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Abstract. The world of finance faces the computational performance
challenge of massively expanding data volumes, extreme response time
requirements, and compute-intensive complex (risk) analyses. Simulta-
neously, new international regulatory rules require considerably more
transparency and external auditability of financial institutions, including
their software systems. To top it off, increased product variety and cus-
tomisation necessitates shorter software development cycles and higher
development productivity. In this paper, we report about Hiperfit, a
recently etablished strategic research center at the University of Copen-
hagen that attacks this triple challenge of increased performance, trans-
parency and productivity in the financial sector by a novel integration
of financial mathematics, domain-specific language technology, parallel
functional programming, and emerging massively parallel hardware.
Hiperfit seeks to contribute to effective high-performance modelling by
domain specialists, and to functional programming on highly parallel
computer architectures in particular, by pursuing a research trajectory
informed by the application domain of finance, but without limiting its
research scope, generality, or applicablity, to finance. Research in Hiper-
fit draws on and aims at producing new research in its different scien-
tific fields, and it fosters synergies between them to deliver showcases of
modern language technology and advanced functional methods with the
potential for disruptive impact on an area of increasing societal impor-
tance.

1 Introduction

Today, the financial sector is confronted with fundamental computational chal-
lenges: Data volumes to be handled are growing at an exponential rate; stochastic
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simulations consume in principle limitless numbers of compute cycles; quantita-
tive and auditable risk management is becoming mandatory; real-time require-
ments hit speed-of-light limitations. At the same time, it becomes more and
more common to negotiate non-standardised financial contracts, so-called over-
the-counter (OTC) contracts. These are complex to model, manage and analyse,
and yet product development cycles have become shorter than imagined even
five years ago. This requires complex computational models, specifications and
systems that are guaranteed to be correct, transparent, rapidly developed, and
scalable on today’s and tomorrow’s hardware. What makes this a fundamentally
new and interesting scientific challenge is that the problems need to be solved si-
multaneously, and thus trade-offs between the underlying financial mathematics,
problem modelling, programming language technology, high-performance sys-
tems, and practical applicability must be explicitly accounted for.

To address these problems, we have recently established the Research Center
for Functional High-Performance Computing for Financial Information Tech-
nology (Hiperfit) at the University of Copenhagen, which brings together key
researchers in the required scientific fields – programming languages, parallel sys-
tems, and mathematical finance – with the relevant industrial partners. Our fun-
damental hypothesis is that the above-mentioned simultaneous challenges of high
transparency, high computational performance and high productivity can be
solved more easily by an integrated approach using declarative domain-specific
and high-level functional programming languages rather than by an incremental
approach building on top of historically evolved software architectures and code
bases that have originally been developed for sequential computer architectures.
The approach taken by Hiperfit is to eliminate low-level imperative program-
ming by exploiting natural parallelism in declaratively expressed solutions and
mapping it directly to emerging massively parallel commodity hardware.

1.1 Overview

In the present paper we first describe the research paradigm, strategy and or-
ganisation of Hiperfit. We then explain the integrated approach taken, and
the particular research themes we will work on (Section 3). Section 4 focuses
on the functional programming aspects: We summarise the state of the art in
language support for financial applications (Section 4.1) and give an overview of
parallel functional programming paradigms and trends (Sections 4.2 and 4.3).
In Section 5, we outline the two first project activities within Hiperfit related
to functional programming. Section 6 concludes.

2 Motivation and Background

In the year 2008, we saw one of the most severe worldwide financial crises ever.
Induced by defaults in the American real-estate market (sub-prime loans), some
investment banks collapsed and a large numbers of others were affected – taking
down many other industries and ultimately leading to a general economic crisis
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of global scale [19]. The crisis in 2008 demonstrates how complex dependencies
are built up in the financial industry and that experts can vastly misjudge the
impact of a local crash on other sectors.

2.1 Need for More Accurate Modelling in Mathematical Finance

To help avoid a repeat of the 2008 crash, financial institutions have initiated
internal activities at a massive scale. Huge sums are invested in computational
methods to improve modelling financial phenomena with all concerned parties.
While the banks already have extensive modelling and pricing activities, the
new problems establish a modelling and simulation paradigm vastly different
from the existing system. Existing systems are based on macroscopic models
and only model individual contracts in parameterised representations. The new
requirement will be a detailed system of microeconomic models of the individual
businesses and the combination of these into a global economic barometer that
identifies the value and risk in a given bank.

2.2 Need for More Financial System and Software Transparency

The financial crisis that hit the world economy in 2008 has also triggered several
new legislative initiatives that seek to govern the financial sector more carefully.
The Basel-II agreement, its successor Basel-III under preparation (as CRD II-
IV), and recently proposed SEC rules for computational models of securities
[40], impose new capital adequacy and transparency requirements on the finan-
cial sector. These new rules have impact on banks’ IT systems at all levels,
ranging from high-level modelling of financial instruments to auditable internal
risk models and their reliable implementation.

2.3 Need for More Computational Performance

Quantitative analyses in the financial industry have always called on great com-
puting power. Such analyses have usually been devised by so-called “quants”,
having a background in mathematical finance, financial engineering, mathemat-
ics and physics. Their expertise is in the fields of option pricing, calibration,
simulation, stochastic differential equations, partial differential equations, and
statistics. Only recently have we seen increased focus on the efficiency and trans-
parency of numerical and computational methods used in the analyses, which
increasingly use Monte-Carlo and other simulation techniques [21]. Reasons for
this trend lie both inside the industry, through an ever-growing competition
for achieving more and more marginal benefits, and outside, by imposing new
auditing and solvency procedures from international regulation (c.f. Section 2.2).

Recently, domain experts have started using the potentially tremendous par-
allel computing power of modern General-Purpose Graphics Processing Units
(GPGPUs), encoding their algorithms in highly platform-dependent low-level
languages. Low-level code written by a domain expert may perform well in the
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short term, but is bound to lead to over-specialised, unmaintainable systems
that do not satisfy auditing and transparency requirements. In consequence,
there is an increasing demand for high-level programming language and high-
performance systems expertise, complementing the requisite principal financial
expertise.

3 The Hiperfit Center

Funded by the Danish Council for Strategic Research, Hiperfit started its work
in January 2011. The center comprises four main research areas involving three
departments of the University of Copenhagen, five partners from the Danish
financial industry, and a French functional-programming based finance IT com-
pany. The center has been made possible by a grant by the Danish Strategic
Research Council under its Programme for Strategic Growth Technologies. The
grant provides funding for 1 permanent faculty, 3 post-doctoral and 6 PhD schol-
arship positions, totalling 33 person years spread over the different scientific
disciplines. The first Hiperfit appointments will be in place by the end of 2011.

3.1 Research Goals, Organisation, and Methodology

Research in Hiperfit aims at solving problems of today’s computing in finance
in a holistic, integrated approach. Hiperfit therefore joins researchers with
state-of-the-science expertise in four research areas relevant for high-performance
financial applications: Theory and practice of mathematical finance (MF), domain-
specific languages (DSL), functional programming (FP), and high-performance
systems (HPS).

Fig. 1. Relationship between research areas and research themes

A major goal of Hiperfit is to present alternatives to the above-mentioned
low-level code with platform-dependent optimisations so as to facilitate a more
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enduring development process of efficient maintainable systems. Essential ingre-
dients to achieving this are declarative languages and advanced compilation of
domain-specific abstractions. We believe that side-stepping imperative program-
ming bears the elements of a disruptive technology with drastic productivity and
performance improvement potential.

The work in HIPERFIT is organised in general research themes, which cut
across research areas and are driven by cases. Figure 1 depicts the research areas
and their relationship to our initial research themes. Cases are concrete projects
for exploration and development, either motivated by practical needs of industry
partners (problem-driven), or by the intent to evaluate novel technologies and
gather know-how for later use (technology driven). Cases may or may not contain
information protected by industry partners. They usually have focused objec-
tives adequate for Master’s thesis projects, and they realise useful and timely
short-term goals. The overarching research themes, on the other hand, are more
open-ended to foster exploratory thinking that is not entrenched in and tied to
incremental evolution of current practice. Research theme work is carried out
primarily by faculty, postdocs and Ph.D. students researchers.

3.2 Research Themes in Hiperfit

Initial discussions with our industry partners have led to identifying several
cross-cutting research themes for the start of Hiperfit, depicted in Figure 1.
Each research theme will be supported by cases, part of which are provided by
the industry partners.

Risk Scenarios We try to describe the transition from observables (like current
prices and historical data) to scenario generation and from scenario generation
to reporting and management. Adequate risk scenarios have immediate relevance
for management decisions, including deriving capital requirements to ensure sta-
bility in unlikely and extreme situations.

Model Specification Financial models in practical use today vary from so-
called “model-free” evaluation (prices given completely in terms of other prices)
to sophisticated stochastic processes (such as advanced multi-dimensional jump-
diffusions). We want to systematically explore and compare benefits and costs of
models for different applications (solvency, accounting, or management), paral-
lelisation and optimisation of numeric methods, and the impact of imprecisions
that might result from the latter.

Domain-Specific Languages (DSLs) for Finance. Declarative DSLs to de-
scribe a range of financial products have already come into widespread use in
the financial sector. We aim to complement these languages with similarly ex-
pressive DSLs for other financial information, and especially for financial models.
Our goal is a complete DSL framework with broad application coverage, suitable
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both for internal reporting and statistics, external auditing, and computation in
large risk scenarios. We will describe the DSL approach in the financial domain,
and our goals, in more detail in Section 4.1.

Extracting Parallelism from Declarative Specifications The core goal of
this research theme is to analyse and transform large-scale financial computa-
tions to expose their inherent computational parallelism. Departing from work
on existing applications and domain-specific abstractions, we plan to derive a
tailor-made language for large-scale numeric computations which suits the needs
of mathematical finance, while efficiently executable on modern parallel hard-
ware. Thanks to their high-level nature, parallel functional languages appear to
be an excellent platform for this. We expect vector and matrix operations and
accumulating reductions to be the major source of parallelism at this stage, but
aim to identify more domain-specific parallelisation schemes. The DSL devel-
opment for financial models will lead to additional or modified requirements.
Typical operations for valuation (pricing) of stochastic financial models need to
be translated into the parallel operations provided. The functional approach we
take gives us a good position to formally assess correctness and precision of the
obtained results, and – to some extent – to statically estimate the translated pro-
grams’ performance. Sections 4.2 and 4.3 expand on previous and related work
in the area of parallel functional programming and parallel hardware support.

High-Performance Backends for Novel Hardware Embracing novel paral-
lel hardware like GPGPUs is an integral part of Hiperfit. Models and language
framework will be designed with execution on next-generation processors in mind
from the start, mapping the parallelism that is expressed by the functional pro-
gramming activities onto a number of parallel computer architectures. In this
research theme, activities will start by optimising existing algorithms and imple-
mentations, and profit from synergies with other scientific computing activities
on parallel hardware. We expect to follow a byte-code based approach and just-
in-time compilation, and ultimately intend to deliver a full high-performance
backend tailored for financial and scientific applications.

4 Functional Programming and Hiperfit

4.1 Domain-Specific Languages for Financial Applications

Pervasive Trend to Domain-Specific Languages. Domain-specific lan-
guages (DSLs) capture knowledge of application experts in tailor-made con-
structs and thereby offer great programing comfort. DSLs are so widespread
and successful in practice that it is easy to overlook them: Logical data mod-
elling and declarative querying, with high-level support for physical storage lay-
out (particular index data structures) and automatic query optimisation, as
embodied in Relational Database Systems (RDBMSs); functional dependencies
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between atomic, vector- and matrix-based data, with automatic incremental re-
computation, as embodied in spreadsheets; structural specification of strings,
with automatic generation of provably efficient streaming processors, as embod-
ied in regular expression (“lexing”) and context-free grammar (“parsing”) tools.

Programming language research has only recently discovered DSLs as a re-
search area and capitalised on the notion, though [32]. Simultaneously with the
rise of the term in research, one could observe DSL technology invading profitable
commercial domains. For example, the Cryptol language [26] enables construct-
ing reliable cryptographic software and hardware implementations with ease and
high assurance. Recently, we also see some proposals for “DSLs” for parallel pro-
gramming [42], or specifically for next-generation parallel hardware, GPGPUs or
FPGAs. However, whether to really label these “DSL” is a debatable subject: A
particular target platform definitely does not constitute an application domain,
and the particular field hardly exposes characteristics which would justify DSL
development (special notation, automation, data structures [32]). We are not
aware of many scientific projects combining a proper DSL approach with novel
parallel hardware. Notable exception are a relatively new project Diderot [45] (a
“parallel DSL” for image analysis), and the Feldspar project [17] which targets
GPGPUs for high-performance signal processing using a DSL approach.

DSLs in Finance Financial applications have been identified as a promising
DSL area relatively early. Researchers have successfully modeled and analysed
financial instruments [35], commercial contracts [2], and risk management [6]
using DSL technology. The French company LexiFi, one of the industrial partners
in Hiperfit, has matured the research on financial DSLs [35] into the language
MLFi [27], which is embedded into OCaML as a combinator library for describing
contracts and valuation (called a “domain-specific embedded language”, DSEL).

The hallmark feature of such contract languages is that they allow more
complex instruments/contracts/risk models to be built up by composing simpler,
often reusable, components that can be shared amongst different instruments.
Also, the same domain-specific descriptions enable different interpretations. For
instance, a description of a financial instrument in MLFi can be used both for
pricing the instrument and for backoffice automation; that is, managing when
options and obligations described in the instrument are to be exercised and when
payments are to be made or received.

Project Goal: DSL Framework for Finance The general goal of DSLs is
to support fast implementation, extensibility, reuse across financial institutions,
maintainability and low total cost of ownership (TCO) for the domain expert
as a user. We want to create a framework for financial information applications
which covers various applications: reporting to auditors and public authorities,
data communication with clearing houses, internal reporting and statistics, com-
putations for the purpose of internal risk management, and flexible integration
for standard routines such as accounting and confirmation processing.
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DSLs for financial instruments are commonly used in many companies today,
but often mix contract and valuation aspects. A crucial goal of Hiperfit is to
design similarly expressive languages to describe the stochastic models and com-
putational valuation methods, and to achieve clear separation and interfaces to-
wards a universal valuation engine. We will investigate existing DSL approaches
in the different areas and experiment with combining them to identify the lines
of separation and useful language features.

4.2 Parallel Functional Programming in Hiperfit

Why parallel functional programming matters. 4

Functional programs are easy to read and understand, program construction
and code reuse are simplified (glue), and programs are transformed, optimised
and formally reasoned about with relative ease. More specific to parallel compu-
tations, the absence of side effects makes data dependencies and inherent paral-
lelism manifest, (purely) functional parallel programs have deterministic seman-
tics irrespective of the evaluation order, and reduction semantics is inherently
parallel. Last but not least, higher-order functions can nicely describe common
parallelisation patterns as skeletons [15,38], without the reader getting lost in
technical details or particularities of the concrete algorithm. In all, irrespective
of the concrete programming model, the high level of abstraction provided by
functional languages makes them suitable languages to conceptually describe
parallelism, in an executable specification.

Models, paradigms and classification A number of programming models for
parallel functional programming have been developed. They can be categorised
along different aspects of programming and implementation. A good criterion for
classifying parallel programming models is the degree of explicitness: how much
parallelism needs to be controlled and specified by the programmer. Skillicorn
and Talia [41] subdivide explicitness along several aspects: decomposition, map-
ping, communication, and synchronisation, as increasing degrees of explicitness
for parallel subcomputations.

The main credo in functional languages being high abstraction, it is not
surprising that most approaches to parallelism try to limit the programmer’s
control of parallelism. Parallelism should ideally be non-invasive, i.e. not require
large changes to a program’s source code. In the extreme, inherent parallelism
exploited stems from the reduction semantics, for example in parallel Haskell
(pH [1]): lazy graph reduction is changed to eager evaluation for performance.
However, experience has shown that such completely implicit approaches are
of limited use. The predominant category is a mid-level of “controlled paral-
lelism” [23], where programmers specify parallelism, while details are left to the
language implementation. In Figure 2, we provide a categorisation of parallel

4 In reverence to Backus [7], Hughes [24] and Hammond/Michaelson [23, Introduction].
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functional languages that expands this semi-explicit mid-level further into sub-
categories. As another aspect, the vertical axis in the figure shows to what extent
units of computation in parallel programs are explicitly interacting.

implicit

semi-explicit

explicit

pH

data-par.

Haskell

RePA GpH

paraFP

Eden

Concurrent

HaskellGpH

Strategies

NESL

controlledindicatedby type

Haskell

STM

Interaction

Parallelism

specified

Haskell

+ MPIConc

Clean

Concurrent

ML

Erlang

HIPERFIT HIPERFIT

Fig. 2. Parallel Haskells and other functional languages classified

One classical approach is to parallelise operations over special bulk data types
– data parallel languages. Examples are NESL [12], Data-parallel Haskell [14],
and its newer variant RePA [25]. Language extensions targeting GPGPUs [29,13]
also fall in this category of type-driven parallelism.

Slightly more powerful, and more involved, is to indicate inherent parallelism
in a functional program by annotations or special evaluation combinators, to
inform compiler and runtime system about whether an independent computa-
tion should be done in parallel. This is the model of Glasgow parallel Haskell
(GpH) [44]. Evaluation strategies built on GpH [43] (recently overhauled [31])
provide slightly more control, enabling the programmer to force evaluation of
subexpressions to a certain degree (in parallel or sequentially). This facilitates
opportunistic parallel evaluation. It does not guarantee parallelism, however. In
contrast, parallelism annotations used in Concurrent Clean [37] have manda-
tory operational semantics, providing controlled parallelism. The programmer
explicitly specifies parallel scheduling; programs using controlled parallelism are
indeed parallel and expose their parallel behaviour. Skeleton-based parallelisa-
tion [15] could be included in this category since, commonly, the programmer has
to explicitly choose the algorithmic pattern implemented by a certain skeleton,
and to follow it. However, we prefer to categorise them as implicit (likewise Skil-
likorn and Talia [41]), since a skeleton’s parallel implementation is entirely hid-
den in libraries. Other examples of controlled functional parallelism are Hudak’s
para-functional programming approach and successors [33], and the language
Eden [28]. Often we find the concept of processes and channels between them
to define process networks. The language Eden [28] is the major representative
of this approach in the Haskell world. Eden retains a mostly [10] functional in-
terface, with a notion of processes specified by their input-output mapping, and
implicitly connected via channels which may transfer data as streams. It has
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been demonstrated [9,8,5] that Eden provides good support for skeleton-based
programming, both for the skeleton user and as an implementation language.

Languages like Concurrent Clean and Eden are still (mostly) implicit about
the communication details and synchronisation. Going even further, we find
functional languages with explicit message-passing and concurrency. Examples
using message passing are Concurrent ML [39], Haskell-MPI, and notably Er-
lang [3]. Concurrent Haskell [36] and Haskell transactional memory (STM) use
shared memory, where threads communicate via shared mutable variables. A side
remark on our categorisation: While interaction and explicitness of parallelism
are mostly correlated, Haskell STM is the notable “outlier”. There are no STM
constructs for interaction between concurrent threads.

In general, concurrency is a programming model which allows to separate in-
dependent (usually effectful) computations into multiple (sometimes interacting)
execution threads. Historically, this aims at supporting responsive distributed
and interactive systems, which is also useful in the absence of actual parallel exe-
cution. Concurrency constructs are often also used to achieve genuine parallelism,
speeding up a computation by executing its computational steps simultaneously
(“in parallel”) on computers with multiple processing units – and guarantee-
ing to do so. In contrast to this, concurrency can be understood as sequential
computation, but with internal nondeterministic choices for selecting the next
step. This is done by splitting the computation in a set of (sequential) threads or
(sequential) processes (threads with shared memory). Assuming the implemen-
tation executes threads in parallel, concurrency can be a good implementation
tool for parallel algorithms. Experience has shown that the large degree of con-
trol offered by concurrency abstractions and explicit message passing can prove
useful for advanced parallel functional programming [10]. Functional languages
also allow for more deterministic models to implement parallelism.

Project Goal: Tailored Parallel Functional Language Within Hiperfit,
we aim to develop a functional language that can be productively used to express
computations in mathematical finance, and which exposes inherent parallelism
in these computations. Driven by the application domain of financial modelling,
we will identify common computation patterns and their potential for parallelisa-
tion. Potentially parallel computations should be easy to extract and transform
into explicitly parallel operations on a variety of modern parallel platforms.

In Figure 2, we have sketched the functional programming languages we ex-
pect to be most relevant for Hiperfit. Apart from functional languages we also
expect to draw on the heritage of classical bulk-data programming languages
such as APL, SETL and SQL. Principally, data parallelism [12] appears to be a
good match for the Hiperfit application domain: it enables concise and long-
term maintainable specifications of a wide variety of inherently parallelisable
computations, without committing to any particular implementation strategy
or execution environment. It facilitates correctness proofs and performance es-
timates, and, under eager evaluation, it has a useful compositional parallel cost
model. Pure data parallelism, on the other hand, is less suitable for loosely-
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coupled systems. We therefore expect to also use more explicit and coarse-grained
programming models (like e.g. Eden), however avoiding the burden of explicit
message-passing and using implementation skeletons where possible.

At a later stage, we expect the DSL development for financial models to
yield additional or modified requirements. Useful abstractions and patterns of
parallelism will be identified from working on concrete projects. Ultimately, our
language should support specific typical operations tailored to the application
domain, risk analysis and valuation in a financial context, but without hard-
wiring the application domain into it.

4.3 Support for Multicore and Novel Parallel Hardware

In the previous section, we have motivated our functional approach by a num-
ber of historic achievements of relevance, based on more than 20 years of re-
search in parallel functional programming. Yet, it is interesting to see how much
the availability of advanced GPGPU hardware in practice changes the scientific
landscape. GPGPUs are made for SIMD-style parallel computations with minor
memory requirements. Parallel software has often been built as a match to exist-
ing well-performing and well-understood hardware. Functional approaches claim
to capture parallelism at a more abstract level, but recent publications about
GPGPU programming in functional languages focus exactly on these simple
embarrasingly parallel problems, where quick success can be expected.

Especially for accelerating financial simulations, the approach of modern
GPGPUs appears promising; we already know that Monte Carlo methods can
get massive speedups, due to their simple structure. This holds not only for
finance, but also for various scientific applications using Monte Carlo simula-
tions, for instance particle physics and computational geo-science. Today, we
find several language bindings to GPGPU accelerators in the Haskell research
community. They realise easy data parallelism on specially designated parallel
vectors (Nikola [29]) or arrays (Accelerate [13]). These research prototypes de-
liver important insight for future GPGPU language design and pragmatics, but
we still have a way to go towards making this research software work in practice
for the average programmer or domain expert. And as mentioned, we observe an
antithetic trend in scientific computation: scientists of various disciplines choose
to operate at the lowest abstraction level API, Cuda C code.

Before GPGPUs became the prodigy of parallelism, a first wave of interest for
parallelism was induced by multicore CPUs. Having several cores is a mere nor-
mality today, yet major functional languages have only recently optimised their
multicore support. The high level of the languages, and implementation tradi-
tions, makes it sometimes very hard to optimise locality, but promising results
have been obtained [5,11,30], and even entire new projects for multicore were
set up, for instance Manticore [20]. With the movement towards OpenCL [34],
both multicore processors, GPUs, and future heterogenous manycore architec-
tures can be captured in a single computational idiom. OpenCL is supported by
major manufacturers of novel hardware, and Hiperfit will likely contribute to
advancing its development and use as an intermediate target language.
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Another recent effort is the initiative to make parallel Haskell apt for wide-
spread commercial use, initiated by the Well-Typed consultancy and sponsors [4].
One of the first activities was to revive Haskell-MPI (from 2001) – which seems to
be a major industrial demand, while some researchers consider message passing
“harmful” [22]. Aiming at a higher hardware abstraction level, the latest efforts
of that project are into performance analysis tool support [16].
Various activities on parallel Haskell are going on and in diverse directions. We
believe that there is still important work to do, however. Our intention with
Hiperfit in this direction is to advertise and test various existing approaches
through prototype implementations. We will closely follow and adopt the latest
research in parallel functional programming, and at the same time continue
work on our own high-performance backend, providing as general a platform for
processing bulk data as we can realise.

5 Project Start and First Activities

Integrating Valuation and Contract Specification. The major use case
of existing contract specification languages is valuation (pricing): determining
the value of a financial contract at any point in time, based on a stochastic
model of the future. Existing contract languages have usually been developed
together with a valuation semantics from the start. Based on a probabilistic
model of unknown variables (for instance, modelling changes in interest rate
for zero-coupon bonds), a range of possible outcomes and their probabilities is
computed. A simple stochastic method for valuation is Monte Carlo simulation,
which is inherently parallel by nature. More advanced methods might lead to a
large number of possible outcomes and are thus computationally intensive; again
massive parallelisation can hopefully lead to faster results.

Figure by Michael Flænø Werk
and Joakim Ahnfelt-Rønne

Fig. 3. Integration Overview for Contracts, PFP, and Data Parallelism

As one strand of Hiperfit activities, we are evaluating existing GPGPU
support in Haskell, namely the Nikola [29] DSEL and the accelerated Haskell ar-
ray library [13], to offload vector computations to a GPGPU. Figure 3 gives an
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overview of the evaluated technologies. A recently concluded Master’s thesis in
Hiperfit prototypes a Haskell system that combines existing technologies and
applies them to accelerated stochastic contract valuation. Another strand is a
domain-specific approach to Probabilistic Functional Programming (PFP) [18].
This DSEL separates the method of evaluation from the stochastic model and
is thus helpful in structuring the implementation of our intended parallel valua-
tion engine. Ultimately, we aim at producing a fully modular valuation engine,
where instruments (contracts) and models (stochastic processes) are specified
independently.

Port of Data.Array.Accelerate to OpenCL. In view of our general goal
to use and produce open standards and open source software in Hiperfit, we
would like to pave the way towards using the standardized OpenCL [34] rather
than the proprietary Cuda for GPGPU computations. We are therefore porting
Data.Array.Accelerate [13] to OpenCL. The technology for this accelerated array
library is well understood; we expect to mainly solve technical and engineering
hurdles here. As a by-product, a new library of OpenCL bindings will be created.
At a later time, we might also be able to maturate the Nikola [29] research to
better usability by non-experts, and port it to OpenCL as well.

As discussed earlier (see Section 4.3), the GPU platform and programming
model appears to be tailored, if not rigidly limited, to data parallelism. Con-
trol structures are very limited, memory accesses are entirely explicit, recursion
is not possible, branching constructs execute both alternatives. On the other
hand, precisely these properties could provide the magic wand for cost analysis
and thereby performance prediction of parallelised valuation code. In view of
this long-term goal, it is a strategic decision to generate know-how about GPU
bindings, involving embedded compilation, in the context of Hiperfit.

Other activities. Work has also started in other research areas of Hiperfit.
To give a general idea of what our case-based working methodology looks like in
practice, we mention a few other activities. One interesting area is to parallelise
random number generation in a reproducible manner, for use in Monte Carlo
simulations. A Hiperfit project is investigating existing research to extract best
practice on using GPGPUs for this problem. In a second strand of activities, we
aim to extract patterns and common usage from existing in-house bank software,
by inspecting and parallelising kernel routines of an in-house C++ library. In
another project, we want to take the perspective of an informed economist on the
topic of instrument valuation, by creating a survey and classification of financial
instruments and models. Parallel implementations of selected valuation models
will follow, which can be structured to reflect the generalities that have been
identified. The implementation work also serves to evaluate other declarative
parallel languages (to be determined) and to identify recurring patterns and
potentially useful features for later DSL development.
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6 Conclusions

We have presented motivation, goals and methods of the Hiperfit research
center, a joint activity of researchers in mathematical finance, programming lan-
guages, parallel computing, and computer systems in collaboration with Finance
IT professionals. In order to meet new and increasing computational needs of
a complex global industry of major impact, Hiperfit aims at integrated solu-
tions that transcend a single researcher’s field of expertise, and explicitly fosters
interdisciplinarity and practical relevance through its paradigm of case-driven
research themes.

We want to develop advanced new methods in mathematical finance and
work towards a framework of domain-specific languages to express financial in-
struments, models and valuation methods. Parallelisation techniques using a
functional approach should both lead to efficient parallel execution on novel
hardware, and leave the code accessible for proofs of semantic properties and,
to some extent, performance predictions.

The goals of Hiperfit which relate to programming languages appear to
carry the highest risk of achieving practical impact, but arguably also promise
the best long-term investment. Past research on parallelism concepts has often
come to success and innovation by focusing on particular application domains.
Immediate practical use and challenging problems derived from practice are
a good touchstone for research. Especially because of the unique combination
of advanced programming language technology and parallelism envisioned in
Hiperfit, we consider it an exciting opportunity to perform and promote re-
search in DSLs and parallel functional programming, and hope to make it one
of its major showcases.

The Hiperfit Website: http://www.hiperfit.dk.
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