
Typed Array Intermediate Language

Martin Dybdal

University of Copenhagen

dybber@dybber.dk

10. december 2014

1 / 21

Goals

I GPU programming for APL fingers

I Develop backend technology independently of APL. Other
frontends could be J, K, some new Haskell vector-library or a
NumPy/SciPy clone.

I Bridging the PL and APL communities

I Performance on code written by non-programmers (e.g.
biologist or quant code)

2 / 21

Why APL?

I Notation for non-programmers (biologist/chemist/quants)

I APLs primitives have proven suitable for many applications

I APL programs are inherently parallel

”Unlike other languages, the problem in APL is not
determining where parallelism exists. Rather, it is to
decide what to do with all of it.”

- Robert Bernecky, 1993

I Many existing programs/benchmarks
I We don’t have to write our own
I Writing the benchmarks ourselves might not represent how it

will be used in a production environment

3 / 21

Overview

I APL: Dynamically weakly typed array language
I TAIL: Statically strongly typed array language as target for

APL and friends.
I type inference, no type-annotations
I polymorphic shape-types (similar to Repa shapes)
I singleton-types
I no nested arrays
I no heterogeneous arrays

4 / 21

TAIL

I Make vectorisation and scalar extensions explicit

I Statically determine array ranks and shapes (when possible)

I Insert numeric coercions

I Resolve overloading of numeric operations

I Resolve identity items (for reductions) and default arguments
(e.g. for over takes)

I Resolve overloading of shape operations

5 / 21

Implicit vectorisation

Most APL primitives are defined for a specific argument rank k ,
but in the case it is applied to any array with a rank higher than k
it will be applied independently to each rank-k subarray.

Negation

-17

�17

-6
�1 �2 �3 �4 �5 �6

-2 3�6
�1 �2 �3
�4 �5 �6

6 / 21

Implicit vectorisation

In TAIL we make vectorisation explicit by inserting applications of
each and zipWith:

each : ∀αβγ. (α→ β)→ [α]γ → [β]γ

zipWith : ∀α1α2βγ. (α1 → α2 → β)→ [α1]γ → [α2]γ → [β]γ

Example

(2 3�1) + (2 3�6)

⇓

zipWith(addi, reshape([2,3], [1]),

reshape([2,3], iota(6)))

7 / 21

Implicit vectorisation

In some cases, applying “each” is not what we want, as it might
lead to nested parallelism:

Reduction

+/1 2 3 4

10

2 3�6
1 2 3

4 5 6

+/2 3�6 " sum each row

6 15

8 / 21

Implicit vectorisation

Instead we make reductions work directly on any array with
rank > 0.

reduce : ∀αγ.(α→ α→ α)→ α→ [α]1+γ → [α]γ

Reduction translation

+/2 3�6 " sum each row

⇓

reduce(addi, reshape([2,3], iota(6)))

It still holds that: Most APL primitives are defined for a specific
argument rank k, but in the case it is applied to any array with a
rank higher than k it will be applied independently to each rank-k
subarray.

9 / 21

Shape types

When reshaping an array and the length of the shape-vector is
statically known, we will always know the shape of the resulting
array.

reshape : ∀αγγ′.〈int〉γ′ → α→ [α]γ → [α]γ
′

I 〈int〉γ′
is a length γ′ integer vector

I [α]γ
′

is an array with rank γ′

Limitation wrt. APL: We must know the length of the
shape-vector statically, e.g. it cannot be the result of a filter.

10 / 21

Type system

κ ::= int | double | bool | α (base types)

ρ ::= i | γ | ρ+ ρ′ (shape types)

τ ::= [κ]ρ | 〈κ〉ρ | Sκ(ρ) | τ → τ ′ (types)

σ ::= ∀~α~γ.τ (type schemes)

I Shape types are tree structured to support drop and
catenate

I Sint(ρ) is the singleton integer ρ

I We sometimes write κ instead of [κ]0

11 / 21

Shape operations

APL op(s) TySc(op)

� shapeV : ∀αγ.〈α〉γ → Sint(γ)
^ takeV : ∀αγ.Sint(γ)→ [α]1 → 〈α〉γ
� dropV : ∀αγγ′.Sint(γ)→ 〈α〉(γ+γ′) → 〈α〉γ′

 iotaV : ∀γ.Sint(γ)→ 〈int〉γ
�| rotateV : ∀αγ.int→ 〈α〉γ → 〈α〉γ

(incomplete list)

12 / 21

Subtyping rules

We might know the vector sizes or integer values statically, but
want to use them where that information is not needed:

reduce : ∀αγ.(α→ α→ α)→ α→ [α]1+γ → [α]γ

To make the singleton integers and vectors with known length
compatible with functions taking general arrays, we add subtyping:

τ ⊆ τ
τ1 ⊆ τ2 τ2 ⊆ τ3

τ1 ⊆ τ3

〈κ〉ρ ⊆ [κ]1 Sκ(ρ) ⊆ [κ]0

13 / 21

Example: APL → TAIL

diff _ {1��-�1�|�}
signal _ {�50�50�50#(diff 0,�)%0.01+�}
+/ signal 100

⇓

let v0:<int>100 = iotaV(100) in

let v3:<int>101 = consV(0,v0) in

reduce(addd,0.00,

each(fn v11:[double]0 => maxd(~50.00,v11),

each(fn v10:[double]0 => mind(50.00,v10),

each(fn v9:[double]0 => muld(50.00,v9),

zipWith(divd,

each(i2d,

drop(1,zipWith(subi,v3,rotateV(~1,v3)))),

eachV(fn v2:[double]0 => addd(0.01,v2),

eachV(i2d,v0)))))))

14 / 21

Example: APL → TAIL

diff _ {1��-�1�|�}
signal _ {�50�50�50#(diff 0,�)%0.01+�}
+/ signal 100

⇓

let v0:<int>100 = iotaV(100) in

let v3:<int>101 = consV(0,v0) in

reduce(addd,0.00,

each(fn v11:[double]0 => maxd(~50.00,v11),

each(fn v10:[double]0 => mind(50.00,v10),

each(fn v9:[double]0 => muld(50.00,v9),

zipWith(divd,

each(i2d,

drop(1,zipWith(subi,v3,rotateV(~1,v3)))),

eachV(fn v2:[double]0 => addd(0.01,v2),

eachV(i2d,v0)))))))

15 / 21

Example: TAIL → Accelerate

module Main where

import qualified Prelude as P

import Prelude ((+), (-), (*), (/))

import Data.Array.Accelerate

import qualified Data.Array.Accelerate.CUDA as Backend

import qualified APLAcc.Primitives as Prim

program :: Acc (Scalar P.Double)

program

= let v0 = Prim.iotaV 100 :: Acc (Array DIM1 P.Int) in

let v3

= Prim.consV (constant (0 :: P.Int)) v0 :: Acc (Array DIM1 P.Int)

in

Prim.reduce (+) (constant (0.0 :: P.Double))

(Prim.each (\ v11 -> P.max (constant (-50.0 :: P.Double)) v11)

(Prim.each (\ v10 -> P.min (constant (50.0 :: P.Double)) v10)

(Prim.each (\ v9 -> constant (50.0 :: P.Double) * v9)

(Prim.zipWith (/)

(Prim.each Prim.i2d

(Prim.drop (constant (1 :: P.Int))

(Prim.zipWith (-) v3

(Prim.transp

(Prim.rotateV (constant (-1 :: P.Int)) (Prim.transp v3))))))

(Prim.eachV (\ v2 -> constant (1.0e-2 :: P.Double) + v2)

(Prim.eachV Prim.i2d v0))))))

main = P.print (Backend.run program)

16 / 21

User requirements

I Interpreted environment (e.g. APL, MATLAB, NumPy, R)
I implies dynamic compilation (JIT)
I implies dynamic garbage collection

I Ability to optimise
I Consistent cost-model
I Dropping down to underlying language (e.g. handwritten

kernels from CUBLAS)

I Enough primitives
I We can never cover all of APL
I As a baseline we hope to support enough APL primitives to

make most NumPy/SciPy primitives expressible.

I Optimised idioms (e.g. 100x100 identity matrix:
(100)�.=(100), should be represented as a sparse matrix)

17 / 21

Next steps

I Frontend
I Add array indexing
I Support DNA-application from Dyalog
I Support benchmarks from various old APL-papers

I Accelerate backend
I Convert TAIL shapes to Accelerate shapes correctly
I Type-checker targetting their HOAS representation
I Mersenne Twister in Accelerate
I Support more primitives

18 / 21

Further in the future

I Bohrium/SNESL/Futhark backend

I Type annotations in APL (lightweight dependent types?)

I JIT compilation

I Support nested arrays (flattening or through SNESL?)

I Boolean array encode/decode?

19 / 21

References

Compiling a Subset of APL Into a Typed Intermediate Language.

Martin Elsman and Martin Dybdal, 2014

ARRAY’14

Compiling APL to Accelerate through a Typed IL

Michael Budde, 2014

7.5 ECTS project

Accelerating Haskell array codes with multicore GPUs

MMT Chakravarty, G Keller, S Lee, TL McDonell, V Grover, 2011

DAMP’11

20 / 21

Questions?

21 / 21

	Overview
	TAIL
	Future plans

