
Towards Certified Compilation of Financial Contracts

Danil Annenkov and Martin Elsman

University of Copenhagen
Dept. of Computer Science (DIKU)

{daan,mael}@di.ku.dk

Abstract

We present an extension to a certified financial contract management system that allows for tem-

plated financial contracts and for integration with financial models through verified compilation into

so-called payoff-expressions, which readily allow for determining the value of a contract in a given

evaluation context, such as contexts created for simulations. The templating mechanism is useful both

at the contract specification level, for writing generic reusable contracts, and for reuse of code that,

without the templating mechanism, needs to be recompiled for different evaluation contexts. We report

on the effect of using the certified system in the context of a GPGPU-based Monte Carlo simulation

engine for pricing various over-the-counter (OTC) financial contracts. The full contract-management

system, including the payoff-language compilation, is verified in the Coq proof assistant and certified

Haskell code is extracted from Coq and integrated with an efficient OpenCL pricing engine.

1 Background and Motivation

New technologies are emerging that have potential for seriously disrupting the financial sector.
In particular, blockchain technologies, such as Bitcoins [7] and the Ethereum Smart Contract
peer-to-peer platform [9], have entered the realm of the global financial market and it becomes
essential to ask to which degree users can trust that the underlying implementations are really
behaving according to the specified properties. Unfortunately, the answers are not clear and
errors may result in irreversible high-impact events.

The work presented here builds on a series of previous work on specifying financial contracts
[1, 2, 4, 6, 8] and in particular on a certified financial contract management engine and its
associated contract DSL [3]. This framework allows for expressing a wide variety of financial
contracts (a fundamental notion in financial software) and for reasoning about their functional
properties (e.g., horizon and causality). As in the previous work, the contract DSL that we
consider is equipped with a denotational semantics, which is independent of stochastic aspects
and depends only on an external environment ExtEnv : N × Label → R + B, which maps
observables (e.g., the price of a stock on a particular day) to values. In the work presented
here, we present a certified compilation scheme that compiles a contract into a payoff function,
which aggregates all cashflows in the contract, after discounting them according to some model.
The result represents a single “snapshot” value of the contract. The payoff language, which
is inspired by traditional payoff languages and is well suited for integration with Monte Carlo
simulation techniques for pricing, is essentially a small subset of a C-like expression language
enriched with notation for looking up observables in the external environment. We show that
compilation from the contract DSL to the payoff language preserves the cashflow semantics.

The contract DSL described in [3], deals with concrete contracts, such as a one year European
call option on the AAPL (Apple) stock with strike price $100. The lack of genericity means
that each time a new contract is created (even a very similar one), the contract management
engine needs to compile the contract into the payoff language and further into a target language
for embedding into the pricing engine. To avoid this recompilation problem, we introduce the
notion of a financial instrument, which allows for templating of contracts and which can be

Towards Certified Compilation of Financial Contracts Annenkov, Elsman

turned into a concrete contract by instantiating template variables with particular values. For
example, a European call option instrument has template parameters such as maturity (the end
date of the contract), strike, and the underlying asset that the option is based on. Compiling
such a template once allows the engine to reuse compiled code, giving various parameter values
as input to the pricing engine.

Moreover, an inherent property of contracts is that they evolve over time. This property
is precisely captured by a contract reduction semantics. Each day, a contract becomes a new
“smaller” contract, thus, for pricing purposes, contracts need to be recompiled daily, resulting
in a dramatic compile time overhead. To avoid recompilation in this case, the generated payoff
code is parameterized over the current time so that evaluating the payoff code at time t gives
us the same result (upto discounting) as first advancing the contract to time t, then compiling
it to the payoff code, and then evaluating the result.

The contract analysis and transformation code forms a core code base, which financial
software crucially depends on. A certified programming approach using the Coq proof assistant
allows us to prove the above desirable properties and to extract certified executable code.

2 The Contract Language

We assume a countably infinite set of program variables, ranged over by v . Moreover, we use
n, i , f , and b to range over natural numbers, integers, floating point numbers, and booleans.
We use p to range over parties. The contract language that we consider follows the style of [3]
and is extended with template variables:

c ::= zero | transfer(p, p) | scale(e, c) | translate(t, c) | checkWithin(e, t, c, c) | both(c, c)

e ::= op(e, e, . . . , e) | obs(l, i) | f | b t ::= n | v op ::= add | sub | mult | lt | neg | cond | . . .

Expressions (e) may contain observables, which are interpreted in an external environment.
A contract may be empty (zero), a transfer of one unit (for simplicity) (transfer), a scaled
contract (scale), a translation of a contract into the future (translate), the composition of
two contracts (both), or a generalized conditional checkWithin(cond, t, c1, c2), which checks
the condition cond repeatedly during the period given by t and evaluates to c1 if cond = true

or to c2 if cond never evaluates to true during the period t.
The main difference between the original version of the contract language and the version

presented here is the introduction of template expressions (t), which, for instance, allows us to
write contract templates with the contract maturity as a parameter. This feature requires re-
fined reasoning about the temporal properties of contracts, such as causality. Certain constructs
in the original contract language, such as translate(n, c) and checkWithin(cond , n, c1, c2), are
designed such that basic properties of the contract language, including the property of causality,
are straightforward to reason about. In particular, the displacement numbers n in the above
constructs are constant positive numbers. For templating, we refine the constructs to support
template expressions in place of positive constants. One of the consequences of adding tem-
plate variables is that the semantics of contracts now depends also on mappings of template
variables in a template environment TEnv : Var→ N, which is also the case for many temporal
properties of contracts. For example, the type system for ensuring causality of contracts [3]
and the concept of horizon are now parameterized by template environments.

3 The Payoff Intermediate Language

The main motivation behind the payoff language is to bridge the gap between the contract DSL
and a traditional expression language, which is usually used to implement pricing engines. The

2

Towards Certified Compilation of Financial Contracts Annenkov, Elsman

payoff language should be relatively straightforward to compile to various target languages such
as Haskell, Futhark [5], or OpenCL.

il ::= now | model(l, t) | if(il , il , il) | loopif(il , il , il , t) | payoff(t, p, p) | unop(il) | binop(il , il)

unop ::= neg | not binop ::= add | mult | sub | lt | and | or | . . . t ::= n | i | v | tplus(t, t)

The payoff language is an expression language (il ∈ ILExpr) with binary and unary op-
erations, extended with conditionals and generalized conditionals loopif, behaving similarly
to checkWithin. Template expressions (t ∈ TExprZ) in this language are extensions of the
template expressions of the contract language with integer literals and addition. Terms in the
payoff language can be evaluated given a proper external environment, a proper template envi-
ronment, and a discount function d : N→ R. The result of the evaluation is a single real value
in contrast to the contract language for which the semantics is given in terms of traces.

4 Compiling Contracts to Payoffs

The contract language consist of two levels, namely constructors to build contracts (c) and
expressions used in some of these constructors (scale, checkWithin, etc.). We compile both
levels into a single payoff language. The compilation functions τe J−K : Expr×TExprZ ⇀ ILExpr
and τc J−K : Contr × TExprZ ⇀ ILExpr are recursively defined on the syntax of expressions and
contracts, respectively, taking the starting time t0 ∈ TExprZ as a parameter.

τe Jcond(b, e0, e1])Kt0 = if(τe JbKt0 , τe Je0Kt0 , τe Je1Kt0)

τe Jobs(l, i)Kt0 = model(l, tplus(t0, i))

τc Jtransfer(p1, p2)Kt0 = payoff(t0, p1, p2)

τc Jscale(e, c)Kt0 = mult(τe JeKt0 , τc JcKt0)

τc JzeroKt0 = 0

τc Jtranslate(t, c)Kt0 = τc JcKtplus(t0,t)
τc Jboth(c0, c1)Kt0 = add(τc Jc0Kt0 , τc Jc1Kt0)

τc JcheckWithin(e, t, c1, c2)Kt0 = loopif(τe JeKt0 , τc Jc0Kt0 , τc Jc1Kt0 , t)

Let E JeK : ExtEnv × TEnv ⇀ R + B, C JcK : ExtEnv × TEnv ⇀ N → Party × Party → R, and
IL JilK : ExtEnv × TEnv × (N → R) × Party × Party ⇀ R + B define the semantics of the
contract expression sublanguage, the semantics of contracts, and the semantics of the payoff
language, respectively. We also assume a function HOR : Contr × TEnv → N that returns a
conservative upper bound on the length of a contract. The compilation function satisfies the
following properties:

Theorem 1 (Soundness). Assume parties p1 and p2 and discount function d : N→ R.

• If τe JeK0 = il and E JcKρ,δ = v1 and IL JilKρ,δ,d,p1,p2 = v2 then v1 = v2.

• If τc JcK0 = il and C JcKρ,δ = trace, where trace : N → Party × Party → R, and

IL JilKρ,δ,d,p1,p2 = v then
∑HOR(c,δ)
t=0 d(t)× trace(t)(p1, p2) = v.

To avoid recompilation of a contract when time moves forward, we define a function cutPayoff().
This function is defined recursively on the syntax of intermediate language expressions. The
only interesting case is the case for payoff expressions:

cutPayoff(payoff(t, p1, p2)) = if(lt(t, now), 0, payoff(t, p1, p2))

The function guards the payoff expression with a condition guarding whether this payoff
should have effect. For the remaining cases, the function recurses on subexpressions and returns
otherwise unmodified expressions.

Avoiding recompilation can significantly improve performance especially on GPGPU devices.
On the other hand, additional conditionals are introduced, which results in a number of addi-
tional checks at runtime. Experiments conducted with “hand-compiled” OpenCL code, which

3

Towards Certified Compilation of Financial Contracts Annenkov, Elsman

was semantically equivalent to the payoff language code, show that for the simple contracts,
like European options, additional conditions, introduced by cutPayoff() do not significantly in-
fluence performance. The estimated overhead was around 2.5 percent, while compilation time
is in the order of a magnitude bigger than the total execution time.

5 Conclusion

This work extends the certified contract management system of [3] with template expressions,
which allows for drastic performance improvements and reusability in terms of the concept of
instruments. Along with changes to the contract language, we developed a formalization of
the payoff intermediate language in Coq. Our approach introduces the abstract syntax of the
payoff language as an inductive data type with the semantics of the payoff language and the
compilation from the contract DSL defined as partial functions (using Coq’s Option data type).

A number of important properties (including soundness) of the translation from contracts
to the payoff language have been proven in Coq. Moreover, Coq’s code extraction mechanism is
used to obtain a certified compiler implementation in the Haskell programming language. We
are currently working on establishing the important property of the new time-parameterized
payoff evaluation function, which states that given a contract c and its compilation into payoff
code il , evaluating il at time t gives us the same result (upto discounting) as first advancing c
to time t, then compiling it to payoff code, and then evaluating the result at time 0.

References

[1] Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob Grue Simonsen, and Christian Stefansen.
Compositional specification of commercial contracts. International Journal on Software Tools for
Technology Transfer, 8(6):485–516, 2006.

[2] B.R.T Arnold, A. Van Deursen, and M. Res. An algebraic specification of a language for describing
financial products. In ICSE-17 Workshop on Formal Methods Application in Software Engineering,
pages 6–13, 1995.

[3] Patrick Bahr, Jost Berthold, and Martin Elsman. Certified symbolic management of financial multi-
party contracts. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP’2015, pages 315–327, September 2015.

[4] Simon Frankau, Diomidis Spinellis, Nick Nassuphis, and Christoph Burgard. Commercial uses:
Going functional on exotic trades. Journal of Functional Programming, 19(1):27–45, 2009.

[5] Troels Henriksen, Martin Elsman, and Cosmin E Oancea. Size slicing: a hybrid approach to size
inference in Futhark. In Proceedings of the 3rd ACM SIGPLAN workshop on Functional high-
performance computing, pages 31–42. ACM, 2014.

[6] Tom Hvitved, Felix Klaedtke, and Eugen Zalinescu. A trace-based model for multiparty contracts.
The Journal of Logic and Algebraic Programming, 81(2):72–98, 2012.

[7] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[8] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing contracts: an adventure
in financial engineering (functional pearl). In Proceedings of the ACM SIGPLAN International
Conference on Functional Programming, ICFP’2000, September 2000.

[9] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2015. Homestead
revision, Founder, Ethereum & Ethcore, gavin@ethcore.io.

4

	Background and Motivation
	The Contract Language
	The Payoff Intermediate Language
	Compiling Contracts to Payoffs
	Conclusion

