and quartiles of this data are shown in figure A.1.

It is not surprising to achieve full scalability as Monte Carlo simulations
is embarrassingly parallel in nature.

10.3 How far can we go

The way we calculate the expected value and standard deviation on the
GP-GPU limits us to have no more than about a million threads per kernel
invocation on the Tesla C2050 card. Even though it might not be too com-
plicated to overcome this limitation, we have first tried the simpler solution
of simply invoking the simulation kernel queue setup several times. We do
not need to compile and load the SPL program more than once so we ex-
pected the cost of doing several invocations to be relative low compared to

98

the overall execution time.
In the test setup we have yet again chosen the Asian option used in the

previous section.

Option type Initial price Rate Volatility Strike price

Asian call 100 0.05 0.2 100

The Tesla C2050 card do not allow us to have more than 2048 work
groups when using a work group size of 512 which is why this the maximum
number of simulations we are going to run per invocation. So to go beyond
that limit we try the experiment with different multipliers which indicate
how many OpenCL invocations we perform. This configuration and more
are specified in the table below.

Work group size Group count Multiplier Time step Lookup time

512 {64, 128 . . . 2048} {1, 2, 4, 8} 1/365 0.5

Figure 10.3 shows that the overhead from doing multiple invocations
drowns in the actual computation time. This result confirms our intuition
that the limit on the number simulations per invocation is not a practical
problem.

99

Figure 10.3: Using a fixed group size of 512 while running up to 2048 groups
together with a multiplier of 8 yields more the 8 millions simulations. The
overhead from invoking the OpenCL kernel several times is not visible
when running 220 simulations in each invocation. The SPL program in use
is an Asian call option expiring after 6 month with a time step of one day.
Each pricing experiment have been performed 101 times. The minimum,
maximum and quartiles of this data are shown in figure A.2, A.3, A.4 and
A.5.

10.4 Scheduling and result gathering overhead

There is some overhead inherent in scheduling the threads on the GP-GPU
and gathering the results. Figure 10.4 uses a process that does almost no
work, which shows how the overhead changes as a function of the number
of simulations. It also shows that the overhead involved in the cooperative
calculation of the mean and standard deviation is about 22% of the total
overhead. Note that the overhead is negligible when the work load is small.

Beware that the data for this one graph was produced on mem-beast1.

100

Figure 10.4: Scheduling overhead, tested using the process always 42.
Each pricing experiment have been performed 11 times. The minimum,
maximum and quartiles of this data are shown in figure A.6

10.5 Performance of selected SPL constucts

10.5.1 De-nesting of loops

When a prefix is nested inside a prefix, naive code generation will create
a loop inside a loop. As discussed in section 8.6.6, we combine arbitrarily
nested loops into a single loop, except that closed is never crossed.

To see that this is indeed the case and that we get the expected perfor-
mance, we test with the following two processes: the first one is brownian,
and the second one is brownian + brownian. The + uses lift2 which uses
prefix and zip internally. Disregarding constant-time overhead, if the de-
nesting works in this case, we should should expect the time consumption of
the brownian + brownian to be approximately twice of that of brownian. If
it doesn’t work in this case, we should expect the difference to be quadratic,
since we will have a loop inside a loop. As can be seen in figure 10.5, the
de-nesting works in this case.

101

Work group size Group count Multiplier Time step Lookup time

512 2048 1 1/365 {0, 1/24 . . . 1}

Plot Label SPL Process

brownian brownian

brownian + brownian brownian + brownian

Figure 10.5: Simulation time for de-nesting of loops. Each pricing ex-
periment have been performed 11 times. The minimum, maximum and
quartiles of this data are shown in figure A.7.

10.5.2 Skip

As discussed in section 8.2, skip works by fast-forwarding the process by a
specified amount of time. This means that for processes involving prefix,
skip will run a loop to get to the point in time that was skipped to. A
function that uses this is maximum_, which takes the maximum of a time in-
terval by first skipping to the early point in the time interval. Since the time
used in max_ is dwarfed by the PRNG, we should then see that regardless
of the starting time, the time consumption remains the same, since the fast
forwarding interval and max_’ed interval always adds up to the full interval,

102

and this is indeed what we observe in figure 10.6.

Work group size Group count Multiplier Time step Lookup time

512 2048 1 1/365 {0, 1/24 . . . 1}

Plot Label SPL Process

maximum brownian maximum brownian

Figure 10.6: Simulation time for skipping. Each pricing experiment have
been performed 101 times. The minimum, maximum and quartiles of this
data are shown in figure A.8.

103

Chapter 11

Future work

American and Bermudan options can’t be priced with SPL, as we have
seen in section 7.2. This is due to the semantics of SPL, which assumes
that future events can be known in the present. The holder of a financial
contract obviously has no such crystal ball, but instead needs to base her
choices on what happens on average. One interpretation of this is, that we
need nested simulations, but more efficient strategies may be available in
some cases. In order to complete the CC pricer, this must be investigated.

It would be interesting to see how CC could be extended to support Asian
and Lookback-like options. One possibility is to add aggregates over time
intervals directly, but then there’s the question of how to specify aggregating
functions like the average, maximum, etc. A finite list of functions would
probably be too limiting.

As reported in chapter 9, we have tested pricers written in CC and
SPL against results from the literature. However, while the tests for vanilla
options are systematic, the tests for exotic options have only been tested with
a small range of parameters for which we could find comparable results. In
order to be confident of the correctness of both the pricers and SPL itself,
it should be systematically tested. QuantLib [ABB+11] is a mature library
with another approach to pricing financial contracts, and could serve as a
reference pricer, against which to perform automated testing.

The benchmarks in chapter 10 measure scalability and the comparative
performance of different SPL programs. It would be interesting to see how
well the Monte Carlo simulating SPL implementation performs compared
to state of the art pricing libraries like QuantLib.

As noted in chapter 8.5, our implementation does not deterministically
clean up the resources it allocates on the GP-GPU, due to the use of finaliz-
ers. This is a problem because the GP-GPU is likely to run out of resources
before the host program performs a garbage collection that triggers final-
ization. This needs to be solved, both at the level of the library we use for
OpenCL, and at the level of the interface for compiling and running SPL

104

programs.
Our implementation does not quite match the semantics of SPL, since it

doesn’t use a uniform discretization of time. The numerical stability of the
implementation has also not been studied, and it could have consequences
for the accuracy of the result. To improve the confidence in the implemen-
tation, it would be useful to test the implementation against the semantics.
Since the semantics is given as a Haskell program, it should be possible to
test against this directly by comparing the expected value of the executable
semantics with that of the GP-GPU implementation. One way of doing
this is to generate SPL programs using QuickCheck’s Arbitrary instance,
although some thought will have to be put into generating interesting SPL
program candidates. Simulation would probably also needed for the seman-
tics in order to make this approach feasible.

105

Chapter 12

Conclusion

Our main contribution has been a domain specific language, called SPL, for
stochastic processes in a financial pricing setting. We have analyzed the
requirements for such a language, designed the language as an embedded
language in Haskell with very little notational overhead, given it a type sys-
tem in terms of Haskell’s type system, given it semantics in terms of the
probability monad and given it a Monte Carlo simulating parallel imple-
mentation that scales on the GP-GPU.

We have presented benchmark data showing this linear scaling with the
number of available cores, and indicating that our loop de-nesting results in
the expected performance for loops. Additionally, we have tested the SPL
constructs in isolation and in complex combinations corresponding to actual
use cases, giving an indication of correctness of the implementation.

We have applied several advanced techniques in order to achieve a smooth
embedding of SPL into Haskell. We used type classes to provide operator
overloading, allowing arithmetic on distributions and processes, using stan-
dard arithmetic notation. Regular functions and bindings can be used with
SPL and we preserve this type safe representation using HOAS, and per-
form a type preserving translation to first order intermediate code with de
Bruijn indexing. We have used type families in the translation of a function
producing a SPL distribution, allowing us to compile a parametric OpenCL
kernel once, and then run it multiple times by calling the compiled function.

SPL is not bound to the GP-GPU architecture or Monte Carlo simulation
as the numerical method. We have given SPL executable semantics in terms
of a Haskell interpreter, using an interface to the probability monad. One
can easily obtain an SPL implementation from this interpreter, by using any
of the other discussed probabilistic functional programming libraries.

We have used SPL to price both path dependent contracts and contracts
whose price depends on multiple sources of uncertainty. Monte Carlo simu-
lation is the preferred way to price both of these types of contracts, which
motivates the need for such a back end.

106

We have shown an example implementation of the financial model com-
ponent of CC . Although realistic financial models are not our domain, we
conjecture that a realistic financial model component for CC could equally
well be implemented using SPL.

With the prices for path dependent contracts, we have gone beyond the
contracts expressible in CC . It would thus be possible to extend CC to
support these and still use SPL for the pricer.

At the same time, CC can express contracts that can’t be priced in
SPL, namely American/Bermudan-style options, ie. any contract where the
holder has to make a choice of when to exercise. We have identified the
problematic part of the semantics of SPL, but have left solution for future
work.

107

Bibliography

[ABB+11] Ferdinando Ametrano, Luigi Ballabio, Marco Bianchetti,
Nicolas Di Césaré, Dirk Eddelbuettel, Neil Firth, Nicola
Jean, Chris Kenyon, Roland Lichters, Marco Marchioro, Klaus
Spanderen, and Joseph Wang. QuantLib. http://quantlib.
org/index.shtml, 2011.

[And98] Jesper Andreasen. The pricing of discretely sampled asian and
lookback options: a change of numeraire approach. 1998.

[Ano10] Anonymous. Basket option pricing: Step by
step. http://stotastic.com/wordpress/2010/05/

basket-option-pricing/, 2010.

[BBG97] Phelim Boyle, Mark Broadie, and Paul Glasserman. Monte
Carlo methods for security pricing. Journal of Economic Dy-
namics and Control, 21(8-9):1267–1321, June 1997.

[CBZ90] Siddhartha Chatterjee, Guy E. Blelloch, and Marco Zagha.
Scan primitives for vector computers. In In Proceedings Su-
percomputing ’90, pages 666–675, 1990.

[CH00] Koen Claessen and John Hughes. Quickcheck: A lightweight
tool for random testing of haskell programs. In ICFP, pages
268–279, New York, NY, USA, 2000. ACM Press.

[Cha09] Manuel M. T. Chakravarty. Converting a hoas term gadt into a
de bruijn term gadt. http://www.cse.unsw.edu.au/~chak/

haskell/term-conv/, 2009.

[CKL+11] Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee,
Trevor L. McDonell, and Vinod Grover. Accelerating haskell
array codes with multicore gpus. In DAMP, pages 3–14, 2011.

[dB72] N. G. de Bruijn. Lambda calculus notation with nameless
dummies. a tool for automatic formula manipulation with ap-
plication to the church-rosser theorem. Indagationes Mathe-
maticae, 34:381–392, 1972.

108

http://quantlib.org/index.shtml
http://quantlib.org/index.shtml
http://stotastic.com/wordpress/2010/05/basket-option-pricing/
http://stotastic.com/wordpress/2010/05/basket-option-pricing/
http://www.cse.unsw.edu.au/~chak/haskell/term-conv/
http://www.cse.unsw.edu.au/~chak/haskell/term-conv/

[EK06a] Martin Erwig and Steve Kollmansberger. Functional pearls:
Probabilistic functional programming in haskell. J. Funct.
Program., 16:21–34, January 2006.

[EK06b] Martin Erwig and Steve Kollmansberger. Modeling genome
evolution with a dsel for probabilistic programming. In PADL,
pages 134–149, 2006.

[Gil09] Andy Gill. Type-safe observable sharing in haskell. In Proceed-
ings of the 2009 ACM SIGPLAN Haskell Symposium, 09/2009
2009.

[Gir82] Michèle Giry. As cited by Erwig and Kollmansberger, 2006.
A categorical approach to probability theory. In B. Ba-
naschewski, editor, Categorical Aspects of Topology and Analy-
sis, volume 915 of Lecture Notes in Mathematics, pages 68–85.
Springer Berlin / Heidelberg, 1982. 10.1007/BFb0092872.

[GM58] George and Mervin E. Muller. A note on the generation of
random normal deviates. Ann. Math. Stat., 29(2):610–611,
1958.

[Hul09] J. Hull. Options, futures and other derivatives. Prentice Hall
finance series. Pearson/Prentice Hall, 2009.

[ISO99] ISO. Iso c standard 1999. Technical report, 1999. ISO/IEC
9899:1999 draft.

[JE03] S. L. Peyton Jones and J-M. Eber. How to write a financial
contract, 2003.

[JES00] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward.
Composing contracts: an adventure in financial engineering
(functional pearl). In Proceedings of the fifth ACM SIGPLAN
international conference on Functional programming, ICFP
’00, pages 280–292, New York, NY, USA, 2000. ACM.

[Jon02] Simon Peyton Jones, editor. Haskell 98 Language and Li-
braries: The Revised Report. http://haskell.org/, September
2002.

[Khr08] Khronos OpenCL Working Group. The OpenCL Specification,
version 1.0.29, 8 December 2008.

[Kid07] Eric Kidd. Build your own probability monads, 2007.

[Lar11] Ken Friis Larsen. Implementing probability monads
efficiently. Unpublished. http://diku.dk/~kflarsen/t/

ProbMonad-unpublished.pdf, 2011.

109

http://diku.dk/~kflarsen/t/ProbMonad-unpublished.pdf
http://diku.dk/~kflarsen/t/ProbMonad-unpublished.pdf

[LS01] Francis A Longstaff and Eduardo S Schwartz. Valuing amer-
ican options by simulation: A simple least-squares approach.
Review of Financial Studies, 14(1):113–47, 2001.

[Mai07] Geoffrey Mainland. Why it’s nice to be quoted: Quasiquoting
for Haskell. In Haskell ’07: Proceedings of the ACM SIGPLAN
workshop on Haskell workshop, pages 73–82, New York, NY,
USA, 2007. ACM.

[MM10] Geoffrey Mainland and Greg Morrisett. Nikola: embedding
compiled gpu functions in haskell. In Proceedings of the third
ACM Haskell symposium on Haskell, Haskell ’10, pages 67–78,
New York, NY, USA, 2010. ACM.

[NVI07] NVIDIA. NVIDIA CUDA Compute Unified Device Architec-
ture - Programming Guide, 2007.

[PJVWW06] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich,
and Geoffrey Washburn. Simple unification-based type in-
ference for gadts. In Proceedings of the eleventh ACM SIG-
PLAN international conference on Functional programming,
ICFP ’06, pages 50–61, New York, NY, USA, 2006. ACM.

[SME99] Simon, Simon Marlow, and Conal Elliott. Stretching the Stor-
age Manager: Weak Pointers and Stable Names in Haskell. In
Implementation of Functional Languages, pages 37–58, 1999.

[SPJCS08] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty,
and Martin Sulzmann. Type checking with open type func-
tions. SIGPLAN Not., 43:51–62, September 2008.

[Tho11] David B. Thomas. The MWC64X random number
generator. http://www.doc.ic.ac.uk/~dt10/research/

rngs-gpu-mwc64x.html, 2011.

110

http://www.doc.ic.ac.uk/~dt10/research/rngs-gpu-mwc64x.html
http://www.doc.ic.ac.uk/~dt10/research/rngs-gpu-mwc64x.html

Appendix A

Benchmark data

Section 10 presents several graph showing the execution time for various
pricing experiments. These experiments have all been performed several
times where the graphs show the median of these results. The tables pre-
sented below provides the minimum, maximum and the three quartiles of
the value of these experiments.

111

Number of groups (each of size 512)
1024 1.79·10−2/1.81·10−2/1.82·10−2/1.82·10−2/1.85·10−2

1536 1.77·10−2/1.81·10−2/1.82·10−2/1.83·10−2/1.86·10−2

2048 1.79·10−2/1.81·10−2/1.82·10−2/1.83·10−2/1.85·10−2

2560 1.76·10−2/1.81·10−2/1.82·10−2/1.83·10−2/1.85·10−2

3072 1.79·10−2/1.81·10−2/1.82·10−2/1.83·10−2/1.85·10−2

3584 1.8·10−2/1.82·10−2/1.83·10−2/1.84·10−2/2.71·10−2

4096 1.79·10−2/1.82·10−2/1.83·10−2/1.83·10−2/1.86·10−2

4608 1.8·10−2/1.82·10−2/1.83·10−2/1.84·10−2/1.86·10−2

5120 1.79·10−2/1.82·10−2/1.83·10−2/1.83·10−2/1.89·10−2

5632 1.8·10−2/1.82·10−2/1.83·10−2/1.83·10−2/1.85·10−2

6144 1.79·10−2/1.82·10−2/1.83·10−2/1.84·10−2/1.87·10−2

6656 1.78·10−2/1.82·10−2/1.83·10−2/1.84·10−2/3.18·10−2

7168 1.79·10−2/1.82·10−2/1.83·10−2/1.83·10−2/1.85·10−2

7680 3.53·10−2/3.59·10−2/3.61·10−2/3.62·10−2/3.67·10−2

8192 3.55·10−2/3.59·10−2/3.61·10−2/3.62·10−2/3.66·10−2

8704 3.55·10−2/3.6·10−2/3.62·10−2/3.64·10−2/3.68·10−2

9216 3.55·10−2/3.6·10−2/3.61·10−2/3.63·10−2/5.01·10−2

9728 3.54·10−2/3.6·10−2/3.62·10−2/3.63·10−2/3.68·10−2

10240 3.57·10−2/3.6·10−2/3.61·10−2/3.63·10−2/3.67·10−2

10752 3.54·10−2/3.6·10−2/3.62·10−2/3.64·10−2/3.67·10−2

11264 3.51·10−2/3.6·10−2/3.62·10−2/3.63·10−2/3.68·10−2

11776 3.54·10−2/3.61·10−2/3.63·10−2/3.65·10−2/3.68·10−2

12288 3.55·10−2/3.62·10−2/3.63·10−2/3.65·10−2/3.71·10−2

12800 3.56·10−2/3.6·10−2/3.62·10−2/3.63·10−2/3.67·10−2

13312 3.56·10−2/3.6·10−2/3.62·10−2/3.64·10−2/3.67·10−2

13824 3.55·10−2/3.61·10−2/3.62·10−2/3.64·10−2/3.67·10−2

14336 3.54·10−2/3.61·10−2/3.62·10−2/3.64·10−2/3.68·10−2

14848 5.3·10−2/5.37·10−2/5.4·10−2/5.43·10−2/5.62·10−2

15360 5.3·10−2/5.38·10−2/5.41·10−2/5.43·10−2/5.47·10−2

15872 5.28·10−2/5.39·10−2/5.41·10−2/5.43·10−2/5.52·10−2

16384 5.29·10−2/5.39·10−2/5.41·10−2/5.43·10−2/5.5·10−2

16896 5.29·10−2/5.38·10−2/5.41·10−2/5.43·10−2/5.48·10−2

17408 5.33·10−2/5.4·10−2/5.42·10−2/5.44·10−2/5.52·10−2

17920 5.33·10−2/5.38·10−2/5.41·10−2/5.43·10−2/5.49·10−2

18432 5.29·10−2/5.4·10−2/5.42·10−2/5.44·10−2/5.51·10−2

18944 5.3·10−2/5.38·10−2/5.41·10−2/5.44·10−2/5.49·10−2

19456 5.31·10−2/5.39·10−2/5.41·10−2/5.44·10−2/5.5·10−2

19968 5.34·10−2/5.4·10−2/5.43·10−2/5.45·10−2/5.52·10−2

20480 5.31·10−2/5.39·10−2/5.41·10−2/5.44·10−2/5.52·10−2

20992 5.33·10−2/5.4·10−2/5.42·10−2/5.44·10−2/5.48·10−2

21504 5.32·10−2/5.39·10−2/5.42·10−2/5.44·10−2/5.5·10−2

Figure A.1: Minimum, maximum and quartiles for the scalability graph in
figure 10.2

112

Simulations Multiplayer = 1
32768 2.04·10−2/2.07·10−2/2.15·10−2/2.2·10−2/2.25·10−2

65536 4.08·10−2/4.2·10−2/4.33·10−2/4.36·10−2/4.5·10−2

98304 5.72·10−2/5.85·10−2/5.93·10−2/6.01·10−2/6.19·10−2

131072 7.79·10−2/7.92·10−2/8.1·10−2/8.3·10−2/8.5·10−2

163840 9.69·10−2/9.71·10−2/9.86·10−2/0.101/0.105
196608 0.116/0.116/0.121/0.123/0.126
229376 0.131/0.135/0.137/0.141/0.143
262144 0.154/0.158/0.16/0.163/0.166
294912 0.17/0.176/0.177/0.182/0.185
327680 0.189/0.196/0.199/0.201/0.205
360448 0.207/0.209/0.22/0.222/0.225
393216 0.223/0.227/0.233/0.238/0.238
425984 0.251/0.255/0.257/0.26/0.264
458752 0.265/0.273/0.277/0.283/0.285
491520 0.284/0.29/0.295/0.303/0.314
524288 0.301/0.315/0.322/0.325/0.331
557056 0.315/0.326/0.332/0.338/0.355
589824 0.339/0.349/0.356/0.358/0.363
622592 0.361/0.366/0.37/0.377/0.383
655360 0.375/0.377/0.391/0.4/0.413
688128 0.399/0.406/0.414/0.429/0.434
720896 0.416/0.425/0.438/0.442/0.454
753664 0.429/0.451/0.461/0.469/0.479
786432 0.454/0.461/0.466/0.484/0.488
819200 0.479/0.485/0.493/0.506/0.506
851968 0.48/0.496/0.505/0.525/0.529
884736 0.515/0.523/0.53/0.539/0.551
917504 0.527/0.541/0.549/0.556/0.56
950272 0.551/0.559/0.566/0.581/0.589
983040 0.564/0.575/0.586/0.606/0.613
1015808 0.593/0.602/0.609/0.617/0.624
1048576 0.597/0.614/0.635/0.643/0.656

Figure A.2: Minimum, maximum and quartiles for the large simulation
graph in figure 10.3 using a multiplier = 1

113

Simulations Multiplayer = 2
65536 4.31·10−2/4.35·10−2/4.37·10−2/4.41·10−2/4.48·10−2

131072 8.23·10−2/8.54·10−2/8.7·10−2/8.8·10−2/8.82·10−2

196608 0.114/0.118/0.12/0.121/0.122
262144 0.159/0.16/0.162/0.164/0.168
327680 0.189/0.195/0.197/0.2/0.203
393216 0.23/0.235/0.238/0.244/0.247
458752 0.27/0.271/0.274/0.275/0.28
524288 0.307/0.312/0.314/0.316/0.32
589824 0.351/0.355/0.358/0.369/0.373
655360 0.381/0.389/0.396/0.4/0.401
720896 0.421/0.435/0.439/0.443/0.455
786432 0.46/0.468/0.472/0.479/0.491
851968 0.511/0.512/0.514/0.517/0.527
917504 0.534/0.538/0.555/0.566/0.569
983040 0.567/0.588/0.593/0.598/0.614
1048576 0.611/0.624/0.635/0.647/0.655
1114112 0.65/0.651/0.656/0.669/0.672
1179648 0.681/0.708/0.714/0.722/0.731
1245184 0.729/0.733/0.741/0.749/0.758
1310720 0.782/0.789/0.793/0.801/0.806
1376256 0.782/0.812/0.818/0.846/0.851
1441792 0.841/0.855/0.859/0.864/0.883
1507328 0.861/0.895/0.914/0.927/0.945
1572864 0.911/0.94/0.952/0.962/0.973
1638400 0.965/0.972/0.983/0.987/1.01
1703936 1.02/1.02/1.03/1.04/1.05
1769472 1.05/1.06/1.07/1.08/1.09
1835008 1.06/1.09/1.09/1.11/1.12
1900544 1.11/1.13/1.14/1.15/1.18
1966080 1.15/1.15/1.17/1.19/1.2
2031616 1.18/1.2/1.22/1.23/1.25
2097152 1.23/1.24/1.25/1.28/1.29

Figure A.3: Minimum, maximum and quartiles for the large simulation
graph in figure 10.3 using a multiplier = 2

114

Simulations Multiplayer = 4
131072 8.51·10−2/8.6·10−2/8.74·10−2/8.76·10−2/8.77·10−2

262144 0.17/0.172/0.172/0.174/0.174
393216 0.237/0.238/0.242/0.245/0.246
524288 0.317/0.324/0.327/0.329/0.333
655360 0.393/0.394/0.397/0.399/0.405
786432 0.471/0.473/0.478/0.484/0.489
917504 0.539/0.544/0.548/0.557/0.56
1048576 0.622/0.626/0.637/0.642/0.65
1179648 0.706/0.716/0.722/0.732/0.739
1310720 0.772/0.782/0.79/0.793/0.798
1441792 0.863/0.865/0.876/0.888/0.889
1572864 0.927/0.936/0.94/0.944/0.965
1703936 1.01/1.02/1.03/1.04/1.05
1835008 1.08/1.09/1.1/1.11/1.12
1966080 1.16/1.18/1.19/1.2/1.2
2097152 1.25/1.26/1.27/1.28/1.29
2228224 1.3/1.31/1.33/1.36/1.38
2359296 1.37/1.41/1.43/1.44/1.46
2490368 1.43/1.48/1.5/1.51/1.51
2621440 1.54/1.56/1.58/1.59/1.6
2752512 1.62/1.63/1.65/1.66/1.68
2883584 1.71/1.71/1.74/1.75/1.78
3014656 1.78/1.79/1.83/1.85/1.85
3145728 1.85/1.87/1.88/1.89/1.91
3276800 1.9/1.95/1.97/1.98/2.02
3407872 2.0/2.01/2.04/2.07/2.09
3538944 2.06/2.11/2.11/2.13/2.16
3670016 2.13/2.16/2.2/2.22/2.24
3801088 2.21/2.24/2.27/2.28/2.35
3932160 2.31/2.35/2.36/2.38/2.4
4063232 2.41/2.42/2.44/2.45/2.46
4194304 2.46/2.47/2.51/2.55/2.56

Figure A.4: Minimum, maximum and quartiles for the large simulation
graph in figure 10.3 using a multiplier = 4

115

Simulations Multiplayer = 8
262144 0.173/0.173/0.174/0.176/0.178
524288 0.337/0.34/0.343/0.344/0.345
786432 0.474/0.479/0.484/0.489/0.495
1048576 0.638/0.65/0.652/0.655/0.659
1310720 0.775/0.787/0.791/0.794/0.801
1572864 0.946/0.955/0.964/0.967/0.969
1835008 1.08/1.08/1.1/1.11/1.13
2097152 1.24/1.27/1.28/1.28/1.29
2359296 1.42/1.43/1.44/1.45/1.46
2621440 1.55/1.56/1.59/1.59/1.6
2883584 1.69/1.73/1.74/1.76/1.77
3145728 1.87/1.88/1.89/1.9/1.91
3407872 2.04/2.05/2.06/2.07/2.09
3670016 2.17/2.18/2.19/2.21/2.25
3932160 2.33/2.35/2.36/2.4/2.4
4194304 2.5/2.52/2.54/2.54/2.56
4456448 2.63/2.66/2.67/2.7/2.72
4718592 2.78/2.81/2.84/2.86/2.87
4980736 2.94/2.97/2.98/2.99/3.03
5242880 3.12/3.14/3.16/3.19/3.2
5505024 3.26/3.27/3.3/3.35/3.37
5767168 3.33/3.44/3.45/3.47/3.53
6029312 3.55/3.59/3.62/3.66/3.68
6291456 3.72/3.76/3.77/3.79/3.8
6553600 3.84/3.87/3.91/3.96/3.99
6815744 4.03/4.05/4.1/4.11/4.13
7077888 4.2/4.22/4.27/4.27/4.31
7340032 4.33/4.36/4.39/4.42/4.47
7602176 4.44/4.55/4.58/4.59/4.66
7864320 4.65/4.67/4.71/4.74/4.83
8126464 4.73/4.83/4.88/4.9/4.99
8388608 4.94/5.01/5.04/5.07/5.09

Figure A.5: Minimum, maximum and quartiles for the large simulation
graph in figure 10.3 using a multiplier = 8

116

Simulations Results NOT combined Results combined
1K 2.38·10−3/2.66·10−3/2.76·10−3/2.83·

10−3/3.03·10−3
2.6·10−3/2.78·10−3/2.87·10−3/2.93·
10−3/3.78·10−3

98K 5.17·10−2/5.52·10−2/5.69·10−2/5.85·
10−2/6.24·10−2

6.14·10−2/6.82·10−2/6.98·10−2/7.15·
10−2/7.67·10−2

196K 9.83·10−2/0.106/0.109/0.111/0.118 0.121/0.133/0.137/0.141/0.15
293K 0.141/0.159/0.163/0.167/0.176 0.188/0.2/0.206/0.211/0.223
390K 0.193/0.211/0.216/0.221/0.239 0.24/0.264/0.271/0.28/0.294
487K 0.232/0.262/0.268/0.274/0.292 0.29/0.328/0.337/0.35/0.369
585K 0.271/0.313/0.323/0.334/0.35 0.371/0.398/0.408/0.418/0.451
682K 0.327/0.362/0.374/0.385/0.409 0.423/0.466/0.476/0.486/0.516
779K 0.393/0.416/0.431/0.443/0.465 0.494/0.526/0.544/0.558/0.591
877K 0.447/0.47/0.484/0.495/0.515 0.537/0.593/0.61/0.621/0.68
974K 0.444/0.517/0.537/0.55/0.576 0.59/0.659/0.677/0.693/0.73

Figure A.6: Minimum, maximum and quartiles for the overhead graph in
figure 10.4

Lookup time brownian + brownian brownian
0.0 0.388/0.405/0.418/0.42/0.422 0.388/0.396/0.41/0.419/0.426

4.17e-2 0.404/0.411/0.433/0.447/0.465 0.393/0.406/0.417/0.435/0.44
8.33e-2 0.438/0.45/0.461/0.468/0.472 0.408/0.424/0.437/0.447/0.456
0.125 0.432/0.479/0.491/0.505/0.509 0.411/0.434/0.448/0.465/0.468
0.1667 0.493/0.496/0.505/0.522/0.539 0.427/0.442/0.45/0.469/0.483
0.2083 0.505/0.521/0.535/0.55/0.554 0.459/0.467/0.477/0.486/0.494
0.25 0.526/0.553/0.559/0.569/0.603 0.466/0.471/0.484/0.496/0.511

0.2917 0.58/0.583/0.589/0.606/0.616 0.476/0.481/0.496/0.507/0.518
0.3333 0.565/0.597/0.609/0.62/0.622 0.485/0.494/0.517/0.523/0.541
0.375 0.611/0.623/0.636/0.643/0.656 0.498/0.507/0.519/0.532/0.546
0.4167 0.644/0.65/0.659/0.676/0.678 0.511/0.524/0.528/0.539/0.552
0.4583 0.672/0.68/0.692/0.701/0.705 0.522/0.535/0.552/0.564/0.576

0.5 0.693/0.711/0.726/0.736/0.75 0.546/0.554/0.557/0.566/0.588
0.5417 0.716/0.739/0.742/0.754/0.76 0.554/0.57/0.577/0.583/0.599
0.5833 0.731/0.752/0.767/0.78/0.789 0.567/0.579/0.586/0.6/0.615
0.625 0.738/0.782/0.795/0.799/0.811 0.564/0.587/0.591/0.607/0.625
0.6667 0.787/0.811/0.816/0.826/0.839 0.584/0.6/0.612/0.627/0.638
0.7083 0.814/0.84/0.848/0.859/0.868 0.61/0.625/0.635/0.644/0.651
0.75 0.839/0.86/0.871/0.881/0.889 0.6/0.625/0.633/0.645/0.666

0.7917 0.87/0.877/0.89/0.909/0.93 0.61/0.646/0.656/0.669/0.679
0.8333 0.889/0.909/0.925/0.933/0.94 0.618/0.644/0.659/0.671/0.692
0.875 0.929/0.936/0.957/0.964/0.97 0.654/0.662/0.676/0.682/0.695
0.9167 0.948/0.953/0.976/0.979/0.987 0.658/0.687/0.697/0.7/0.704
0.9583 0.982/0.992/0.997/1.01/1.02 0.694/0.698/0.704/0.723/0.73

1.0 0.988/1.01/1.02/1.03/1.07 0.695/0.716/0.723/0.734/0.741

Figure A.7: Minimum, maximum and quartiles for the de-nesting graph in
figure 10.5

117

Lookup time maximum brownian
0.0 0.702/0.708/0.721/0.738/0.755

4.17e-2 0.697/0.707/0.725/0.739/0.756
8.33e-2 0.694/0.702/0.72/0.724/0.731
0.125 0.689/0.705/0.715/0.718/0.75
0.1667 0.702/0.705/0.718/0.741/0.746
0.2083 0.684/0.701/0.713/0.724/0.728
0.25 0.686/0.707/0.718/0.733/0.737

0.2917 0.68/0.701/0.719/0.736/0.753
0.3333 0.714/0.722/0.727/0.739/0.748
0.375 0.706/0.711/0.727/0.732/0.744
0.4167 0.706/0.712/0.717/0.728/0.736
0.4583 0.709/0.724/0.725/0.737/0.753

0.5 0.709/0.72/0.727/0.738/0.752
0.5417 0.712/0.713/0.717/0.731/0.763
0.5833 0.706/0.718/0.727/0.738/0.756
0.625 0.687/0.712/0.725/0.741/0.752
0.6667 0.705/0.711/0.735/0.74/0.744
0.7083 0.706/0.716/0.734/0.749/0.772
0.75 0.711/0.718/0.731/0.746/0.761

0.7917 0.71/0.718/0.73/0.735/0.762
0.8333 0.714/0.724/0.732/0.752/0.759
0.875 0.701/0.715/0.733/0.746/0.766
0.9167 0.708/0.729/0.742/0.747/0.759
0.9583 0.709/0.732/0.738/0.745/0.753

1.0 0.691/0.734/0.743/0.748/0.759

Figure A.8: Minimum, maximum and quartiles for the skip graph in figure 10.6

118

Appendix B

Selected SPL modules

B.1 Module Language.SPL

{-# LANGUAGE GADTs, KindSignatures, FlexibleInstances, FlexibleContexts,

MultiParamTypeClasses, NoMonomorphismRestriction, TypeFamilies #-}

module Language.SPL (

-- * Built-in constructs

-- ** Distributions

uniform, normal, lookup, sample,

-- ** Processes

trace, closed, prefix, zip, skip,

-- * Prelude

inclusivePrefix,

iterative, map, time, always, reverse,

brownian, integral,

true, false,

zip3,

curry, uncurry, curry3, uncurry3,

lift, lift2, lift3,

choose, choice,

fold, maximum_, minimum_, average,

-- * Types

Pair (..),

If_ (..),

Dist, Process,

Time,

Type,

Ordered (..),

Boolean (..),

ToConstant (..)

) where

import Language.SPL.Syntax

import Prelude hiding (curry, uncurry, zip, zip3, map, lookup, reverse)

import qualified Prelude as H

import Data.Char (toLower)

-------------------- Built-in constructs --------------------

119

-- |The standard uniform distribution (between 0 and 1, both inclusive).

uniform :: Dist Double

uniform = Uniform

-- |The standard normal distribution (with mean 0 and variance 1).

normal :: Dist Double

normal = Normal

-- |Applies the function to a single sample from the distribution.

-- The sample is a so called degenerate distribution containing one value with

probability 1.

sample :: (Type a, Type b) => Dist a -> (Dist a -> Dist b) -> Dist b

sample = Sample

-- |A Process is conceptually a function from time to Dist.

-- Lookup is the manifistation of this concept.

lookup :: Type a => Dist Time -> Process a -> Dist a

lookup = Lookup

-- |Builds a process given function from time to a distribution

closed :: Type a => (Dist Time -> Dist a) -> Process a

closed = Closed

-- |Builds a process by accumulating over another process, given an initial value.

-- It is similar to a scan over a list (or a prefix sum) - however, it also knows

-- the delta time, specifying the time between the current and previous iteration.

-- The distribution at time zero is the function applied to the delta time, the

-- initial distribution and the distribution at time zero in the other process.

prefix :: (Type a, Type b) => (Dist Time -> Dist a -> Dist b -> Dist a) -> Dist a ->

Process b -> Process a

prefix = Prefix

-- |Builds a process by pairing each element of two processes.

zip :: (Type a, Type b) => Process a -> Process b -> Process (a, b)

zip = Zip

-- |Applies the function to a single path of the process.

-- The path is a time series (every distribution in the process is degenerate).

trace :: (Type a, Type b) => Process a -> (Process a -> Process b) -> Process b

trace = Trace

-- |Skips ahead in the given process by the specified duration.

skip :: Dist Time -> Process a -> Process a

skip t process = case process of

Closed f -> Closed (\t’ -> f (t + t’))

Zip p1 p2 -> Zip (skip t p1) (skip t p2)

TagP tag p -> TagP tag (skip t p)

Prefix f d0 p -> Prefix f (Lookup t (inclusivePrefix f d0 p)) (skip t p)

Trace p f -> Trace p (skip t . f)

-------------------- Prelude --------------------

-- |Like prefix, but the whole process is delayed by the delta time

-- and the distribution at time zero is the given initial distribution.

inclusivePrefix :: (Type a, Type b) => (Dist Time -> Dist a -> Dist b -> Dist a) ->

Dist a -> Process b -> Process a

inclusivePrefix f v p = map first (prefix (\d a w -> pair (second a) (f d (second a)

w)) (pair v v) p)

120

integral = inclusivePrefix (\dt a v -> a + dt * v) 0

brownian = iterative (\dt a -> a + sqrt dt * normal) 0

time = closed id

true = constant True

false = constant False

always = Closed . const

uncurry :: (Type a, Type b, Type c) =>

(Dist a -> Dist b -> Dist c) -> Dist (a, b) -> Dist c

uncurry f v = f (first v) (second v)

curry :: (Type a, Type b, Type c) =>

(Dist (a, b) -> Dist c) -> Dist a -> Dist b -> Dist c

curry f a b = f (pair a b)

uncurry3 :: (Type a, Type b, Type c, Type d) =>

(Dist a -> Dist b -> Dist c -> Dist d) -> Dist (a, (b, c)) -> Dist d

uncurry3 f v = uncurry (f (first v)) (second v)

curry3 :: (Type a, Type b, Type c, Type d) =>

(Dist (a, (b, c)) -> Dist d) -> Dist a -> Dist b -> Dist c -> Dist d

curry3 f a b c = f (pair a (pair b c))

zip3 a b c = zip a (zip b c)

lift :: (Type a, Type b) =>

(Dist a -> Dist b) -> Process a -> Process b

lift = map

lift2 :: (Type a, Type b, Type c) =>

(Dist a -> Dist b -> Dist c) -> Process a -> Process b -> Process c

lift2 f p1 p2 = map (uncurry f) (zip p1 p2)

lift3 :: (Type a, Type b, Type c, Type d) =>

(Dist a -> Dist b -> Dist c -> Dist d) -> Process a -> Process b -> Process c ->

Process d

lift3 f p1 p2 p3 = map (uncurry3 f) (zip3 p1 p2 p3)

iterative :: (Type a) =>

(Dist Time -> Dist a -> Dist a) -> Dist a -> Process a

iterative f i = inclusivePrefix (\dt a _ -> f dt a) i time

map :: (Type a, Type b) =>

(Dist a -> Dist b) -> Process a -> Process b

map f = prefix (_ _ d -> f d) (error "Accumulator variable should not be used in a

map")

reverse :: (Type a) =>

121

Dist Time -> Process a -> Process a

reverse end p = closed $ \t -> lookup (end - t) p

choice q d1 d2 = if_ (uniform .<. q) d1 d2

choose [d] = d

choose (d:ds) = choice (1 / fromIntegral (length (d:ds))) d (choose ds)

fold :: (Type a, Type b) => Dist Time -> Dist Time -> (Dist Time -> Dist a -> Dist b

-> Dist a) -> (Dist a) -> Process b -> Dist a

fold t1 t2 op init p = lookup (t2 - t1) (prefix op init (skip t1 p))

maximum_ :: Dist Time -> Dist Time -> Process Double -> Dist Double

maximum_ t1 t2 p = fold t1 t2 (const max_) (-1/0) p

minimum_ :: Dist Time -> Dist Time -> Process Double -> Dist Double

minimum_ t1 t2 p = fold t1 t2 (const min_) (1/0) p

average :: Process Double -> Process Double

average process =

let sumCount = prefix (_ acc value -> pair (first acc + value) (second acc + 1)

) (pair 0 0) process in

map (\p -> first p / second p) sumCount

-------------------- Constants --------------------

class ToConstant a where

type ConstantType a

constant :: ConstantType a -> a

instance ToConstant (Dist Double) where

type ConstantType (Dist Double) = Double

constant = Certain . Double

instance ToConstant (Dist Bool) where

type ConstantType (Dist Bool) = Bool

constant = Certain . Bool

instance ToConstant (Process Double) where

type ConstantType (Process Double) = Double

constant = always . constant

instance ToConstant (Process Bool) where

type ConstantType (Process Bool) = Bool

constant = always . constant

-------------------- Syntactic sugar for pairs --------------------

class Pair a where

pair :: (Type b, Type c) => a b -> a c -> a (b, c)

first :: (Type b, Type c) => a (b, c) -> a b

second :: (Type b, Type c) => a (b, c) -> a c

instance Pair Dist where

pair = Binary Pair

first = Unary First

second = Unary Second

122

instance Pair Process where

pair a b = zip a b

first = lift first

second = lift second

-------------------- Conditional operator --------------------

class If_ a where

if_ :: Type b => a Bool -> a b -> a b -> a b

instance If_ Dist where

if_ = Ternary If

instance If_ Process where

if_ = lift3 if_

-------------------- Ord emulation --------------------

infix 4 .<.

infix 4 .<=.

infix 4 .>.

infix 4 .>=.

infix 4 .==.

infix 4 ./=.

class Type b => Ordered a b where

min_ :: a b -> a b -> a b

max_ :: a b -> a b -> a b

(.<.) :: a b -> a b -> a Bool

(.<=.) :: a b -> a b -> a Bool

(.>.) :: a b -> a b -> a Bool

(.>=.) :: a b -> a b -> a Bool

(.==.) :: a b -> a b -> a Bool

(./=.) :: a b -> a b -> a Bool

infixr 3 .&&.

infixr 2 .||.

class Boolean a where

(.||.) :: a Bool -> a Bool -> a Bool

(.&&.) :: a Bool -> a Bool -> a Bool

not_ :: a Bool -> a Bool

-------------------- Instances for Double --------------------

instance Eq (Dist Double) where

(==) = error "Eq is not defined for Dist Double, but is still instantiated to

provide Num (Dist Double)"

instance Show (Dist a) where

show = showDist 0

instance Num (Dist Double) where

fromInteger = constant . fromIntegral

(+) = Binary Add

123

(-) = Binary Sub

(*) = Binary Mult

abs = Unary Abs

signum = Unary Sign

negate = Unary Negate

instance Fractional (Dist Double) where

fromRational = constant . fromRational

(/) = Binary Div

recip = (1.0 /)

instance Floating (Dist Double) where

exp = Unary Exp

pi = constant pi

log = Unary Log

sqrt = Unary Sqrt

sin = Unary Sin

cos = Unary Cos

tan = Unary Tan

asin = Unary Asin

acos = Unary Acos

atan = Unary Atan

sinh = Unary Sinh

cosh = Unary Cosh

tanh = Unary Tanh

asinh = Unary Asinh

acosh = Unary Acosh

atanh = Unary Atanh

(**) = Binary Power

logBase = Binary LogBase

instance Ordered Dist Double where

min_ = Binary Min

max_ = Binary Max

(.<.) = Binary Less

(.<=.) = Binary LessEqual

(.>.) = Binary Greater

(.>=.) = Binary GreaterEqual

(.==.) = Binary Equal

(./=.) = Binary NotEqual

instance Boolean Dist where

(.||.) = Binary Or

(.&&.) = Binary And

not_ = Unary Not

instance Eq (Process Double) where

(==) = error "Eq is not defined for Process Double, but is still instantiated to

provide Num (Process Double)"

instance Show (Process a) where

show = showProcess 0

instance Num (Process Double) where

fromInteger = constant . fromInteger

(+) = lift2 (+)

(-) = lift2 (-)

(*) = lift2 (*)

abs = lift abs

signum = lift signum

negate = lift negate

124

instance Fractional (Process Double) where

fromRational = constant . fromRational

(/) = lift2 (/)

recip = (1.0 /)

instance Floating (Process Double) where

exp = lift exp

pi = constant pi

log = lift log

sqrt = lift sqrt

sin = lift sin

cos = lift cos

tan = lift tan

asin = lift asin

acos = lift acos

atan = lift atan

sinh = lift sinh

cosh = lift cosh

tanh = lift tanh

asinh = lift asinh

acosh = lift acosh

atanh = lift atanh

(**) = lift2 (**)

logBase = lift2 logBase

instance Ordered Process Double where

min_ = lift2 min_

max_ = lift2 max_

(.<.) = lift2 (.<.)

(.<=.) = lift2 (.<=.)

(.>.) = lift2 (.>.)

(.>=.) = lift2 (.>=.)

(.==.) = lift2 (.==.)

(./=.) = lift2 (./=.)

instance Boolean Process where

(.||.) = lift2 (.||.)

(.&&.) = lift2 (.&&.)

not_ = lift not_

-------------------- Auxiliaries --------------------

showDist :: Int -> Dist a -> String

showDist x dist = case dist of

Certain value -> case value of

Double value -> show value

Bool value -> H.map toLower (show value)

Unary op d1 -> parenthesize $ show op ++ " " ++ showDist x d1

Binary op d1 d2 -> parenthesize $ showDist x d1 ++ " " ++ show op ++ " " ++

showDist x d2

Ternary If d1 d2 d3 -> parenthesize $ "if " ++ showDist x d1 ++ " " ++ showDist

x d2 ++ " " ++ showDist x d3

Uniform -> "uniform"

Normal -> "normal"

Lookup time process -> parenthesize $ "lookup " ++ showDist x time ++ " " ++

show process

Sample d f -> parenthesize $ showDist x d ++ " ‘sample‘ " ++ showDistFunction x

f

TagD i -> showDistVar i

125

showDistVar :: Int -> String

showDistVar x = "d" ++ show x

showDistArgument :: Int -> Dist a -> String

showDistArgument x d | varUsedInDist x d = showDistVar x

showDistArgument x _ = "_"

showDistFunction :: Type a => Int -> (Dist a -> Dist b) -> String

showDistFunction x f = "\\" ++ showDistVar x ++ " -> " ++ showDist (x + 1) (f (TagD

x))

showProcess :: Int -> Process a -> String

showProcess x process = case process of

Closed f | varUsedInDist x (f (TagD x)) -> parenthesize $ "closed \\" ++

showDistVar x ++ " -> " ++ showDist (x + 1) (f (TagD x))

| otherwise -> showDist x (f (TagD undefined))

Prefix f d0 p ->

let body = f (TagD x) (TagD (x + 1)) (TagD (x + 2)) in

let a1 = showDistArgument x body in

let a2 = showDistArgument (x + 1) body in

let a3 = showDistArgument (x + 2) body in

let d0’ = if varUsedInDist (x + 1) body then showDist x d0 else "_" in

let p’ = if varUsedInDist (x + 2) body then showProcess x p else "_" in

parenthesize $ "prefix " ++ lambda [a1, a2, a3] (showDist (x + 3) body) ++ "

" ++ d0’ ++ " " ++ p’

Zip p1 p2 -> parenthesize $ "zip " ++ showProcess x p1 ++ " " ++ showProcess x

p2

Trace p f ->

let body = f (TagP x undefined) in

let a1 = showProcessArgument x body in

parenthesize $ showProcess x p ++ " ‘trace‘ " ++ lambda [a1] (showProcess (x

+ 1) body)

TagP x _ -> showProcessVar x

showProcessVar :: Int -> String

showProcessVar x = "p" ++ show x

showProcessArgument :: Int -> Process a -> String

showProcessArgument x p | varUsedInProcess x p = showProcessVar x

showProcessArgument x _ = "_"

lambda :: [String] -> String -> String

lambda args body = parenthesize $ "\\" ++ (concatMap (++ " ") args) ++ "-> " ++

unparenthesize body

parenthesize s = "(" ++ s ++ ")"

unparenthesize s =

if length s >= 2 && head s == ’(’ && s !! (length s - 1) == ’)’

then take (length s - 2) (tail s)

else s

B.2 Module Language.SPL.Syntax

{-# LANGUAGE GADTs, KindSignatures, TypeFamilies, OverlappingInstances,

EmptyDataDecls, DeriveDataTypeable, StandaloneDeriving, FlexibleInstances,

ScopedTypeVariables #-}

module Language.SPL.Syntax (

module Language.SPL.Operator,

module Language.SPL.Type,

126

Time,

Dist (..),

Process (..),

Type (..),

varUsedInDist,

varUsedInProcess,

examine,

usesAccumulator

) where

import Language.SPL.Operator

import Language.SPL.Type

import Data.Typeable

import System.Random

type Time = Double

data Dist :: * -> * where

Normal :: Dist Double

Uniform :: Dist Double

Lookup :: (Type a) => Dist Time -> Process a -> Dist a

Certain :: (Type a) => Constant a -> Dist a

Sample :: (Type a, Type b) => Dist a -> (Dist a -> Dist b) -> Dist b

Unary :: (Type a1, Type a2) => UnaryOperator a1 a2 -> Dist a1 -> Dist a2

Binary :: (Type a1, Type a2, Type a3) => BinaryOperator a1 a2 a3 -> Dist a1 ->

Dist a2 -> Dist a3

Ternary :: (Type a1, Type a2, Type a3, Type a4) => TernaryOperator a1 a2 a3 a4

-> Dist a1 -> Dist a2 -> Dist a3 -> Dist a4

TagD :: (Type a) => Int -> Dist a

data Process :: * -> * where

Closed :: (Type a) => (Dist Time -> Dist a) -> Process a

Prefix :: (Type a, Type b) => (Dist Time -> Dist a -> Dist b -> Dist a) -> Dist

a -> Process b -> Process a

Zip :: (Type a, Type b) => Process a -> Process b -> Process (a, b)

Trace :: (Type a, Type b) => Process a -> (Process a -> Process b) -> Process b

TagP :: (Type a) => Int -> Process a -> Process a

-- | Contains the types that we can represent (in ’Dist’ and ’Process’).

class Typeable a => Type a where

splType :: a -> SPLType

toDist :: a -> Dist a

instance Type Double where

splType _ = DoubleType

toDist = Certain . Double

instance Type Bool where

splType _ = BoolType

toDist = Certain . Bool

deriving instance Typeable StdGen

instance Type StdGen where

splType _ = GeneratorType

toDist = error "Unimplemented" -- TODO: Fix this (although it cannot happen if

we don’t expose toDist)

127

instance forall a b. (Type a, Type b) => Type (a, b) where

splType _ = PairType (splType (error "splType" :: a)) (splType (error "splType"

:: b))

toDist (a, b) = Binary Pair (toDist a) (toDist b)

varUsedInDist :: Int -> Dist a -> Bool

varUsedInDist x dist = case dist of

TagD i -> i == x

Unary _ d1 -> varUsedInDist x d1

Binary _ d1 d2 -> varUsedInDist x d1 || varUsedInDist x d2

Ternary If d1 d2 d3 -> varUsedInDist x d1 || varUsedInDist x d2 || varUsedInDist

x d3

Lookup time process -> varUsedInDist x time || varUsedInProcess x process

Sample d f -> varUsedInDist x d || varUsedInDist x (f (TagD (x+1)))

_ -> False

varUsedInProcess :: Int -> Process a -> Bool

varUsedInProcess x process = case process of

TagP i _ -> x == i

Closed f -> varUsedInDist x (f (TagD (x+1)))

Trace p f -> varUsedInProcess x p || varUsedInProcess x (f (TagP (x+1) undefined

))

Prefix f d0 p ->

let body = f (TagD (x+1)) (TagD (x+2)) (TagD (x+3)) in

let usingAccumulator = varUsedInDist (x + 2) body in

let usedInAccumulator = usingAccumulator && varUsedInDist x d0 in

varUsedInDist x body || usedInAccumulator || varUsedInProcess x p

Zip p1 p2 -> varUsedInProcess x p1 || varUsedInProcess x p2

examine :: (Type a1, Type a2, Type a) =>

(Dist a -> Dist a1 -> Dist a2 -> Dist a3) -> (Bool, Bool, Bool)

examine f =

let (x1, x2, x3) = (-4, -3, -2) in

let body = f (TagD x1) (TagD x2) (TagD x3) in

(varUsedInDist x1 body, varUsedInDist x2 body, varUsedInDist x3 body)

usesAccumulator f = let (_, used, _) = examine f in used

B.3 Module Language.SPL.Semantics

{-# LANGUAGE GADTs #-}

module Language.SPL.Semantics where

import Language.SPL.Syntax

import Language.SPL.Operator

import Language.SPL ()

import Prelude hiding (Real)

import Control.Monad

type Real = Double

delta = 0.1

end = 10

128

class Monad m => ProbabilityMonad m where

uniform’ :: m Real

normal’ :: m Real

process :: ProbabilityMonad m => Process a -> m [a]

process p = case p of

Closed f -> mapM (distribution . f . Certain . Double) [0, delta .. end]

Prefix f i p | usesAccumulator f -> do

i’ <- distribution i

p’ <- process p

let accumulate a v = distribution (f (toDist delta) (toDist a) (toDist v))

l <- scanM accumulate i’ p’

return (tail l)

Prefix f i p -> do

p’ <- process p

mapM (distribution . f (toDist delta) undefined . toDist) p’

Zip p1 p2 -> do

p1’ <- process p1

p2’ <- process p2

return (zip p1’ p2’)

Trace p f -> do

p’ <- process p

let s = Closed (\(Certain (Double t’)) -> toDist (index t’ p’))

process (f s)

distribution :: ProbabilityMonad m => Dist a -> m a

distribution d = case d of

Uniform -> uniform’

Normal -> normal’

Certain (Double v) -> return v

Certain (Bool v) -> return v

Lookup t p -> do

t’ <- distribution t

p’ <- process p

return (index t’ p’)

Sample d f -> do

d’ <- distribution d

distribution (f (toDist d’))

Unary o d -> do

d’ <- distribution d

return (unaryOperator o d’)

Binary o d1 d2 -> do

d1’ <- distribution d1

d2’ <- distribution d2

return (binaryOperator o d1’ d2’)

Ternary o d1 d2 d3 -> do

d1’ <- distribution d1

d2’ <- distribution d2

d3’ <- distribution d3

return (ternaryOperator o d1’ d2’ d3’)

index t l = l !! floor (t / delta)

scanM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m [a]

scanM f i [] = return [i]

scanM f i (x:xs) = do

i’ <- f i x

is <- scanM f i’ xs

129

return (i:is)

{-

processAt :: ProbabilityMonad m => Process a -> Time -> m a

processAt p t = case p of

Closed f -> distribution (f (Certain (Double t)))

Prefix f i p | t == 0 -> do

i’ <- distribution i

p’ <- processAt p t

distribution (f (toDist delta) (toDist i’) (toDist p’))

Prefix f i p -> do

a <- processAt (Prefix f i p) (t - delta)

p’ <- processAt p t

distribution (f (toDist delta) (toDist a) (toDist p’))

Zip p1 p2 -> do

p1’ <- processAt p1 t

p2’ <- processAt p2 t

return (p1’, p2’)

-- The case for Trace is wrong: it mixes up values from different time series

Trace p f -> do

l <- sequence [processAt p t’ | t’ <- [0, delta .. end]]

let index t’ = toDist (l !! floor (t’ / delta))

let s = Closed (\(Certain (Double t’)) -> index t’)

processAt (f s) t

-}

B.4 Module Language.SPL.Intermediate

{-# LANGUAGE GADTs, KindSignatures, MultiParamTypeClasses, FlexibleContexts,

FlexibleInstances, ScopedTypeVariables, TypeFamilies, EmptyDataDecls #-}

module Language.SPL.Intermediate (

Intermediate (..),

Index (..), Layout (..), peek,

Translate (..), translate, convert,

Accumulator (..),

stochastic

) where

import qualified Language.SPL.Syntax as S

import qualified Language.SPL.Operator as S

import qualified Language.SPL as S

import Language.SPL.SimulationResult (SimulationResult)

import System.Random

import Data.Typeable

import Data.Maybe

import Control.Monad (guard)

data Index :: * -> * -> * where

Zero :: Index (env, a) a

Succ :: Index env a -> Index (env, b) a

data Intermediate :: * -> * -> * where

Uniform :: Intermediate env Double

Normal :: Intermediate env Double

Let :: (S.Type a, S.Type b) =>

Intermediate env a -> Intermediate (env, a) b -> Intermediate env b

Constant :: (S.Type a) =>

130

(S.Constant a) -> Intermediate env a

Unary :: (S.Type a, S.Type b) =>

(S.UnaryOperator a b) -> Intermediate env a -> Intermediate env b

Binary :: (S.Type a, S.Type b, S.Type c) =>

(S.BinaryOperator a b c) -> Intermediate env a -> Intermediate env b ->

Intermediate env c

If :: (S.Type a) =>

Intermediate env Bool -> Intermediate env a -> Intermediate env a ->

Intermediate env a

Prefix :: (S.Type a) =>

Bool -> Intermediate env S.Time -> Accumulator env a -> Intermediate env a

Variable :: (S.Type a) =>

Index env a -> Intermediate env a

Split :: (S.Type a) =>

Intermediate (env, StdGen) a -> Intermediate env a

Use :: (S.Type a) =>

Index env StdGen -> Intermediate env a -> Intermediate env a

data Accumulator :: * -> * -> * where

Accumulate :: (S.Type a, S.Type b) =>

Intermediate (((env, S.Time), a), b) a ->

Bool -> Maybe (Intermediate env a) -> Maybe (Accumulator env b) ->

Accumulator env a

Zip :: (S.Type a, S.Type b) =>

Accumulator env a -> Accumulator env b -> Accumulator env (a, b)

Expression :: (S.Type a) =>

Bool -> Intermediate (env, S.Time) a -> Accumulator env a

Splitting :: (S.Type a) =>

Accumulator (env, StdGen) a -> Accumulator env a

Using :: (S.Type a) =>

Index env StdGen -> Accumulator env a -> Accumulator env a

data Layout :: * -> * -> * where

Empty :: Layout env ()

Push :: (S.Type a) =>

Layout env env’ -> Index env a -> Layout env (env’, a)

size :: Layout env env’ -> Int

size Empty = 0

size (Push layout _) = size layout + 1

increase :: Layout env env’ -> Layout (env, a) env’

increase Empty = Empty

increase (Push layout index) = Push (increase layout) (Succ index)

project :: (S.Type a) => Int -> Layout env env’ -> Index env a

project _ Empty = error "Cannot project an empty layout"

project 0 (Push _ index) = fromJust (gcast index)

project n (Push layout _) = project (n - 1) layout

peek :: Index env a -> env -> a

peek Zero (_, a) = a

peek (Succ n) (environment, _) = peek n environment

translate :: Translate () a => a -> Intermediate (EnvironmentOf () a) (ResultOf a)

translate = translate’ Empty

class Translate env a where

type EnvironmentOf env a

type ResultOf a

131

translate’ :: Layout env env -> a -> Intermediate (EnvironmentOf env a) (

ResultOf a)

instance S.Type a => Translate env (S.Dist a) where

type EnvironmentOf env (S.Dist a) = env

type ResultOf (S.Dist a) = a

translate’ = convert’

instance forall env a b. (Translate (env, a) b, S.Type a) => Translate env (S.Dist a

-> b) where

type EnvironmentOf env (S.Dist a -> b) = EnvironmentOf (env, a) b

type ResultOf (S.Dist a -> b) = ResultOf b

translate’ layout f = translate’ layout’ (f tag)

where

(tag, layout’) = distTag layout

instance forall env a b. (Translate (env, a) b, S.Type a) => Translate env (S.

Process a -> b) where

type EnvironmentOf env (S.Process a -> b) = EnvironmentOf (env, a) b

type ResultOf (S.Process a -> b) = ResultOf b

translate’ layout f = translate’ layout’ (f (S.always tag))

where

(tag, layout’) = distTag layout

convert :: S.Dist a -> Intermediate () a

convert = convert’ Empty

convert’ :: Layout env env -> S.Dist a -> Intermediate env a

convert’ layout term = case term of

S.TagD tag -> Variable (project (size layout - tag - 1) layout)

S.Certain constant -> Constant constant

S.Uniform -> Uniform

S.Normal -> Normal

S.Sample e f -> Let (convert’ layout e) (convert’ layout’ (f tag))

where

(tag, layout’) = distTag layout

S.Unary op e1 -> Unary op (convert’ layout e1)

S.Binary op e1 e2 -> Binary op (convert’ layout e1) (convert’ layout e2)

S.Ternary S.If e1 e2 e3 -> If (convert’ layout e1) (convert’ layout e2) (convert

’ layout e3)

S.Lookup e p -> lookup layout e p

where

lookup :: Layout env env -> S.Dist S.Time -> S.Process a -> Intermediate env

a

lookup layout time process = case process of

p@(S.Prefix _ _ p’) ->

Prefix (usesTimeInProcess p’) (convert’ layout time) (accumulator

layout p)

S.Zip p1 p2 ->

Binary S.Pair (lookup layout time p1) (lookup layout time p2)

S.Closed f ->

convert’ layout (f time)

S.Trace p f ->

Split (lookup layout’ time (f tag))

where

(tag, layout’) = processTag layout p

S.TagP tag p ->

Use (project (size layout - tag - 1) layout) (lookup layout time p)

132

accumulator :: (S.Type a) => Layout env env -> S.Process a -> Accumulator

env a

accumulator layout process = case process of

S.Zip p1 p2 ->

let a1 = accumulator layout p1 in

let a2 = accumulator layout p2 in

Zip a1 a2

S.Prefix f e p ->

let accumulator’ = accumulator layout p in

let initialValue = convert’ layout e in

let (timeTag, layout’) = distTag layout in

let (accumulateTag, layout’’) = distTag layout’ in

let (valueTag, layout’’’) = distTag layout’’ in

let f’ = convert’ layout’’’ (f timeTag accumulateTag valueTag) in

let (useDt, useAccumulator, useProcess) = S.examine f in

let justWhen :: Bool -> a -> Maybe a

justWhen condition a = guard condition >> return a in

Accumulate f’ useDt (justWhen useAccumulator initialValue) (justWhen

useProcess accumulator’)

S.Trace p f -> Splitting (accumulator layout’ (f tag))

where

(tag, layout’) = processTag layout p

S.TagP tag p ->

Using (project (size layout - tag - 1) layout) (accumulator layout p

)

p@(S.Closed _) ->

let (tag, layout’) = distTag layout in

Expression (usesTimeInProcess p) (lookup layout’ tag p)

distTag :: S.Type a =>

Layout env env’ ->

(S.Dist a, Layout (env, a) (env’, a))

distTag layout = (S.TagD (size layout), increase layout ‘Push‘ Zero)

processTag :: S.Type a =>

Layout env env’ ->

S.Process a ->

(S.Process a, Layout (env, StdGen) (env’, StdGen))

processTag layout p = (S.TagP (size layout) p, increase layout ‘Push‘ Zero)

usesTimeInProcess :: S.Process a -> Bool

usesTimeInProcess process = case process of

S.Zip p1 p2 -> usesTimeInProcess p1 || usesTimeInProcess p2

S.Prefix _ _ p -> usesTimeInProcess p

S.Trace p f -> usesTimeInProcess (f p)

S.Closed f -> S.varUsedInDist 0 (f (S.TagD 0))

S.TagP _ p -> usesTimeInProcess p

stochastic :: Intermediate env a -> Bool

stochastic process = case process of

Uniform -> True

Normal -> True

Let e1 e2 -> stochastic e1 || stochastic e2

Constant _ -> False

133

Unary _ e1 -> stochastic e1

Binary _ e1 e2 -> stochastic e1 || stochastic e2

If e1 e2 e3 -> stochastic e1 || stochastic e2 || stochastic e3

Prefix _ e a -> stochastic e || stochasticAccumulator a

Variable _ -> False

Split e -> stochastic e

Use _ e -> False

stochasticAccumulator :: Accumulator env a -> Bool

stochasticAccumulator accumulator = case accumulator of

Accumulate e1 _ e2 a -> stochastic e1 || maybe False stochastic e2 || maybe

False stochasticAccumulator a

Zip a1 a2 -> stochasticAccumulator a1 || stochasticAccumulator a2

Expression _ e -> stochastic e

Splitting a -> stochasticAccumulator a

Using _ a -> stochasticAccumulator a

instance Show (Intermediate env a) where

show intermediate = case intermediate of

Uniform -> "uniform"

Normal -> "normal"

Let e1 e2 -> "(let " ++ show e1 ++ " in " ++ show e2 ++ ")"

Constant (S.Double value) -> show value

Constant (S.Bool value) -> show value

Unary op e1 -> "(" ++ show op ++ " (" ++ show e1 ++ "))"

Binary op e1 e2 -> "(" ++ show e1 ++ show op ++ show e2 ++ ")"

If e1 e2 e3 -> "(if " ++ show e1 ++ " then " ++ show e2 ++ " else " ++ show

e3 ++ ")"

Variable index -> "x" ++ show index

Split e -> "(split (" ++ show e ++ "))"

Use index e -> "(use g" ++ show index ++ " within " ++ show e ++ ")"

Prefix usingTime e a -> "(prefix " ++ show usingTime ++ " " ++ show e ++ " "

++ show a ++ ")"

instance Show (Accumulator env a) where

show accumulator = case accumulator of

Accumulate f useDt d0 acc -> "(accumulate " ++ show f ++ " " ++ show useDt

++ " " ++ show d0 ++ " " ++ show acc ++ ")"

Zip acc1 acc2 -> "(accumulateZip " ++ show acc1 ++ " " ++ show acc2 ++ ")"

Expression _ p -> "(accumulateOther " ++ show p ++ ")"

Splitting p -> "(splitting " ++ show p ++ ")"

Using index p -> "(using " ++ show index ++ " " ++ show p ++ ")"

instance Show (Index env a) where

show = show . indexToInt

indexToInt :: Index env a -> Int

indexToInt Zero = 0

indexToInt (Succ n) = indexToInt n + 1

B.5 Module Language.SPL.OpenCL.Compiler

{-# LANGUAGE QuasiQuotes, GADTs, TupleSections, TypeFamilies, NamedFieldPuns,

FlexibleContexts, FlexibleInstances, OverlappingInstances, ScopedTypeVariables

#-}

module Language.SPL.OpenCL.Compiler where

import Language.SPL.Intermediate hiding (peek, If, Expression)

import qualified Language.SPL.Intermediate as I

134

import qualified Language.SPL.Syntax as S

import qualified Language.SPL.Operator as S

import Language.SPL.Common (mapFst, mapSnd)

import Language.C.Quote.OpenCL

import Language.C.Syntax hiding (OpenCL)

import System.Random

import Control.Monad.State

import Control.Monad.Reader

import Control.Monad.Writer

import Text.PrettyPrint.Mainland

import Data.Maybe

import Data.Set (Set)

import qualified Data.Set as Set

import Data.Map (Map)

import qualified Data.Map as Map

import qualified Debug.Trace as Debug

data Code = Code {

statements :: [Stm],

pairTypes :: Set (S.SPLType, S.SPLType)

}

instance Monoid Code where

mempty = Code [] Set.empty

mappend (Code statements pairTypes) (Code statements’ pairTypes’) =

Code (statements ++ statements’) (pairTypes ‘Set.union‘ pairTypes’)

joinVariables vs1 vs2 = Map.unionWithKey join vs1 vs2

where

join variable t1 t2 = if t1 == t2 then t1 else variableError

("Conflicting types for variable " ++ variable ++ ": " ++ show t1 ++ " "

++ show t2) t1

variableError :: String -> a -> a

variableError = error

--variableError s = Debug.trace ("****************** " ++ s ++ "

******************")

newtype Expression a = Expression Exp

newtype Name a = Name String

type M a = StateT (Int, (Map String S.SPLType, Set String)) (Writer Code) a

data family Named :: * -> *

data instance Named () = NamedEmpty

data instance Named (env, b) = NamedBind (Named env) (Name b)

class Arguments env where

arguments :: Int -> (Named env, [Param])

instance Arguments () where

arguments _ = (NamedEmpty, [])

instance forall env a. (Arguments env, S.Type a) => Arguments (env, a) where

arguments i = (NamedBind (environment) name, [$cparam|$ty:parameterType $id:x|]

: parameters)

where

parameterType = typeOf name

name = Name x :: Name a

135

x = "argument_" ++ show i

(environment, parameters) = arguments (i + 1)

newtype OpenCL env = OpenCL String

openCL :: forall a. (Translate () a, Arguments (EnvironmentOf () a), ResultOf a ~

Double) =>

S.Time -> a -> OpenCL (EnvironmentOf () a)

openCL timeStep f =

let intermediate = translate f :: Intermediate (EnvironmentOf () a) Double in

let (namedEnvironment, parameters) = arguments 0 in

let code = functionM timeStep parameters (openCL’ [Name "generator"]

namedEnvironment intermediate) in

OpenCL (

"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n" ++

"#include \"random.cl\"\n" ++

"#include \"sum.cl\"\n" ++

show (ppr code))

functionM :: S.Time -> [Param] -> M (Expression Double) -> [Definition]

functionM timeStep parameters m =

let assigned = ["generator", "time_step"] ++ ["argument_" ++ show i | i <- [0 ..

length parameters - 1]] in

let (variables, _, statements, pairTypes, Expression c) = runM (Set.fromList

assigned) m in

let declarations = map declaration (Map.toList variables) in

let pairs = map pairStruct (Set.toList pairTypes) in

[$cunit|

$edecls:pairs

kernel void simulate(

ulong seed,

local double * local_means,

local double * local_standard_deviations,

global double * global_means,

global double * global_standard_deviations,

$params:parameters)

{

double time_step = $exp:timeStep;

struct generator_t generator = initialize(seed);

$decls:declarations

$stms:statements

emit_result(

$exp:c,

local_means,

local_standard_deviations,

global_means,

global_standard_deviations

);

}

|]

runM :: Set String -> M a -> (Map String S.SPLType, Set String, [Stm], Set (S.

SPLType, S.SPLType), a)

runM assigned m =

let w = runStateT m (0, (Map.empty, assigned)) in

let ((a, (_, (needsDeclaration, assigned))), Code { statements, pairTypes }) =

runWriter w in

(needsDeclaration, assigned, statements, pairTypes, a)

136

runM’ :: M a -> M (Map String S.SPLType, Set String, [Stm], a)

runM’ m = do

s <- get

let w = runStateT m s

let ((a, (i, (needsDeclaration, assigned))), Code { statements, pairTypes }) =

runWriter w

lift $ tell (Code [] pairTypes)

modify (mapFst (const i))

return (needsDeclaration, assigned, statements, a)

expression :: forall a. S.Type a => Exp -> M (Expression a)

expression e = do

usePair (Name "" :: Name a)

return $ Expression e

openCL’ :: forall env a. S.Type a =>

[Name StdGen] -> Named env -> Intermediate env a -> M (Expression a)

openCL’ generators environment intermediate = case intermediate of

Uniform -> do

let g = head generators

Expression id <- use g

e <- expression [$cexp|uniform(&$exp:id)|]

r <- bind "uniform" e :: M (Name Double)

use r

Normal -> do

let g = head generators

Expression id <- use g

e <- expression [$cexp|normal(&$exp:id)|]

r <- bind "normal" e :: M (Name Double)

use r

Let e1 e2 -> do

c1 <- openCL’ generators environment e1

x <- bind "x" c1

openCL’ generators (NamedBind environment x) e2

Variable index ->

use (peek index environment)

Constant (S.Double value) -> expression [$cexp|$exp:value|]

Constant (S.Bool False) -> expression [$cexp|0|]

Constant (S.Bool True) -> expression [$cexp|1|]

Unary op e1 -> do

c1 <- openCL’ generators environment e1

unary op c1

Binary op e1 e2 -> do

c1 <- openCL’ generators environment e1

c2 <- openCL’ generators environment e2

binary op c1 c2

I.If e1 e2 e3 -> do

Expression c1 <- openCL’ generators environment e1

(vs2, as2, ss2, e@(Expression c2)) <- runM’ $ openCL’ generators environment

e2

(vs3, as3, ss3, Expression c3) <- runM’ $ openCL’ generators environment e3

mapM statement ss2

mapM statement ss3

promiseAssigned (as2 ‘Set.intersection‘ as3)

needsDeclaration vs2

needsDeclaration vs3

let returnType = typeOf e

expression [$cexp|($ty:returnType) select(($ty:returnType) $exp:c3, ($ty:

returnType) $exp:c2, (ulong) $exp:c1)|]

Prefix usingTime e1 accumulator -> do

c1 <- openCL’ generators environment e1

delta <- variable "delta" :: M (Name S.Time)

137

end <- variable "end" :: M (Name Double)

steps <- variable "steps" :: M (Name Double)

step@(Name step’’) <- variable "step" :: M (Name Double)

time <- variable "time" :: M (Name Double)

(initialization, before, insides, after, usingDeltaTime, usesAccumulator,

accumulator) <-

prefix generators environment time delta accumulator False

let needsLoop = not (null insides)

when (usingDeltaTime || usingTime || needsLoop) $ assign end c1

when usingTime $ do

end’ <- use end

assign time end’

when (usingDeltaTime || needsLoop) $ do

Expression end’ <- use end

assign steps $ Expression [$cexp|ceil($exp:end’ / time_step)|]

Expression steps’ <- use steps

assign delta $ Expression [$cexp|$exp:steps’ == 0 ? time_step : ($exp:

end’ / $exp:steps’)|]

initialization

before

when needsLoop $ do

(vs, as, ss, _) <- runM’ (sequence insides)

updateTime <- if usingTime

then do

Expression delta’ <- use delta

assign time $ Expression [$cexp|-$exp:delta’|]

Expression time’ <- use time

return [[$cstm|$exp:time’ += $exp:delta’;|]]

else return []

needsDeclaration (Map.singleton step’’ S.DoubleType)

promiseAssigned (Set.singleton step’’)

Expression steps’ <- use steps

Expression step’ <- use step

statement [$cstm|

for ($exp:step’ = 0; $exp:step’ <= $exp:steps’; $exp:step’ += 1) {

$stms:updateTime

$stms:ss

}

|]

needsDeclaration vs

promiseAssigned as

after

use accumulator

Split e -> do

Expression id <- use (head generators)

c <- expression [$cexp|split(&$exp:id)|]

x <- bind "generator" c :: M (Name StdGen)

openCL’ generators (NamedBind environment x) e

Use index e -> do

id <- use (peek index environment)

g <- bind "generator" id

openCL’ (g:generators) environment e

prefix :: [Name StdGen] -> Named env -> Name S.Time -> Name S.Time -> Accumulator

env a -> Bool -> M (M (), M (), [M ()], M (), Bool, Bool, Name a)

prefix generators environment time delta process dependsOnAccumulator = case process

of

Accumulate e1 useDt e2 process -> do

let dependsOnAccumulator’ = dependsOnAccumulator || isJust e2

(initialization, before, insides, after, usingDt, mustBeInALoop, result) <-

case process of

138

Just process -> prefix generators environment time delta process

dependsOnAccumulator’

Nothing -> return (return (), return (), [], return (), False, False,

error "Accumulate with no process: this variable should not be used"

)

let mustBeInALoop’ = mustBeInALoop || isJust e2

accumulator <- variable "accumulator"

let initialization’ = when mustBeInALoop initialization

let initialization’’ = case e2 of

Just e2 -> do

initialValue <- openCL’ generators environment e2

assign accumulator initialValue

Nothing -> return ()

let inside = do

let environment’ = NamedBind (NamedBind (NamedBind environment delta

) accumulator) result

body <- openCL’ generators environment’ e1

assign accumulator body

let (before’, inside’, after’) = move inside dependsOnAccumulator’

mustBeInALoop’

return (initialization’ >> initialization’’, before >> before’, insides ++

inside’, after >> after’,

usingDt || useDt, mustBeInALoop’, accumulator)

Zip process1 process2 -> do

(initialization1, before1, insides1, after1, usingDt1, mustBeInALoop1,

result1) <-

prefix generators environment time delta process1 dependsOnAccumulator

(initialization2, before2, insides2, after2, usingDt2, mustBeInALoop2,

result2) <-

prefix generators environment time delta process2 dependsOnAccumulator

let mustBeInALoop = mustBeInALoop1 || mustBeInALoop2

x@(Name x’) <- variable "zip"

let inside = do

e1 <- use result1

e2 <- use result2

e <- pairOf e1 e2

assign x e

let (before’, inside’, after’) = move inside dependsOnAccumulator

mustBeInALoop

return (

initialization1 >> initialization2,

before1 >> before2 >> before’,

insides1 ++ insides2 ++ inside’,

after1 >> after2 >> after’,

usingDt1 || usingDt2,

mustBeInALoop,

x)

I.Expression usesTime e -> do

let environment’ = NamedBind environment time

x <- variable "expression"

let inside = do

c <- openCL’ generators environment’ e

assign x c

let canNotMoveOutDirectly = usesTime || stochastic e

let (before’, inside’, after’) = move inside dependsOnAccumulator

canNotMoveOutDirectly

return (return (), before’, inside’, after’, False, dependsOnAccumulator &&

canNotMoveOutDirectly, x)

Using index process -> do

e’ <- use (peek index environment)

g <- bind "generator" e’

prefix (g:generators) environment time delta process dependsOnAccumulator

139

Splitting process -> do

Expression id <- use (head generators)

let c = Expression [$cexp|split(&$exp:id)|]

x <- bind "generator" c :: M (Name StdGen)

prefix generators (NamedBind environment x) time delta process

dependsOnAccumulator

move :: M () -> Bool -> Bool -> (M (), [M ()], M ())

move inside dependsOnAccumulator mustBeInALoop =

case (dependsOnAccumulator, mustBeInALoop) of

(True, True) -> (return (), [inside], return ())

(True, False) -> (inside, [], return ())

(False, True) -> (return (), [], inside)

(False, False) -> (return (), [], inside)

peek :: Index env a -> Named env -> Name a

peek Zero (NamedBind _ a) = a

peek (Succ n) (NamedBind environment _) = peek n environment

statement :: Stm -> M ()

statement statement’ = lift (tell (Code [statement’] Set.empty))

variable :: forall a. S.Type a => String -> M (Name a)

variable baseName = do

n <- liftM fst get

modify (mapFst (+ 1))

let x = baseName ++ "_" ++ show n

return (Name x) :: M (Name a)

assign :: forall a. S.Type a => Name a -> Expression a -> M ()

assign (Name x) (Expression c) = do

statement $ [$cstm|$id:x = $exp:c;|]

let variableType = S.splType (error "typeOf: Type case" :: a)

modify (mapSnd (\(needsDeclaration, assigned) ->

(Map.singleton x variableType ‘joinVariables‘ needsDeclaration, Set.insert x

assigned)))

bind :: S.Type a => String -> Expression a -> M (Name a)

bind baseName e = do

name <- variable baseName

assign name e

return name

use :: S.Type a => Name a -> M (Expression a)

use (Name x) = do

existing <- liftM (Set.member x . snd . snd) get

when (not existing) $ variableError ("Variable " ++ x ++ " has not yet been

initialized") (return () :: M ())

expression [$cexp|$id:x|]

needsDeclaration :: Map String S.SPLType -> M ()

needsDeclaration vs = modify $ mapSnd $ mapFst $ joinVariables vs

promiseAssigned :: Set String -> M ()

promiseAssigned as = modify $ mapSnd $ mapSnd $ Set.union as

declaration :: (String, S.SPLType) -> InitGroup

140

declaration (x, t) =

let variableType = typeId t in

[$cdecl|$ty:variableType $id:x;|]

splTypeOf :: forall b a. S.Type a => b a -> S.SPLType

splTypeOf _ = S.splType (error "typeOf: Type case" :: a)

typeOf :: S.Type a => b a -> Type

typeOf object = typeId (splTypeOf object)

typeId :: S.SPLType -> Type

typeId t = case t of

S.DoubleType -> [$cty|double|]

S.BoolType -> [$cty|int /* bool */|]

S.GeneratorType -> [$cty|struct generator_t|]

p@(S.PairType _ _) ->

let x = typeName p in

[$cty|struct $id:x|]

typeName :: S.SPLType -> String

typeName t = typeName’ t ++ "_t"

where

typeName’ t = case t of

S.DoubleType -> "double"

S.BoolType -> "bool"

S.GeneratorType -> error "No name for generators"

S.PairType t1 t2 -> "pair_" ++ typeName’ t1 ++ "_" ++ typeName’ t2

usePair :: forall a. S.Type a => Name a -> M ()

usePair _ = case S.splType (error "usePair" :: a) of

S.PairType t1 t2 -> lift (tell (Code [] (Set.singleton (t1, t2))))

_ -> return ()

pairStruct :: (S.SPLType, S.SPLType) -> Definition

pairStruct (t1, t2) = do

let name = typeName (S.PairType t1 t2)

let first = typeId t1

let second = typeId t2

[$cedecl|

struct $id:name {

$ty:first first;

$ty:second second;

};

|]

unary :: forall a b. (S.Type a, S.Type b) =>

S.UnaryOperator a b -> Expression a -> M (Expression b)

unary op (Expression e) = expression $ case op of

S.Negate -> [$cexp|-$exp:e|]

S.Abs -> [$cexp|fabs($exp:e)|]

S.Sign -> [$cexp|sign($exp:e)|]

S.Exp -> [$cexp|exp($exp:e)|]

S.Log -> [$cexp|log($exp:e)|]

S.Sqrt -> [$cexp|sqrt($exp:e)|]

S.Sin -> [$cexp|sin($exp:e)|]

S.Cos -> [$cexp|cos($exp:e)|]

S.Tan -> [$cexp|tan($exp:e)|]

S.Asin -> [$cexp|asin($exp:e)|]

S.Acos -> [$cexp|acos($exp:e)|]

S.Atan -> [$cexp|atan($exp:e)|]

S.Sinh -> [$cexp|sinh($exp:e)|]

141

S.Cosh -> [$cexp|cosh($exp:e)|]

S.Tanh -> [$cexp|tanh($exp:e)|]

S.Asinh -> [$cexp|asinh($exp:e)|]

S.Acosh -> [$cexp|acosh($exp:e)|]

S.Atanh -> [$cexp|atanh($exp:e)|]

S.Not -> [$cexp|!($exp:e)|]

S.First -> [$cexp|$exp:e.first|]

S.Second -> [$cexp|$exp:e.second|]

binary :: forall a b c. (S.Type a, S.Type b, S.Type c) =>

S.BinaryOperator a b c -> Expression a -> Expression b -> M (Expression c)

binary op e1’@(Expression e1) e2’@(Expression e2) = expression $ case op of

S.Add -> [$cexp|$exp:e1 + $exp:e2|]

S.Sub -> [$cexp|$exp:e1 - $exp:e2|]

S.Mult -> [$cexp|$exp:e1 * $exp:e2|]

S.Div -> [$cexp|$exp:e1 / $exp:e2|]

S.Min -> [$cexp|min($exp:e1, $exp:e2)|]

S.Max -> [$cexp|max($exp:e1, $exp:e2)|]

S.Power -> [$cexp|pow($exp:e1, $exp:e2)|]

S.LogBase -> [$cexp|log($exp:e2) / log($exp:e1)|]

S.Less -> [$cexp|isless($exp:e1, $exp:e2)|]

S.LessEqual -> [$cexp|islessequal($exp:e1, $exp:e2)|]

S.Greater -> [$cexp|isgreater($exp:e1, $exp:e2)|]

S.GreaterEqual -> [$cexp|isgreaterequal($exp:e1, $exp:e2)|]

S.Equal -> [$cexp|isequal($exp:e1, $exp:e2)|]

S.NotEqual -> [$cexp|isnotequal($exp:e1, $exp:e2)|]

S.And -> [$cexp|$exp:e1 & $exp:e2|]

S.Or -> [$cexp|$exp:e1 | $exp:e2|]

S.Pair -> pairOf’ e1’ e2’

pairOf :: forall a b. (S.Type a, S.Type b) =>

Expression a -> Expression b -> M (Expression (a, b))

pairOf e1 e2 = expression $ pairOf’ e1 e2

pairOf’ :: forall a b. (S.Type a, S.Type b) =>

Expression a -> Expression b -> Exp

pairOf’ (Expression e1) (Expression e2) =

let pairId = typeId (S.PairType (S.splType (error "binary" :: a)) (S.splType (

error "binary" :: b))) in

[$cexp|($ty:pairId) {$exp:e1, $exp:e2}|]

B.6 Module Language.SPL.OpenCL.Runner

{-# LANGUAGE GADTs, FlexibleInstances, FlexibleContexts, MultiParamTypeClasses,

ScopedTypeVariables, TypeFamilies, EmptyDataDecls #-}

module Language.SPL.OpenCL.Runner (compile, compileSource, Phantom) where

import Language.SPL.Intermediate

import Language.SPL.OpenCL.Compiler

import Language.SPL.SimulationResult

import Language.SPL

import System.OpenCL

import Foreign hiding (mallocArray)

import Foreign.C

import Control.Monad

import Control.Applicative

import Prelude hiding (lookup, zip, reverse)

import qualified Prelude as P

142

import Data.Word

import System.Random

printDebug = False

deviceTypes = [DeviceTypeGPU]

properties = [QueueOutOfOrderExec]

defaultGroupSize = 512

defaultGroupCount = 512 * 4

data Phantom a

class Function a where

type FunctionOf a

toFunction :: Phantom a -> [KernelArg] -> ([KernelArg] -> IO SimulationResult)

-> FunctionOf a

instance Function (Dist a) where

type FunctionOf (Dist a) = IO SimulationResult

toFunction _ arguments f = f arguments

instance (Function b, Storable a) => Function (Dist a -> b) where

type FunctionOf (Dist a -> b) = a -> FunctionOf b

toFunction _ arguments f = \a -> toFunction (undefined :: Phantom b) (VArg a :

arguments) f

instance (Function b, Storable a) => Function (Process a -> b) where

type FunctionOf (Process a -> b) = a -> FunctionOf b

toFunction _ arguments f = \a -> toFunction (undefined :: Phantom b) (VArg a :

arguments) f

compile :: forall a. (

Translate () a,

ResultOf a ~ Double,

Function a,

Arguments (EnvironmentOf () a)) =>

Time -> a -> IO (FunctionOf a)

compile timeStep distribution = do

let source = openCL timeStep distribution

compileSource (undefined :: Phantom a) defaultGroupSize defaultGroupCount source

compileSource :: forall a. (Translate () a, Function a) => Phantom a -> Int -> Int

-> OpenCL (EnvironmentOf () a) -> IO (FunctionOf a)

compileSource _ groupSize groupCount (OpenCL source) = do

debugPrint source

platforms <- getPlatforms

debugPrint (show platforms)

let platform = head platforms

devices’ <- getDevices platform deviceTypes

let devices = take 1 (devices’)

(debugPrint . show) =<< mapM deviceName devices

context <- createContext [ContextPlatform platform] devices

queues <- mapM (\device -> createCommandQueue context device properties) devices

program <- createProgram context source

debugPrint "Program created"

buildProgram program devices "-Werror -ILanguage/SPL/include"

143

debugPrint "Program built"

simulateKernels <- mapM (const (createKernel program "simulate")) queues

debugPrint "Created simulate kernels"

resultKernels <- mapM (const (createKernel program "global_result")) queues

debugPrint "Created global_result kernels"

debugPrint "Kernels created"

let units = P.zip3 queues simulateKernels resultKernels

let groupCount’ = groupCount ‘div‘ length units -- TODO

let workPerDevice = groupCount’ * groupSize

return $ toFunction (undefined :: Phantom a) [] $ \arguments -> do

allocateArrays (length units) $ \arrays -> do

events <- mapM (enqueueKernel context groupCount’ arguments) (P.zip

units arrays)

waitForEvents (concat events)

let (meansArray, standardDeviationsArray) = unzip arrays

means <- mapM (\array -> liftM head $ peekArray 1 array :: IO Double)

meansArray

standardDeviations <- mapM (\array -> liftM head $ peekArray 1 array ::

IO Double) standardDeviationsArray

return $ combine workPerDevice means standardDeviations

where

doubleSize = sizeOf (error "sizeOf" :: Double)

allocateArrays = allocateArrays’ []

allocateArrays’ arrays 0 function = function (P.reverse arrays)

allocateArrays’ arrays n function =

allocaArray 1 $ \array1 ->

allocaArray 1 $ \array2 ->

allocateArrays’ ((array1, array2):arrays) (n - 1) function

enqueueKernel context groupCount’ arguments ((queue, simulateKernel,

resultKernel), (meansArray, standardDeviationsArray)) = do

seed <- randomRIO (fromIntegral (minBound :: Word64), fromIntegral (

maxBound :: Word64)) :: IO Integer

let seed’ = fromIntegral seed :: Word64

let workPerDevice = groupCount’ * groupSize

meansBuffer <- mallocArray context [MemObjectReadWrite] groupCount’ ::

IO (MemObject Double)

standardDeviationsBuffer <- mallocArray context [MemObjectReadWrite]

groupCount’ :: IO (MemObject Double)

setKernelArgs simulateKernel ([

VArg seed’,

HollowArg (fromIntegral $ groupSize * doubleSize),

HollowArg (fromIntegral $ groupSize * doubleSize),

MObjArg meansBuffer,

MObjArg standardDeviationsBuffer

] ++ arguments)

simulateEvent <- enqueueNDRangeKernel queue simulateKernel []

[fromIntegral $ workPerDevice] [fromIntegral $ groupSize]

[]

setKernelArgs resultKernel [

VArg (fromIntegral $ groupSize :: Int32),

MObjArg meansBuffer,

MObjArg standardDeviationsBuffer]

resultEvent <- enqueueNDRangeKernel queue resultKernel []

144

[fromIntegral $ groupCount’ ‘div‘ 2] [fromIntegral $ groupCount’ ‘

div‘ 2]

[simulateEvent]

meansEvent <- enqueueReadBuffer queue meansBuffer False 0 (fromIntegral

$ 1 * doubleSize) meansArray [resultEvent]

standardDeviationsEvent <- enqueueReadBuffer queue

standardDeviationsBuffer False 0 (fromIntegral $ 1 * doubleSize)

standardDeviationsArray [resultEvent]

return [meansEvent, standardDeviationsEvent]

debugPrint :: String -> IO ()

debugPrint msg = when printDebug (putStrLn msg)

145

Appendix C

Unit test code

C.1 Module Language.SPL.Test.UnitTests

module Language.SPL.Test.UnitTests where

import Language.SPL

import Language.SPL.Test.TestUtilities

import Test.HUnit

import Prelude hiding (lookup, map, zip)

testList = [

distBasicTests,

distUnaryTests,

distBinaryTests,

processTests,

accumulatorTests,

skipTests,

propertiesTests,

bugTests

]

distBasicTests = TestLabel "Dist constructs" $ TestList [

testFuzzy "Normal" 0 normal,

testFuzzy "Uniform" 0.5 uniform,

testExact "Constant Double" 42 42,

testExact "if True" 1 (if_ true 1 0),

testExact "if False" 0 (if_ false 1 0),

testExact "lookup" 24 (lookup 24 time),

testExact "sample" 0 (uniform ‘sample‘ \d -> d - d),

testExact "Without sample" 0 (if_ (uniform - uniform .==. 0) 1 0)

]

distUnaryTests = TestLabel "Dist unary operators" $ TestList [

testExact "Negate" (-1) (negate 1),

testExact "Floating abs" 1 (abs (1 :: Dist Double)),

testExact "Floating abs" 1 (abs (-(1 :: Dist Double))),

testExact "Sign" (-1) (signum (-1.2)),

testExact "Sign" 1 (signum 1.2),

testExact "if True" 1 (if_ true 1 0),

testExact "if False" 0 (if_ false 1 0),

146

testExact "Exp" (exp 13.37) (exp 13.37),

testExact "Log" (log 13.37) (log 13.37),

testExact "Sqrt" 7 (sqrt 49),

testExact "Sin" (sin 0.5) (sin 0.5),

testExact "Cos" (cos 0.5) (cos 0.5),

testExact "Tan" (tan 0.5) (tan 0.5),

testExact "Asin" (asin 0.5) (asin 0.5),

testExact "Acos" (acos 0.5) (acos 0.5),

testExact "Atan" (atan 0.5) (atan 0.5),

testExact "Sinh" (sinh 0.5) (sinh 0.5),

testExact "Cosh" (cosh 0.5) (cosh 0.5),

testExact "Asinh" (asinh 0.5) (asinh 0.5),

testExact "Acosh" (acosh 2) (acosh 2)

]

distBinaryTests = TestLabel "Dist binary operators" $ TestList [

testExact "Add" 8 (3 + 5),

testExact "Sub" 5 (8 - 3),

testExact "Mult" 120 (3 * 5 * 8),

testExact "Div" 3 (120 / 8 / 5),

testExact "Min" 5 (min_ 5 8),

testExact "Min" 5 (min_ 8 5),

testExact "Max" 8 (max_ 5 8),

testExact "Max" 8 (max_ 8 5),

testExact "Power" 1024 (2 ** 10),

testExact "LogBase" 2 (logBase 8 64),

testExact "Less True" 1 (if_ (5 .<. (8 :: Dist Double)) 1 0),

testExact "Less False" 0 (if_ (5 .<. (5 :: Dist Double)) 1 0),

testExact "Less False" 0 (if_ (8 .<. (5 :: Dist Double)) 1 0),

testExact "Less equals True" 1 (if_ (5 .<=. (8 :: Dist Double)) 1 0),

testExact "Less equals False" 1 (if_ (5 .<=. (5 :: Dist Double)) 1 0),

testExact "Less equals False" 0 (if_ (8 .<=. (5 :: Dist Double)) 1 0),

testExact "Greater True" 1 (if_ (8 .>. (5 :: Dist Double)) 1 0),

testExact "Greater False" 0 (if_ (5 .>. (5 :: Dist Double)) 1 0),

testExact "Greater False" 0 (if_ (5 .>. (8 :: Dist Double)) 1 0),

testExact "Greater equals True" 1 (if_ (8 .>=. (5 :: Dist Double)) 1 0),

testExact "Greater equals False" 1 (if_ (5 .>=. (5 :: Dist Double)) 1 0),

testExact "Greater equals False" 0 (if_ (5 .>=. (8 :: Dist Double)) 1 0),

testExact "Equals True" 1 (if_ (5 .==. (5 :: Dist Double)) 1 0),

testExact "Equals False" 0 (if_ (5 .==. (8 :: Dist Double)) 1 0),

testExact "Equals False" 0 (if_ (8 .==. (5 :: Dist Double)) 1 0),

testExact "Not equals True" 1 (if_ (8 ./=. (5 :: Dist Double)) 1 0),

testExact "Not equals True" 1 (if_ (5 ./=. (8 :: Dist Double)) 1 0),

testExact "Not equals False" 0 (if_ (5 ./=. (5 :: Dist Double)) 1 0),

testExact "Not true" 0 (if_ (not_ true) 1 0),

testExact "Not false" 1 (if_ (not_ false) 1 0),

testExact "And true true" 1 (if_ (true .&&. true) 1 0),

testExact "And true false" 0 (if_ (true .&&. false) 1 0),

testExact "And false true" 0 (if_ (false .&&. true) 1 0),

testExact "And false false" 0 (if_ (false .&&. false) 1 0),

testExact "Or true true" 1 (if_ (true .||. true) 1 0),

testExact "Or true false" 1 (if_ (true .||. false) 1 0),

testExact "Or false true" 1 (if_ (false .||. true) 1 0),

testExact "Or false false" 0 (if_ (false .||. false) 1 0),

testExact "Not true" 0 (if_ (not_ true) 1 0),

testExact "Not false" 1 (if_ (not_ false) 1 0)

]

processTests = TestLabel "Processes constructs" $ TestList [

testExact "Always" 48 (let p = always 24 in lookup 5 p + lookup 10 p),

147

testExact "Closed natural lookup" 49 (lookup 7 (closed (\t -> t ** 2))),

testExact "Closed float lookup" 0.25 (lookup 0.5 (closed (\t -> t ** 2))),

testExact "Closed base case" 0 (lookup 0 time),

testExact "Closed minimal lookup" 0.0001 (lookup 0.0001 time),

testExact "First zip" 5 (lookup 10 (first (zip (always 5) (always 8)),

testExact "Second zip" 8 (lookup 10 (first (zip (always 5) (always 8)),

testExact "Trace" 1 (lookup 100 (brownian ‘trace‘ (\p -> if_ (abs (p - p) .<.

0.00001) 1 (1/0)))),

testFuzzy "Without trace" 0 (lookup 100 (if_ (abs (brownian - brownian) .<.

0.00001) 1 0)),

-- Unary

testExact "Negate" (-3) (let p = negate time in lookup 1 p + lookup 2 p),

testExact "Abs FLoating" 1 (lookup 10 (abs (-1 :: Process Double))),

-- Binary

testExact "Add" 18 (lookup 10 (always 3 + always 5 + time)),

testExact "Less is less" 1 (lookup 4 (if_ (time .<. (always 5)) 1 0)),

testExact "Less is no more" 0 (lookup 6 (if_ (time .<. (always 5)) 1 0)),

-- Ternary

testExact "if True" 1 (lookup 10 (if_ (always true) (always 1) (always 0))),

testExact "if False" 0 (lookup 10 (if_ (always false) (always 1) (always 0)))

]

accumulatorTests = TestLabel "Accumulator optimizations" $ TestList [

testCheck "Using only delta" $ lookup 1 $ prefix (\d _ _ -> d) 0 (0 :: Process

Double),

testExact "Time via trace" 42 $ lookup 42 $ (closed $ \d0 -> d0) ‘trace‘ (\p0 ->

prefix (_ _ d3 -> d3) 0 p0),

testApproximate’ 1 "Iterative sum" 50 $ lookup 10 $ integral time, -- Slack of 1

to account for large time steps such as 0.1

testExact "Map" (-1) $ lookup 10 $ prefix (_ _ d -> -d) undefined 1,

testExact "Map Zip" 3 $ lookup 10 $ prefix (_ _ pair -> first pair + second

pair) undefined (pair 1 2),

testExact "Map Zip Time" 20 $ lookup 10 $ time + time,

testApproximate "Map Accumulate Delta" 10 $ lookup 10 $ iterative (\d a -> a + d

) 0,

testApproximate "Map Zip Accumulate Time" 60 $ lookup 10 $ time + integral time,

testExact "Zip" 77 $ second $ lookup 10 $ (zip 42 77 :: Process (Double, Double)

),

testApproximate "Accumulate Closed Lookup Closed" (10 * 20) $ lookup 10 $

integral (closed $ \t -> lookup 20 $ closed id),

testApproximate "Accumulate Closed Lookup Prefix" (10 * 200) $ lookup 10 $

integral (closed $ \t -> lookup 20 $ integral time),

testApproximate "Accumulate Lookup Prefix" (10 * 200) $ lookup 10 $ iterative (\

d a -> a + d * (lookup 20 $ integral time)) 0,

testApproximate "Accumulate Normal" 1 $ if_ (lookup 100 brownian .<. 0.2) 1

(1/0),

testApproximate "Accumulate Uniform" 50 $ lookup 100 $ iterative (\d a -> a + d

* uniform) 0,

testApproximate "Sample Accumulate Uniform" 0 $ uniform ‘sample‘ \v -> (-1000 *

v) + lookup 1000 (integral (always v)),

testApproximate "Trace Accumulate Brownian" 0 $ lookup 100 $ brownian ‘trace‘ \b

-> integral b - integral b

]

skipTests = TestLabel "skip" $ TestList [

testExact "Skip Constant" 42 $ lookup 5 $ skip 10 42,

testExact "Skip Time" 15 $ lookup 5 $ skip 10 time,

testExact "Skip Skip Time" 15 $ lookup 0 $ skip 5 $ skip 10 time,

testExact "Skip 0" 0 $ lookup 0 $ skip 0 $ inclusivePrefix (_ a v -> a + 1) 0

(0 :: Process Double),

148

testApproximate "Skip 1" 1 $ lookup 0 $ skip 1 $ inclusivePrefix (\d a v -> a +

d) 0 (0 :: Process Double),

testApproximate "Lookup n (skip m) p == lookup (n + m) p" 200 $ lookup 10 $ skip

10 $ integral time,

testApproximate "Accumulate Skip Time" 150 $ lookup 10 $ integral $ skip 10 time

,

testFuzzy "Accumulate Skip Zip Stochastic-Accumulate" 150 $ lookup 10 $ integral

$ skip 10 (time + brownian * 0.1),

testApproximate "Skip Accumulate Closed Lookup Closed" 200 $ lookup 10 $ skip 10

$ integral $ closed (\t -> lookup t time),

testApproximate "Accumulate Closed Lookup Skip Closed" 150 $ lookup 10 $

integral $ closed (\t -> lookup t (skip 10 time))

]

propertiesTests = TestLabel "Properties" $ TestList [

--TODO We need delta time in the test below

let dt = 0.1 in testExact "Prefix at time zero" (5 + dt*10) $ lookup 0 $ prefix

(\dt a v -> a + dt*v) 5 (time + 10),

testExact "Inclusive Prefix at time zero" 5 $ lookup 0 $ inclusivePrefix (\dt a

v -> dt*v + a) 5 (time + 10),

testExact "Brownian start at zero" 0 $ lookup 0 brownian,

testExact "Integral p is zero at time 0" 0 $ lookup 0 (integral (always (1/0))),

testExact "Integrate is correct on constant processes 1" (0*1000) $ lookup 0 (

integral (always 1000)),

testExact "Integrate is correct on constant processes 2" (0.5*1000) $ lookup 0.5

(integral (always 1000)),

testExact "Integrate is correct on constant processes 3" (1*1000) $ lookup 1 (

integral (always 1000)),

testExact "Integrate is correct on constant processes 4" (10*1000) $ lookup 10 (

integral (always 1000))

]

bugTests = TestLabel "Previous bugs" $ TestList [

testExact "Traced process used different number of times" 0 $ lookup 100 $

always uniform ‘trace‘ \x ->

always uniform ‘trace‘ \n ->

let n’ = if_ (x .<. 0.5) n 0 in

integral (assert_ (x .>=. 0.5 .||. n’ .==. n)),

testExact "Equals" 0 $ normal ‘sample‘ \n -> lookup 100 $ assert_ (equals (

always n)),

testExact "Stochastic calculations are not loop invariant" 0 $ lookup 100 $

assert_ (not_ (equals (always normal))),

testExact "If is lazy in the then and else branches" 0 $ lookup 10 $ if_ false

(1 + always normal) 0,

testFuzzy "Uniform is sometimes close to 1" 1 $ lookup 1000 $ prefix (_ a _ ->

a ‘max_‘ uniform) 0 time

]

equals :: Process Double -> Process Bool

equals p = map first $ prefix (_ a v -> pair (second v .==. 0 .||. first a .&&.

second a .==. first v) (first v)) (pair true 0) (zip p time)

assert_ p = if_ p 0 (1/0)

149

Appendix D

Pricing test code

D.1 Module Language.CC.Test.PricingTest

{-# LANGUAGE NoMonomorphismRestriction #-}

import Language.CC.Test.BlackScholes

import Language.CC.Syntax

import Language.CC.Model

import Language.CC

import Language.SPL

import Language.SPL.Interpreter

import qualified Language.SPL.Test.Simulator as S

import qualified Language.SPL.SimulationResult as R

import qualified Language.SPL.OpenCL as O

import Prelude hiding (and, or, truncate, lookup, map)

import qualified Test.QuickCheck as Q

import Test.QuickCheck.Property (morallyDubiousIOProperty)

import Control.Monad

import System.Random

import qualified Data.List as L

import Data.Word

import System (getArgs, getProgName, exitFailure)

import qualified Debug.Trace as Debug

main = do

args <- getArgs

case args of

[] -> usage

["alternatives"] -> putStrLn $ L.intercalate "\n" alternatives

("all":args) -> testAll =<< getN args

("discounting":args) -> testDiscounting =<< getN args

("sanity":args) -> testSanity =<< getN args

("europeanCall":args) -> testEuropeanCall =<< getN args

args -> testAll =<< getN args

where

alternatives = ["discounting", "sanity", "europeanCall"]

usage = do

n <- getProgName

putStrLn $ "USAGE: " ++ n ++ " [all|" ++ L.intercalate "|" alternatives

++ "] [numberOfTests]"

exitFailure

150

n = 43

getN [] = return n

getN [n] = case (reads n) :: [(Int, String)] of

[(n, "")] -> return n

_ -> usage

getN _ = usage

quickCheckTimes n = Q.quickCheckWith (Q.stdArgs{Q.maxSuccess = n})

testDiscounting n = quickCheckTimes n (Q.label "Discounting" discountingProperty)

testSanity n = quickCheckTimes n (Q.label "Sanity" sanityProperty)

testEuropeanCall n = quickCheckTimes n (Q.label "European call" europeanCallProperty

)

testAll n = do

testDiscounting n

testSanity n

testEuropeanCall n

---------------------- Properties ----------------------

discountingProperty :: Rate -> Years -> Price -> Q.Property

discountingProperty (Rate rate) (Years t) (Price amount) =

let contract = get (truncate t (scale (constant amount) (one DKK))) in

let process = priceProcess (simpleModel (const (constant rate))) DKK contract in

let referencePrice = amount * exp (-rate * t) in

testValueNow referencePrice process

-- This test was suggested by Mogens Steffensen, he wrote:

--

-- at 5 underlying

-- priser paa denne skal vaere S eftersom vaerdien af den underliggende om 5 aar

-- skal vaere vaerdien af den underliggende idag. Det er en god test for om I

-- faar modelleret den underliggende rigtigt. Samtidig er det et tjek

-- af kvaliteten af jeres simleringsprocedure.

{-

sanityProperty :: Price -> Years -> Rate -> Volatility -> Q.Property

sanityProperty (Price currentPrice) (Years endTime) (Rate rate) (Volatility

volatility) =

let process =

withIntel (constant currentPrice) (constant rate) (constant volatility)

$ \intel ->

let contract = get (truncate endTime (intel)) in

priceProcess (simpleModel (const (constant rate))) USD contract in

testValueNow currentPrice process

-}

sanityProperty :: Price -> Years -> Rate -> Volatility -> Q.Property

sanityProperty (Price currentPrice) (Years endTime) (Rate rate) (Volatility

volatility) =

let share = underlying currentPrice rate volatility in

let contract = get (truncate endTime (scale share)) in

let process = priceProcess (simpleModel (const (constant rate))) USD contract in

testValueNow currentPrice process

europeanCallProperty :: Price -> Price -> Years -> Rate -> Volatility -> Q.Property

151

europeanCallProperty (Price currentPrice) (Price strikePrice) (Years endTime) (Rate

rate) (Volatility volatility) = do

let process =

withIntel (constant currentPrice) (constant rate) (constant volatility)

$ \intel ->

let usd = constant strikePrice ‘as‘ USD in

let contract = get (truncate endTime ((intel ‘and‘ give usd) ‘or‘ zero))

in

priceProcess (simpleModel (const (constant rate))) USD contract

let referencePrice = blackScholesCall currentPrice strikePrice endTime rate

volatility

testValueNow referencePrice process

-- The following two processes was suggested by Morgens Steffensen as good

underlyings.

-- In particular thay should have the property that when we model a european call/

put we

-- should find the same price at the closed BS formular.

-- S*e^((r-1/2*v^2)*t+v*normal*sqrt(t))

-- Consider: Does it make sense that it isn’t the same "normal" on different times?

Maybe use trace?

withIntel initialPrice rate volatility = traceIn USD $

initialPrice * exp ((rate - 0.5 * volatility ^ 2) * time + volatility * always

normal * sqrt(time))

-- S*e^((r-1/2*v^2)*t+v*W(t)) <----- thank you Mogens!

withIntel’ initialPrice rate volatility = traceIn USD $

always initialPrice * exp (always (rate - 0.5 * volatility ^ 2) * time + always

volatility * brownian)

underlying s r v = always s * exp (always (r - 0.5 * v ^ 2) * time + always v *

brownian)

---------------------- Auxiliaries ----------------------

testValueNow :: Double -> Process Double -> Q.Property

testValueNow referencePrice contractProcess =

let referenceResult = R.SimulationResult referencePrice 0 in

morallyDubiousIOProperty $ do

r <- S.requireExpectation R.standardEquality referenceResult (lookup 0

contractProcess)

case r of

Left (error, _) -> do

putStrLn error

return False

Right r -> do

print r

return True

instance Q.Arbitrary StdGen where

arbitrary = liftM mkStdGen Q.arbitrary

data Years = Years Double deriving (Show)

instance Q.Arbitrary Years where

arbitrary = liftM Years $ Q.choose (0.0, 20.0)

data Price = Price Double deriving (Show)

152

instance Q.Arbitrary Price where

arbitrary = liftM Price (Q.arbitrary ‘Q.suchThat‘ (> 0))

data Rate = Rate Double deriving (Show)

instance Q.Arbitrary Rate where

arbitrary = liftM Rate $ Q.choose (0.00, 0.20)

data Volatility = Volatility Double deriving (Show)

instance Q.Arbitrary Volatility where

arbitrary = liftM Volatility $ Q.choose (0.00, 0.50)

D.2 Module Language.SPL.Test.AsianTest

module Language.SPL.Test.AsianTest where

import Language.SPL hiding (average)

import Language.SPL.Test.TestUtilities

import Test.HUnit

import Prelude hiding (lookup, map)

testList = [asianTests]

-- TODO: This test requires a time step of 0.1 (since that is what is used to

produce the reference values)

asianOption :: Dist Double -> Dist Double -> Dist Double -> Dist Double -> Dist Time

-> Dist Double

asianOption initialPrice rate volatility exercisePrice t =

let d = asianProcess (always initialPrice) (always rate) (always volatility) (

always exercisePrice) in

lookup t d

asianProcess :: Process Double -> Process Double -> Process Double -> Process Double

-> Process Time

asianProcess initialPrice rate volatility exercisePrice =

let underlying = intel initialPrice rate volatility in

let option = underlying ‘trace‘ (\u -> (average u - exercisePrice) ‘max_‘ 0) in

exp (-rate * time) * option

-- The reason why this average is a bit odd is that it’s exclusive of time zero,

just as in the paper.

average :: Process Double -> Process Double

average process =

let process’ = if_ (time .==. 0) 0 process in

let sumCount = prefix (_ acc value -> pair (first acc + value) (second acc + 1)

) (pair 0 0) process’ in

map (\p -> first p / (second p - 1)) sumCount

intel initialPrice rate volatility =

initialPrice * exp ((rate - 0.5 * volatility ^ 2) * time + volatility * brownian

)

-- The reference values are from Table 1 of

-- "The Pricing of Discretely Sampled Asian and Lookback Options:

153

-- A Change of Numeraire Approach"

-- By Jesper Andreasen

asian strikePrice = asianOption 100 0.05 0.20 strikePrice 1

referenceValues = [

(90.0, 12.98),

(92.5, 11.05),

(95.0, 9.27),

(97.5, 7.67),

(100.0, 6.24),

(102.5, 5.01),

(105.0, 3.96),

(107.5, 3.08),

(110.0, 2.36)

]

asianTests = TestLabel "Asian options (fixed strike)" $ TestList [

testApproximate ("Strike price " ++ show strikePrice) reference (asian

strikePrice) |

(strikePrice, reference) <- referenceValues

]

D.3 Module Language.SPL.Test.LookbackTest

module Language.SPL.Test.LookbackTest where

import Language.SPL

import Language.SPL.Test.TestUtilities

import Test.HUnit

import Prelude hiding (lookup, map)

testList = [fixedTests, floatingTests]

-- TODO: This test requires a time step of 0.1 (since that is what is used to

produce the reference values)

fixedProcess :: Process Double -> Process Double -> Process Double -> Process Double

-> Process Time

fixedProcess initialPrice rate volatility exercisePrice =

let underlying = intel initialPrice rate volatility in

let option = underlying ‘trace‘ (\u -> (maxValue u - exercisePrice) ‘max_‘ 0) in

exp (-rate * time) * option

fixedOption :: Dist Double -> Dist Double -> Dist Double -> Dist Double -> Dist Time

-> Dist Double

fixedOption initialPrice rate volatility exercisePrice t =

let d = fixedProcess (always initialPrice) (always rate) (always volatility) (

always exercisePrice) in

lookup t d

floatingProcess :: Process Double -> Process Double -> Process Double -> Process

Double -> Dist Double -> Process Time

floatingProcess initialPrice rate volatility alpha t =

let underlying = intel initialPrice rate volatility in

let option = underlying ‘trace‘ (\u -> (maxValue u - alpha * always (lookup t u)

) ‘max_‘ 0) in

exp (-rate * time) * option

154

floatingOption :: Dist Double -> Dist Double -> Dist Double -> Dist Double -> Dist

Double -> Dist Double

floatingOption initialPrice rate volatility alpha t =

let d = floatingProcess (always initialPrice) (always rate) (always volatility)

(always alpha) t in

lookup t d

-- The reason why this max is a bit odd is that it’s exclusive of time zero, just as

in the paper.

maxValue :: Process Double -> Process Double

maxValue process =

let process’ = if_ (time .==. 0) (-1/0) process in

prefix (_ acc value -> max_ acc value) (-1/0) process’

intel initialPrice rate volatility =

initialPrice * exp ((rate - 0.5 * volatility ^ 2) * time + volatility * brownian

)

-- The reference values are from Table 3 and 4 of

-- "The Pricing of Discretely Sampled Asian and Lookback Options:

-- A Change of Numeraire Approach"

-- By Jesper Andreasen

fixed strikePrice = fixedOption 100 0.05 0.20 strikePrice 1

floating strikePrice = floatingOption 100 0.05 0.20 strikePrice 1

fixedReferenceValues = [

(90.0, 24.41),

(92.5, 22.07),

(95.0, 19.78),

(97.5, 17.57),

(100.0, 15.48),

(102.5, 13.53),

(105.0, 11.75),

(107.5, 10.14),

(110.0, 8.71)

]

floatingReferenceValues = [

(1.000, 10.01),

(1.025, 8.27),

(1.050, 6.77),

(1.075, 5.51),

(1.100, 4.46),

(1.125, 3.59),

(1.150, 2.88),

(1.175, 2.30),

(1.200, 1.83)

]

fixedTests = TestLabel "Tests of lookback options with fixed strike" $ TestList $ [

testApproximate ("Price " ++ show strikePrice) reference (fixed strikePrice) |

(strikePrice, reference) <- fixedReferenceValues

]

floatingTests = TestLabel "Tests of lookback options with floating strike" $

TestList $ [

testApproximate ("Alpha " ++ show alpha) reference (floating alpha) |

(alpha, reference) <- floatingReferenceValues

155

]

D.4 Module Language.SPL.Test.BasketTest

module Language.SPL.Test.BasketTest where

import Language.SPL

import Language.SPL.Test.TestUtilities

import Test.HUnit

import Prelude hiding (lookup, map)

testList = [basketTests]

basketTests = TestLabel "Basket option" $ TestList [

testApproximate ("Basket test") 0.31 (basket t)

]

-- TODO: Requires a time step of 1/200 or so (to match the reference).

-- Ported from: http://stotastic.com/wordpress/2010/05/basket-option-pricing/ (See

also John Hull chapter 15)

basket t = lookup t $

pair (always normal) (always normal) ‘trace‘ \normals ->

rate ‘trace‘ \rate ->

let p1 = underlying s1 volatility1 first (pair rate normals) in

let p2 = underlying s2 volatility2 correlated (pair rate normals) in

if_ (p1 .>. always k1 .&&. p2 .>. always k2) (exp (-integral rate)) 0

correlated zs = rho * first zs + sqrt(1 - rho ^ 2) * second zs

rate = iterative (\dt r -> r + k * (theta - r) * dt + beta * sqrt dt * normal) r0

underlying initialPrice volatility f pairs =

inclusivePrefix (\dt s v -> s + s * (first v * dt + volatility * sqrt dt * f (

second v))) initialPrice pairs

-- Maturity time

t = 1

-- Interest rate model values

k = 0.4

theta = 0.05

beta = 0.03

-- Interest rate initially

r0 = 0.01

-- Strike prices

k1 = 500

k2 = 240

-- Initial prices

s1 = k1

s2 = k2

-- Volatility

volatility1 = 0.2262006

volatility2 = 0.2756421

-- Correlation

156

rho = 0.5413732

157

	Introduction
	Background
	Financial contracts and pricing
	Pricing methods
	Composing contracts
	GP-GPU and Monte Carlo simulation
	The problem

	Our solution
	Results
	Acknowledgements
	Preliminaries and notation

	Common financial contracts
	Composable contracts
	Concepts and terminology
	Implementing the abstract pricer
	The combinators
	The two versions

	Goals for a stochastic processes language
	Matching the domain
	Stochastic processes
	Distributions

	Composability and reuse
	Composable processes for composable pricing
	Discretization as a separate concern

	Supporting a wide range of contract prices
	Conditionals
	Multiple sources of uncertainty
	Forecasting
	Aggregation

	Having clear semantics
	Yielding efficient implementations

	Probabilistic functional programming
	Discrete distributions
	Symbolic representation
	Stochastic processes
	Monte Carlo simulation
	Summary

	Array languages targeting GP-GPUs
	A stochastic process language - SPL
	Language design
	Built-in constructs
	Prelude functions
	Haskell's bindings vs. sample and trace
	Semantics

	Implementing a CC model
	Decisions based on the (expected) future

	Implementation
	Employed Haskell extensions
	GADTs
	Type families

	High level code
	A running example

	Low level code
	De Bruijn indexing
	Low level syntax tree

	Translation from high level to low level code
	Distributions
	Simple lookups
	Lookups on accumulating processes
	Top level functions of arbitrary arity
	Low level code for the running example

	OpenCL device architecture
	Translation from low level code to OpenCL code
	Quasi quotation for C-like languages
	Preserving (some) typing with phantom types
	The simple cases of Intermediate
	The primitive distributions Uniform and Normal
	The Split and Use constructs
	The Accumulator loops
	Wrapping it up
	OpenCL code for the running example

	Execution on the GP-GPU(s)
	Execution of the kernels
	Result aggregation

	Correctness
	Test strategy
	Structured language tests
	Pricing tests
	Zero coupon discount bond
	Underlying sanity check
	European call options
	Asian call options
	Lookback options
	Basket options

	Choice based on future value
	Summary

	Benchmarks
	Hardware and software configurations
	Scalability
	How far can we go
	Scheduling and result gathering overhead
	Performance of selected SPL constucts
	De-nesting of loops
	Skip

	Future work
	Conclusion
	Benchmark data
	Selected SPL modules
	Module Language.SPL
	Module Language.SPL.Syntax
	Module Language.SPL.Semantics
	Module Language.SPL.Intermediate
	Module Language.SPL.OpenCL.Compiler
	Module Language.SPL.OpenCL.Runner

	Unit test code
	Module Language.SPL.Test.UnitTests

	Pricing test code
	Module Language.CC.Test.PricingTest
	Module Language.SPL.Test.AsianTest
	Module Language.SPL.Test.LookbackTest
	Module Language.SPL.Test.BasketTest

