
Niels O. Nygaard  
The University of Chicago

}  Probability Distributions form a Monad  
(Lawvere, Erwig-Kollmansberger,Ramsey-
Pfeffer)

}  Monad Transformer: List Monad and Writer
Monad (Kidd)

}  Writer Monad:  
‘a -> ‘a*Prob

}  Type Constructor (Functor)
Monoid

Monoid
Multiplication

}  Distributive Law:  
 
 

}  Probability Distribution

}  Monad Structure  

}  [Pr([Pr(a(0,0),P(0,0));..Pr(a(0,n0),P(0,n0))],Q0);… 
 Pr([Pr(a(m,0),P(m,0));..;Pr(a(m,nm),P(m,nm))],Qm]  
-> 
[Pr(a(0,0),P(0,0)*Q0);Pr(a(0,1),P(0,1)*Q0);… 
..;Pr(a(m,nm),P(m,mn)*Qm)]

}  In Probability Theory a Random Variable is a
function from a Probability Distribution to the
Reals

}  We can model this again as a Monad
Transformer: Writer-List where this time the
Writer is defined using the Monoid
W=Prob*float  
with multiplication  
(P,x)*(Q,y)=(P*Q,x+y)

}  If we use the monadic composition the size of
the list grows exponentially which is not
always what we want

}  In mathematical terms: a function from a
Probability Distribution to a set 

 f: Ω → S 
defines a partition ℱ on Ω by the subsets
indexed by S: Ω(s)=f-1(s)

}  If X: Ω → ℝ is a Random Variable we can
define the Conditional Expectation 
 E(X| ℱ)(s)=∑𝜔∈ 𝑓↑−1 (𝑠)↑▒𝑋(𝜔)𝑃𝑟𝑜𝑏(𝜔) /
𝑃𝑟𝑜𝑏(𝑓↑−1 (𝑠)) 

}  We define a function 
 

}  The Monad structure on RandomVar is then 
 
 
 
 
 
 This is just the Monad
Transformer structure
except we add the
recombine method

}  This is transition function in a CRR Tree i.e. of
type int->RV<int>

}  If we build a tree without the recombine
function we get something like  
 
 
 
 
 
 
which is a tree with 8 nodes and not
recombining

}  With the recombine we get the recombining
tree  
 
 
 
with the correct probabilities

}  This is actually a discretization of a normal
distribution

}  How can we in general create a discrete
approximation to a Random Variable?

}  If X: Ω → ℝ is a RV, its CDF is the function 
Ψ(t)=Prob {X<t}. The PDF, φ, is the derivative
of the CDF (if it exists)

}  It has the property that  
 Prob {a≤X<b}=∫𝑎↑𝑏▒𝜑(𝑡)𝑑𝑡   
for all a<b  

}  A possible way to discretize X would be to
take a large enough interval I such that the
probability of X taking a value outside I is
very small i.e.  
∫𝐼↑▒𝜑(𝑡)𝑑𝑡 ≈1 

}  Then divide I into sub-intervals {Ik}, k=0,1,..n
}  For each k let Pk = Prob {X ∈ Ik} and choose a

point xk in Ik
}  We can then discretize to a RandomVar<int> 

[Rv(0,P0,x0);..;Rv(k,Pk,xk),..;Rv(n,Pn,xn)]  

}  The question is how to pick the points xk
}  For instance we could pick the midpoint or

one of the endpoints
}  Is there an optimal (in some sense) choice

}  The Gaussian Quadrature Rule says that for a
given density function ϕ there exist points  
𝜉↓1 , 𝜉↓2 ,…., 𝜉↓𝑛  and weights 𝑤↓1 , 𝑤↓2 ,…, 𝑤↓𝑛 
such that for any polynomial 𝑓 of degree ≤2𝑛
−1, 
∫𝑎↑𝑏▒𝑓(𝑡)𝜑(𝑡)𝑑𝑡= 𝑤↓1 𝑓(𝜉↓1  )+ 𝑤↓2  𝑓(𝜉↓2 )+..+
𝑤↓𝑛 𝑓(𝜉↓𝑛 )  

}  In particular for 𝑓=1 we get
∫𝑎↑𝑏▒𝜑(𝑡)𝑑𝑡=∑1↑𝑛▒𝑤↓𝑖   

}  The 𝜉↓𝑖  s are roots of a certain degree n
polynomial which occurs in an orthogonal
sequence of polynomials depending on the
particular density function e.g. Hermite
polynomials for the normal density

}  We have found that using a Gaussian Quadrature
rule with two points in each interval gives a good
balance between numerical precision and
performance

}  Using Gaussian rules with many points gets
pretty complicated, we have tried it with up to 80
points but the numerical results are not as good

}  In each sub-interval we approximate the
integral using Simpson’s rule Simpson’s

rule on each
sub-interval

The quadrature
points are roots
of a quadratic
polynomial

}  Many derivatives pricing problems come
down to computing the expectation of a pay-
out function i.e. an integral of the form 
𝐸(𝑓(𝑋))=∫−∞↑∞▒𝑓(𝑡)𝜑(𝑡)𝑑𝑡   
where 𝑓 is the pay-out function and 𝜑 is the
density function of the Random Variable X

}  Once we have a discretization this simply
becomes 
𝐸(𝑓(𝑋))=∑↑▒𝑓(𝑥↓𝑖  ) 𝑃↓𝑖 

}  Under the Black-Scholes model the risk
neutral price of a stock at time T is described
by the Random Variable  
𝑆↓𝑇 = 𝑆↓0 exp((𝑟− 𝜎↑2 /2 ) 𝑇+𝜎√𝑇  𝑋)  
where X is a standard normal Random
Variable

}  The Black-Scholes price of a call option with
strike K and expiration at T is 
 C=exp(−𝑟𝑇)𝐸(max (𝑆↓𝑇  −𝐾,0) )

}  We can now compute this from our
discretized normal distribution

Black-Scholes
price is 3.16861

Time to compute 100
strikes

}  We next look at using other distributions,
here we look at stable distributions, the stock
price follows a Levy process

}  Stable distributions have the property that a
linear combination of independent Random
Variables with a particular stable distribution
again has that distribution i.e. if  
𝑋↓1  𝑋↓2 …𝑋↓𝑛  are S distributed, where S is
stable, then the Random Variable �
𝑎↓1 𝑋↓1 + 𝑎↓2 𝑋↓2 +..=𝑐𝑋 
where X is S-distributed, e.g. Normal
distributions are stable

}  Stable distributions normally have infinite
variance

}  Stable distributions are parameterized by 4
parameters (𝛼,𝛽,𝛾,𝛿), 0<α≤2, −1≤𝛽≤1

}  When 𝛼=2 the distribution is Normal
}  Except for 𝛼=1,2 𝑎𝑛𝑑 𝛼= 1/2 , 𝛽=1 there is no

closed form for the density function, only the
Characteristic Function i.e. the Fourier
Transform of the density function is known 
 

}  To compute the density function we use an
algorithm known as Fractional Fast Fourier
Transform

}  The usual FFT has the problem that the
product of the spacings of the input and the
output satisfies 𝜏𝜔=2𝜋/𝑁 where N is the
number of points

}  Thus to get good precision for both input and
output we need a lot of points, FFFT allows us
to specify 𝜏𝜔=𝜆 where we can choose 𝜆
independently of the number of points

