SHARED DATA STRUCTURES IN
NESTED DATA PARALLELISM

Flattening

Monday, 5 December 11

* Flattening is a program transformation
* |t transforms both code and data structures
* Scalar computations become array-valued

* We perform it on GHC's Core language (an
extended lambda calculus)

Part of the

implementation of
Data Parallel Haskell

Monday, 5 December 11

Flattening forests

Flattening forests

eeeeeeeeeeeeeeeeee

(x1-x0)*(y2 yoj (yl-yo)*(x2-x0);

inction hsplit(points,(pl,p2))
Cross {cross_product(p,(pl,p2)): p in points};
packed {p in points; ¢ in cross plusp(c)};
f (#packed < 2) then [pl] ++ packed

t pm = points[max_index(cross)];
n flatten({hsplit(packed,ends): ends in [(pl,pm),(pm,p2)]1}

inction gquick_hull(points)
X {x : (x,y) in points};

* Introduced by Blelloch & Sabot for NESL

The age of S

SIMD o

machines E

.~ull.‘lu—-.‘} : c;a
r&/wii)Fﬂe:Cav ISEC. ipg

Monday, 5 December 11

- (x1-x0) * (y2 - yo) - (y1 - yo) * (x2 - x0)

split :: [:Point:] -> Line -> [:Point:]
split points line@(pl, p2)
| lengthP packed Int.== @ = [:pl:]

| otherwise
concatP [: hsplit packed ends | ends <- [:(pl, pm), (pm, p2):] :

where
cross = [: distance p line | p <- points :]
packed = [: p | (p,c) <- zipP points cross, ¢ > 0.0 :]
pm = points !: maxIndexP cross

uickHull :: [:Point:] -> [:Point:]
uickHull points
| lengthP points Int.==
| othaw - rca

= points

%* We extended it to cover

data Either a b = Left a

data Tree a = Tree a [:

mapP

Monday, 5 December 11

Flattening has a dual
pUrPOSe

* Produce SIMD-friendly code

* Flatten nested data parallelism

eeeeeeeeeeeeeeeeee

=Heri16rﬁ Coftroller

-

m '::,“:[F
;ll.* l*-nl!

vl
H'I:

n.;‘l

m&nttﬂ?l ’i;‘

l v . 3 i'._'j:. _T.j i -

.........-“.__.-.-.,__.-.._] T T T oy

ol (|15 o e
1----?‘-!-“—;#-“- ' Iilllil-l-_:t-lll-n-

==Shared1:3Cache*

i i il el O) o s)

mm

-ﬂ-n# ks B =ujon

o TR

- =Shared{3Cache: ==

§ o= ow e -

THE RENAISSANCE OF SIMD

BETTER POWER EFFICIENCY

Monday, 5 December 11

Nested data parallelism

* Enables sparse structures & irregular parallelism

* Flat data parallelism is not modular!

Is this function itself parallel?

\ With flat parallelism it cannot be parallel!
T —

Monday, 5 December 11

A simple example of
flattening

eeeeeeeeeeeeeeeeee

The lifted version of £

| We call flattening also vectorisation

o> cun

Monday, 5 December 11

fl#cFXs VS ZS

Lifting context

of type Int

c = len Xs
= len ys
= len zs

Monday, 5 December 11

Shared data structures

eeeeeeeeeeeeeeeeee

Constants shared across multiple parallel computations

Monday, 5 December 11

* We need to replicate constants to respect the
interface of (+7) and (*")

% The same holds for user-defined lifted functions

* \ectorisation of partial application also leads to
replication

But this quickly leads to overheads!
T —

Monday, 5 December 11

XS =r= [l
) A B D T e e
B GRS = e DL IC S
xs IS
replicated c SIZE = c¢?
times to
extract one
element from
each copy

............

............

............

............

............

............

............

............

Monday, 5 December 11

Sparse-matrix vector
multiplication

* Realistic example program
* Suffers from sharing the multiplied vector

* Vector is replicated n times (for an nxn matrix)

Monday, 5 December 11

4 index

VA [
Rl
g
Q
S
“ o
S
K]
S
®
[
&
Q

<5 o
k0 =55 W

(OB AL R R) G Fo 5y
ARG P]

Monday, 5 December 11

Flattening

replicates v

once per row
4’5@”\ e 4 —\—-—* =
\\“8/ %2 e ’.‘—-9———9-»\ (g\
2 (et 74
2 |« © e e i | 8
S \'/

\ all products computed

computed in parallel in parallel

\ all parallel folds

smvm m v
—sleStsiNPa o o @u i o R Credinc= oW =]
| row <- m :]

Multiply one row
against the vector

Monday, 5 December 11

A pathological example

Assume length is
a power of 2

Equally
subdivide xs

Shared use in two
parallel invocations

Monday, 5 December 11

SPAGE EXPLOSION

Monday, 5 December 11

This problem has been
kKnown for a while

* Palmer, Prins & Westfold: Work-Efficient Nested
Data-Parallelism

* Blelloch & Greiner: A Provable Time and Space
Efficient Implementation of NESL

* Spoonhower, Blelloch, Harper & Gibbons: Space
Profiling for Parallel Functional Programs

\ The issue is work as well as space efficiency!
T —

Monday, 5 December 11

First-order programs

* Palmer et al. modified the flattening transformation

* That modification doesn't extend to the higher-
order case

* |t also only deals with the replicate function, but
omits the other issues we will identify

Monday, 5 December 11

Thread-based
approaches

* Blelloch & Greiner introduced a thread-based
approach later extended by Spoonhower et al.

* |nstead of flattening, they use very fine-grained
threads

* |n that setting, the crucial insight is to use the right
scheduling policy (work stealing)

Monday, 5 December 11

Consumers of replicate

a :: [:[:Float:]:]

Expensive
consumer

eeeeeeeeeeeeeeeeee

Our goal

* Stick with flattening to support SIMD hardware

* Avoid the space explosion

* Avoid work inefficiency
* Prove that our implementation im

efficient

Monday, 5 December 11

Delaying index-space
transformations

eeeeeeeeeeeeeeeeee

INndex-space
transformations

* Operations that merely re-arrange array data

* |n particular those re-arranging subarrays of
nested arrays

These get used in lifted

array-processing functions

Monday, 5 December 11

* replicate (segmented)

* index & slice (segmented)

* split & combine (segmented)
* append (segmented)

* back permutation

Monday, 5 December 11

Our approach

* Delay index-space transformations
* Don't re-arrange subarrays eagerly

* Instead, keep track of pending re-arrangement

The flattening transformation stays the same!

Monday, 5 December 11

Scattered and virtual
segment descriptors

eeeeeeeeeeeeeeeeee

Library implements arrays

generically using a data family

data Array (Array a) = Nested Segd (Array a)

data Segd = Segd (Array Int) (Array Int)

Xs = Array (Array Int)
TS TR T I Bl Nt i s e N P R R S R A TR e

seg lens: =83, 2]
SediSEalEt s o T0=3 554613

flat data: 11213187093 (9]3

Monday, 5 December 11

Library implements arrays

generically using a data family

data Array (Array a) = Nested Segd (Array a)

data Segd = Segd (Array Int) (Array Int)

Xs = Array (Array Int)
TS TR T I Bl Nt i s e N P R R S R A TR e

seg lens: =83, 2]
SedisSEatEt S oo T0=3 55613

flat data: P e =SS CS () S e BB TS0 £53

Monday, 5 December 11

data Array (Array a) = Nested Segd (Array a)

data Segd = Segd (Array Int) (Array Int)

Xs = Array (Array (Array Int))
5 F e U e | P e B LU 6 e e T S o

XS

seqg lens: =53, 2 84 s segsTenss [245022 =]
segi-starEts sl TS Solo i Se sege starts e -0t 5]

flat data: Jo R S S St

Monday, 5 December 11

Virtual segments

eeeeeeeeeeeeeeeeee

Basic 1dea

* Don't copy data, keep track of repetition counts

replicateP 80000 [:0..89999:]
= [e OISO e e e S O RO

rep count: 80000
seg lens: [R 000)

seqg starts: [: 0 :]

i vaiEecd ais gusisi [N 8191900

Monday, 5 December 11

Lifted replicate

Fepilttcate P s il nthsiE ="t]

=L EHD et CIERTAS R A A e AR

virt seg 1ids: e B AT B g
phys seg lens: S5 8]

phySEsedestabtst @05 &8

flat data: [x1|x2|x3|x4|x5|yl|y2

= e R e

BeplacateP a2 230 il <iixs . yise Z Sl

used physical
segments

Monday, 5 December 11

Consumers: Packing

packse st PR OR35S o= >Suiiats.]

paclesEs TR TR ol s agebhseses = ds e si]
= fasFosHdsis

virt seg ids: O Saal o e real =)
phys seg lens: e e e Sl oL s |
phyis: sseg@startst . [Falss 32au6 5l Q8] s |

flat data: l|alla2la3|bl|b2|cl|c2|c3|cd|c5|dl|el]|e2

e3

ed

eb

Monday, 5 December 11

Consumers: Packing

packse st PR OR35S o= >Suiiats.]

paclesEs TR TR ol s agebhseses = ds e si]
= fasFosHdsis

| T e
virt seg ids: U2 i)
phys seg lens: e e I oL s - |
phys seg starts: 0= 3265 0O <= |

flat data: l|alla2la3|bl|b2|cl|c2|c3|cd|c5|dl|el|e2|e3|ed]|e5

SJe 2T 116l Bl 4 S L S 101 W

Monday, 5 December 11

Consumers: Packing

packse st PR OR35S o= >Suiiats.]

paclesEs TR TR ol s agebhseses = ds e si]
= fasFosHdsis

o LSy 2 el B
virt seg ids: g e
phys seg lens: R RS b]
phys seg starts: [:0 5 10:]

flat data: l|alla2la3|bl|b2|cl|c2|c3|cd|c5|dl|el|e2|e3|ed]|e5

SJe 2T 116l Bl 4 S L S 101 W

Monday, 5 December 11

Scattered segments

eeeeeeeeeeeeeeeeee

* replicate (segmented)
* index & slice (segmented)

* split & combine (segmented)

* append (Segmente assemble a
segmented array from

(two) others

* back permutation

Monday, 5 December 11

VSegd
reps:

EFat o ik

Ve gS en O Al AN 2 es]
[BlEme s hlel=o 7][8 7][8 7][0][0][9 SRR |
\ IT
Segd
W=nS 0 AlE =0T 2] \\\\\\:T\:EQQ\ \J /
idxs: [0 3 5 6] [123][8 CHSOR[C9R 8 #0 =T]
\ / 7
\ e
SSegd
Srcs: O 5= 1 4] \ # #4 #{
SEa S FaT A=/ 27 ////”/// //w \
/
112(3
scattered \
segments
8 (7 0 913191

Monday, 5 December 11

Summary

* Virtual segments: encoding repetition
* Sparse virtual segments: encoding packing

* Scattered segments: encoding combinations of
multiple subarrays

Monday, 5 December 11

Benchmarks

eeeeeeeeeeeeeeeeee

Implementation status

* Implemented DPH library with scattered and
virtual segment descriptors

* Basic implementation that still misses some
important optimisations

* |t runs all our test and example programs

* Will be available with GHC 7.4.1

Monday, 5 December 11

Barnes Hut

heap allocation in MB

100000

/5000

50000

25000

0
1K 2K 4K 10K 20K 40K 100K

©O Copy segd O Virtual segd ©O Data.Vector

Monday, 5 December 11

AS Ben put It,

"we've made it to the ball
park, but haven't yet stepped
on the field..."

eeeeeeeeeeeeeeeeee

Conclusions

* With flattening, shared data structures need -

special treatment

* Delay index-space transformations; leave
flattening as it is

% More on Data Parallel Haskell:

http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell

Monday, 5 December 11

