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Abstract—General sparse matrix-matrix multiplication
(SpGEMM) is a fundamental building block for numerous
applications such as algebraic multigrid method, breadth first
search and shortest path problem. Compared to other sparse
BLAS routines, an efficient parallel SpGEMM algorithm has
to handle extra irregularity from three aspects: (1) the number
of the nonzero entries in the result sparse matrix is unknown
in advance, (2) very expensive parallel insert operations at
random positions in the result sparse matrix dominate the
execution time, and (3) load balancing must account for sparse
data in both input matrices. Recent work on GPU SpGEMM
has demonstrated rather good both time and space complexity,
but works best for fairly regular matrices.

In this work we present a GPU SpGEMM algorithm that
particularly focuses on the above three problems. Memory
pre-allocation for the result matrix is organized by a hybrid
method that saves a large amount of global memory space
and efficiently utilizes the very limited on-chip scratchpad
memory. Parallel insert operations of the nonzero entries are
implemented through the GPU merge path algorithm that is
experimentally found to be the fastest GPU merge approach.
Load balancing builds on the number of the necessary arith-
metic operations on the nonzero entries and is guaranteed in
all stages.

Compared with the state-of-the-art GPU SpGEMM methods
in the CUSPARSE library and the CUSP library and the latest
CPU SpGEMM method in the Intel Math Kernel Library, our
approach delivers excellent absolute performance and relative
speedups on a benchmark suite composed of 23 matrices with
diverse sparsity structures.

Keywords-sparse matrices; matrix multiplication; linear al-
gebra; GPU; merging; parallel algorithms;

I. INTRODUCTION

General matrix-matrix multiplication (GEMM) is one of

the most crucial operations in computational science and

modeling. The operation multiplies a matrix A of size

m × k with a matrix B of size k × n and gives a result

matrix C of size m × n. In many linear solvers and graph

problems such as algebraic multigrid method [1], breadth

first search [2], finding shortest path [3], colored intersection

[4] and sub-graphs [5], it is required to exploit sparsity

of the two input matrices and the result matrix because

their dense forms normally need huge storage space and

computation cost for the zero entries. Therefore general

sparse matrix-matrix multiplication (SpGEMM) becomes a

common building block in these applications.

Compared to the CPUs, modern graphics processing units

(GPUs) promise much higher peak floating-point perfor-

mance and memory bandwidth. Thus a lot of research has

concentrated on GPU accelerated sparse matrix-dense vector

multiplication [6] and sparse matrix-dense matrix multiplica-

tion [7], [8] and achieved relatively attractive performance.

However, despite the prior achievements on these GPU

sparse BLAS routines, massive parallelism in the GPUs is

still significantly underused for the SpGEMM algorithm,

because it has to handle three more challenging problems:

(1) the number of the nonzero entries in the result matrix

is unknown in advance, (2) very expensive parallel insert

operations at random positions in the result matrix dominate

the execution time, and (3) load balancing must account

for sparse data in both input matrices with diverse sparsity

structures.
Previous GPU SpGEMM methods [9], [10], [1], [11], [12]

have proposed a few solutions for the above problems and

demonstrated relatively good time and space complexity.

However, the experimental results showed that they either

only work best for fairly regular sparse matrices (with most

of the nonzero entries are on the diagonal) [9], [10], or bring

extra high memory overhead for matrices with some specific

sparsity structures [1], [11], [12]. Moreover, in the usual

sense, none of these methods can outperform well optimized

SpGEMM approach [13] for multicore CPUs.
Our work described in this paper particularly focuses on

improving the GPU SpGEMM performance for matrices

with arbitrary irregular sparsity structures by proposing more

efficient methods to solve the above three problems on the

GPUs. We make the following contributions:

• A Hybrid method for the result matrix pre-allocation.

We present a hybrid method that initially allocates

memory of upper bound size for the short rows and

progressively allocates memory for the long rows. The

experimental results show that our method saves a large

amount of global memory space and efficiently utilizes

the very limited on-chip scratchpad memory.

• Parallel insert operations through fast merging. We

propose an efficient parallel insert method for the long

rows of the result matrix by using the fastest merge

algorithm available on the GPUs. We make an exper-

imental evaluation and choose the GPU merge path
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algorithm from five candidate GPU merge approaches.

• Heuristic-based load balancing. We develop a load

balancing oriented heuristic method that assigns the

rows of the result matrix to multiple bins with differ-

ent subsequent computational methods. Our approach

guarantees load balancing in all calculation stages.

Our algorithm delivers excellent performance in experi-

ments that compute C = A2 on a benchmark suite composed

of 23 sparse matrices with diverse sparsity structures. First,

compared with the state-of-the-art GPU SpGEMM methods

in the CUSPARSE library and the CUSP library on an

nVidia GeForce GTX Titan GPU, our approach delivers

average 2.6x (up to 7.7x) and 4x (up to 8.9x) speedup

on the single precision SpGEMM (SpSGEMM) and aver-

age 2.7x (up to 7.9x) and 2.4x (up to 5.4x) speedup on

the double precision SpGEMM (SpDGEMM), respectively.

Second, compared to the SpGEMM method in the state-of-

the-art Intel Math Kernel Library (MKL) on a machine with

one six-core Xeon E5-2630 CPU and quad-channel system

memory, our method gives average 1.3x (up to 2.6x) and

2x (up to 4.5x) SpSGEMM speedup on the nVidia GPU

and an AMD Radeon HD 7970 GPU, respectively, and

average 1.1x (up to 1.9x) and 1.4x (up to 2.4x) SpDGEMM

speedup on the above two GPUs, respectively. To the best

of our knowledge, this is the first time the GPU SpGEMM

algorithm outperforms CPU method in the Intel MKL on

the latest CPU hardware.

II. SPGEMM OVERVIEW

For the sake of generality, the SpGEMM algorithm de-

scription starts from discussion of the GEMM and gradually

takes sparsity of the matrices A, B and C into consideration.

For the matrix A, we write aij to denote the entry in the ith

row and the jth column of A and ai∗ to denote the vector

consisting of the ith row of A. Similarly, the notation a∗j
denotes the jth column of A. In the GEMM, the ith row of

the result matrix C can be defined by

ci∗ = (ai∗ · b∗1, ai∗ · b∗2, . . . , ai∗ · b∗p),

where the operation · is dot product of the two vectors.

We first give sparsity of the matrix A consideration.

Without loss of generality, we assume that the ith row of A

only consists of two nonzero entries in the kth and the lth

column, respectively. Thus ai∗ becomes (aik, ail). Since all

other entries are zeros, we do not record them explicitly and

ignore their influence on the dot products in the calculation

of the ith row of C. Then we obtain

ci∗ = (aikbk1 + ailbl1, aikbk2 + ailbl2, . . . , aikbkp + ailblp).

We can see in this case, only entries in the kth and the

lth row of B have contribution to the ith row of C. Then

row vector form instead of column vector form is used for

the matrix B. So we obtain

ci∗ = aikbk∗ + ailbl∗.

Since the matrix B is sparse as well, again without loss

of generality, we assume that the kth row of B has only two

nonzero entries in the rth and the tth column, and the lth

row of B also has only two nonzero entries in the sth and the

tth column. So the two rows are given by bk∗ = (bkr, bkt)
and bl∗ = (bls, blt). Then

ci∗ = aik(bkr, bkt) + ail(bls, blt).

Because the matrix C is also sparse and the ith row of

C only has three nonzero entries in the rth, the sth and the

tth column, the row can be given by

ci∗ = (cir , cis, cit),

where cir = aikbkr, cis = ailbls and cit = aikbkt + ailblt.

In general there are more nonzero entries per rows of the

matrices A, B and C. But from the above derivation we can

see that the SpGEMM can be represented by operations on

row vectors of the matrices. Therefore, in this work we store

all sparse matrices in compressed sparse row (CSR) format.

The CSR format of a matrix consists of three separate arrays:

(1) row pointer array of size n+ 1, where n is the number

of the rows of the matrix, (2) column index array of size

nnz, where nnz is the number of the nonzero entries of the

matrix, and (3) value array of size nnz. Hence the overall

space complexity of the CSR format is O(n+nnz). Actually

compressed sparse column (CSC) format is also widely used

for sparse matrices stored in column-major order [14]. The

SpGEMM in the CSC format is almost the same as in the

CSR format except rows are changed to columns and vice

versa.

The above CSR format-based SpGEMM algorithm can

be performed by pseudocode in Algorithm 1. An early

description of this algorithm was given by Gustavson [15].

Algorithm 1 Pseudocode for the SpGEMM.

1: for each ai∗ in the matrix A do

2: set ci∗ to ∅
3: for each nonzero entry aij in ai∗ do

4: load bj∗
5: for each nonzero entry bjk in bj∗ do

6: value← aijbjk
7: if cik �∈ ci∗ then

8: insert cik to ci∗
9: cik ← value

10: else

11: cik ← cik + value

12: end if

13: end for

14: end for

15: end for
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III. RELATED WORK

A. Prior SpGEMM Algorithms

A classical CPU SpGEMM algorithm, also known as

Matlab algorithm, was proposed by Gilbert et al. [14]. This

approach uses a dense vector-based sparse accumulator (or

SPA) and takes O(flops + nnz(B) + n) time to complete

the SpGEMM, where flops is defined as the number of

the necessary arithmetic operations on the nonzero entries,

nnz(B) is defined as the number of the nonzero entries in

the matrix B, and n is the number of rows/columns of the

input square matrices. Matam et al. [16] developed a similar

Matlab algorithm implementation for GPUs. Sulatycke and

Ghose [17] proposed a cache hits-oriented algorithm runs in

relatively long O(flops+n2) time. A fast serial SpGEMM

algorithm with time complexity O(nnz0.7n1.2 + n2+o(1))
was developed by Yuster and Zwick [18]. Buluç and Gilbert

[19] presented a SpGEMM algorithm with time complexity

independent to the size of the input matrices under assump-

tions that the algorithm is used as a sub-routine of 2D

distributed memory SpGEMM and the input matrices are

hypersparse (nnz < n).

Recent GPU-based SpGEMM algorithms showed better

time complexity. The SpGEMM algorithm in the CUS-

PARSE library [9], [10] utilized GPU hash table for the

insert operations (lines 7–11 in the Algorithm 1). So time

complexity of this approach is O(flops) on average and

O(flops nnzr(C)) in the worst case, where nnzr(C) is

defined as the average number of the nonzero entries in

the rows of the matrix C. Because the algorithm allocates

one hash table of fixed size for each row of C, the space

complexity is O(nnz(A) + nnz(B) + n+ nnz(C)).

The CUSP library [1], [11] developed a SpGEMM method

called expansion, sorting and compression (ESC) that ex-

pands all candidate nonzero entries generated by the nec-

essary arithmetic operations (line 6 in the Algorithm 1)

into an intermediate sparse matrix Ĉ , sorts the matrix by

rows and columns and compresses it into the result matrix

C by eliminating entries in duplicate positions. By using

the GPU radix sort algorithm (with linear time complexity

while size of the index data type of the matrices is fixed)

and prefix-sum scan algorithm (with linear time complexity)

as building blocks, time complexity of the ESC algorithm is

O(flops + nnz(Ĉ) + nnz(Ĉ)). Since nnz(Ĉ) equals half

of flops, the ESC algorithm takes the optimal O(flops)
time. Dalton et al. [12] improved the ESC algorithm by

executing sorting and compression on the rows of Ĉ, but

not on the entire matrix. Therefore fast on-chip memory

has a chance to be utilized more efficiently. The improved

method sorts the very short rows (of size no more than 32)

by using sorting network algorithm (with time complex-

ity O(nnzr(Ĉ) log2(nnzr(Ĉ)))) instead of the radix sort

algorithm which is mainly efficient for long lists. So the

newer method is more efficient in practice, even though

its time complexity is not lower than the original ESC

algorithm. Because both of the ESC algorithms allocate an

intermediate matrix Ĉ , they have the same space complexity

O(nnz(A) + nnz(B) + nnz(Ĉ) + nnz(C)).

B. Terminology Definition for GPU Programming

Because CUDA and OpenCL are both widely used in

GPU programming and they actually deliver comparable

performance [20], our SpGEMM algorithm support both of

them. We use CUDA implementation on nVidia GPU and

OpenCL implementation on AMD GPU in our SpGEMM

evaluation.

For simplicity, we define the following unified terminolo-

gies: (1) thread denotes thread in CUDA and work item in

OpenCL, (2) thread bunch denotes warp in nVidia GPU and

wavefront in AMD GPU, (3) thread group denotes thread

block or cooperative thread array (CTA) in CUDA and work

group in OpenCL, (4) core denotes streaming multiprocessor

(SMX) in nVidia GPU and compute unit in AMD GPU, and

(5) scratchpad memory denotes shared memory in CUDA

and local memory in OpenCL.

IV. BENCHMARK SUITE

To evaluate our SpGEMM algorithm, we choose 23

sparse matrices as our benchmark suite. 16 of them were

widely used for performance evaluations in previous sparse

matrix computation research [21], [22], [9], [12], [23], [13].

The other 7 new matrices are chosen since they bring

more diverse irregular sparsity structures that challenge

the SpGEMM algorithm design. The variety of sparsity

structures are from many application fields, such as finite

element mesh, macroeconomic model, protein data, circuit

simulation, web connectivity, combinational problem. All of

the 23 matrices are downloadable from the University of

Florida Sparse Matrix Collection [24].

Without loss of generality, in this paper we only eval-

uate multiplication of sparse square matrix and itself (i.e.

C = A2) to avoid introducing another sparse matrix as

a multiplier with different sparsity structure. Even though

the operation cannot cover all real world problems, it offers

a relatively fair platform for benchmarking the SpGEMM

algorithms. Moreover, symmetry in the sparse matrices is not

used in our SpGEMM algorithm, although some matrices in

the benchmark suite are symmetric.

Besides the input matrix A, the work complexities of

the different SpGEMM algorithms also depend on the in-

termediate matrix Ĉ and the result matrix C. So we list

characteristics of the three matrices in Table I. The set of

characteristics includes n (matrix dimension), nnz (the num-

ber of the nonzero entries) and nnzr (the average number

of the nonzero entries in rows). The upper 9 matrices in

the Table I have relatively regular nonzero entry distribution

mostly on the diagonal. The other 14 matrices include

various irregular sparsity structures.
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Table I
OVERVIEW OF EVALUATED SPARSE MATRICES

Name Plot n
nnz(A)
nnzr(A)

nnz(Ĉ)

nnzr(Ĉ)

nnz(C)
nnzr(C)

cant 63 K
4 M
64

269.5 M
4315

17.4 M
279

economics 207 K
1.3 M

6
7.6 M

37
6.7 M

32

epidemiology 207 K
2.1 M

4
8.4 M

16
5.2 M

10

filter3D 526 K
2.7 M

25
86 M
808

20.2 M
189

pwtk 106 K
11.6 M

53
626.1 M

2873
32.8 M

150

ship 141 K
7.8 M

55
450.6 M

3199
24.1 M

171

harbor 47 K
2.4 M

51
156.5 M

3341
7.9 M
169

protein 36 K
4.3 M
119

555.3 M
15249

19.6 M
538

spheres 83 K
6 M
72

463.8 M
5566

26.5 M
318

2cubes sphere 102 K
1.6 M

16
27.5 M

270
9 M
88

accelerator 121 K
2.6 M

22
79.9 M

659
18.7 M

154

cage12 130 K
2 M
16

34.6 M
266

15.2 M
117

hood 221 K
10.8 M

49
562 M
2548

34.2 M
155

m133-b3 200 K
0.8 M

4
3.2 M

16
3.2 M

16

majorbasis 160 K
1.8 M

11
19.2 M

120
8.2 M

52

mario002 390 K
2.1 M

5
12.8 M

33
6.4 M

17

mono 500Hz 169 K
5 M
30

204 M
1204

41.4 M
244

offshore 260 K
4.2 M

16
71.3 M

275
23.4 M

90

patents main 241 K
0.6 M

2
2.6 M

11
2.3 M

9

poisson3Da 14 K
0.4 M

26
11.8 M

871
3 M
219

QCD 49 K
1.9 M

39
74.8 M
1521

10.9 M
222

scircuit 171 K
1 M

6
8.7 M

51
5.2 M

31

webbase-1M 1 M
3.1 M

3
69.5 M

70
51.1 M

51

V. PERFORMANCE CONSIDERATIONS

A. Memory Pre-allocation For the Result Matrix

Compared to the SpGEMM, other sparse matrix multipli-

cation operations, such as multiplication of sparse matrix and

dense matrix [7], [8], [23] and its special case sparse matrix-

vector multiplication [21], [25], [6], pre-allocate a dense

matrix or a dense vector of trivially predictable size and store

entries to predictable memory addresses. However, because

the number of the nonzero entries in the result sparse

matrix C is unknown in advance, precise memory allocation

of the SpGEMM is impossible before real computation.

And physical address of each new entry is unknown either

(consider line 7 in the Algorithm 1, the position k is only a

column index that cannot trivially map to physical address

on memory space).

To solve this problem, the previous SpGEMM algorithms

proposed four different solutions: (1) precise method, (2)

probabilistic method, (3) upper bound method, and (4)

progressive method.

The first method, precise method, pre-computes a sim-

plified SpGEMM by the same computational pattern. We

can imagine that multiplication of sparse boolean matrices

is more efficient than multiplication of sparse floating-point

matrices. The SpGEMM methods in the CUSPARSE library

and the Intel MKL are representatives of this method. Even

though the pre-computation generates precise size of the

result matrix C, this method is relatively expensive since the

SpGEMM operation in the same pattern is executed twice.

The second method, probabilistic method, estimates an

imprecise nnz(C). This group of approaches [26], [27] are

based on random sampling and probability analysis on the

input matrices. Since they do not guarantee a safe lower

bound for the result matrix C and extra memory has to be

allocated while the estimation fails, they were mostly used

for estimating the shortest execution time of multiplication

of multiple sparse matrices.

The third method, upper bound method, computes an

upper bound of the number of the nonzero entries in the

result matrix C and allocates corresponding memory space.

Numerically, the upper bound size equals nnz(Ĉ), or half of

flops, the number of necessary arithmetic operations. The

ESC algorithms use this method for memory pre-allocation.

Even though this approach saves cost of the pre-computation

in the precise method, it brings another problem that the

intermediate matrix Ĉ might be too large to fit in the

device global memory. Since the SpGEMM algorithm does

not take into consideration cancellation that eliminates zero

entries generated by arithmetic operations, the result matrix

is normally larger than the input matrices. The Table I

shows that the nnz(Ĉ) is much larger than the nnz(C) in

some cases. For example, the sparse matrix “pwtk” generates

626.1 million nonzero entries (or 7.5 GB memory space for

32-bit index and 64-bit value) for the intermediate matrix Ĉ

while the real product C only contains 32.8 million nonzero

entries. Although the upper bound method can partition the

intermediate matrix Ĉ into multiple sub-matrices, higher

global memory pressure might reduce overall performance.

The last method, progressive method, first allocates mem-

ory of a proper size, starts sparse matrix computation and

reallocates the buffer if larger space is required. Some CPU

sparse matrix libraries use this method. For instance, sparse

matrix computation in the Matlab [14] increases the buffer

by a ratio of 50% if the current memory space is exhausted.

Since the upper bound method sacrifices space efficiency

for the sake of improved performance and the progressive

method is good at saving space, we use a hybrid method
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composed of the both approaches. However, compared to

the relatively convenient upper bound method, it is hard

to directly implement a progressive method for the GPUs,

because although modern GPU devices have ability of

allocating global memory while kernels are running, they

still cannot reallocate device memory on the fly. We will

describe our hybrid method designed for the GPUs in the

next section.

B. Parallel Insert Operations

As shown in the Algorithm 1, for each trivial arithmetic

computation (line 6), one much more expensive insert oper-

ation (lines 7–11) is required. To the best of our knowledge,

none of the previous GPU SpGEMM methods takes into

account that the input sequence (line 4) is ordered because

of the CSR format1. One of our algorithm design objectives

is to efficiently utilize this property. Based on experiments

by Kim et al. [28], as the SIMD units are getting wider

and wider, merge sort methods will outperform hash table

methods on the join-merge problem, which is a similar

problem in the SpGEMM. Then our problem converts to

finding a fast GPU method for merging sorted sequences.

Later on we will describe our strategy in detail.

C. Load Balancing

Because distribution patterns of the nonzero entries in

the both input sparse matrices are very diverse (consider

plots of the matrices in the Table I), input space-based

data decomposition [17], [9] normally does not bring ef-

ficient load balancing. One exception is that computing the

SpGEMM for huge sparse matrices on large scale distributed

memory systems, 2D and 3D decomposition on input space

methods demonstrated good load balancing and scalability

by utilizing efficient communication strategies [29], [30],

[2]. However, in this paper we mainly consider load balanc-

ing for fine-grained parallelism in the GPU shared memory

architectures.

Therefore we use the other group of load balancing meth-

ods based on output space decomposition. Dalton et al. [12]

presented a method that sorts the rows of the intermediate

matrix Ĉ, divides it into 3 sub-matrices that include the rows

in different size ranges, and uses differentiated ESC methods

for the sub-matrices. We have a similar consideration, but

our implementation is completely different. We do not

strictly sort the rows of the intermediate matrix Ĉ but just

assign rows to a fixed number of bins through a much faster

linear time traverse on the CPU. And we decompose the

output space in a more detailed way that guarantees much

more efficient load balancing. We will demonstrate that our

method is always load balanced in all stages for maximizing

resource utilization of the GPUs.

1Actually according to the CSR format standard, the column indices in
each row do not necessarily have to be sorted. But most implementations
choose to do so, thus our method reasonably makes this assumption.

VI. METHODOLOGY

A. Algorithm Design

Our SpGEMM algorithm is composed of four stages:

(1) calculating upper bound, (2) binning, (3) computing the

result matrix, and (4) arranging data.

The first stage, calculating upper bound, generates the

upper bound number of the nonzero entries in each row of

the result matrix C. We create an array U of size m, where

m is the number of rows of C, for the upper bound sizes of

the rows. We use one GPU thread for computing each entry

of the array U . Algorithm 2 describes this procedure.

Algorithm 2 Pseudocode for the first stage on the GPUs.

1: for each entry ui in U in parallel do

2: ui ← 0
3: for each nonzero entry aij in ai∗ do

4: ui ← ui + nnz(bj∗)
5: end for

6: end for

The second stage, binning, deals with load balancing and

memory pre-allocation. We first allocate 38 bins and put

them into five bin groups. The bins contain the indices of the

entries in the array U and present as one array of size m with

38 segments. Then all rows are assigned to corresponding

bins according to the number of the nonzero entries. Finally,

based on the sizes of the bins, we allocate a temporary matrix

for the nonzero entries in the result matrix C.

The first bin group includes one bin that contains the

indices of the rows of size 0. The second bin group also

only has one bin that contains the indices of the rows of

size 1. Because the rows in the first two bins only require

trivial operations, they are excluded from subsequent more

complex computation on the GPUs. Thus a better load

balancing can be expected.

The third bin group is composed of 31 bins that contain

the indices of the rows of size 2–32, respectively. Since the

sizes of these rows are no more than the size of a single

thread bunch (32 in nVidia GPU or 64 in AMD GPU) and

these rows require non-trivial computation, using one thread

bunch or one thread group for each row cannot bring efficient

instruction throughput on the GPUs. Therefore, we use one

thread for each row. And because each bin only contains the

rows of the same upper bound size, the bins can be executed

separately on the GPUs with different kernel programs for

efficient load balancing. In other words, 31 GPU kernel

programs are executed for the 31 bins.

The fourth bin group consists of 4 bins that contain the

indices of the rows located in size ranges 33–64, 65–128,

129–256 and 257–512, respectively. The rows of these sizes

are grouped because of three reasons: (1) each of them is

large enough to be efficiently executed by a thread group,

(2) each of them is small enough for scratchpad memory (48
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KB per core in nVidia Kepler GPU and 64 KB per core in

AMD Graphics Core Next, or GCN, GPU), and (3) the final

sizes of these rows in the result matrix C are predictable in a

reasonable small range (no less than the lower bound 1 and

no more than the corresponding upper bound sizes). Even

though the rows in each bin do not have exactly the same

upper bound size, a good load balancing still can be expected

because each row is executed by using one thread group and

inter-thread group load balancing is naturally guaranteed by

the GPU low-level scheduling sub-systems.

The fifth bin group includes the last bin that contains the

indices of the rest of the rows of size larger than 512. These

rows have two common features: (1) their sizes can be too

large (recall nnzr(Ĉ) in the Table 1) to fit in the scratchpad

memory, and (2) predicting the final sizes of these rows to

a small range (scratchpad memory level) is not possible in

advance. Therefore, we execute them in a unified progressive

method described later. Again because we use one thread

group for each row, load balancing is naturally guaranteed.

Since we do not use precise method for memory pre-

allocation, a temporary memory space for the result matrix

C is required. We design a hybrid method that allocates a

CSR format sparse matrix C̃ of the same size of the result

matrix C as temporary matrix. We set nnz(c̃i∗) to ui while

the row index i is located in the bin groups 1–4 because

compared with modern GPU global memory capacity, the

total space requirement of these rows is relatively small.

For the rows in the bin group 5, we set nnz(c̃i∗) to a fixed

size 256 since normally this is an efficient working size for

the scratchpad memory. Therefore, we can see that if all of

the indices of the rows are in the bin groups 1–4, our hybrid

method converts to the upper bound method, on the other

extreme end, our method converts to the progressive method.

But generally, we obtain benefits from the both individual

methods. The stage 2 is executed on the CPU since it only

requires a few simple linear time traverses, which are more

efficient for the CPU cache sub-systems.

The third stage, computing the result matrix, generates

the final nonzero entries stored in the temporary matrix C̃

and nnz(ci∗), the numbers of the nonzero entries in the rows

of the result matrix C.

For the rows in the bin groups 1–2, we simply update

the numbers of the corresponding nonzero entries. For the

rows in the bin groups 3–5, we use three totally different

methods: (1) heap method, (2) bitonic ESC method, and (3)

merge method, respectively.

The heap method first creates an empty implicit index-

value pair heap (or priority queue) of the upper bound size

for each row in the bin group 3. The heaps are located in

the scratchpad memory and collect all candidate nonzero

entries for corresponding rows. Then each heap executes

a heapsort-like operation to generate an ordered sequence

located in the tail part of the heap. The difference between

this operation and the classical heapsort operation is that

(a) (b) (c)

Figure 1. Two steps of an example of the heap method. From (a) to (b),
the root entry is fused to the first entry in result sequence since they share
the same index. From (b) to (c), the root entry is inserted to the sequence
since they have different indices. After each step, the heap property is
reconstructed.

Figure 2. An example of the bitonic ESC method.

the entries in the result sequence are duplicate-free while

the initial heap includes duplicate entries. In each delete-

max step in our variant heapsort, the root node and the first

entry of the result sequence are fused if they share the same

index; otherwise the root node is inserted to the head part

of the sequence. Our method is also distinguished from a

heap-based sparse accumulator given by Gilbert et al. [31]

by the mechanism of eliminating duplicate entries. Figure 1

gives two steps of an example of our heap method. Finally,

the sorted sequence without duplicate indices is generated

in the scratchpad memory and saved to the matrix C̃ in the

global memory. And the numbers of the nonzero entries in

the rows of the result matrix C are updated to the sizes of

the corresponding result sequences.

For the rows in each bin of the bin group 4, a typical ESC

algorithm is used. The method first collects all candidate

nonzero entries to an array in the scratchpad memory, then

sorts the array by using basic bitonic sort and compresses

duplicate indices in the sequence by using prefix-sum scan.

Figure 2 shows an example of this procedure. Finally, a

sorted sequence without duplicate indices is generated in

the scratchpad memory and saved to the matrix C̃, and the

numbers of the nonzero entries in the rows are updated.

For the rows in the bin group 5, our method inserts each

input nonzero entry to the corresponding row of the result
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Figure 3. An example of the merge method. The input sequence is in the
register file. Its mask sequence and the result sequence are in the scratchpad
memory.

matrix C (lines 7–11 in the Algorithm 1) in parallel. We can

see that the input sequence (the candidate nonzero entries)

and the result sequence (the selected nonzero entries in

the current row of C) should always be kept ordered and

duplicate-free because of the CSR format. Therefore, we

can convert the parallel insert operations to parallel merge

operations that merge ordered sequences and the final result

sequence is ordered and duplicate-free.

Each parallel merge operation can be split into multiple

sub-steps: (1) a binary search operation on the result se-

quence for fusing entries with the same indices and tagging

them, (2) a prefix-sum scan operation on the input sequence

for getting continuous position in the incremental part of

the result sequence, (3) copying non-duplicate entries from

the input sequence to the result sequence, and (4) merging

the two sequences in one continuous memory space. Figure

3 shows an example of this procedure. After all input

sequences are merged into one result sequence, it is saved

to the matrix C̃ , and the numbers of the nonzero entries in

the rows are updated.

As we allocate a limited scratchpad memory space for the

result sequence, a potential overflow might happen. In this

case, we first compare total size of the two sequences (notice

the input sequence is in the thread registers, but not in the

scratchpad memory yet) with the allocated size of the result

sequence in the scratchpad memory. If a merge operation

is not allowed, our method records current computation

position as a checkpoint and dumps the result sequence

from the scratchpad memory to the global memory. Then

the host allocates more global memory (we use 2× each

time) and re-launches kernel with a 2× large scratchpad

memory setting. The relaunched kernels obtain checkpoint

information, and load existing results to the scratchpad

memory and continue the computation. The global memory

dumping and reloading bring an extra overhead, but actually

it does not affect the total execution time too much because

of three reasons: (1) the global memory access is almost

completely coalesced, (2) the latency could be hidden by

subsequent computation, and (3) this overhead is only a

small factor of large computation (short rows normally do

not face this problem). For very long rows exceed the

scratchpad memory capacity, our method still allocates a

space in the scratchpad memory as a level-1 merge sequence,

executes the same merge operations on it and merges the

level-1 sequence in the scratchpad memory and the result

sequence in the global memory only once before the kernel

is ready to return.

It is worth noting that the parameters of the binning de-

pends on specifications (e.g. thread bunch size and scratch-

pad memory capacity) of the GPU architectures. In this

paper, we use the abovementioned fixed-size parameters for

assigning the rows into the bins since the current nVidia

GPUs and AMD GPUs have comparable hardware specifica-

tions. However, the binning strategy can be easily extended

for future GPUs with changed architecture designs.

The fourth stage, arranging data, first sums the numbers

of the nonzero entries in all rows of the result matrix C and

allocates its final memory space. Then our method copies

existing nonzero entries from the temporary matrix C̃ to

the result matrix C. For the rows in the bin group 1, copy

operation is not required. For the rows in the bin group 2,

we use one thread for each row. For the rest of the rows

in the bin groups 3–5, we use one thread group for each

row. After all copy operations, the SpGEMM computation

is done.

B. Evaluating GPU Merge algorithms

Because both the binary search and the prefix-sum scan

take fast logarithmic time for each entry in the input se-

quence, these operations have relatively good efficiency and

performance stability on modern GPUs. Therefore, a fast

merge algorithm is very crucial for the performance of the

merge method in the SpGEMM.

Recently some new merge algorithms [32], [33], [34],

[35], [36], [37], [38] have been proposed for the GPUs. But

which one is the fastest in practice is still an open question.

Because the main objective of the research [36], [37], [38] is

efficiently merging large data in the global memory, they still

use basic methods, such as bitonic sort and ranking-based

merge, as building blocks for small data in the scratchpad

memory. Peters et al. [35] proposed a locality-oriented ad-

vanced bitonic sort method that can reduce synchronization

overhead by merging data in fast private memory instead

of relatively slow shared memory. Therefore we evaluate

5 GPU merge algorithms: (1) ranking merge [32], (2)

merge path [33], (3) basic oddeven merge [34], (4) basic

bitonic merge [34], and (5) advanced bitonic merge [35].
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The implementation of the algorithm (2) is extracted from

the Modern GPU library [39]. The implementations of the

algorithm (3) and (4) are extracted from the nVidia CUDA

SDK. We implement the algorithm (1) and (5). Additionally,

another reason that we conduct the evaluation is that none

of the above literature presented performance of merging

short sequences of size less than 212, which is the most

important length (consider the nnzr(C) in the Table 1) for

our SpGEMM.

Our evaluation results of merging 32-bit keys, 32-bit key-

32-bit value pairs and 32-bit key-64-bit value pairs are

shown in Figure 4. The experimental platforms are described

in the section VII.A. Each of the five algorithms merges two

short ordered sequences of size l into one ordered output

sequence of size 2l. Thus the sorting network methods in our

evaluation only execute the last stage. To saturate throughput

of the GPUs, the whole problem size is set to size 225. For

example, 214 thread groups are launched while each of them

merges two sub-sequences of size l = 210. We execute each

problem set through multiple thread groups of different sizes

and record the best performance for the evaluation.

We can see that the GPU merge path algorithm almost

always outperforms other methods while sub-sequence size

is no less than 28. Since our merge method starts from size

256, the merge path method is chosen for our SpGEMM

implementation. The main advantages of the merge path

method are that it can evenly assign work load to threads

and can easily deal with the input sequences of arbitrary

sizes. Detailed description and complexity analysis of the

GPU merge path algorithm can be found in [33].

Other algorithms are not chosen because of various rea-

sons. We can see that the ranking merge is slightly faster

than the merge path method in the Figure 4(f). But it is not

chosen in our implementation, since the this algorithm is an

out-of-place method that requires more scratchpad memory

and thus cannot scale to longer sequences. Because the basic

bitonic merge and the basic oddeven merge do not show

better performance and cannot simply deal with data of

arbitrary sizes, none of them is chosen. The advanced bitonic

sort method is always the slowest because it loads data

from the scratchpad memory to the thread registers for data

locality. However, the latency gap between the scratchpad

memory and the register file is normally very small and

the load operations actually reduce the overall performance.

Thus this method should only be used for migrating global

memory access to scratchpad memory access.

We can also see that the AMD Radeon HD 7970 GPU

is almost always much faster than the nVidia GeForce GTX

Titan GPU in all tests. The reason is that the capacity of the

scratchpad memory (2048 KB, 64 KB/core × 32 cores, in

the AMD GPU and 672 KB, 48 KB/core × 14 cores, in the

nVidia GPU) heavily influence the performance of merging

small sequences. On the other hand, even though the AMD

GPU has 64 KB scratchpad memory per core, each instance

of the kernel program can only use up to 32 KB. Thus the

AMD GPU cannot scale to longer sub-sequences (e.g. 212

with 32-bit key-32-bit value pairs) that can be executed by

using the nVidia GPU.

VII. EXPERIMENTAL RESULTS

A. Testbeds

We use two machines shown in Table II for evaluating

the SpGEMM algorithms through the benchmark suite.

B. Memory Pre-allocation Comparison

Figure 5 shows the comparison of the three memory pre-

allocation methods. We can see that, for small matrices

(e.g. “2cubes sphere”), our hybrid method shows exactly

the same space requirements as the upper bound method

does. However, for large matrices (e.g. “pwtk”), allocated

memory sizes through our hybrid method are much closer

to the memory sizes allocated by the precise method. One

exception is the matrix “webbase-1M”, our hybrid method

actually allocates more memory space than the upper bound

method. The reasons are that the reduced rate of the in-

termediate matrix Ĉ to the result matrix C is very low

(see the Table I) and our 2× progression mechanism just

allocates memory across the upper bound size. But overall,

our hybrid method saves space allocation of the upper bound

method and execution time of the precise method without

introducing any significant extra space requirements.

C. SpGEMM Performance Comparison

The absolute and relative performance of the SpGEMM

algorithms that compute C = A2 are shown in Figure

6 and 7, respectively. Three GPU methods in the nVidia

CUSPARSE v2, CUSP v0.4.0 and BHSPARSE (we call

our algorithm set BHSPARSE since this work is under the

Project Bohrium [40]) are evaluated on two GPUs: nVidia

GeForce GTX Titan and AMD Radeon HD 7970. One CPU

method in the Intel MKL v11.0 is evaluated on Intel Xeon

E5-2630 CPU. The performance of another recent ESC-

based GPU SpGEMM work [12] is not included in the

comparison because its source code is not available yet.

The Intel MKL SpGEMM program is multithreaded and

utilizes all six cores in the Intel Xeon CPU. For the GPU

algorithms, data transfer time between the host and the

device is not included in our evaluation since the SpGEMM

is normally one of the building blocks for more complex

problem completely running on the GPUs.

We first compare the performance of the three different

GPU SpGEMM algorithms on the nVidia GPU in the

machine 1. We can see that BHSPARSE outperforms the

CUSPARSE and the CUSP on the most of the sparse

matrices. From the perspective of the absolute performance,

our method obtains better SpSGEMM and SpDGEMM per-

formance on 17 and 19 matrices out of the whole 23 matrices

over the CUSPARSE, and on 21 and 18 matrices over the
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(a) (b) (c)

(d) (e) (f)

Figure 4. Performance comparison of merging 32-bit keys, 32-bit key-32-bit value pairs and 32-bit key-64-bit value pairs through 5 GPU merge algorithms:
ranking merge, merge path, basic oddeven merge, basic bitonic merge and advanced bitonic merge on two different GPUs: nVidia GeForce GTX Titan and
AMD Radeon HD 7970.

Table II
TWO MACHINES USED FOR BENCHMARKING

Configuration Machine 1 Machine 2

CPU One Intel Xeon E5-2630 (six Sandy Bridge cores, 2.3 GHz,
boost up to 2.8 GHz, Hyper-Threading on, 15 MB L3 cache)

One Intel Core i7-3770 (four Ivy Bridge cores, 3.4 GHz, boost
up to 3.9 GHz, Hyper-Threading off, 8 MB L3 cache)

System memory 64 GB DDR3-1333 (4 channels, 42.6 GB/s bandwidth) 32 GB DDR3-1600 (2 channels, 25.6 GB/s bandwidth)

GPU One nVidia GeForce GTX Titan GPU (14 Kepler cores, 2688
CUDA cores, 876 MHz, 4.7 Tflops in single precision, 1.6
Tflops in double precision, 672 KB scratchpad memory)

One AMD Radeon HD 7970 GPU (32 GCN cores, 2048 Radeon
cores, 1 GHz, 4 Tflops in single precision, 1 Tflops in double
precision, 2048 KB scratchpad memory)

GPU memory 6 GB GDDR5 (288 GB/s bandwidth) 3 GB GDDR5 (288 GB/s bandwidth)

System software
and library

Ubuntu Linux 12.04, Intel C++ Compiler 14.0, Intel MKL 11.0,
nVidia CUDA SDK 5.5, CUSPARSE v2, CUSP 0.4.0 and GPU
driver version 319.32

Ubuntu Linux 12.04, g++ complier 4.6.3, AMD APP SDK 2.8
and GPU driver version 13.4

CUSP, respectively. From the perspective of the relative

performance, our method delivers average 2.6x (up to 7.7x)

and 4x (up to 8.9x) speedup on SpSGEMM performance

over the CUSPARSE and the CUSP, and average 2.7x (up

to 7.9x) and 2.4x (up to 5.4x) speedup on SpDGEMM

performance over them, respectively.

We can see that the CUSPARSE method outperforms

our approach when and only when the input matrices are

fairly regular (belong to the first 9 matrices in the Table

I). For all irregular matrices and some regular ones, the

BHSPARSE is always more efficient. On the other hand,

the absolute performance of the CUSP method is very

stable since its execution time almost only depends on the

number of the necessary arithmetic operations. Therefore

this approach is insensitive to sparsity structures. Actually

the feature can bring better performance to matrices with
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Figure 5. Global memory requirement comparison of the precise method, our hybrid method and the upper bound method on the benchmark suite. The
memory requirement of the precise method includes the two input matrices and the result matrix. The memory requirements of the other two methods also
contain additional intermediate matrices.

(a)

(b)

Figure 6. Absolute performance comparison.

some specific sparsity structures. However in most cases, the

CUSP method suffers with higher global memory pressure.

Compared to the Intel MKL on the Intel CPU in the

machine 1, our CUDA-based implementation on the nVidia

GPU obtains better SpSGEMM and SpDGEMM perfor-

mance on 16 and 12 matrices, and delivers average 1.3x (up

to 2.6x) and 1.1x (up to 1.9x) SpSGEMM and SpDGEMM

speedup, respectively. Our OpenCL-based implementation

on the AMD GPU in the machine 2 obtains better SpS-

GEMM and SpDGEMM performance on 21 and 14 matri-

ces, and delivers average 2x (up to 4.5x) and 1.4x (up to

2.4x) SpSGEMM and SpDGEMM speedup, respectively. If

we set the Intel MKL SpGEMM performance on this ma-

chine as a baseline, our approach is the first GPU SpGEMM

that outperforms well optimized CPU method.

Even though the nVidia GPU and the AMD GPU have

similar global memory bandwidth and the former one even

offers higher peak computational power, the AMD GPU

outperforms the nVidia GPU on most matrices. According

to the performance behaviors of the merge algorithms in the

Figure 4, we can see that the scratchpad memory capacity

is very important for the GPU SpGEMM performance.
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(a)

(b)

Figure 7. Relative performance comparison.

VIII. CONCLUSION

In this paper we demonstrated an efficient SpGEMM

algorithm on the GPUs for solving the three challenging

problems in the SpGEMM. In the experiments on a bench-

mark suite composed of 23 matrices with diverse sparsity

structures, our SpGEMM algorithm delivered excellent ab-

solute and relative performance as well as space efficiency

over the previous GPU SpGEMM methods. Moreover, on

average, our approach obtained up to twice the performance

of the start-of-the-art CPU SpGEMM method.
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