

F A C U L T Y O F S C I E N C E
U N I V E R S I T Y O F C O P E N H A G E N

Project outside course scope
Niels G. W. Serup – ngws@metanohi.name

Extending Futhark with a write construct

Supervisors: Cosmin Eugen Oancea and Troels Henriksen

24 June 2016

Abstract

Futhark[5][6] is a functional programming language which can be compiled into

efficient OpenCL code to be run on a GPU. I present a new construct write in

the Futhark programming language.

I describe how I ended up focusing on designing the write construct through

porting a variety of benchmarks to Futhark.

I show that:

• write can be used in meaningful programs.

• Uses of write in programs can be optimised within the existing Futhark

compiler infrastructure.

• The Futhark compiler can compile write-using ported Futhark benchmarks

into fast OpenCL code within a factor three of the original CUDA code

speed (and in some cases faster).

Contents

Preface . 2

1 Introduction . 3

2 Applications . 7

3 Semantics & Type Checking . 11

4 Code Generation . 13

5 An Example: Breadth-First Search 14

6 Optimisations . 20

7 Fusion . 22

8 Design Phases . 25

9 Evaluation . 27

10 Future Work . 32

Bibliography . 34

A Measurements . 35

B Adding an Include Header . 36

C Program Code . 37

1

Preface

This report is submitted in fulfillment of a 15 ECTS Masters project outside

course scope in Computer Science (Datalogi) at the University of Copenhagen,

for Niels G. W. Serup.

The original title for this project was “Efficient Histogram Computation on GPG-

PUs”, focusing on adding a “histogram” construct to the Futhark programming

language, but was changed during the project to instead focus on extending

Futhark with a write construct.

2

1 Introduction

1.1 Motivation

I spent the first part of the project porting benchmark programs to Futhark.

Initially I focused on porting programs from the Accelerate[2][3][7][8] project:

Fluid simulation

Real-time fluid dynamics simulation[9]. Consists of densities, forces, a

linear solver with a stencil, and several wrapper functions utilising the

linear solver multiple times for each frame.

Quasicrystals

A small quasicrystal generation tool.

N-body simulation

A brute force n-body simulation with each body represented by 10 floats.

For demonstration and testing purposes I have added image generation facilities

to two of the benchmarks; see figure 1 for some visual results.

(a) A still frame from the fluid sim-

ulation benchmark.

(b) A still frame from the quasicrys-

tal benchmark.

Figure 1: Benchmark outputs

These three benchmarks were unproblematic to port to Futhark. I then went on

to try implementing other programs:

• filter.

• A basic radix sort.

• A breadth-first search benchmark from the Rodinia[4] benchmark suite.

These three programs turned out to not be efficiently implementable in the then

current Futhark language, since they all need a way to write to memory in a

3

non-contigous way: Both programs require a way to, in parallel, write multiple

values into an array at multiple indexes, with no further restrictions.

For example, Accelerate’s version of radix sort has this final step in each iteration:

permute const v (\ix -> index1 (index!ix)) v

This creates a new array with multiple values moved to new indexes. Futhark

lacked a bulk parallel primitive to do this.

1.2 Write

Consider this construct:

write(indexes, values, array)

Assume that all arguments are arrays, and that their respective types are the

following:

indexes

Array of unsigned 32-bit integers, 32-bit integers being the index type used

by Futhark as of this writing.

values

Array of some type t, picked by the programmer. The outer lengths of the

indexes array and the values array must be equal.

array

Array of the same type t, but with no restriction on the length.

This write construct has the following semantics:

1. write(indexes, values, array) =

2. for each (index, value) in zip(indexes, values):

3. if index >= 0 && index < outer_length(array):

4. then array[index] = value

5. else ignore this (index, value) pair

Figure 2: The basic semantics of write.

That the indexes and values arrays must have the same length should be

evident from line 2.

As arguably the simplest example of using write, see the Futhark program in

figure 3.

4

fun [i32, n]

main([i32, m] indexes,

[i32, m] values,

*[i32, n] array) =

write(indexes, values, array)

Figure 3: Simple Futhark program using write.

If this program is given these three arrays as input

[3, 0, 1]

[99, 7, 32]

[0, 1, 2, 3, 4, 5]

then the final result would be [7, 32, 2, 99, 4, 5] since:

• the element at index 3 in the output array is replaced with the corresponding

value 99;

• the element at index 0 in the output array is replaced with the corresponding

value 7; and

• the element at index 1 in the output array is replaced with the corresponding

value 32.

It is important to note that write accepts its indexes in any order, and that

not all indexes for the entire input/output array range need to be given. This is

what makes the construct useful.

To reduce memory copying, the input and output array inhibit the same memory,

and all write operations occur in-place. This is also why the above example

program has an asterisk in the *[i32, n] array argument: to ensure that it is

unique, i.e. that the Futhark compiler allows an in-place update on the condition

that the array variable is never used after the write operation.

Figure 2 shows that the construct is memory-bound: No calculations are made,

so the bulk of the time will be spent accessing the arrays for reading and writing.

This is good to know for optimisation purposes: Since memory is the bottleneck,

we would like to a) reduce array accesses, and b) merge more calculations into

write operations.

I have implemented the three programs in question using write; see sections 2

and 5.

The implementation has been made part of the official Futhark compiler distri-

bution; see https://github.com/HIPERFIT/futhark.

5

https://github.com/HIPERFIT/futhark

1.3 Related Work

Since write can trivially be implemented in an imperative language by writing

automatically in-place code, it is more interesting to compare Futhark’s new

construct with similar constructs in other parallel, functional languages.

The write construct appears to be unique to Futhark, but NESL, Accelerate,

and Repa all have either permute or backpermute functions (or both), which

are related to but less expressive than write.

1.4 Other Work

The major work not described in or related to the final project include:

• Implementing support for an include header in Futhark programs, thus

enabling a Futhark program to be distributed across multiple files; see

appendix B for a short description.

• Improving the automatic indentation feature of Futhark’s Emacs text edit-

ing mode; see https://github.com/HIPERFIT/futhark/blob/master/

tools/futhark-mode.el

1.5 Roadmap

The description in this section does not cover the final, extended design of the

write construct. The rest of the report covers these details:

Section 2

Applications. Covers how write is used to implement several small algo-

rithms such as radix sort and filter.

Section 3

Semantics & Type Checking. Describes the extended construct.

Section 4

Code Generation. Covers the internal representations of the construct and

how they are used to generate OpenCL code.

Section 5

Breadth-First Search. Covers how the Rodinia breadth-first search bench-

mark has been ported to Futhark.

Sections 6 and 7

Optimisations. Goes into most detail with relation to fusion.

Section 8

Design Phases. Outlines the evolution of the construct and why changes

were made from the simple version described in this section.

6

https://github.com/HIPERFIT/futhark/blob/master/tools/futhark-mode.el
https://github.com/HIPERFIT/futhark/blob/master/tools/futhark-mode.el

Section 9

Evaluation. Compares the Futhark ports to Rodinia’s version on several

benchmarks.

2 Applications

Once I had the initial design of write working, I started implementing programs

with it.

2.1 Radix Sort

To get an idea of how to use the write construct in a larger setting, consider

the least significant digit radix sort algorithm. This is a non-comparative integer

sorting algorithm which works by grouping integers by their individual bits, one

bit at a time. For simplicity, my implementation only handles 32-bit unsigned

integers (type u32 in Futhark), but could be extended. The algorithm can be

summarised as this:

1. Input: An array of n unsigned 32-bit integers.

2. For each bit position in a 32-bit unsigned integer, starting from the least

significant digit, do the following:

(a) Sort the array based on the bit values at the current bit position, e.g.

every integer with a 0 bit at the current position is moved to the

beginning of the array, and every integer with a 1 bit is moved to the

end of the array, while still preserving the original order of integers

with the same current bit value.

3. Output: A sorted array of n unsigned 32-bit integers.

See the Futhark program in figure 4 for an example of how to use write. A similar

approach has been taken by Blelloch[1], although with a permute construct.

7

fun [u32, n] main([u32, n] xs) =

radix_sort(xs)

fun [u32, n] radix_sort([u32, n] xs) =

loop (xs) = for i < 32 do

radix_sort_step(xs, i)

in xs

fun [u32, n] radix_sort_step([u32, n] xs, i32 digit_n) =

let bits = map(fn i32 (u32 x) => i32((x >> u32(digit_n)) & 1u32), xs)

let bits_inv = map(fn i32 (i32 b) => 1 - b, bits)

let ps0 = scan(+, 0, bits_inv)

let ps0_clean = map(*, zip(bits_inv, ps0))

let ps1 = scan(+, 0, bits)

let ps0_offset = reduce(+, 0, bits_inv)

let ps1_clean = map(+ ps0_offset, ps1)

let ps1_clean’ = map(*, zip(bits, ps1_clean))

let ps = map(+, zip(ps0_clean, ps1_clean’))

let ps_actual = map(fn i32 (i32 p) => p - 1, ps)

in write(ps_actual, xs, copy(xs))

Figure 4: Radix sort in Futhark using write at the end.

The Futhark program works like this:

1. The entry point function main calls the radix_sort function.

2. The radix_sort function uses the Futhark loop construct to loop over

each of the 32 bit positions in 32-bit integers.

3. The radix_sort_step function sorts the xs array according to the current

bit position.

Each step is equivalent to the concatenation of two filter operations: one that

finds all numbers with a 0 bit in the current bit position, and one that finds all

numbers with a 1 bit in the currrent bit position.

I will not go into most of the lines of the radix_sort function – see the Blelloch

article for a mostly similar structure. The important part is the final expression:

write(ps_actual, xs, copy(xs))

At the point in the execution just before this expression, the ps_actual array

describes a permutation of the xs array: each integer xi in ps_actual is the new

position for the value currently located at index i. The write then permutes xs

accordingly.

What is interesting to note here is that if one intends to use write as a proxy

for permuting an array, i.e. where the second and the third arguments are the

8

same, one must explicitly copy the input array, so that the write does not

simultaneously read from and write to the same array – having to do this is a

result of the construct being in-place.

As we will see later on, write can also be used in more broad ways, where both

its second argument and in-place functionality become useful.

2.2 filter

Futhark currently has a filter construct, but its implementation is sequential

and slow. It is possible to implement a filter function in Futhark’s outer language,

although the fact that Futhark does not have polymorphic functions or accept

anonymous functions as arguments limits how general it can be.

Let bs be a bool array of k elements. Let xs be an array of the same outer

dimension, and of some type. The filter works by creating a new array of indexes

by scanning with addition on the bool array, where True is 1 and False is 0,

nulling indexes with irrelevant values, and using write at the end. This functions

because the scan ignores all elements where the filter condition does not hold.

For example, take this call (where I have set xs to have type [i32]):

filter(fn bool (i32 x) => bs[x], xs)

We give it this data as input:

let bs = [True, True, False, True, False]

let xs = [0, 1, 2, 3, 4]

Knowing the semantics of filter the result should be

[0, 1, 3]

Let us see if we reach the same result going through the outlined write-using

algorithm:

1. First we convert bs into ones and zeroes:

let flags_i = [1, 1, 0, 1, 0]

2. We then use a scan to get indexes:

let is0 = scan(+, 0, flags_i) = [1, 2, 2, 3, 3]

3. These indexes include duplicate indexes for elements with a 0 in the

flags_i array. We remove those with a multiplication:

let is1 = map(*, zip(is0, flags_i))

== [1 * 1, 1 * 2, 0 * 2, 1 * 3, 0 * 3]

== [1, 2, 0, 3, 0]

9

4. These indexes are 1-indexed and not 0-indexed. We subtract 1 from each:

let is2 = [0, 1, -1, 2, -1]

This has the added bonus of giving elements we want to ignore the index

−1, which the write construct ignores.

5. We use write to get a new array:

write([0, 1, -1, 2, -1],

[0, 1, 2, 3, 4],

replicate(filter_size, 0)) == [0, 1, 3]

See the full code in figure 5.

fun *[i32] i32_filter([bool, k] bs, [i32, k] ns) =

let flags = map(fn bool (i32 n) => unsafe bs[n], ns)

let flags_i = map(fn i32 (bool b) => if b then 1 else 0, flags)

let is0 = scan(+, 0, flags_i)

let filter_size = is0[k - 1]

let is1 = map(fn i32 (i32 i, i32 f) => i * f, zip(is0, flags_i))

let is2 = map(fn i32 (i32 i) => i - 1, is1)

in write(is2, ns, replicate(filter_size, 0))

Figure 5: A filter function using write.

2.3 Segmented scan

This does not use the write construct, but is nevertheless important since it is a

useful companion to write and is used by several Futhark programs in section 5.

Segmented scan uses two associative operators: An outer one which is used to

scan on the source array and a mask array, and an inner one which is used to

scan in each segment. This depends on user-supplied operators, which Futhark

supports.

See figure 6 for an implementation in the outer Futhark language. The generality

of such implementations also suffer from the lack of polymorphism and lambda

arguments.

10

fun [i32, k] i32_plus_scan_segm([i32, k] array, [bool, k] mask) =

let (arrayScanned, maskScanned) =

unzip(scan(fn (i32, bool) ((i32, bool) arg0, (i32, bool) arg1) =>

let (a0, m0) = arg0

let (a1, m1) = arg1

let a’ = if m1 then a1 else a0 + a1

let m’ = m0 || m1

in (a’, m’),

(0, False),

zip(array, mask)))

in arrayScanned

Figure 6: A segmented scan function in Futhark.

3 Semantics & Type Checking

The final write construct has been extended to allow for tuples as arguments,

resulting in this type:

write(

([i32, m]_1, ..., [i32, m]_t),

([v_1, m], ..., [v_t, m]),

[v_1, n_1], ..., [v_t, n_t]

) -> [v_1, n_1], ..., [v_t, n_t]

The type [a, m] means an array with row type a and with length m.

The construct has the following semantics:

write(

(indexes_1, ..., indexes_t),

(values_1, ..., values_t),

array_1, ..., array_t

) =

for each indexes_k, values_k, array_k:

for each (index, value) in zip(indexes_k, values_k):

if index >= 0 && index < length(array_k)

then array_k[index] = value

else ignore

return array_1, ..., array_t

The construct takes at least three arguments. The first two arguments are

t-tuples, but can still also be a one-tuple or just a single element like in the

simplified version described in section 1. The first argument is a tuple of arrays

of 32-bit signed integers (i32), and the second argument is a tuple of arrays

with row type v. The remaining arguments are t arrays with row type v and

11

potentially different lengths than the second argument. The return types are

the same as the t final argument arrays.

Note: Internally in the Futhark compiler, an expression can have multiple return

values. In the external language, this is automatically represented as tuples

unless the programmer takes care to manually de-tuple.

The reasons for choosing this representation is covered in section 8.

The construct works in-place: All changes are written to the input arrays

array_1, ..., array_t, which are then also returned as the output arrays.

All indexes in each indexes_k array must be distinct to avoid indeterministic

behavior when executing the memory writes in parallel. It is also invalid for the

second and third arguments to in any way overlap (e.g. being the same array,

or one of the two arguments being part of the array of the other argument);

otherwise the generated OpenCL code might read from and write to the same

array memory (but with different indexes) in parallel.

To have a safe implementation of in-place updating, the write construct depends

on Futhark’s uniqueness types, meaning the third argument to a write must

always be consumable, and not be used more than once. Practically, this means

that one must prefix an asterisk on function parameters that are to be used

in write expressions as input/output arrays to inform the type checker that a

certain array is supposed to be unique. If it is not, the compiler will complain.

The Futhark uniqueness types are designed with safe in-place updates in mind.

Types prefixed with an asterisk must be unique, which requires passing three

compile time checks. Of particular interest to write is the fact that if a value

is consumed, it (or any of its aliases) cannot be used as a non-unique value

anywhere prior to the consumption. This is why the write implementation can

depend on uniqueness types to ensure no overlap, i.e. no aliasing, between the

input/output arrays and the other arguments.

Futhark strives to be as safe a language as possible, meaning the programmer

should not be able to enter programs that give indeterministic behaviour or crash

improperly at runtime. To combat these issues, the language is strongly typed,

and the compiler inserts runtime assertions when it cannot determine at compile

time whether some expression is okay to run at a certain place in a program.

As described in section 1 there are several requirements to write:

1. Each indexes array must have no duplicate indexes – except for negative

values, usually −1, which signal that an (index, value) pair should be

ignored.

2. An indexes array or values array must not overlap with an input/output

array. This is ensured through Futhark’s uniqueness system.

3. All indexes arrays and values arrays must have the same outer dimensions.

The latter two can be ensured at compile time or through cheap runtime assertions,

but the first cannot. It is possible to add runtime assertions to ensure that all

12

indexes are unique and within bounds, but this would have a cost proportional

to the array size and would discourage use of the write construct. Instead we

have extended the semanics of the write construct to allow for ignoring the first

requirement, and put the burden of ensuring correctness on the programmer.

This means:

1. Bounds checking is done in the write kernel itself, and indexes out of

bounds are simply ignored.

2. If an indexes array has duplicate entries, it is the fault of the programmer.

We have chosen to let this part of the construct to be unsafe. This is

not the only unsafe construct in the Futhark outer language: Both scan

and reduce accept user-supplied operators which must be associative for

the results to be deterministic, but which can be non-associative if the

programmer is not on the lookout.

If all the above conditions hold, it is safe for the generated write OpenCL kernels

to engage in concurrent reads and concurrent writes (CRCW).

4 Code Generation

The Futhark compiler can succesfully parse and generate OpenCL code for

Futhark programs using write. The compiler goes through several phases. For

this section to be clear, it is important to distinguish between the representations.

There are roughly three different kinds:

• The syntactical construct write in the outer language. A programmer

uses this in their programs.

• The Haskell data type Write in the compiler module

Futhark.Representation.SOACS.SOAC. This representation is used

by the compiler programmer for optimisations.

• The Haskell data type WriteKernel in the compiler module

Futhark.Representation.Kernels.Kernel. This representation is used

for generating OpenCL kernels as well as making some optimisations not

well-suited for the SOAC representation.

4.1 The Lambda Structure

To program fusion within the existing Futhark compiler framework, I have

chosen to represent write internally using an existing Futhark compiler type,

the Lambda; see figure 7 and figure 8.

13

data LambdaT lore =

Lambda { lambdaParams :: [LParam lore]

, lambdaBody :: BodyT lore

, lambdaReturnType :: [Type]

}

Figure 7: The Lambda data structure of Futhark.Representation.AST.Syntax

in the Futhark compiler.

data SOAC lore =

...

| Write Certificates SubExp (LambdaT lore) [VName] [(SubExp, VName)]

Figure 8: The part of the SOAC data type defining the internal representation of

write.

An expression

write(

(indexes_1, ..., indexes_t),

(values_1, ..., values_t),

array_1, ..., array_t

)

is converted into a Write with the following Lambda:

fn (index_1, ..., index_t, value_1, ..., value_t) =>

(index_1, ..., index_t, value_1, ..., value_t)

This lambda is then applied to to the tuple of arrays

(indexes_1, ..., indexes_t, values_1, ..., values_t)

to find each index and value.

The point of this structure is to store an easily-modifiable function body to be

extended through fusion optimisations. Initially this is the identity function (as

can be seen above), but it can be extended later on, for example in the case of

fusion optimisations.

5 An Example: Breadth-First Search

I have ported the breadth-first search (or just “BFS”) benchmark from Rodinia.

This benchmark turns out to be very applicable to the write construct. The

benchmark was ported from version 3.1 of the Rodinia suite.

14

The benchmark finds distances – the cost – to all nodes from a source node using

breadth-first search. The purpose of the benchmark is to efficiently traverse all

nodes using a GPU.

Rodinia’s represents a graph G(V,E) like the C code in figure 9, except with

dynamic allocation and more verbose variable names.

struct Node

{

int starting;

int no_of_edges;

};

Node graph_nodes[no_of_nodes];

int graph_edges[edge_list_size];

bool graph_mask[no_of_nodes];

bool updating_graph_mask[no_of_nodes];

bool graph_visited[no_of_nodes];

int cost[no_of_nodes];

Figure 9: Rodinia’s BFS data structure.

The Rodinia benchmark aims to support both an arbitrary number of edges

for each node and store all edges for all nodes in contiguous memory. This has

resulted in the above structure which should be interpreted in the following way:

• A Node has no_of_edges edges: graph_edges[starting], graph_edges[starting

+ 1], . . ., graph_edges[starting + no_of_edges - 1].

• A Node is referenced by its index in the graph_nodes array.

• An edge is an index into the graph_nodes array.

• graph_mask, updating_graph_mask, graph_visited, and cost are cen-

tral to the algorithm but are not initialised from the dataset.

graph_mask

Keeps track of which nodes can be used as start nodes when looking

for new paths.

updating_graph_mask

Temporary storage between CUDA kernels.

graph_visited

Keeps track of which nodes have been visited. When all nodes have

been visited, the algorithm terminates.

cost

Stores the breadth-first distance from the source node.

15

Their algorithm structure is outlined in figure 10.

1. Initialise graph_mask, updating_graph_mask, graph_visited, and cost.

• graph_mask, updating_graph_mask, and graph_visited are all ini-

tialised to false at all indexes.

• cost is initialised to -1 at all indexes.

2. Pick a source node, from which the breadth-first distances to all other

nodes are to be found.

3. Set initial values for the source node:

• cost[source] = 0; – the distance between the source node and itself

is 0.

• graph_mask[source] = true; – the source node has been assigned

a cost and can be used as a path origin.

• graph_visited[source] = true; – the source node has been vis-

ited.

4. Do:

(a) For each node, traverse in parallel all its edges, note which target

nodes have been reached, and update their costs.

5. ... while at least one node has had its cost updated. Once all nodes have

received a cost through some path, the algorithm terminates.

Figure 10: Rodinia’s BFS algorithm.

It is a requirement that there is a path through edges from the source node to all

other nodes. Please refer to the Rodinia article for further algorithmic details.

5.1 Parallelism in the Rodinia code

The Rodinia CUDA code invokes two kernels in the do-while loop. The second

kernel merely sets some values for each thread. The first kernel has a for loop in

the range of the number of edges for a node. This kernel is parallel in the sense

that it is run by many threads, but the inner for loop is sequential and can have

different dimensions in different threads.

One goal of porting this benchmark to Futhark was to extract parallelism from

this irregular inner loop.

16

5.2 The Futhark Ports

I have developed three distinct Futhark ports, applying different parallelization

techniques on each of them. I have chosen to use the same data layout as the

Rodinia benchmark.

The Futhark ports have been tested and benchmarked against Rodinia on several

datasets; see section 9 for measurements and general evaluation.

The three Futhark ports are:

bfs_parallel_simple.fut

Uses padding to ensure equally sized arrays whose accesses can be paral-

lelized.

bfs_parallel_segmented.fut

Uses segmented operations to exploit parallelism without padding arrays.

bfs_parallel_segmented_alternate.fut

Does the same as bfs_parallel_segmented.fut, but with larger and

fewer helper arrays.

These approaches are covered in the following subsections. I have also written a

sequential Futhark port, bfs_sequential.fut, which I will not discuss (since it

is very slow).

5.3 The General Idea

How does the write construct apply to the BFS benchmark? Recall that the

contiguous way of storing the edges means that a Node has the following edges:

graph_edges[starting], graph_edges[starting + 1], . . ., graph_edges[starting

+ no_of_edges - 1].

The Rodinia algorithm updates the nodes at these edges, so we need a way to do

that in Futhark. The simplest way is to, for each node, repeatedly use Futhark’s

index assignment in a sequential for loop:

...

for starting <= i < no_of_edges do

let id = graph_edges[i] -- Get a node index.

-- Do some work with ‘id‘.

...

However, this is not parallel. We can instead use write:

...

let edge_indexes = map(+ starting, iota(no_of_edges))

let node_ids = map(fn i32 (i32 i) => graph_edges[i],

edge_indexes)

17

in write(node_ids, ..., ...)

...

Both code snippets fetches all edges reachable from a node, but the one using

write does it in parallel.

Unfortunately, it is not this simple. We would like for the write code snippet

to be run for each node in parallel, but Futhark can only do this if all of the

nodes’ edge arrays have the same dimensions, since they can then be represented

as one contiguous array. In other words, Futhark needs to flatten any nested

parallelism. The following subsections outline two different ways of handling

this.

5.4 Array Padding

We can use padding to force all subarrays to have the same dimensions. We can

apply it like this:

1. Find the node with the maximum number of edges e_max.

2. Replace all iota(no_of_edges) with iota(e_max). This ensures that all

subarrays have the same dimensions.

3. Add an if expression to the map body, setting all edge indexes above the

local no_of_edges to −1. Recall that if an index in a write expression is

below 0, it is ignored.

The bfs_parallel_simple.fut port uses padding. The program structure is

outlined in figure 11. Like in the Rodinia code there is an outer do-while loop.

The step function is run in each iteration. step maps the node_work function

on all active nodes, i.e. nodes which were visited for the first time in the previous

iteration. node_work then calculates the indexes and costs for each new node

reachable through an edge from the current node, setting both index and cost to

−1 in case of padded values. This ensures easy parallelism at the cost of more

memory usage.

18

1. While there are still unvisited paths in the graph:

(a) Find the active node indexes.

(b) Find the maximum number of edges emax of any node.

(c) Find the (index, value) permutation pairs by mapping over each active

node:

i. Calculate the new path costs and their related indexes.

ii. Pad the arrays so they both have length emax. Pad with the value

−1, which will be ignored when used with write.

(d) reshape the mapping result into a single-dimensional array of length

emax · number of active nodes.

(e) write the changes in both path costs and graph mask (to keep track

of which nodes have been visited).

Figure 11: The structure of bfs_parallel_simple.fut.

5.5 Segmented Operations

Another way to represent all node operations in a single array is to use segmented

operations. This approach does not pad its subarrays, but instead uses another

array to keep track of where subarrays start and end. This mask array is then

used in conjunction with the edges array and segmented operations. The basic

building block is the segmented scan, covered in section 2.

One of the segmented Futhark ports is bfs_parallel_segmented.fut. The

program structure is outlined in figure 12. The main function has been left out

because of its similarity to the one in bfs_parallel_simple.fut. Instead of

having a separate function for node calculations, the calculations are squashed

together using masks. The same operations are still executed, but through a seg-

mented scan. This ensures parallelism at the cost of scans (whose implementation

in the Futhark compiler is currently relatively expensive).

There is also bfs_parallel_segmented_alternate.fut, but that program is

mostly the same. Contrary to bfs_parallel_segmented.fut, it creates the

helper arrays once and then reuses them. The downside is that they are always

the largest possible sizes, which is not the case in bfs_parallel_segmented.fut,

where the sizes vary for each call to step.

19

1. While there are still unvisited paths in the graph:

(a) Find the active node indexes.

(b) Find the number of edges for each of the active nodes.

(c) Create a mask of the edge segments for all nodes using write.

(d) Generate the edge indexes for each segment using segmented scan

with addition.

(e) Do the same for the new path costs, using the same mask.

(f) write the new costs and graph mask on the calculated indexes.

Figure 12: The structure of bfs_parallel_segmented.fut.

6 Optimisations

Since write is memory-bound, we would like to a) reduce array accesses, and b)

merge more calculations into write operations. Overall I have attempted two

different kinds of optimisations to the write construct:

Tweaking the generated kernel code to be more efficient

This does not attempt to reduce memory accesses or add more calculations

to the mix, but instead tries to reduce inherent kernel overhead.

Fusing write with other Futhark constructs

This does attempt to reduce memory accesses and calculate more.

6.1 Tweaking the Kernel Code

The generated Futhark OpenCL kernel for a write expression handles only a

single indexes-values pairs tuples per thread. This is not the only way to do it.

Another way is to use chunked kernels where each thread loops through multiple

tuples.

I have prototyped both approaches in CUDA (I find this easier to code by hand

than OpenCL). I have simplified a write kernel into a kernel that writes to

an array in global memory at a given index or given indexes, respectively. See

figure 13 for a straightforward kernel and figure 14 for a chunked version using a

grid-stride to achieve coalesced memory accesses.

20

__global__ void simple_kernel(

int* I, int* V, int* A, size_t N_d, size_t K_d) {

size_t i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < K_d) {

A[I[i]] = V[i];

}

}

Figure 13: Simple kernel.

__global__ void chunked_constants_kernel(

int* I, int* V, int* A, size_t N_d, size_t K_d, size_t N_chunks_d) {

size_t i_thread = blockIdx.x * blockDim.x + threadIdx.x;

size_t n_threads = blockDim.x * gridDim.x; /* use grid-stride */

if (i_thread < N_chunks_d) {

#pragma unroll

for (size_t i = i_thread, j = 0; j < CHUNK_SIZE; i += n_threads, j++) {

if (i < K_d) {

A[I[i]] = V[i];

}

}

}

}

Figure 14: Chunked kernel.

The argument for using the chunked version is that fewer threads need to be

created, since a thread is used for the same task multiple times (but with different

virtual thread ids). This should lead to less overhead and faster execution.

I have measured the two versions on different dataset sizes. All datasets consist

of random integers. See the results in figure 15.

N K Trivial version Chunk size Chunked version

107 106 1017.50 10 1048.40

108 107 9855.10 10 10083.20

108 107 9915.00 100 10222.60

Figure 15: A sample of measurements for the two kernel versions in microseconds.

N is the outer length of the input/output array, K is the outer length of the

indexes and values arrays. All values are averaged over 10 runs.

As can be seen in the results, the chunked version does not appear to be faster.

This might be because the random global memory access is the real bottleneck,

or it might be because of that particular graphics card (an NVIDIA GeForce

21

GTX 690). I cannot rule out that some kernel code tweaks will result in faster

code, but I have yet to find such tweaks.

6.2 Fusion

Fusion is an approach whereby several array-using constructs are “fused” into

a single construct. It is possible to fuse write with itself, with map, with iota,

and with replicate. Read more about this in the next section.

7 Fusion

This section details which fusion optimisations are used by the Futhark compiler

with relation to the write construct.

7.1 Map-Write Fusion

Consider these patterns:

1. write(map(fn (x) => ..., source), values, array)

2. write(indexes, map(fn (x) => ..., source), array)

In each case a write takes the result of a map as its argument in one of its fusable

arguments (i.e. not array). Since indexes and values are put into a single list

when internalised, the two examples essentially describe the same scenario, so

let us focus on case 1.

Case 1 is internalised into the following two SOAC Lambdas:

Map: fn (x) => ...

Write: fn (index, value) => (index, value)

The Map is applied on the source array, while the Write is applied on the result

of the map and the values array.

We can fuse this into a single write. Consider this Write Lambda (the first

element of the result pair is a function application):

fn (map_arg, value) => ((fn (x) => ...)(map_arg), value)

For example, if the ... in the map body was x * 2 + 1, the Write Lambda

would be

fn (map_arg, value) => ((fn (x) => x * 2 + 1)(map_arg), value)

i.e.

22

fn (map_arg, value) => map_arg * 2 + 1, value)

This also extends to write calls with multiple indexes and values, and to map

calls with more than one source array.

This is an optimisation because it reduces the number of intermediate array

accesses and moves more calculations into a write body.

Requirements: To fully remove the map from the program and fuse it into the

write, the write must consume all map outputs and write input/output arrays.

As an example, consider this write expression:

write([1, 3], map(*3, [33, 333]), array)

This will end up with this internal representation:

fn (index, value) => (index, value * 3)

and be mapped on zip([1, 3], [33, 333]).

As an example of what cannot result in valid map-write fusion, consider this

expression:

let indexes’ = map(fn i32 (i32 i) => unsafe array[i], indexes)

in write(indexes’, values, array)

If the map were to be fused into the write, the write would risk reading from

and writing to array at the same time.

7.2 Write-Write Fusion

Consider this code snippet:

write(indexesA, valuesA, arrayA)

write(indexesB, valuesB, arrayB)

These are two independent write calls. They can be fused into a single write:

write((indexesA, indexesB), (valuesA, valuesB), arrayA, arrayB)

By itself this is not a huge optimisation. It means less overhead from starting

kernels, but it still has the same number of global memory accesses. However,

write-write fusion might enable more map-write fusion in the case of the same

map result being used as input in both writes.

This extends to an arbitrary number of write calls.

Requirements: To ensure that no output from one write is used as input

to another write once fused, the dependencies must be horisontal, i.e. no

producer-consumer relationship can be present.

23

Here is an example of two write expressions which cannot be fused:

let array’ = write(indexes1, values1, array)

in write(indexes2, values2, array’)

This exhibits a producer-consumer relationship, as the output of the first write

is used as input to the second write. If this was fused into a single write, both

(index, value) pairs would target the same piece of memory in the same kernel

thread.

7.3 Replicate Removal

This can also be called fusion, but we will call it removal to differentiate it from

SOAC-SOAC fusion.

Consider this expression:

write(indexes, replicate(k, val), array)

This expression sets all elements in array at indexes to val. However, it is

inefficient to create an entire array from the replicate expression when it can

instead me merged into the Write Lambda:

fn (index) => (index, val)

This Lambda still depends on being called with the indexes array, but that is

the only input it needs; instead of reading from two arrays, it now only needs to

read from a single array, since val is always the same.

For example, this program can have a replicate removed:

write([0, 2, 3], replicate(3, 99.9), array)

Internally this will be represented as this:

fn (index) => (index, 99.9)

7.4 Iota Removal

Consider this expression:

write(iota(k), values, array)

We would like to not have iota(k) be an actual array, but instead be made part

of the write call to avoid the array overhead.

This is not doable with the SOAC Write representation since there is no way to

encode the increasing index values 0, 1, . . . , k−1. We instead focus on performing

24

the optimisation on the kernel representation of write: WriteKernel. This data

structure also represents the write as a Lambda, but additionally takes a thread

index in addition to the arguments from the Lambda in the Write SOAC.

The iota(k) expression can be mapped to this thread index variable. The above

write expression is turned into this Lambda:

fn (thread_index, value) => (thread_index, value)

This is an optimisation because the thread index does not come from an array

but instead from an OpenCL call, thus reducing the number of accesses to global

memory.

This extends to more than single-element tuples.

As an extreme example, consider this:

write(iota(k), map(+4, iota(k)), array)

Internally the map(+4, iota(k)) expression will actually just be an Iota ex-

pression, since the internal Iota is more powerful than the external one. This

transforms into this body:

fn (thread_index) => (thread_index, thread_index + 4)

We have eliminated all array accesses, except for writing the results into array.

8 Design Phases

Throughout this project the design of the write expression has gone through

several phases. This section outlines the changes and reasons.

8.1 Initial Design

Initially write would only accept single arrays as arguments, like this type:

write(

[i32, m],

[v, m],

[v, n]

) -> [v, n]

Figure 16: Initial type.

The semantics are the same as in section 1. This design was chosen because it

was simple.

25

8.2 Allowing Tuples as Arguments

Once the compiler could generate working code using the initial design, I extended

the construct to take tuples as arguments, resulting in this type:

write(

([i32, m]_1, ..., [i32, m]_t),

([v, m]_1, ..., [v, m]_t),

([v, n]_1, ..., [v, n]_t)

) -> [v, n]_1, ..., [v, n]_t

Figure 17: Extended type.

This is very similar to the final design in the outer language, but is limited

to three arguments: the indexes tuple, the values tuple, and the input/output

arrays tuple.

Internally this was represented as a SOAC with a data field for each array tuple.

This change allows for better optimisations. Since the internal representation

of write also supports tupled argumants, multiple write expressions can in

some cases be merged together into a single write. This process, which we call

write-write fusion, was covered in section 7.

8.3 Using a Lambda in the Internal Representation

To actually enable fusion within the existing Futhark compiler framework, I

changed the internal representation – for both Write and WriteKernel – to use

a Futhark Lambda data type to represent parts of a write. This did not change

the construct in the outer language.

Since fusion is applied equally on both the indexes and values arrays, they were

merged into a single list of fusable arrays. The list of input/output arrays was

still stored by itself.

8.4 Not Using Tuples for the Input/Output Arrays

The final type of write is, as described in section 1, this:

write(

([i32, m]_1, ..., [i32, m]_t),

([v, m]_1, ..., [v, m]_t),

[v, n_1]_1, ..., [v, n_t]_t

) -> [v, n_1]_1, ..., [v, n_t]_t

Constrast this to the type in figure 17 in which all input/output arrays must

have the same dimensions, not just the same types. This is because Futhark

26

puts restrictions on which values can be inside tuples: Specifically, all arrays in a

tuple must have the same dimensions, since the memory is actually an array of

element tuples. To not get affected by this existing Futhark core design choice,

the final write construct “flattens” the third tuple argument.

The major internal change is that the list of input/output arrays now becomes a

list of pairs of input/output arrays and their lengths, since every input/output

array can now have its own length.

9 Evaluation

This section focuses on the testing and evaluation of Rodinia’s Breadth-First

Search benchmark. I have also tested radix sort, filter, and segmented scan, but

I will not discuss those here.

All Futhark programs wer run on an NVIDIA GeForce GTX 690 (on an AMD

Opteron 6274) using the futhark-opencl compiler from June 9. Refer to

appendix C for details on obtaining the correct version of the compiler.

9.1 Testing

I have tested the correctness of my implementation on several datasets with

input-output pairs:

4096nodes

By a Rodinia random graph generation tool. 4096 nodes. Each node has

below 10 edges.

512nodes high edge variance.in

By my program. 512 nodes. Each node has between 5 and 200 edges.

Generated at random.

Note that Futhark and Rodinia use different data formats for both input and

output, so I have had to create a couple of scripts to convert to and from these

formats (refer to appendix C for details on this).

The tests show that all Futhark ports have the same output as the Rodinia

benchmark for both datasets, both with Futhark’s sequential C backend and

Futhark’s parallel OpenCL backend. Considering the random nature of both

datasets, and the different cases they cover, I assume that the Futhark ports are

correct.

9.2 Measurements

I have benchmarked the different Futhark ports on four datasets:

27

1Mnodes (shorthand: 1M)

By a Rodinia random graph generation tool. 1 million nodes. Each node

has below 10 edges. Distributed along with Rodinia 3.1.

high edge variance 100K (shorthand: H100K)

By my program. Generated at random. 100,000 nodes. Each node has

between 5 and 200 edges. The goal is to have a high edge variance, which

might throw off Rodinia’s implementation by providing a larger degree of

irregularity than in Rodinia’s 1M benchmark.

few nodes many edges 1000n 1000e (shorthand: E1K)

By my program. Generated at random. 1000 nodes. Each node has 1000

edges. The goal is to have many edges, thereby requiring an implementation

to also extract parallelism from them. This might throw off Rodinia’s

implementation by not giving it enough node parallelism to exploit, since

Rodinia handles all edges in a sequential loop.

higher edge variance 5K (shorthand: HH5K)

By my program. Generated at random. 5000 nodes. Each node has

between 5 and 5000 edges. The goal is the same as H100K, except more

extreme.

I think these datasets provide an okay spread.

Rodinia also provides the 4096nodes and 65536nodes datasets, but they are

fast in all implementations and will not be covered in this section because of

their small sizes. Refer to appendix A for all measurements.

Each port has been benchmarked in four ways for each dataset:

Clean (shorthand: C)

With no write-specific optimisations enabled.

Fusion (shorthand: F)

With write-write fusion and map-write fusion enabled.

Elimination (shorthand: E)

With iota elimination and replicate elimination enabled. Also a kind of

fusion, but called elimination to distinguish it from the main fusion.

All (shorthand: A)

With both fusion and elimination enabled.

As such, I have benchmarked one Rodinia version and twelve (3 ports ×
4 optimisation ways) Futhark versions. The Rodinia measurements are averaged

over 10 runs. The Futhark measurements are averaged over the default number

of runs in the futhark-bench tool.

See figure 18 for the Rodinia measurements, and figures 19, 20, and 21 for the

Futhark measurements.

28

1M H100K E1K HH5K
0

10000

20000

30000

40000

50000

60000

70000
M

ic
ro

se
co

n
d
s

Rodinia measurements

Figure 18: Rodinia measurements.

1M C 1M F 1M E 1M A H100K C H100K F H100K E H100K A E1K C E1K F E1K E E1K A HH5K C HH5K F HH5K E HH5K A
0

10000

20000

30000

40000

50000

60000

70000

M
ic

ro
se

co
n
d
s

Futhark bfs_parallel_simple.fut measurements

Figure 19: Futhark measurements for bfs_parallel_simple.fut.

29

1M C 1M F 1M E 1M A H100K C H100K F H100K E H100K A E1K C E1K F E1K E E1K A HH5K C HH5K F HH5K E HH5K A
0

10000

20000

30000

40000

50000

60000

70000

M
ic

ro
se

co
n
d
s

Futhark bfs_parallel_segmented.fut measurements

Figure 20: Futhark measurements for bfs_parallel_segmented.fut.

30

1M C 1M F 1M E 1M A H100K C H100K F H100K E H100K A E1K C E1K F E1K E E1K A
0

10000

20000

30000

40000

50000

60000

70000

M
ic

ro
se

co
n
d
s

Futhark bfs_parallel_segmented-alternate.fut measurements

Figure 21: Futhark measurements for bfs_parallel_segmented_-

alternate.fut. There are no bars for the HH5K dataset because the

program ran out of memory and did not find a result.

9.3 Discussion

In all cases the bfs_parallel_simple.fut port (the one using padding) is the

fastest. For the datasets 1M, H100K, and HH5K, the port is fastest with all

optimisations enabled. For the E1K dataset, enabling all optimisations gives a

small penalty compared to just enabling the elimination optimisations – 2889.50

microseconds compared to 2831.10 microseconds. I have chosen to consider this

difference neglible and declare bfs_parallel_simple.fut with all optimisations

enabled the preferrable way.

The E1K dataset is smaller than the other datasets. It would have been nice

to have it be larger, but I had problems with the generated Futhark programs

crashing on larger sizes, so I stuck with 1000 nodes and 1000 edges.

I have made other discoveries:

• bfs_parallel_segmented.fut is always faster than bfs_parallel_segmented_-

alternate.fut on the four benchmarks. It should be noted, however, that

the alternate version is actually the fastest of the two on the smaller

4096nodes and 65536nodes benchmarks.

• bfs_parallel_segmented_alternate.fut on the 1M benchmark is on

average between 1-4 milliseconds slower with all optimisations enabled

31

than with just one of the groups of optimisations enabled.

I have plotted the performances of bfs_parallel_simple.fut and Rodinia

together in figure 22.

The datasets generated by my graph generator were partly designed to expose

unparallelised code in Rodinia and highlight parallelised code in Futhark. This

appears to have paid off, since Futhark is faster than Rodinia in two of my

benchmarks and very close in another one.

Rodinia is a factor of three faster than futhark on the 1M benchmark. This

benchmark is admittedly the least contrived one of the four. It shows that

Futhark is fast, but not quite as fast as Rodinia for a general case.

1M H100K E1K HH5K
0

10000

20000

30000

40000

50000

60000

70000

M
ic

ro
se

co
n
d
s

Rodinia and Futhark bfs_parallel_simple.fut measurements

Rodinia
Futhark with all write optimisations

Figure 22: Rodinia compared with bfs_parallel_simple.fut and all write

optimisations enabled.

10 Future Work

The write construct has been succesfully implemented, but it can be improved.

• Currently, it is possible to implement filter in the outer language using

write, but this does not make for reusable code, since there is no polymor-

phism. It would be great if someone made a proper filter using write,

either implementing it directly in the compiler as a transformation, or

making a library using Futhark’s new structures, or a combination.

32

• Revisit the BFS ports with segmentation in the future. If the Futhark

compiler infrastructure has changed at that point, the ports might be faster

or slower, since they depend a lot on how especially scan is implemented.

• Find more write-applicable benchmarks and port them to Futhark.

33

Bibliography

[1] Guy E. Blelloch. Prefix sums and their applications. Technical Report

CMU-CS-90-190, 1993.

[2] Manuel M T Chakravarty, Gabriele Keller, Sean Lee, Trevor L McDonell,

and Vinod Grover. Accelerating Haskell array codes with multicore GPUs.

In DAMP ’11: The 6th workshop on Declarative Aspects of Multicore Pro-

gramming. ACM, January 2011.

[3] Robert Clifton-Everest, Trevor L McDonell, Manuel M T Chakravarty, and

Gabriele Keller. Embedding Foreign Code. In PADL ’14: The 16th Inter-

national Symposium on Practical Aspects of Declarative Languages, LNCS.

Springer-Verlag, January 2014.

[4] Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms on

the gpu using cuda. In Proceedings of the 14th International Conference on

High Performance Computing, HiPC’07, pages 197–208, Berlin, Heidelberg,

2007. Springer-Verlag.

[5] Troels Henriksen. Exploiting functional invariants to optimise parallelism: a

dataflow approach (master’s thesis). http://sigkill.dk/pub/thesis.pdf,

2014.

[6] Troels Henriksen and Cosmin E. Oancea. A t2 graph-reduction approach to

fusion. http://futhark-lang.org/publications/fhpc13.pdf, 2013.

[7] Trevor L McDonell, Manuel M T Chakravarty, Vinod Grover, and Ryan R

Newton. Type-safe Runtime Code Generation: Accelerate to LLVM. In

Haskell ’15: The 8th ACM SIGPLAN Symposium on Haskell, pages 201–212.

ACM, September 2015.

[8] Trevor L McDonell, Manuel M T Chakravarty, Gabriele Keller, and Ben

Lippmeier. Optimising Purely Functional GPU Programs. In ICFP ’13: The

18th ACM SIGPLAN International Conference on Functional Programming.

ACM, September 2013.

[9] Jos Stam. Real-time fluid dynamics for games. http://www.dgp.toronto.

edu/people/stam/reality/Research/pdf/GDC03.pdf, 2003.

34

http://sigkill.dk/pub/thesis.pdf
http://futhark-lang.org/publications/fhpc13.pdf
http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/GDC03.pdf
http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/GDC03.pdf

A Measurements

This section contains the detailed measurements for the Breadth-First Search

benchmark.

Dataset Rodinia

4096nodes 414.30
65536nodes 875.90
1Mnodes 10942.00
high edge variance 100K 24641.20
few nodes many edges 1000n 1000e 5257.40
higher edge variance 5K 52400.60

Figure 23: Rodinia measurements.

Dataset clean fusion elimination all

4096nodes 6253.10 6049.70 5315.80 4358.80
65536nodes 12421.00 13125.70 10739.30 10500.60
1Mnodes 37483.00 34810.90 30481.20 29369.20
high edge variance 100K 26180.10 25159.90 22903.90 22803.80
few nodes many edges 1000n 1000e 3557.60 3575.20 2831.10 2889.50
higher edge variance 5K 25033.40 20254.10 23157.60 18091.90

Figure 24: Futhark measurements for bfs_simple.fut.

Dataset clean fusion elimination all

4096nodes 13102.30 10214.90 9347.90 10974.30
65536nodes 28692.30 22539.20 20887.40 20010.50
1Mnodes 68491.80 63959.20 58004.70 58657.00
high edge variance 100K 43784.90 43683.00 40397.40 40223.20
few nodes many edges 1000n 1000e 8584.40 8208.50 7462.40 6672.80
higher edge variance 5K 54042.80 50856.60 53348.90 48918.70

Figure 25: Futhark measurements for bfs_segmented.fut.

Dataset clean fusion elimination all

4096nodes 3810.50 3135.20 3581.80 3401.70
65536nodes 9226.30 8703.20 9333.90 10394.30
1Mnodes 64441.90 59553.20 62124.50 63244.20
high edge variance 100K 63200.10 56735.90 61757.90 56216.90
few nodes many edges 1000n 1000e 7754.30 7672.90 9084.60 8439.40
higher edge variance 5K OOM OOM OOM OOM

Figure 26: Futhark measurements for bfs_segmented_alternate.fut. “OOM”

means that the program ran out of memory before finding a result.

35

B Adding an Include Header

I have extended the Futhark outer language with a new statement:

include module

The above will include all functions from whatever module is and make them

available in the current Futhark program. All include headers must be at the

top of the Futhark file, before any function declarations.

Currently, Futhark can only include files. You can include a file into your main

Futhark program like this:

include other_file

The .fut extension is implied, so the above will include the file other_file.fut.

You can also include files from subdirectories:

include path.to.a.file

The above will include the file path/to/a/file.fut.

This extension added support for headers in general.

36

C Program Code

Futhark is a rapidly changing programming language. As of this writing, the

outer language has received a new array annotations syntax, making much

of my code prior to this change non-functional. For that reason, I refer to

the niels-write-bencharking git branch in Futhark’s git repository for a ver-

sion of the compiler compatible with my produced Futhark code; see https:

//github.com/HIPERFIT/futhark/tree/niels-write-benchmarking/. This

branch contains a compiler from 9 June 2016, as well as code used for bench-

marking the BFS ports with different degrees of optimisations enabled.

All benchmarks can be found in the futhark-benchmarks git repos-

itory on https://github.com/HIPERFIT/futhark-benchmarks. How-

ever, this version has all benchmarks converted to the new syn-

tax. See https://github.com/HIPERFIT/futhark-benchmarks/tree/

7844d9e71af9aaab8990bf9b1d84aff0c1f361a3 for a directory tree containing

the benchmarks in the syntax compatible with the rest of this report.

Here are links to my ports:

BFS

https://github.com/HIPERFIT/futhark-benchmarks/tree/

7844d9e71af9aaab8990bf9b1d84aff0c1f361a3/rodinia/bfs – also

includes scripts for generating the large datasets and converting to and

from the Rodinia and Futhark dataset formats.

Fluid simulation

https://github.com/HIPERFIT/futhark-benchmarks/tree/

7844d9e71af9aaab8990bf9b1d84aff0c1f361a3/accelerate/fluid

– also includes a GUI.

Quasicrystals

https://github.com/HIPERFIT/futhark-benchmarks/tree/

7844d9e71af9aaab8990bf9b1d84aff0c1f361a3/accelerate/crystal

N-body simulation

https://github.com/HIPERFIT/futhark-benchmarks/tree/

7844d9e71af9aaab8990bf9b1d84aff0c1f361a3/accelerate/nbody

37

https://github.com/HIPERFIT/futhark/tree/niels-write-benchmarking/
https://github.com/HIPERFIT/futhark/tree/niels-write-benchmarking/
https://github.com/HIPERFIT/futhark-benchmarks
https://github.com/HIPERFIT/futhark-benchmarks/tree/7844d9e71af9aaab8990bf9b1d84aff0c1f361a3
https://github.com/HIPERFIT/futhark-benchmarks/tree/7844d9e71af9aaab8990bf9b1d84aff0c1f361a3
https://github.com/HIPERFIT/futhark-benchmarks/tree/7844d9e71af9aaab8990bf9b1d84aff0c1f361a3/rodinia/bfs
https://github.com/HIPERFIT/futhark-benchmarks/tree/7844d9e71af9aaab8990bf9b1d84aff0c1f361a3/rodinia/bfs
https://github.com/HIPERFIT/futhark-benchmarks/tree/7844d9e71af9aaab8990bf9b1d84aff0c1f361a3/accelerate/fluid
https://github.com/HIPERFIT/futhark-benchmarks/tree/7844d9e71af9aaab8990bf9b1d84aff0c1f361a3/accelerate/fluid
https://github.com/HIPERFIT/futhark-benchmarks/tree/7844d9e71af9aaab8990bf9b1d84aff0c1f361a3/accelerate/crystal
https://github.com/HIPERFIT/futhark-benchmarks/tree/7844d9e71af9aaab8990bf9b1d84aff0c1f361a3/accelerate/crystal
https://github.com/HIPERFIT/futhark-benchmarks/tree/7844d9e71af9aaab8990bf9b1d84aff0c1f361a3/accelerate/nbody
https://github.com/HIPERFIT/futhark-benchmarks/tree/7844d9e71af9aaab8990bf9b1d84aff0c1f361a3/accelerate/nbody

	Preface
	Introduction
	Applications
	Semantics & Type Checking
	Code Generation
	An Example: Breadth-First Search
	Optimisations
	Fusion
	Design Phases
	Evaluation
	Future Work
	Bibliography
	Measurements
	Adding an Include Header
	Program Code

