Typed Array Intermediate Language

Martin Dybdal

University of Copenhagen

dybber@dybber.dk

10. december 2014

21

Goals

GPU programming for APL fingers

Develop backend technology independently of APL. Other
frontends could be J, K, some new Haskell vector-library or a
NumPy/SciPy clone.

Bridging the PL and APL communities

Performance on code written by non-programmers (e.g.
biologist or quant code)

21

Why APL?

v

Notation for non-programmers (biologist/chemist/quants)

v

APLs primitives have proven suitable for many applications

v

APL programs are inherently parallel
"Unlike other languages, the problem in APL is not
determining where parallelism exists. Rather, it is to
decide what to do with all of it.”
- Robert Bernecky, 1993

» Many existing programs/benchmarks
» We don’t have to write our own
» Writing the benchmarks ourselves might not represent how it
will be used in a production environment

21

Overview

» APL: Dynamically weakly typed array language

» TAIL: Statically strongly typed array language as target for
APL and friends.

vV Yy vVvYTVvYy

type inference, no type-annotations

polymorphic shape-types (similar to Repa shapes)
singleton-types

no nested arrays

no heterogeneous arrays

TAIL

v

v

v

v

v

v

Make vectorisation and scalar extensions explicit

Statically determine array ranks and shapes (when possible)
Insert numeric coercions

Resolve overloading of numeric operations

Resolve identity items (for reductions) and default arguments
(e.g. for over takes)

Resolve overloading of shape operations

5/21

Implicit vectorisation

Most APL primitives are defined for a specific argument rank k,
but in the case it is applied to any array with a rank higher than k
it will be applied independently to each rank-k subarray.

Negation
=17

17
-16

17273747576
-2 3p6

172 73

4 75 76

6/21

Implicit vectorisation

In TAIL we make vectorisation explicit by inserting applications of
each and zipWith:

each : Vafy. (o — B) = [a]” — [A]”

zipWith : Vagaz8y. (aq — a2 —) = [a1]” — [a2]” — [B]”

Example

(2 3p1) + (2 3p26)

4

zipWith(addi, reshape([2,3], [11),
reshape([2,3], iota(6)))

21

~

Implicit vectorisation

In some cases, applying “each” is not what we want, as it might
lead to nested parallelism:

Reduction

+/1 2 3 4
10

2 3pa6
123
456

+/2 3p16 A sum each row
6 15

8/21

Implicit vectorisation

Instead we make reductions work directly on any array with
rank > 0.

reduce : Vay.(a > a - a) > a — [OZ]H’Y — [a]?

Reduction translation

+/2 3p16 A sum each row

\
reduce(addi, reshape([2,3], iota(6)))

It still holds that: Most APL primitives are defined for a specific
argument rank k, but in the case it is applied to any array with a
rank higher than k it will be applied independently to each rank-k
subarray.

21

Shape types

When reshaping an array and the length of the shape-vector is
statically known, we will always know the shape of the resulting
array.

reshape : Yayy'.(int)” — a — [a]? = [a]”

» (int)" is a length ~/ integer vector

» [o]” is an array with rank ~/

Limitation wrt. APL: We must know the length of the
shape-vector statically, e.g. it cannot be the result of a filter.

10/21

Type system

Kk :=1int | double | bool | « (base types)
pu=i |y | p+yp (shape types)
P[P | ()P | Sulp) | 7o (types)
o =Vay.T (type schemes)

» Shape types are tree structured to support drop and
catenate

» Sint(p) is the singleton integer p
» We sometimes write « instead of [x]°

11/21

Shape operations

APL op(s) TySc(op)

P shapeV Vary.(a)” — Sint(7)

T takeV Vay.Sine(7) = [o]' = ()7

{ dropV Vayy . Sint () — <a>(7+7l) — (a)‘*l
2 iotaV V7y.Sint(7) — (int)?

o) rotateV Vary.int — ()7 — (a)?

(incomplete list)

12 /21

Subtyping rules

We might know the vector sizes or integer values statically, but
want to use them where that information is not needed:

reduce : Vay.(a = a = a) = a — [a]'T7 = [a]”

To make the singleton integers and vectors with known length

compatible with functions taking general arrays, we add subtyping:

T1C1m TCT3

TCT 1 CT13

(k) C [r]! Sk(p) € [K]°

13/21

Example: APL — TAIL

diff « {1lw-"1%w}
signal « {750[50L50x(diff 0,w)+0.01+w}
+/ signal 2 100

14 /21

Example: APL — TAIL

diff « {1dw-"1%w}
signal ¢« {750[50|50x(diff 0O,w)+0.01+w}
+/ signal 2 100

4

let v0:<int>100 = iotaV(100) in
let v3:<int>101 = consV(0,v0) in
reduce (addd,0.00,
each(fn vi11:[double]O0 => maxd(~50.00,v11),
each(fn v10: [double]O0 => mind(50.00,v10),
each(fn v9:[double]0 => muld(50.00,v9),
zipWith(divd,
each(i2d,
drop(1,zipWith(subi,v3,rotateV(~1,v3)))),
eachV(fn v2: [double]0 => addd(0.01,v2),
eachV(i2d,v0)))))))

21

Example: TAIL — Accelerate

module
import
import
import
import
import

program ::

Main where

qualified Prelude as P

Prelude ((+), (=), (x), (/)
Data.Array.Accelerate

qualified Data.Array.Accelerate.CUDA as Backend
qualified APLAcc.Primitives as Prim

Acc (Scalar P.Double)

program
= let vO = Prim.iotaV 100 :: Acc (Array DIM1 P.Int) in

main =

let v3

= Prim.consV (constant (0 :: P.Int)) vO :: Acc (Array DIM1 P.Int)
in
Prim.reduce (+) (constant (0.0 :: P.Double))
(Prim.each (\ vi1 -> P.max (constant (-50.0 :: P.Double)) vi1)
(Prim.each (\ v10 -> P.min (constant (50.0 :: P.Double)) v10)
(Prim.each (\ v9 -> constant (50.0 :: P.Double) * v9)
(Prim.zipWith (/)
(Prim.each Prim.i2d
(Prim.drop (constant (1 :: P.Int))
(Prim.zipWith (-) v3
(Prim.transp
(Prim.rotateV (constant (-1 :: P.Int)) (Prim.transp v3))))))
(Prim.eachV (\ v2 -> constant (1.0e-2 :: P.Double) + v2)
(Prim.eachV Prim.i2d v0))))))
P.print (Backend.run program)

16

21

User requirements

Interpreted environment (e.g. APL, MATLAB, NumPy, R)
» implies dynamic compilation (JIT)
» implies dynamic garbage collection

v

v

Ability to optimise
» Consistent cost-model

» Dropping down to underlying language (e.g. handwritten
kernels from CUBLAS)

Enough primitives

v

» We can never cover all of APL
» As a baseline we hope to support enough APL primitives to
make most NumPy/SciPy primitives expressible.

v

Optimised idioms (e.g. 100x100 identity matrix:
(2100)°.=(2100), should be represented as a sparse matrix)

17/21

Next steps

» Frontend

» Add array indexing

» Support DNA-application from Dyalog

» Support benchmarks from various old APL-papers
» Accelerate backend
Convert TAIL shapes to Accelerate shapes correctly
Type-checker targetting their HOAS representation
Mersenne Twister in Accelerate
Support more primitives

v

v vyy

18/21

Further in the future

v

Bohrium/SNESL /Futhark backend
» Type annotations in APL (lightweight dependent types?)

v

JIT compilation

v

Support nested arrays (flattening or through SNESL?)

v

Boolean array encode/decode?

19/21

References

@ Compiling a Subset of APL Into a Typed Intermediate Language.
Martin Elsman and Martin Dybdal, 2014
ARRAY'14

@ Compiling APL to Accelerate through a Typed IL
Michael Budde, 2014
7.5 ECTS project

@ Accelerating Haskell array codes with multicore GPUs
MMT Chakravarty, G Keller, S Lee, TL McDonell, V Grover, 2011
DAMP’11

20/21

Questions?

	Overview
	TAIL
	Future plans

