
Towards Certified Management of Financial Contracts∗

Patrick Bahr, Jost Berthold and Martin Elsman

University of Copenhagen
Dept. of Computer Science (DIKU)
{paba,berthold,mael}@di.ku.dk

1 Introduction

Banks and financial institutions nowadays of-
ten use domain-specific languages (DSLs) for
describing complex financial contracts, in par-
ticular, for specifying how asset transfers for a
specific contract depend on underlying observ-
ables, such as interest rates and stock prices.

The seminal work by Peyton-Jones, Eber,
and Seward on financial contracts [7] shows
how an algebraic approach to contract spec-
ification can be used for valuation of con-
tracts (when combined with a model of the
underlying observables) and for managing how
contracts evolve under so-called fixings1 and
decision-taking, with the contracts eventually
evaporating into the empty contract, for which
no party have further obligations. The ideas
have emerged into Eber’s company LexiFi,
which has become a leading software provider
for a range of financial institutions, with all
contract management operations centralised
around a domain-specific contract language
hosted in MLFi [5], a derivative of the func-
tional programming language OCaml.

In this paper, we present a small simple con-
tract language, which rigorously relegates any
artefacts of modelling and computation from
its core. The language shares the same vi-
sion as the previously mentioned work with
the addition that it (a) allows for specifying
multi-party contracts [1], such as entire port-
folios, (b) has good algebraic properties, well
suited for formal and verified reasoning, and
yet (c) allows for expressing many interesting
contracts appearing in real-world portfolios,
such as various variations of so-called barrier

∗Work partially supported by the Danish Coun-
cil for Strategic Research under contract number 10-
092299 (Hiperfit [3]), and the Danish Council for In-
dependent Research under Project 12-132365.

1Underlying observables gradually become fixed
when time passes by.

options. We show that plenty of information
can be derived from, and useful manipulations
defined on, just the symbolic contract specifi-
cation, independent of any stochastic aspects
of the modelled contracts. Contracts modelled
in our language are analysed and transformed
for management according to a precise cash-
flow semantics, modelled and checked using
the Coq proof assistant. Implementations in
Haskell and Coq are available online2 together
with machine-checkable proofs (in Coq) of the
key properties of the contract language.

2 The Contract Language

Financial contracts essentially define future
transactions (cash-flows) between different
parties who agree on a contract. Amounts in
contracts may be scaled using a real-valued ex-
pression (ExprR), which may refer to observable
underlying values, such as foreign exchange
rates, stock prices, or market indexes. Like-
wise, contracts can contain alternatives de-
pending on Boolean predicates (ExprB), which
may refer to observables, as well as external
decisions taken by the parties involved.

Observables and choices in our contract lan-
guage are “observed” with a given offset from
the current day. In general, all definitions use
relative time, aiding the compositionality of
contracts.

A common contract structure is to repeat a
choice between alternatives until a given end
date. As a simple example, consider an FX
option on US dollars: Party X may, within 90
days, decide to buy USD 100 for a fixed rate r
of Danish Kroner from Party Y:

option = checkWithin(chosenBy(X, 0), 90, trade, zero)

trade = scale(100, both(transfer(Y,X,USD), pay))

pay = scale(r, transfer(X,Y,DKK))

2See https://github.com/HIPERFIT/contracts.

1

https://github.com/HIPERFIT/contracts


Towards Certified Management of Financial Contracts Bahr, Berthold, Elsman

The checkWithin construct generalises an al-
ternative by iterating the decision (chosenBy)
of party X. If X chooses at one day before the
end (90 days), the trade comes into effect, con-
sisting of two transfers (both) between the par-
ties. Otherwise, the contract becomes empty
(zero) after 90 days.

The combinators for contracts are thus:

zero : Contr

transfer : Party × Party × Currency→ Contr

scale : ExprR × Contr→ Contr

translate : N× Contr→ Contr

checkWithin : ExprB × N× Contr × Contr→ Contr

both : Contr × Contr→ Contr

The translate combinator simply translates a
contract a number of days into the future. In
the expression language, we also define a spe-
cial expression acc which accumulates a value
over a given number of days from today.

acc : (Exprα → Exprα)→ N→ Exprα → Exprα

The accumulator can be used to compute av-
erages (for so-called Asian options), or more
generally to carry forward a state while com-
puting values.

2.1 Denotational Semantics

The semantics of a contract is given by its cash-
flow, which is a partial mapping from time to
transfers between two parties:

Trans = Party × Party × Currency→ R
Flow = N⇀ Trans

The cash-flow is a partial mapping since it may
not be determined due to insufficient knowl-
edge about observables and external decisions,
provided by an environment ρ ∈ Env:

Env = Z→ X ⇀ R ∪ B
C J·K· : Contr × Env→ Flow

Note that the environment is a partial map-
ping from Z, i.e. it may provide information
about the past. This denotational semantics
is the foundation for the formalisation of sym-
bolic contract analyses, contract management
and transformations.

An important property of the semantics of
contracts is monotonicity, i.e.

C JcKρ1
⊆ C JcKρ2

if ρ1 ⊆ ρ2

where ⊆ denotes the subset inclusion of the
graph of two partial functions.

2.2 Contract Analysis

When dealing with contracts we are interested
in a number of semantic properties of con-
tracts, e.g. causality (Does the cash-flow at
each time t depend only on observables at time
≤ t?), horizon (From which time onwards is
the cash-flow always zero?) and dependen-
cies (Which observables does the cash-flow de-
pend on?). Such properties can be charac-
terised precisely using the denotational seman-
tics. For example a contract c is causal iff for
all t ∈ N and ρ1, ρ2 ∈ Env such that s ≤ t im-
plies ρ1(s) = ρ2(s) for all s ∈ Z, we have that
C JcKρ1

(t) = C JcKρ2
(t). That is, the cash-flows

at any time t do not depend on observables
and decisions after t.

It is in general undecidable whether a con-
tract is causal, but we can provide conservative
approximations. For instance we have an in-
ductively defined predicate Causal such that
if Causal(c), then c is indeed causal. This
is not unlike type checking, which provides a
conservative approximation of type safety.

3 Management and Transformation

Apart from a variety of analyses, our frame-
work provides functionality to transform con-
tracts in meaningful ways. The most basic
form of such transformations are provided by
algebraic laws. These laws of the form c1 ≡ c2
state when it is safe to replace a contract c1
by an equivalent contract c2. Using our deno-
tational semantics, these algebraic laws can be
proved in a straightforward manner: we have
c1 ≡ c2 iff C Jc1Kρ = C Jc2Kρ for all ρ ∈ Env.

More interesting are transformations that
are based on knowledge about observables and
external decisions. That is, we transform a
contract c based on an environment ρ ∈ Env

2



Towards Certified Management of Financial Contracts Bahr, Berthold, Elsman

that encodes the knowledge that we already
have. We consider two examples, specialisa-
tion and reduction.

3.1 Specialisation

A specialisation function f performs a partial
evaluation of a contract c under a given en-
vironment ρ. The resulting contract f(c, ρ) is
equivalent to c under the environment ρ. More
generally, we have that C Jf(c, ρ)Kρ′ = C JcKρ
for any environment ρ′ ⊆ ρ, including the
empty environment.

3.2 Reduction Semantics

The contract language is also equipped with a
reduction semantics [1], which advances a con-

tract by one time unit. We write c
τ⇒ρ c

′, to
denote that c is advanced to c′ in the environ-
ment ρ, where τ ∈ Trans indicates the transfers
that are necessary (and sufficient) in order to
advance c to c′. The reduction semantics can
be implemented as a recursive function of type

f⇒ : Contr × Env ⇀ Contr × Trans

The function f⇒ takes a contract c and an en-
vironment ρ, and returns the residual contract
c′ and the transfers τ such that c

τ⇒ρ c
′. The

argument ρ typically contains the knowledge
that we have about observables and decisions
up to the present time, i.e. for time points ≤ 0.

The reduction semantics is sound and com-
plete w.r.t. the denotational semantics:

Theorem 1. If c
τ⇒ρ c

′, then C JcKρ (0) = τ
and C JcKρ (i + 1) = C Jc′Kρ↑ (i) for all i ∈ N,
where ρ ↑ (i) = ρ(i+ 1). If C JcKρ (0) = τ then

there is some c′ with c
τ⇒ρ c

′.

4 Related and Future Work

Based on the seminal work by Peyton-Jones,
Eber, and Seward [7], and even earlier work
on contract languages [2], in the last decade,
domain specific languages for contract specifi-
cations have been widely adopted by the finan-
cial industry [4, 5, 8], allowing for more agility,

shorter time-to-market for new products, and
increased assurance of software quality.

For future work we plan to implement and
certify more extensive analyses and transfor-
mations, e.g. scenario generation and “zoom-
ing” (changing the granularity of time). More-
over, an important goal is to generate from a
contract efficient code to calculate its payoff
[6]. The Haskell implementation is translated
by hand into Coq definitions, which are the ba-
sis for the certification. This approach is ben-
eficial for rapid prototyping, but our goal is
to turn this process around and automatically
extract Haskell code from the Coq definitions.

References

[1] J. Andersen, E. Elsborg, F. Henglein, J. G.
Simonsen, and C. Stefansen. Compositional
specification of commercial contracts. STTT,
8(6):485–516, 2006.

[2] B. Arnold, A. V. Deursen, and M. Res. An
algebraic specification of a language for de-
scribing financial products. In ICSE-17 Work-
shop on Formal Methods Application in Soft-
ware Engineering, 1995.

[3] J. Berthold, A. Filinski, F. Henglein,
K. Larsen, M. Steffensen, and B. Vinter.
Functional High Performance Financial IT:
The HIPERFIT Research Center in Copen-
hagen. In TFP’11, Revised Selected Papers,
2012.

[4] S. Frankau, D. Spinellis, N. Nassuphis, and
C. Burgard. Commercial uses: Going func-
tional on exotic trades. J. Funct. Program.,
19:27–45, 2009.

[5] LexiFi. Contract description language
(MLFi). Web page and white paper.
http://www.lexifi.com/technology/

contract-description-language.

[6] C. Oancea, C. Andreetta, J. Berthold,
A. Frisch, and F. Henglein. Financial software
on GPUs: between Haskell and Fortran. In
Funct. High-Perf. Comp. (FHPC’12), 2012.

[7] S. Peyton Jones, J.-M. Eber, and J. Seward.
Composing contracts: an adventure in finan-
cial engineering. In ICFP, 2000.

[8] SimCorp A/S. XpressInstruments solutions.
Company white-paper. Available from http:

//simcorp.com, 2009.

3

http://www.lexifi.com/technology/contract-description-language
http://www.lexifi.com/technology/contract-description-language
http://simcorp.com
http://simcorp.com

	Introduction
	The Contract Language
	Denotational Semantics
	Contract Analysis

	Management and Transformation
	Specialisation
	Reduction Semantics

	Related and Future Work

