Domain Specific Languages
past, present and future

Mary Sheeran
Emil Axelsson

Chalmers

Reasoning about transistor circuits (in CSP)

programming languages

programming languages

Backus FP -> uwFP

programming languages

Backus FP -> uwFP

Domain

Specific
Language
(DSL)

Domain-specific language (DSL)

From [Kosar et al, 2008]:

“provide a notation tailored toward an application domain”

“based only on the relevant concepts and features of that
domain”

“a means of describing and generating members of a program
family within a given domain, without the need for knowledge
about general programming”

“offers substantial gains in productivity”

thanks to E. Axelsson

e =

-
——

i

= GHGHG M

)

8 o |

(®)
()
)

FH ¢ FEH ¢ 6 [G

OO

§

(XK)

(/>)

/(F.G) . mLDF

. <>F

/G

F

FIG 8.

HOW DARE YOU TELL MY DESIGNERS WHAT TO DO!

Users!

Users!

Plessey designers write

Using muFP, the array processing element was described in just one line of code and the
complete array required four lines of muFP description. muFP enabled the effects of
adding or moving data latches within the array to be assessed quickly. Since the results
were in symbolic form it was clear where and when data within the results was input into
the array making it simple to examine the data-flow within the array and change it as
desired. This was found to be a very useful way to learn about the data dependencies
within the array.

[...]

From the experience gained on the design, the most important consideration when
designing array processors is to ensure that the processor input/output requirements can be
met easily and without sacrificing array performance. The most difficult part of the design
task is not the design of the computation units but the design of the data paths and
associated storage devices. It is essential to have the right design tools to aid and improve
the design process. Early use of tools to explore the flow of data within and around the
array and to understand the data of requirements of the array is important. muFP has been
shown to be useful for this purpose.

Bhandal et al, An array processor for video picture motion estimation,
Systolic Array Processors, 1990, Prentice Hall

work with Plessey done by G. Jones and W. Luk

A
\30(0'

5‘0\0

Q)Q

Plessey

Ruby (relational version of muFP)

Lava (muFP in Haskell, waaaay better)

SAT-based verification (distracted by a clever man)

Wired (distracted by Intel)

Ruby (relational version of g

Lava

Wired (di

REALITY

Den fria encyklopedin

Kategori:Hardvarubeskrivande sprak

Artiklar i kategorin "Hardvarubeskrivande sprak"
Foljande 2 sidor (av totalt 2) finns i denna kategori.
Vv

Verilog
VHDL

We failed!

the programming languages

community

We failed!

Fragmentation

Fragmentation

Lava History

1980

Circuits as
Relations

Andy Gill, et. al.

1990 2000 2010
...... N
ForSyDe
; Xilinx
: L e EN
Ruby —— Classic/ ave T Kansas

L L
ava \Chalmers/ ava
L
ave \York

Lava
Deep DSL of
Functions Addressing Modern
Observable Functional
Overloading of Sharing Programming
Interpretations KU

Introducing Kansas Lava September 23, 2009 4 /20

Fragmentation

Lava History

1980 1990 2000 2010

_ Classic
kP Ruby —— Lava
Deep DSL of
. Functions Addressing odern
Circuits as .
Relati Observable Functional
elations Overloading of Sharing Programming

Interpretations KU

Andy Gill, et. al. Introducing Kansas Lava September 23, 2009 4 /20

industrial contacts

necessary

fragile

have specialised problems and can distract
from the real problem

SO

how can the programming languages
community make amends?

SO

how can the programming languages
community make amends?

parallelism

SO

how can the programming languages
community make amends?

parallelism
for speed

SO

how can the programming languages community make
amends?

parallelism
(not concurrency)

shared mutable state
is evill

Harper: The first thing to understand is parallelism has nothing to do
with concurrency. Concurrency is concerned with nondeterministic
composition of programs (or their components). Parallelism is
concerned with asymptotic efficiency of programs
with deterministic behavior. ... Parallelism, on the other hand, is all
about dependencies among the subcomputations of a deterministic
computation. The result is not in doubt, but there are many means
of achieving it, some more efficient than others. We wish to exploit
those opportunities to our advantage.

(Listen to Bob on teaching parallelism to freshmen at CMU tomorrow
morning 9.00)

Marlowe, Blelloch, ...

Parallel prefix (Sklansky)

%
i
.

i
L]

ST

/

/.

Brent Kung

/

/S
S
VA
S
/S
S

/

v
/.

/

S]]

-—'

-

/.
i
/.

/

e

/[

/.

S

/

‘LSS

i

Ladner Fischer

Depth size optimal (Snir)

.
]
"-—\._“____ "‘\-\.____lh—h
"-j.h‘__h -] —1 |]
R N ™1 [———1
L __| 41| LT
- I e e S =1]
t——1 || N
=t
T T I O T s o
- T —— L] |
1| __“M"“*-k ————_‘____‘ —— _\{:Rh—_k -
N N M =y B iy e e O
i e e L | Ny]
| g r— %H& -____1‘“

depth + size = 2n-2

8 + 130 = 2*70-2

7]

Dynamic programming + combinators

W, W, W,

[L e e

I I A A I | L | |
Ty T, T, % To-1| | To
F, F, E i F,
T T T T R

A small Haskell program can wipe out a research
field ©

Open question: smallest for minimum depth

But we can still search

Open question: smallest for minimum depth

But we can still search

J

Open question: smallest for minimum depth

But we can still search

“‘w%
"y H“““ﬂ-«.._ﬁ__ﬁ__i_ H“‘“—w H“““ﬂ-«._,ﬁﬂ___ H“““ﬂ-« _hh““'--h_u__h_:i_ E“‘“—w H“““ﬂ-«.%q___
e g et N 71| e g e P r——|
R iy s e ey o T N N N e e e = S
= T ™ ™ e
Foo—) | F—]

/

f

1T A

/i

After some design exploration, the search is no
longer necessary, Eureka!

ppf:: Int-> PP a
ppf k = pp [1..27K]

pp :: [Int] -> PP a
pp[] = wire
pp [,_]=ser
ppis = build2 ss (pp js) (pp (last sis))
where
ss = partfis
sis = split ss is
js = map last $ init sis

partf :: [Int] -> Partition
partf is = fill lis (pat (alog2 lis) ++ [r])
where
(lis,his) = (length is,head is)
mid = (last is + his - 1) "div’ 2
r =length [k |k <-is, k > mid]

pat :: Int -> Partition
patk | k<6 =]
pat k = concat [replicate (2*(k-2%j-1)) (2%)) | j <- [2..(k-1) "div" 2]]

fill :: Int -> Partition -> Partition
fill k as = replicate y 2 ++ as
where y = (k - sum as) ‘div’ 2

build2

3 slices of 256 input network

.\...I__-

[
1]
1

AR
77
VA

Dear Mary,

Few days ago I've found your paper on constructing prefix circuits via dynamic
programming.

It is interesting to note that this method allowed you to find in fact optimal complexity
prefix circuits of width 22n and depth n (at least for n<26).

| proved an exact complexity estimate 3.5*2~n-(8.5+3.5(n mod 2))2”[n/2]+n+5.
Very probably that recurrences at the end of your paper lead to the same result.

Igor Sergeev, Moscow State University

Dear Mary,

Few days ago I've found your paper on constructing prefix circuits via dynamic
programming.

It is interesting to note that this method allowed you to find in fact optimal complexity
prefix circuits of width 22n and depth n (at least for n<26).

| proved an exact complexity estimate 3.5*2~n-(8.5+3.5(n mod 2))2”[n/2]+n+5.
Very probably that recurrences at the end of your paper lead to the same result.

Unfortunately | haven't English language texts to attach to the letter, all texts are in
Russian, and only one short 2010 conference paper is already published.

lgor Sergeev, Moscow State University

Dear Mary,

Few days ago I've found you its via dynamic
programming.
It is interesting to n al complexity

prefix circuits of

| proved an exa
Very probably

Unfortunately | hav exts are in
Russian, and only one s

lgor Sergeev, Moscow State University

Obsidian code

tmerge2 :: Int -> [Array IntE -> ArrayP IntE]
tmerge2 n = vee2 (n-1) min max : [(ilv2 (n-i) min max)| i <- [2..n]]

tsort2 :: Int -> [Array IntE -> ArrayP IntE]
tsort2 n = concat [tmerge2i | i <- [1..n]]

writes2 k = writeFile "tsort2.cu" $ CUDA.genKernel "tsort2"
(composeP (tsort2 k)) (hamedArray "inp" (2°k))

= I = 1l = =~ |

sort vswap merge vswap iswap merge

CUDA code

unsigned int arrayLength = 1 << LOG_L_ SIZE;
unsigned int diff = LOG_L_SIZE - LOG_S_SIZE;
unsigned int blocks = arrayLength / S_SIZE;
unsigned int threads = S_SIZE / 2;

sortSmall<<<blocks, threads,4096>>>(din,din);

for(inti=0;i<diff;i+= 1)
vSwap<<<blocks/2,threads*2,0>>>(din,din,(1<<i)*S_SIZE);

for(intj=i-1;j>=0;j-=1)
iISwap<<<blocks/2,threads*2,0>>>(din,din,(1<<j)*S_SIZE);

bmergeSmall<<<blocks,threads,4096>>>(din,din);}

CUDA code

unsigned int arrayLength = 1 << LOG_L_SIZE;
unsigned int diff = LOG_L_SIZE - LOG_S_SIZE;
unsigned int blocks = arrayLength / S_SIZE;
unsigned int threads = S_SIZE / 2;

sortSmall<<<blocks, threads,4096>>>(din,din);

for(inti=0;i<diff;i+=1)
vSwap<<<blocks/2,threads*2,0>>>(din,din,(1<<i)*S_SIZE);

for(intj=i-1;j>=0;j-=1)
iISwap<<<blocks/2,threads*2,0>>>(din,din,(1<<j)*S_SIZE);

bmergeSmall<<<blocks,threads,4096>>>(din,din);}

CUDA code

for(intj=i-1;)>=0;j-= 3X
if (j==0)

iISwap<<<blocks/2,threads*2,0>>>(din,din,(1<<))*S_SIZE);

else

{if j==1)
iISwap2<<<blocks/4,threads*2,0>>>(din,din,(1<<))*S_SIZE);
else
iISwap3<<<blocks/8,threads*2,0>>>(din,din,(1<<j)*S_SIZE);}}

result is fast enough

Sorter (without warp size related optimisations) is pleasingly
fast (three times faster than the NVIDIA bitonic code in SDK
but it sorts key-value pairs)

factor of 30 over a single (weedy) CPU

result is fast enough

Sorter (without warp size related optimisations) is pleasingly
fast (three times faster than the NVIDIA bitonic code in SDK
but it sorts key-value pairs)

factor of 30 over a single (weedy) CPU

Can get a lot faster too... Aim to think about the algorithm and
then decompositions. NOT THREADS.

(just GPUs + declarative)

Obsidian Claessen, Sheeran, Svensson
Nikola Mainland, Morrisett
Accelerate Chakravarty et al

Hiperfit work ?7?

DDAs Burrows, Haveraaen

Ypnos Orchard, Bollingbroke, Mycroft
Accelerator Singh

many more

(just GPUs + Haskell)

Obsidian Claessen, Shee
Nikola Mainla
Accelerate Ch
Hiperfit work ?-
DDAs Burrows,
Ypnos, Orchard, Bc
Accelerator Singh
many more

DSL problems

From [Kosar et al, 2008]:

“The main disadvantage of DSLs is the cost of their
development.”

DSL problems

From [Kosar et al, 2008]:

“The main disadvantage of DSLs is the cost of their
development.”

“This is one of the reasons why DSLs are rarely used in solving
software engineering problems.”

DSL problems

From [Kosar et al, 2008]:

“The main disadvantage of DSLs is the cost of their
development.”

“This is one of the reasons why DSLs are rarely used in solving
software engineering problems.”

Also: lack of efficiency of generated code (esp. for embedded
real-time software)

Example DSL construct:
data-parallel arrays

al.=f(i), O<i<len

Independent computation of array elements
based on index

Common operation in numeric array
processing

Amenable to optimization (loop fusion)
Parallelizable

EDSL constructs in Haskell

* No need to extend host-language syntax

* Custom-looking syntax obtained by higher-

order functions
parallel len (\i -> f i)

* parallel is an ordinary Haskell function
that takes another function as argument

Syntactic — a Haskell library for EDSL
implementation

 Even embedded languages are costly to
implement

* Similar-looking constructs reimplemented
over and over again
— Across different languages
— But also within a single language

Syntactic features

A generic abstract syntax tree customizable
for different domains

Generic implementations of common
syntactic constructs (e.g. conditionals, tuples,
variable binding)

Generic semantic interpretations and
transformations

Available as a Haskell package:
http://hackage.haskell.org/package/syntactic

Feldspar

Functional look-and-feel, targetting C for DSP processors
— manycore is the trigger
MUCh more COhCISE, gOOd performance (in some small examples, early days)

Developed in cooperation by Ericsson, Chalmers University and
ELTE University (open source)

Syntactic grew out of the Feldspar implementation

More info:
http://feldspar.inf.elte.hu/feldspar/

"Feldspar lets me think big thoughts”
"Feldspar lets me have my cookie and eat it too”

ERICSSON

Feldspar example

prog a =
parallel 10 (\i ->
i+ (a*2)
)

Feldspar example

prog a =
parallel 10 (\i ->
i+ (a*2)
)

*Main> eval prog 5
[io,11,12,13,14,15,16,17,18,19]

Evaluation in the

Haskell interpreter

Feldspar example: generated C code

prog a =
parallel 10 (\i ->
i+ (a*2)
)

*Main> icompile prog

void test(struct array mem, uint32 t vO0, struct array * out)

{
uint32_t v2;

Invariant code hoisting
v2 = (v0 << 1);

for(uint32 t vl = 0; vl < 10; vl += 1)
{

at (uint32 t, (* out),vl) = (vl + v2);
}

Feldspar example: syntax tree

prog a = Lambda O
parallel 10 (\i -> !
i+ (a*2) - Tet 2
) = (%)
I
*Main> drawAST prog : T‘ var:0
| -2
I
"- parallel
|
+- 10
|
- Lambda 1
I
- ()
|
+- var:1

‘- var:2

Feldspar implementation

Assembling the language:

type FeldDomain
= Condition TypeCtx

:+: Let TypeCtx TypeCtx
:+: Literal TypeCtx
:+: Select TypeCtx
:+: Tuple TypeCtx
:+: Array

:+: BITS

:+: COMPLEX

:+: NUM

—

J\

Constructs reused from
Syntactic

S—

- constructs

Feldspar-specific

=

type FeldDomainAll = HODomain TypeCtx FeldDomain

newtype Data a = Data (AST FeldDomainAll (Full a))

Main Feldspar

expression type

Generic AST type

specialized for Feldspar

Data-parallel arrays, implementation

Syntax, type and semantics in 9 lines:

data Array a where
Parallel :: Type a => Array
(Length :-> (Index -> a) :-> Full [a])

Expressing semantics
using ordinary
instance IsSymbol Array where Haskell functions

toSym Parallel = Sym "parallel"
(\len ixf -> genericTake len $ map ixf [0..])

parallel :: Type a =>
Data Length -> (Data Index -> Data a) -> Data [a]
parallel = sugarSym Parallel

Exposed to the user

(Leaving out = 10 lines of mechanical declarations)

Data-parallel arrays, implementation

What do we get?
— Strongly typed abstract and concrete syntax

— Interpretations:
e Evaluation
e Syntax tree rendering, etc.
— Transformations
* Constant folding
« Common sub-expression elimination
* |nvariant code hoisting, etc.

— Caveat: Assuming functional semantics of the DSL

Data-parallel arrays, implementation

Code generation:

compileProgSym Parallel _ 1loc
(len :*: (Symbol (Ann info lam) :$: ixf) :*: Nil)
| Just (Lambda v) <- prjCtx typeCtx lam
= do let ix@(Var _ name) =
mkVar (compileTypeRep $ argType $ infoType info) v
len' <- compileExpr len
(e, body) <- stealProg $ compileProg (loc :!: ix) ixf
tellProg [For name len' 1 $§ Seq body]

Recursive compilation
Compiled to an

of body
imperative for loop

(for now)

Extension and experimentation

type FeldDomain
= Condition TypeCtx

:+: Let TypeCtx TypeCtx
:+: Literal TypeCtx
:+: Select TypeCtx
:+: Tuple TypeCtx
:+: Array

:+: BITS

:+: COMPLEX

:+: NUM

type FeldDomainAll = HODomain TypeCtx FeldDomain

newtype Data a = Data (AST FeldDomainAll (Full a))

— Constructs developed independently and assembled
“in the last minute”

— Simplifying cooperation and experimentation
— Allowing proprietary extensions?

Summary

* Embedding is an efficient DSL implementation
technique

e Syntactic greatly simplifies EDSL implementation
(at least for functional DSLs)

— Focus on the truly domain-specific parts
— Reuse the rest!

Complete implementation of parallel

* Embedding=ig =i kTR
technique

* Syntacticg
(at least fo

— Focus on the truly domain-specific parts
— Reuse the rest!

Related work

* Language workbenches [Fowler, 2005] [Kats et al
2010]

— Declarative specification of editing environments
and code generators

* Embedding in Scala [chafi et al, 2010]

— Direct overloading of host language constructs

(see slide at end)

Learn

CAD

Learn

CAD

CUFP

RAW FP

Development

QuickCheck
DSELs

HIPERFIT

Det Strategiske Forskningsrad har investeret 31,4 mio. kr. i
det forskningscenter, der skal udvikle computerne, som har
faet navnet HIPERFIT - functional high-performance
computing for financial information technology. Bag projektet
star bl.a. Kgbenhavns Universitet, Danske Bank, Jyske Bank,
Nordea, Nykredit, SimCorp og den franske it-virksomhed
Lexifi samt en raekke internationale forskningspartnere bl.a.
University of Oxford, University of California og Carnegie
Mellon.

Gorm Praefke betegner den nye teknologi som en
ngdvendighed for den finansielle branche.

Maybe we need to make a conference and grow
a community??

Conclusion

Programming languages (DSLs) are the answer to nearly
everything!

The group of people at the Hiperfit worksop has what it
takes to deliver this time

But we need AMBITIOUS CONCRETE GOALS if we are to
help make parallel programming productive in reality

One paper at a time won’t cut it

References

Kosar et al. A preliminary study on various implementation approaches of
domain-specific language. Information and Software Technology. 2008.
Elsevier.

Martin Fowler. Language Workbenches: The Killer-App for Domain Specific
Languages? 2005.
http://www.martinfowler.com/articles/languageWorkbench.html

Kats et al. The Spoofax Language Workbench. Rules for Declarative
Specification of Languages and IDEs. OOPSLA, ACM, 2010.

Chafi et al. Language virtualization for heterogeneous parallel computing.
OOPSLA, ACM, 2010.

Delite Overview

Domain R D?J?_ Machine
Specific naiytics Learning
OptiQL]
Languages (OptQL) (OptiML)
[Domain Embedding Language (Scala)
Staged Execution
Delite Compiler
Delite: DSL Parallel Patterns
Infrastructure Static Optimizations Heterogeneous Code Generation
Delite Runtime
Walk-time Optimizations Locality-aware Scheduling
Heterogeneous
Hardware

A Heterogeneous Parallel Framework for Domain-Specific Languages, Brown et al ,
PACT 11 (slide from associated talk)

CS and SE people mean the same by DSL!!!
(but SE people seem not have noticed
modern functional host languages)

Kosaretal. Ap
domain-spec
Elsevier.

Martin Fowler. Language WorkioeZeries: The Killer-App for Domain Specific
Languages? 2005.
http://www.martinfowler.com/articles/languageWorkbench.html

Kats et al. The Spoofax Language Workbench. Rules for Declarative
Specification of Languages and IDEs. OOPSLA, ACM, 2010.

Chafi et al. Language virtualization for heterogeneous parallel computing.
OOPSLA, ACM, 2010.

