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}  Probability Distributions form a Monad  
(Lawvere, Erwig-Kollmansberger,Ramsey-
Pfeffer) 

}  Monad Transformer: List Monad and Writer 
Monad (Kidd) 

}  Writer Monad:  
‘a -> ‘a*Prob 

}  Type Constructor (Functor)  
Monoid 

Monoid 
Multiplication 



}  Distributive Law:  
 
 
 

}  Probability Distribution 

}  Monad Structure  
 



}  [Pr([Pr(a(0,0),P(0,0));..Pr(a(0,n0),P(0,n0))],Q0);… 
 Pr([Pr(a(m,0),P(m,0));..;Pr(a(m,nm),P(m,nm))],Qm]  
-> 
[Pr(a(0,0),P(0,0)*Q0);Pr(a(0,1),P(0,1)*Q0);… 
..;Pr(a(m,nm),P(m,mn)*Qm)] 





}  In Probability Theory a Random Variable is a 
function from a Probability Distribution to the 
Reals 

}  We can model this again as a Monad 
Transformer:  Writer-List where this time the 
Writer is defined using the Monoid 
W=Prob*float  
with multiplication  
(P,x)*(Q,y)=(P*Q,x+y) 



}  If we use the monadic composition the size of 
the list grows exponentially which is not 
always what we want 



}  In mathematical terms: a function from a 
Probability Distribution to a set 

              f: Ω → S 
defines a partition ℱ on Ω by the subsets 
indexed by S:  Ω(s)=f-1(s) 

}  If X: Ω → ℝ is a Random Variable we can 
define the Conditional Expectation 
       E(X| ℱ)(s)=∑𝜔∈ 𝑓↑−1 (𝑠)↑▒𝑋(𝜔)𝑃𝑟𝑜𝑏(𝜔) /
𝑃𝑟𝑜𝑏( 𝑓↑−1 (𝑠))  



}  We define a function 
 
 

}  The Monad structure on RandomVar is then 
 
 
 
 
 
 This is just the Monad 
Transformer structure 
except we add the 
recombine method 



}  This is transition function in a CRR Tree i.e. of 
type int->RV<int> 

}  If we build a tree without the recombine 
function we get something like  
 
 
 
 
 
 
which is a tree with 8 nodes and not 
recombining 



}  With the recombine we get the recombining 
tree  
 
 
 
with the correct probabilities 

}  This is actually a discretization of a normal 
distribution 



}  How can we in general create a discrete 
approximation to a Random Variable? 

}  If X: Ω → ℝ is a RV, its CDF is the function 
Ψ(t)=Prob {X<t}. The PDF, φ, is the derivative 
of the CDF (if it exists) 

}  It has the property that  
           Prob {a≤X<b}=∫𝑎↑𝑏▒𝜑(𝑡)𝑑𝑡   
for all a<b  
 



}  A possible way to discretize X would be to 
take a large enough interval I such that the 
probability of X taking a value outside I is 
very small i.e.  
∫𝐼↑▒𝜑(𝑡)𝑑𝑡  ≈1   

}  Then divide I into sub-intervals {Ik}, k=0,1,..n 
}  For each k let Pk = Prob {X ∈ Ik} and choose a 

point xk  in Ik  
}  We can then discretize to a RandomVar<int> 

[Rv(0,P0,x0);..;Rv(k,Pk,xk),..;Rv(n,Pn,xn)]  
 





}  The question is how to pick the points xk  
}  For instance we could pick the midpoint or 

one of the endpoints 
}  Is there an optimal (in some sense) choice 



}  The Gaussian Quadrature Rule says that for a 
given density function ϕ there exist points  
𝜉↓1 , 𝜉↓2 ,…., 𝜉↓𝑛  and weights 𝑤↓1 , 𝑤↓2 ,…, 𝑤↓𝑛  
such that for any polynomial 𝑓  of degree ≤2𝑛
−1, 
∫𝑎↑𝑏▒𝑓(𝑡)𝜑(𝑡)𝑑𝑡= 𝑤↓1 𝑓( 𝜉↓1  )+ 𝑤↓2   𝑓(𝜉↓2 )+..+
𝑤↓𝑛 𝑓(𝜉↓𝑛 )  
 

}  In particular for 𝑓=1 we get 
∫𝑎↑𝑏▒𝜑(𝑡)𝑑𝑡=∑1↑𝑛▒𝑤↓𝑖    



}  The 𝜉↓𝑖  s are roots of a certain degree n 
polynomial which occurs in an orthogonal 
sequence of polynomials depending on the 
particular density function e.g. Hermite 
polynomials for the normal density 

}  We have found that using a Gaussian Quadrature 
rule with two points in each interval gives a good 
balance between numerical precision and 
performance 

}  Using Gaussian rules with many points gets 
pretty complicated, we have tried it with up to 80 
points but the numerical results are not as good 

 



}  In each sub-interval we approximate the 
integral using Simpson’s rule Simpson’s 

rule on each 
sub-interval 

The quadrature 
points are roots 
of a quadratic 
polynomial 





}  Many derivatives pricing problems come 
down to computing the expectation of a pay-
out function i.e. an integral of the form 
𝐸(𝑓(𝑋))=∫−∞↑∞▒𝑓(𝑡)𝜑(𝑡)𝑑𝑡   
where 𝑓 is the pay-out function and 𝜑 is the 
density function of the Random Variable X 

}  Once we have a discretization this simply 
becomes 
𝐸(𝑓(𝑋))=∑↑▒𝑓( 𝑥↓𝑖  ) 𝑃↓𝑖  



}  Under the Black-Scholes model the risk 
neutral price of a stock at time T is described 
by the Random Variable  
𝑆↓𝑇 = 𝑆↓0 exp((𝑟− 𝜎↑2 /2 ) 𝑇+𝜎√𝑇   𝑋)  
where X is a standard normal Random 
Variable 

}  The Black-Scholes price of a call option with 
strike K and expiration at T is 
            C=exp(−𝑟𝑇)𝐸( max (𝑆↓𝑇   −𝐾,0) )  



}  We can now compute this from our 
discretized normal distribution 

Black-Scholes 
price is 3.16861 

Time to compute 100 
strikes 





}  We next look at using other distributions, 
here we look at stable distributions, the stock 
price follows a Levy process 

}  Stable distributions have the property that a 
linear combination of independent Random 
Variables with a particular stable distribution 
again has that distribution i.e. if  
𝑋↓1  𝑋↓2 …𝑋↓𝑛  are S distributed, where S is 
stable, then the Random Variable �
𝑎↓1 𝑋↓1 + 𝑎↓2 𝑋↓2 +..=𝑐𝑋 
where X is S-distributed, e.g. Normal 
distributions are stable 



}  Stable distributions normally have infinite 
variance 

}  Stable distributions are parameterized by 4 
parameters (𝛼,𝛽,𝛾,𝛿),  0<α≤2,  −1≤𝛽≤1 

}  When 𝛼=2 the distribution is Normal 
}  Except for 𝛼=1,2  𝑎𝑛𝑑  𝛼= 1/2 ,  𝛽=1  there is no 

closed form for the density function, only the 
Characteristic Function i.e. the Fourier 
Transform of the density function is known 
 
 



}  To compute the density function we use an 
algorithm known as Fractional Fast Fourier 
Transform 

}  The usual FFT has the problem that the 
product of the spacings of the input and the 
output satisfies 𝜏𝜔=2𝜋/𝑁 where N is the 
number of points 

}  Thus to get good precision for both input and 
output we need a lot of points, FFFT allows us 
to specify 𝜏𝜔=𝜆 where we can choose 𝜆 
independently of the number of points 




