
Bachelor Projects in the HIPERFIT Research Center

Additional information about the HIPERFIT Research Center and the HIPERFIT
Portfolio Management Prototype
February, 2016

Danil Annenkov and Martin Elsman (supervisors)
Department of Computer Science
University of Copenhagen (DIKU)

Developing and Improving the “HIPERFIT Portfolio
Management Prototype”

The “HIPERFIT Portfolio Management Prototype” is a System for Managing and
Pricing Portfolios of Over-the-Counter Financial Contracts

The HIPERFIT Context

The HIPERFIT Research Center conducts
research (with input from our industrial
partners) in the span between
FP: Functional programming and
programming language semantics (e.g.,
type systems and domain-specific
languages)
FM: Finance mathematics
HP: High-performance and parallel
computing (e.g., GPGPU programming)

Come join the HIPERFIT team in
developing the system further! There a
many possibilities for extending the
usefulness of the system - look at the
next slides for possible projects...

2

HIPERFIT

FP

HP
FM

The Prototype: The HIPERFIT Portfolio
Management Prototype integrates a
number of HIPERFIT research efforts
and seeks to demonstrate the application
of the research in practice, including:

- Domain-specific languages for
contract management

- Certified program development
- High-performance numeric

computations on GPGPUs

What is HIPERFIT?

Research Center funded by the Danish Council for Strategic Research (DSF) in
cooperation with financial industry partners:

3

HIPERFIT: Functional High Performance Computing for Financial IT.
- Six years lifespan:
- Funding volume: 5.8M EUR.
- 78% funding from DSF, 22% from partners and university.
- 8(10+) Ph.D. + 2(0) post-doctoral positions (CS and Mathematics).
- Funding for collaboration with small/medium-sized businesses.

HIPERFIT Projects and Vision
Financial Contract
Specification (DIKU, IMF)
Use declarative combinators for
specifying and analyzing
financial contracts.

Automatic Loop Parallelization (DIKU)
Outperform commercial compilers on a large
number of benchmarks by parallelizing and
optimizing imperative loop structures.

Parallelization of Financial Applications
(DIKU, LexiFi)
Analyze real-world financial kernels, such as
exotic option pricing, and parallelize them to
run on GPGPUs.

Streaming Nested Data Parallelism (DIKU)
Reduce space complexity of "embarrassingly
parallel" functional computations by streaming.

Risk (IMF, DIKU, SimCorp)
Parallelize calculation of VaR and
exposure to counterparty credit risk.

APL Compilation (DIKU, Insight
Systems, SimCorp)
Develop techniques for compiling
arrays, specifically a subset of APL,
to run efficiently on GPGPUs and
multi-core processors.

Big Data – Efficient queries
(DIKU, SimCorp)
Parallelize big data queries.

Optimal Decisions in Household Finance
(Math, Nykredit, FinE)
Develop quantitative methods to solve
individual household's financial decision
problems.

Key-Ratios by AD (DIKU)
Use automatic differentiation for
computing sensibilities to market
changes for financial contracts.

Futhark

Bohrium (NBI)
Collect and optimize bytecode instructions at
runtime and thereby efficiently execute
vectorized applications independent of
programming language and platform.

A Functional Data-Parallel
Programming Language

4

HIPERFIT Projects and Vision
Financial Contract
Specification (DIKU, IMF)
Use declarative combinators for
specifying and analyzing
financial contracts.

Automatic Loop Parallelization (DIKU)
Outperform commercial compilers on a large
number of benchmarks by parallelizing and
optimizing imperative loop structures.

Parallelization of Financial Applications
(DIKU, LexiFi)
Analyze real-world financial kernels, such as
exotic option pricing, and parallelize them to
run on GPGPUs.

Streaming Nested Data Parallelism (DIKU)
Reduce space complexity of "embarrassingly
parallel" functional computations by streaming.

Risk (IMF, DIKU, SimCorp)
Parallelize calculation of VaR and
exposure to counterparty credit risk.

APL Compilation (DIKU, Insight
Systems, SimCorp)
Develop techniques for compiling
arrays, specifically a subset of APL,
to run efficiently on GPGPUs and
multi-core processors.

Big Data – Efficient queries
(DIKU, SimCorp)
Parallelize big data queries.

Optimal Decisions in Household Finance
(Math, Nykredit, FinE)
Develop quantitative methods to solve
individual household's financial decision
problems.

Key-Ratios by AD (DIKU)
Use automatic differentiation for
computing sensibilities to market
changes for financial contracts.

Futhark

Bohrium (NBI)
Collect and optimize bytecode instructions at
runtime and thereby efficiently execute
vectorized applications independent of
programming language and platform.

A Functional Data-Parallel
Programming Language

5

Why a HIPERFIT Prototype Framework?
Motivation: Develop a framework that allows for experimenting with solutions
to key challenges in the financial industry, including contract management,
portfolio analytics, and parallel Monte Carlo techniques for contract and
portfolio evaluation and for calculating risk measures.

Benefits of a Prototype
 1. Research results to the test
 2. Projects unite
 3. Visibility
 4. Student activities
 5. Giving back to society
 (open source)

HIPERFIT Goal: In two years time, we would like our partners, and industrial peers, to look
towards HIPERFIT to find parallel (i.e., scalable) techniques for solving demanding computational
problems within the domain of finance.

6

Prototype Ideas

Main idea: Build a solution for managing and pricing over-
the-counter (OTC) financial contracts.
(resembling LexiFi Apropos and SimCorp’s XpressInstruments)

7

1. Build the system around the concept of a “live”
portfolio of contracts.

2. As time goes by, the portfolio evolves according to
a reduction semantics for contracts.

3. Allow the portfolio to be priced (i.e., valuated) at
any chosen point in time (e.g., yesterday, now, or
tomorrow).

4. Give the user good performance and loads of
features… :)

I: A Certified Contract Management Engine

LexiFi/SimCorp style contract
combinators for specifying financial
derivatives [1].

Contract kernel written in Coq, a
functional language and proof
assistant for establishing program
properties (verified correctness wrt a
cash-flow denotational semantics).

Certified management code
extracted from the Coq
implementation (fixings, decisions).

Valuation/pricing: payoff functions
extracted from contracts (input to
stochastic pricing engine).

[1] Patrick Bahr, Jost Berthold, and Martin Elsman. Towards Certified
Management of Financial Contracts. In Proceedings of the 26th Nordic
Workshop on Programming Theory (NWPT’14). October, 2014.

[2] Patrick Bahr, Jost Berthold, and Martin Elsman. Certified Symbolic
Management of Financial Multi-Party Contracts. In Proceedings of the
ACM SIGPLAN International Conference on Functional Programming
(ICFP’15). September, 2015.8

American Option contract in natural language:

At any time within the next 90 days, �party X may decide to
buy USD 100 from party Y, for a fixed rate r=6.65 of Danish
Kroner.

Specified in the contract language:

if obs(X exercises option) within 90 then
 100 × (USD(Y→X) & 6.65 × DKK(X→Y))
else ∅

The Contract Language

Features:

Compositionality
Contracts are time-relative ⇒ compositionality

Multi-party
Possibility for specifying portfolios

Contract management
Contracts can be managed (fixings, splits, …)

Contracts gradually reduce to the empty contract

Contract utilities (symbolic)
Contracts can be analysed in a variety of ways

(find horizon, potential cash-flows, …)

Assumptions

d integer (specifies a number of days)

p ranges over parties (e.g., YOU, ME, X, Y)

a assets (e.g., USD, DKK)

Expressions (extended expressions for reals and booleans)

obs(l,d) observe the value of l (a label) at time d

acc(f,d,e) accumulate function f over the previous d days

Contracts (c)

∅ empty contract with no obligations

a(p1 → p2) p1 has to transfer one unit of a to p2

c1 & c2 conjunction of c1 and c2

e × c multiply all obligations in c by e

d↑c shift c into the future by d days

let x = e in c bind today’s value of e to x in c

if e within d then c1 else c2 behave as c1 when e becomes true

if e does not become true within d

days, behave as c29

Expressibility: More Contract Examples

Asian Option

90 ↑ if obs(X exercises option) within 0 then
 100 × (USD(Y→X) & (rate × DKK(X→Y)))

else ∅

where

rate = 1/30 · acc(λr.r + obs(FX USD/DKK), 30, 0)

Notice: the special acc-construct is used to
compute an average rate.

Simple Credit Default Swap (CDS)

The bond:
cbond = if obs(X defaults, 0) within 30 then ∅

 else 1000 × DKK(X→Y)

Insurance:
ccds = (10 × DKK(Y→Z)) &

 if obs(X defaults, 0) within 30 then
 900×DKK(Z→Y)

 else ∅

Entire Contract:

C = Cbond & Ccds

10

Z

Y
X

Benefits of the Formal Framework
Some contract equivalences

e1 × (e2 × c) ≃ (e1 · e2) × c
d1 ↑ (d2 ↑ c) ≃ (d1 + d2) ↑ c
d ↑ (c1 & c2) ≃ (d ↑ c1) & (d ↑ c2)
e × (c1 & c2) ≃ (e × c1) & (e × c2)

11

d ↑ ∅ ≃ ∅
r × ∅ ≃ ∅
0 × c ≃ ∅
c & ∅ ≃ c
c1 & c2 ≃ c2 & c1

With a netting semantics:

(e1 × a(p1→p2)) & (e2 × a(p1→p2)) ≃ (e1 + e2) × a(p1→p2)

 Other benefits:

- Type system for causality
- Correctness of contract evolution (reduction semantics)
- Calendar support using observables

II: A Parallel Pricing Engine

Parallelized version of LexiFi pricing engine
[2,3].

Code ported to OpenCL, targeting GPGPUs.

Extracted contract payoff function fused into
OpenCL kernel.

Market data provided by framework.

[3] Cosmin Oancea, Jost Berthold, Martin Elsman, and Christian Andreetta. A Financial Benchmark for GPGPU
Compilation. In 18th International Workshop on Compilers for Parallel Computing (CPC’15). January 2015.

[4] Cosmin E. Oancea, Christian Andreetta, Jost Berthold, Alain Frisch, and Fritz Henglein. Financial software on GPUs:
between Haskell and Fortran. In Proceedings of the 1st ACM SIGPLAN workshop on Functional high-performance
computing (FHPC ‘12). Copenhagen 2012.

12

Web-server

Architecture overview

13

Clients

Web browser

Contract DSL management

DSL to OpenCL translator

GPU execution framework

Financial contract information system

User data

Market
data

Mobile client

JSON API

Online
market

data
sources

The prototype architecture is simple, yet
flexible.

3 (4) tier architecture:

- Front-end (web client)

-

- GPU server

Web server
Contract management

FINPAR
C++, OpenCL

Architecture of current implementation

14

Haskell

JSON, HTML

Web browser

Server
Financial contract information

system

Market
data

User data

Market
data
CSV

Input data and
OpenCL code generation

Contract in DSL

GPU execution framework

OpenCL code

Market
data

Input data
D

ata providers

Javascript

Database

15

A simple database schema for an
extensible framework.

Basic entities (tables):
- user
- portfolio
- market data (db_corr, db_quotes)
- model data

Schema generated from Haskell’s
Persistent library, which explains the
weird naming...

GUI Mockups

16

1. An instrument maps instrument-
specific parameter data to contracts.

2. Available instruments include, a Call
option and a Rainbow option.

3. A portfolio is a set of contracts (no
strategies assigned).

4. Contracts are added by instantiating
instruments with parameter data (e.g.,
start date, strike)

5. A portfolio and its contained contracts
are priced based on a pricing date
and an interest rate for discounting
(and for Black-Scholes drift).

Prototype DEMO

prototype.hiperfit.dk
Prototype developed primarily by

HIPERFIT PhD Student Danil Annenkov

17

http://prototype.hiperfit.dk
http://prototype.hiperfit.dk

Implementation

- Available for public forking on
github…

- Uses HIPERFIT’s contract and
finpar github repositories as sub-
modules.

- Uses the GHC generics library
for generating GUIs for
instruments based on instrument
parameter types.

- Uses the scotty web framework
(based on WAI and Warp - fast
Haskell web-server)

- Uses blaze-html eDSL for
markup and Clay eDSL for CSS

- Uses Persistent library for type-
safe database access

18

https://github.com/HIPERFIT/prototype

Performance

Pricing itself is very fast, but
compiling kernel code and
running it takes quite a lot of
time.

The web server is also quite
fast and adds almost no
overhead.

19

of iterations Overall (finpar) Build + runtime Actual runtime
100000 7.134 5.437685 0.001296

1000000 7.156 5.454617 0.001423
10000000 7.165 5.426234 0.003808

Prototype Future Work

● Expand work on risk (Greeks, CVA, PFE).

● Formulate detailed student projects on visualization, simulation, …

● Use Futhark as the basis for pricing and risk calculations [6-8].

● Interface with an online stock quote API.

20

[5] Troels Henriksen and Cosmin E. Oancea. A T2 Graph-Reduction Approach To Fusion. In 2nd ACM SIGPLAN Workshop
on Functional High-Performance Computing. Boston, Massachusetts. September 2013.

[6] Troels Henriksen and Cosmin E. Oancea. Bounds Checking: An Instance of Hybrid Analysis. In ACM SIGPLAN
International Workshop on Libraries, Languages and Compilers for Array Programming (ARRAY’14). Edinburgh, UK. June, 2014.

[7] Troels Henriksen, Martin Elsman, and Cosmin E. Oancea. Size Slicing - A Hybrid Approach to Size Inference in Futhark.
In Proceedings of the 3rd ACM SIGPLAN workshop on Functional High-Performance Computing (FHPC’14). Gothenburg, SE.
September, 2014.

