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Abstract

Over the last few decades, software has become essential for the
proper functioning of systems in the modern world. Formal veri�cation
techniques are slowly being adopted in various industrial application ar-
eas, and there is a big demand for research in the theory and practice of
formal techniques to achieve a wider acceptance of tools for veri�cation.

We present three projects concerned with applications of certi�ed
programming techniques and proof assistants in the area of programming
language theory and mathematics.

The �rst project is about a certi�ed compilation technique for a
domain-speci�c programming language for �nancial contracts (the CL
language). The code in CL is translated into a simple expression lan-
guage well-suited for integration with software components implementing
Monte Carlo simulation techniques (pricing engines). The compilation
procedure is accompanied with formal proofs of correctness carried out in
the Coq proof assistant. Moreover, we develop techniques for capturing
the dynamic behaviour of contracts with the passage of time. These tech-
niques potentially allow for e�cient integration of contract speci�cations
with high-performance pricing engines running on GPGPU hardware.

The second project presents a number of techniques that allow for
formal reasoning with nested and mutually inductive structures built up
from �nite maps and sets (also called semantic objects), and at the same
time allow for working with binding structures over sets of variables.
The techniques, which build on the theory of nominal sets combined
with the ability to work with multiple isomorphic representations of �-
nite maps, make it possible to give a formal treatment, in Coq, of a
higher-order module system, including the ability to eliminate entirely,
at compile time, abstraction barriers introduced by the module system.
The development is based on earlier work on static interpretation of mod-
ules and provides the foundation for a higher-order module language for
Futhark, an optimising compiler targeting data-parallel architectures,
such as GPGPUs.

The third project is related to homotopy type theory (HoTT), a new
branch of mathematics based on a fascinating idea connecting type the-
ory and homotopy theory. HoTT provides us with a new foundation for
mathematics allowing for developing machine-checkable proofs in vari-
ous areas of computer science and mathematics. Along with Vladimir
Voevodsky's univalence axiom, HoTT o�ers a formal treatment of the
informal mathematical principle: equivalent structures can be identi�ed.
However, in some cases, the notion of weak equality available in HoTT
leads to the �in�nite coherence� problem when de�ning internally certain
structures (such as a type of n-restricted semi-simplicial types, inverse
diagrams and so on). We explain the basic idea of two-level type theory, a
version of Martin-Löf type theory with two equality types: the �rst acts
as the usual equality of homotopy type theory, while the second allows us
to reason about strict equality. In this system, we can formalise results of
partially meta-theoretic nature. We develop and explore in details how
two-level type theory can be implemented in a proof assistant, providing
a prototype implementation in the proof assistant Lean. We demonstrate
an application of two-level type theory by developing some results from
the theory of inverse diagrams using our Lean implementation.
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Resumé

Denne afhandling består af tre dele og omhandler teknikker til ud-
vikling af certi�ceret software samt anvendelse af bevisassistenter inden-
for områder som programmeringssprogsteori og matematik.

Den første del omhandler en certi�ceret oversættelsesteknik for et
domainespeci�kt programmeringssprog til �nansielle kontrakter (sproget
CL). Kode i CL oversættes til et simpelt udtrykssprog, som er velegnet til
integration med softwarekomponenter, der implementerer Monte-Carlo
simuleringsteknikker (prisberegningssoftware). Oversættelsesproceduren
er akkompagneret af et formelt korrekthedsbevis, der er etableret ved
brug af bevisassistenten Coq.

Den anden del omhandler en række teknikker, der tillader formel
ræsonnement med nestede og gensidigt induktive strukturer bygget op
af endelige afbildninger og mængder (også kaldet semantiske objekter).
Teknikkerne, som bygger på teorien om nominelle mængder kombineret
med muligheden for at arbejde med multible isomorfe repræsentationer
af endelige afbildninger, gør det muligt at give en formel behandling, i
Coq, af et højere-ordens modulsystem. Behandlingen understøtter mu-
ligheden for at eliminere alle modulkonstruktioner og abstraktionsbar-
rierer på oversættelsestidspunktet. Teknikken baserer sig på tidligere
arbejde indenfor statisk fortolkning af moduler og giver et fundament
for et højere-ordens modulsprog for Futhark, en optimerende oversætter
målrettet data-parallelle arkitekturer som GPGPUer.

Den tredie del omhandler en implementation af to-niveau typeteori,
en version af Martin-Löfs typeteori indeholdende to lighedstyper. Den
første fungerer som det sædvanlige lighedsbegreb fra homotopy typete-
ori, mens den anden tillader ræssonnementer omkring stringent lighed.
I dette system er det muligt at formalisere resultater af delvist meta-
teoretisk natur. Det undersøges i detaljer hvordan to-niveau typeteori
kan implementeres i en bevisassistent og der udvikles en prototypeimple-
mentation i bevisassistenten Lean. Ydermere demonstreres anvendelsen
af to-niveau typeteori ved udvikling af nogle resultater (i den udviklede
Lean-implementation) indenfor teorien om inverse diagrammer.
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The main content of the dissertation consists of three chapters, an intro-
duction, and a conclusion. Some results of Chapter 2 where presented at the
Nordic Workshop on Programming Theory 2016 (NWPT'16) by the author.
The full source code of the formalisation presented in Chapter 2 is available
online: https://github.com/annenkov/contracts.

Chapter 3 presents the author's contribution to ongoing work on a module
system development and formalisation in collaboration with Martin Elsman,
Cosmin Oancea, and Troels Henriksen at the HIPERFIT Research Center,
DIKU, University of Copenhagen. The source code of the implementation of
nominal sets in Coq (using type classes instead of modules) and the proof
of normalisation from Section 3.2 are available online: https://github.com/
annenkov/stlcnorm.

Chapter 4 presents the author's contribution to the work submitted for a
publication with Paolo Capriotti and Nicolai Kraus, University Of Nottingham
(publication preprint [ACK17]). The results of this work were presented by the
author at the workshop on Homotopy Type Theory/Univalent Foundations(co-
located with FSCD 2017). The full source code of the formalisation presented
in Chapter 4 is available online: https://github.com/annenkov/two-level.
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Chapter 1

Introduction

Over the last few decades, software has become essential for the proper func-
tioning of systems in the modern world. Some of these systems are safety-
critical, such as embedded systems in avionics, or nuclear power plants. But
not only in these areas do software correctness play such a prominent role. For
example, in the �nancial sector, software systems are responsible for execut-
ing �nancial transactions and managing assets by means of smart contracts on
distributed ledgers [Woo15]. Formal veri�cation techniques are slowly being
adopted in various industrial application areas, including the area of �nance
and �nancial algorithms [PI17]. There is a big demand for research in the
theoretical foundations for and practical aspects of formal techniques aimed at
achieving a wider acceptance of tools for veri�cation.

In general, our every day life relies more and more on complex software sys-
tems. Moreover, the development of complex software systems is a very costly
process and discovering errors at the deployment stage may cause a signi�cant
increase in the overall cost of a system. For the last decade, software veri�ca-
tion techniques have become available for the wider use, due to advances both
in theories and in tools for formal veri�cation. There are various approaches to
formal software veri�cation. Here we will focus on a particular direction based
on various �avors of type theory and tools implementing them. These tools are
called interactive theorem provers, or proof assistants. A number of large-scale
veri�cation projects use proof assistants, and we will mention some of them.

The CompCert project [Ler06] is one of the large-scale veri�cation e�orts
for real-world software. It is a veri�ed compiler for a signi�cant subset of
the C programming language carried out in the Coq proof assistant. The C
programming language is widely used for development of numerous applications
including critical systems. CompCert is used as a part of a veri�ed toolchain
in a number of projects.

Another example of this kind is the JSCert project. JSCert is a speci�cation
of ECMAScript 5 (JavaScript) in Coq. JavaScript is widely used in web devel-
opment to write complicated applications running in browsers. Many modern
web applications have large code bases in JavaScript. It is also a well known
fact that JavaScript is a language with many pitfalls, which is why �The JSCert
project aims to really understand JavaScript�. Moreover, the project features
an interpreter in OCaml obtained using Coq's code extraction facilities.

Apart from the areas related to software veri�cation and programming lan-
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CHAPTER 1. INTRODUCTION 2

guage semantics mechanisation, in mathematics, one often wants proofs to be
veri�ed by some automatic procedure in order to ensure correctness. Mathe-
matical proofs can be very complicated and may require the consideration of
a large number of cases. Examples of large-scale developments in this area in-
clude proofs of the four-color theorem [Gon08] and the Feit�Thompson theorem
[GAA+13].

Moreover, in such abstract areas of mathematics as homotopy theory, for
a long time, it has been almost impossible to use proof assistants to carry out
proofs. But with recent development of homotopy type theory [Uni13] (HoTT),
it has become possible to carry out proofs in homotopy theory [LS13] and many
other areas of mathematics in the language of type theory. This, in turn, allows
for developing formalisations in proof assistants. HoTT o�ers a new founda-
tion of mathematics, where types (or spaces, in the homotopical interpretation)
become the basic objects for developing mathematics. The Unimath project
[VAG+] takes this approach and aims at implementing a large body of math-
ematics in the Coq proof assistant. Moreover, from the dependently-typed
programming perspective, HoTT o�ers a generic programming technique, al-
lowing to change between di�erent isomorphic representations of the same ab-
stract data structure.

1.1 Type Theory and the Curry-Howard

Correspondence

Type theory originates from Bertrand Russel's approach to avoid paradoxes in
set theory. Since that time, type theory has been developed by many scientists
including Alonzo Church, Haskell Curry, William Howard, Stephen Kleene,
Kurt Gödel, Nicolaas de Bruijn, Per Martin-Löf, and others. In the form of
dependent type theory, it became a foundation for various proof assistants.

The central notion in type theory is a typing judgment. That is, a term a
has a type A:

a : A

Notice the similarity with the set-theoretic proposition a ∈ A. The important
di�erence is that in type theory, each term comes with the type and internally in
type theory we cannot ask if some term has type A or B. Essentially this is how
programmers in statically typed programming languages think about programs
and data types. Functional programming languages have especially strong
connection to type theory, since theoretical foundations for such languages are
variations of the lambda-calculi.

An important step in the development of type theory was the discovery
of the connection between logic and type theory, which is now known as the
Curry-Howard correspondence [Cur34, How80] (for the details of the discov-
ery and the development of the Curry-Howard correspondence, see [Wad15]).
This correspondence is also known in the literature as propositions-as-types,
formulae-as-types, and the Curry-Howard isomorphism.

Roughly speaking, the idea of this correspondence is that type theory cor-
responds to intuitionistic logic, propositions correspond to types, and proofs
correspond to terms (or programs). The summary of the correspondence is
given in Table 1.1.
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Logic Type Theory

Proposition A Type A

Proof of a proposition A Term (program) a : A

Proof normalisation Program execution

True Unit

False Empty type

Conjunction A ∧B Product type A×B

Disjunction A ∨B Coproduct type A+B

Implication A⇒ B Function type A→ B

Universal quanti�cation ∀x ∈ A,B(x) Dependent product Π(x : A).B(x)

Existential quanti�cation ∃x ∈ A,B(x) Dependent sum Σ(x : A).B(x)

Table 1.1: Propositions-as-types.

This correspondence was extended further: Joachim Lambek showed the
correspondence between the lambda-calculus and Cartesian closed categories
[Lam80].

The work of Per Martin-Löf [ML84] was another important step in the de-
velopment of type theory. A number of modern proof assistants implement
some variation of Martin-Löf type theory. Recent research in type theory have
lead to the discovery of another deep connection: the connection between type
theory and homotopy theory. Homotopy type theory [Uni13] establishes a cor-
respondence between types and spaces (more precisely, ∞-groupoids), terms
and points, identity types and paths in a space. Moreover, homotopy type the-
ory re�nes the correspondence outlined in Table 1.1: propositions correspond
not to any types, but to certain types that have at most one inhabitant. These
types in the context of homotopy type theory are called hProps.

According to the Curry-Howard correspondence, �nding a proof of some
theorem is the same as �nding a term of the given type, i.e. inhabiting the
type. Following this idea, the process of proving a theorem corresponds to the
process of writing a program that is accepted be the type-checker. This proving-
as-programming idea have lead to software tools supporting this paradigm,
namely, proof assistants.

1.2 Proof Assistants and Certi�ed Programming

Proof assistants, or interactive theorem provers are tools that allow for stating
and proving theorems by interacting with users. That is, users write proofs in
a specialised language and the tool veri�es correctness of these proofs. Proof
assistants often o�er some degree of proof automation by implementing de-
cision and semi-decision procedures, or interacting with automated theorem
provers (SAT and SMT solvers). Some proof assistants allow for writing user-
de�ned automation scripts, or write extensions using a plug-in system. In the
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present work we will focus on application of proof assistant based on dependent
type theory (Coq [BC10], Agda [Nor07], Lean [dMKA+15]), although there are
other tools based on di�erent foundations, such as variations of set theory and
higher-order logic (Mizar [GKN10], Isabelle/HOL [NWP02]), and meta-logical
frameworks (Twelf [PS99]).

That is, in this thesis we will explore and discuss how dependent type
theory (and its implementation in a proof assistant) can be used in particular
cases. We will explore how to use the expressivity of dependent types to encode
invariants of structures used in formalisations in such a way that it simpli�es
development of the formalisation.

With connection to proof assistant technology, by certi�ed programming
following [Chl13] we mean a process that produces a program along with a
witness of its correctness with respect to the speci�cation. The bene�t of using
proof assistants based on type theory is that programs and proofs live in the
same realm. That is, one can write (functional) programs and reason about
their properties using the same language. Moreover, some proof assistants
allow for the extraction of computational parts of an implementation into some
(usually functional) programming language.

Next, we brie�y describe some proof assistants implementing dependent
type theory, outlining their main features.

1.2.1 Coq

The theoretical foundation of the Coq proof assistant is the calculus of con-
structions [CH88] extended with inductive de�nitions leading to the calculus
of inductive constructions [CP90, BC10]. The type theory of Coq distinguishes
between two kinds of types: Prop and Set. The type of propositions Prop

is used to encode properties that will be erased during program extraction,
while Set is used for programs containing computational content. Moreover,
Prop is impredicative, which means that statements quantifying over Prop still
belong to Prop. Impredicativity of Prop makes working with logical connec-
tives more convenient, but to maintain consistency, the elimination principle
for propositions only allows the result of elimination to be in Prop.

Coq also features a hierarchy of type universes Typei for i ∈ N, i ≥ 1.
Types Prop and Set belong to Type1, and Typei:Typei+1. Most of the time
users do not have to be explicit about universe levels; universe constraints are
handled by the system automatically. Recent versions of Coq support universe
polymorphism.

Coq features the following languages:

• the Gallina language, which is essentially a dependently typed program-
ming language (also includes the language of commands, called The Ver-
nacular);

• the Ltac language, allowing for writing tactics for proof automation.

The tactic language is often used to build complicated proof terms and to
implement certain proof search strategies. While Gallina programs are always
terminating, since consistency of the underlying logic depends on this property,
tactics written in the Ltac language may fail to terminate without a�ecting the
consistency. The standard library of Coq o�ers various useful primitive tactics,
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along with proof searching procedures auto and eauto, which use a user-de�ned
database of lemmas (�hints�) when trying to solve a goal. The library also con-
tains several decision procedures, such as omega for the Presburger arithmetic
and tauto for the intuitionistic propositional calculus.

Coq supports type classes, which are useful for operation overloading and
for proof automation through the resolution mechanism.

It is possible to obtain an implementation in OCaml, Haskell or Scheme
from the Coq formalisation through the code extraction mechanism, provided
that the development follows certain criteria.

1.2.2 Lean

We give a brief outline of features of the Lean proof assistant version 2 [dMKA+15],
since this version has been used in this thesis.1 Lean 2 has two di�erent modes:

• The �strict� mode, based on a similar theoretical foundation as Coq: the
calculus of inductive constructions with impredicative Prop and de�ni-
tional proof irrelevance;

• the �HoTT� mode, supporting homotopy type theory (without impredica-
tive or proof irrelevant universes), including some higher-inductive types.

Lean features the powerful elaboration mechanism allowing to infer universe
levels, implicit arguments (including type class instances), supports notation
overloading, and so on. Type classes allow for some proofs to be automated
by the elaboration mechanism. One of the main motivations behind Lean is to
bridge the gap between automated and interactive theorem provers by pushing
automatic inference as far as possible.

Proofs in Lean can be written in term mode, which is basically syntactic
sugar for proof terms in Lean's functional language to make proofs more read-
able. Alternatively, one can use tactics, similarly to Coq. Although, unlike in
Coq, one can switch to the �tactic� mode in any place of the de�nition by using
begin ... end and �lling-in the proof using tactics.

1.2.3 Agda

Agda is a dependently typed programming language implementing a predica-
tive extension of Martin-Löf type theory [ML84]. It does not have a Prop-Set
distinction as Coq.

Agda has a hierarchy of universes and supports universe polymorphism, but
one has to be explicit about universe levels.

In comparison with Coq, Agda has more experimental features (like inductive-
recursive and inductive-inductive de�nitions), and possibility to turn o� some
checks (like termination or strict positivity of inductive de�nitions), making a
system possibly inconsistent, but more suitable for experimentation.

Working in Adga resembles a programming activity in a functional lan-
guage. Agda supports powerful dependent pattern-matching constructs allow-
ing one to write proofs as programs directly. Similarly to type classes in Coq
and Lean, Agda supports instance arguments that can be inferred using the in-
stance resolution mechanism. There is no build-in support for tactics in Agda,

1The Lean 2 repository can be found at https://github.com/leanprover/lean2

https://github.com/leanprover/lean2
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although there are some developments, supporting mechanisms similar to Coq's
auto [KS15].

1.3 Thesis

The thesis considers three applications of proof assistant technology.
The semantics of domain-speci�c languages is an important and, at the

same time, a realistic target for the application of formalisation and veri�cation
techniques. Financial contract speci�cations are often used in a specialised form
in software components performing simulations to estimate the possible price
of a contract. These software components are called pricing engines, which are
optimised for performing simulations e�ciently. The �rst question we consider
is the following:

• Is it possible to develop a certi�ed implementation of a compilation tech-
nique for the domain-speci�c �nancial contract speci�cation language in
the style of [BBE15], allowing for e�cient interaction with the pricing
engine?

Module systems provide a powerful abstraction mechanism allowing for
writing generic highly parameterised code. For some application domains it
is important to have static guarantees that module abstractions introduce no
overhead. Formalisation of module systems is hard, and it has turned out to
be essential to develop a number of techniques allowing for development of
a module system formalisation in the Coq proof assistant. Thus, the second
question is the following:

• Is it possible to develop a formalisation in the Coq proof assistant of a
higher-order module system for the data-parallel array language Futhark
[HSE+17] in the style of [Els99], aiming to keep it as close as possible to
a pen-and-paper formalisation and to the implementation in the Futhark
compiler?

The third project is related to the internalisation of partially meta-theoretical
results in two-level type theory (homotopy type theory extended with strict
equality). Homotopy type theory is young and a developing �eld with a num-
ber of open problems. For instance, the notion of weak equality available in
HoTT could lead to the �in�nite coherence� problem when de�ning internally
certain structures (such as a type of n-restricted semi-simplicial types, inverse
diagrams, and so on). Two-level type theory allows for approaching this prob-
lem. The third question we consider is the following:

• How can one leverage existing proof assistants to implement two-level
type theory, and is it possible to use such an implementation for the
development of formalisations of partially meta-theoretical results?

1.4 Contributions

We present three projects concerned with the applications of certi�ed program-
ming techniques and proof assistants in the area of programming language
theory and in the area of mathematics.
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The contributions on certi�ed compilation of �nancial contracts are as fol-
lows:

• We present an extension of a domain-speci�c language for �nancial con-
tracts developed by authors of [BBE15]. The extension features contract
templates, or instruments. We focus on the extension allowing for pa-
rameterisation of contracts with respect to temporal parameters.

• We develop a payo� intermediate language inspired by traditional payo�
languages and well-suited for the integration with Monte Carlo simulation
techniques.

• We use the Coq proof assistant to develop a certi�ed compilation pro-
cedure of contract templates into a parameterised payo� intermediate
language.

• We further parameterise the compiled payo� expressions with the notion
of �current time� allowing for capturing the evolution of contracts with
the passage of time.

• We develop the proof of an extended soundness theorem in the Coq proof
assistant. The theorem establishes a correspondence between the time-
parameterised compilation scheme and the contract reduction semantics.

• We argue how the parametric payo� code allows for better performance
due to avoiding recompilation with the change of parameters.

The contributions on the formalisation of a higher-order module system for
the Futhark language are as follows:

• We develop a formalisation of the static interpretation of a module system
in the style of [Els99] in the Coq proof assistant. This is one of the �rst
developments in this style in Coq.

• For implementing the core concept of semantic objects we develop a tech-
nique that allows for using isomorphic representations of components of
semantic objects with low proof obligation overhead. We use this tech-
nique to overcome limitations of the conservative strict positivity check
in Coq.

• To deal with binding in the context of semantic objects, we apply nom-
inal techniques. We develop a small library de�ning nominal sets in a
generalised setting allowing for sets of variables to be bound at once. We
use the developed library to de�ne α-equivalence of semantic objects.

The contributions on formalisation of two-level type theory are as follows:

• We develop a technique allowing for two-level type theory to be imple-
mented in existing proof assistants.

• We implement two-level type theory in the Lean proof assistant using the
developed technique.

• We demonstrate how the �brant fragment of two-level type theory can
be used to develop proofs in a similar way as in homotopy type theory.
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• As an application of the implemented type theory, we internalise some
results on the theory of inverse diagrams in our Lean development.

1.5 Structure of the Dissertation

Following the outline of the thesis contributions, the main content of the thesis
is split into three chapters.

• Chapter 2 describes our work on certi�ed compilation of �nancial con-
tracts, including a formal semantics, compilation soundness theorems,
and a description of our Coq formalisation.

• Chapter 3 describes our formalisation of a higher-order module system
in Coq, focusing on details of the implementation and the particular
techniques applied.

• Chapter 4 discusses the motivation for two-level type theory and describes
our approach to implementation, exempli�ed by a development in the
Lean proof assistant.



Chapter 2

Certi�ed Compilation of Financial

Contracts

2.1 Background and Motivation

New technologies are emerging that have potential for seriously disrupting the
�nancial sector. In particular, blockchain technologies, such as Bitcoins [Nak08]
and the Ethereum Smart Contract peer-to-peer platform [Woo15], have entered
the realm of the global �nancial market and it becomes essential to ask to which
degree users can trust that the underlying implementations are really behaving
according to the speci�ed properties. Unfortunately, the answers are not clear
and errors may result in irreversible high-impact events.

Contract description languages and payo� languages are used in large scale
�nancial applications [Lex, Sim09], although formalisation of such languages in
proof assistants and certi�ed compilation schemes are less explored.

The work presented here builds on previous work on specifying �nancial
contracts [AEH+06, AVR95, FSNB09, HKZ12, PES00] and in particular on
a certi�ed �nancial contract management engine and its associated domain-
speci�c contract speci�cation language [BBE15]. This framework allows for
expressing a wide variety of �nancial contracts (a fundamental notion in �nan-
cial software) and for reasoning about their functional properties (e.g., horizon
and causality).

As in the previous work, the contract language that we consider is equipped
with a denotational semantics, which is independent of stochastic aspects and
depends only on an external environment Env : N × Label → R ∪ B, which
maps observables (e.g., the price of a stock on a particular day) to values. We
will refer to the contract language as described in [BBE15] and its extension
developed in this chapter as the CL language. As the �rst contribution of this
work, we present a certi�ed compilation scheme that compiles a contract into a
payo� function, which aggregates all cash�ows in the contract, after discounting
them according to some model. The result represents a single �snapshot� value
of the contract. The payo� language is inspired by traditional payo� languages,
and it is well suited for integration with Monte Carlo simulation techniques for
pricing. It is essentially a small subset of a C-like expression language enriched
with notation for looking up observables in the external environment. We
show that compilation from CL to the payo� language preserves the cash�ow

9
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semantics.
The contract language described in [BBE15], deals with concrete contracts,

such as a one year European call option on the AAPL (Apple) stock with
strike price $100. The lack of genericity means that each time a new contract
is created (even a very similar one), the contract management engine needs to
compile the contract into the payo� language and further into a target lan-
guage for embedding into the pricing engine. As our second contribution, we
introduce the notion of a �nancial instrument, which allows for templating of
contracts and which can be turned into a concrete contract by instantiating
template variables with particular values. For example, a European call option
instrument has template parameters such as maturity (the end date of the con-
tract), strike, and the underlying asset that the option is based on. Compiling
such a template once allows the engine to reuse compiled code, giving various
parameter values as input to the pricing engine.

Moreover, an inherent property of contracts is that they evolve over time.
This property is precisely captured by a contract reduction semantics. Each
day, a contract becomes a new �smaller� contract, thus, for pricing purposes,
contracts need to be recompiled at each time step, resulting in a dramatic com-
pile time overhead. As our the third contribution we introduce a mechanism
allowing for avoiding recompilation in relation with the contract evolution. A
payo� expression can be parameterised over the current time so that evaluat-
ing the payo� code at time t gives us the same result (upto discounting) as
�rst advancing the contract to time t, then compiling it to the payo� code,
and then evaluating the result. Most of the payo� languages used in real-world
applications require synchronization of the contract and the payo� code once a
contract evolves [Lex08, Contract State and Pricing Synchronization]. But in
some cases, as we mentioned earlier, it is important to capture the reduction
semantics in the payo� language as well. Our result allows for using a single
compilation procedure for both use cases: compiling a contract upfront and
synchronizing at each time step.

The contract analysis and transformation code forms a core code base,
which �nancial software crucially depends on. A certi�ed programming ap-
proach using the Coq proof assistant allows us to prove various correctness
results and to extract certi�ed executable code.

The rest of the chapter is structured as follows. We describe an extension of
the original contract language [BBE15] with template expressions for temporal
parameters in Section 2.2.1. Next, we describe the syntax and the semantics
of the payo� intermediate language designed to capture aspects relevant for
the contract pricing purposes in Section 2.3. Section 2.4 describes our compi-
lation approach, including a novel technique to transfer the contract evolution
behavior to payo� expressions. We also state and sketch proofs of soundness
theorems with respect to the denotational and the reduction semantics of con-
tracts. Formalisation of our contract compilation approach, including code
extraction, along with the example of Haskell code generation, are described
in Section 2.5.
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c ::= zero | transfer(p1, p2, a) | scale(e, c) |
translate(t, c) | ifWithin(e, t, c1, c2) | both(c1, c2)

e ::= op(e1, e2, . . . , en) | obs(l, i) | acc(λv. e1, n, e2) | r | b
t ::= n | v
op ::= add | sub | mult | lt | neg | cond | . . .

Figure 2.1: Syntax of CL.

2.2 The Contract Language

2.2.1 Syntax and Semantics

We assume a countably in�nite set of program variables, ranged over by v .
Moreover, we use n, i , r , and b to range over natural numbers, integers, reals,
and booleans. We use p to range over parties. The contract language (CL)
that we consider follows the style of [BBE15] and is extended with template
variables (see Figure 2.1).

Expressions (e) may contain observables, which are interpreted in an ex-
ternal environment. The acc construct allows for accumulating a value over a
given number of days n.

A contract (c) may be empty(zero), a transfer of one unit of some asset
a (transfer), a scaled contract (scale), a translation of a contract into the
future (translate), the composition of two contracts (both), or a generalised
conditional ifWithin(cond, t, c1, c2), which checks the condition cond repeat-
edly during the period given by t and evaluates to c1 if cond = true or to c2
if cond never evaluates to true during the period t.

The main di�erence between the original version of the contract language
and the version presented here is the introduction of template expressions (t),
which, for instance, allows us to write contract templates with the contract ma-
turity as a parameter. This feature requires re�ned reasoning about the tempo-
ral properties of contracts, such as causality. Certain constructs in the original
contract language, such as translate(n, c) and ifWithin(cond , n, c1, c2), are
designed such that basic properties of the contract language, including the
property of causality, are straightforward to reason about. In particular, the
displacement numbers n in the above constructs are constant positive num-
bers. For templating, we re�ne the constructs to support template expressions
in place of positive constants. One of the consequences of adding template
variables is that the semantics of contracts now depends also on mappings of
template variables in a template environment TEnv : Var → N, which is also
the case for many temporal properties of contracts. For example, the type
system for ensuring causality of contracts [BBE15] and the concept of sym-
bolic contract horizon hor are now parameterised by template environments.
The modi�ed version of hor is given in Figure 2.2, where T JtKδ represents the
semantics of template expressions (see Figure 2.5)

On the other hand, some properties such as simple or obvious causality can
be veri�ed without information from a template environment. Although, this
property might be too restrictive for some contracts which are causal, but not
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horδ(zero)

horδ(transfer(p, q, a))

= 0

= 1

horδ(scale(e, c)) = horδ(c)

horδ(translate(t, c)) = T JtKδ ⊕ horδ(c)

horδ(let x = e in c) = horδ(c)

horδ(both(c1, c2)) = max(horδ(c1),horδ(c2))

horδ(ifWithin(e, t, c1, c2)) = T JtKδ ⊕max(horδ(c1),horδ(c2))

where
a⊕ b =

{
0 if b = 0

a+ b otherwise

Figure 2.2: Symbolic horizon.

obviously causal (see [BBE15, Section 3.2]).
Let us consider examples of the contracts written in English and expressed

in CL.

Example 2.1: The de�nition of an European option contract:

European options are contracts that give the owner the right, but
not the obligation, to buy or sell the underlying security at a speci�c
price, known as the strike price, on the option's expiration date
(investopedia.com).

Let us take: the expiration date to be 90 days into the future and set the
strike at 100 USD. We can implement the European option contract with these
parameters in CL as follows:

translate(90,

if(obs(AAPL,0) > 100.0,

scale(obs(AAPL,0) - 100.0, transfer(you, me, USD)),

zero))

Example 2.2: Three month FX swap for which the payment schedule has been
settled:

scale(1.000.000,

both(all[translate(22, transfer(me, you, EUR)),

translate(52, transfer(me, you, EUR)),

translate(83, transfer(me, you, EUR))],

scale(7.21,

all[translate(22, transfer(you, me, DKK)),

translate(52, transfer(you, me, DKK)),

translate(83, transfer(you, me, DKK))])))

In the example, we have written all[c1, · · · , cn] as an abbreviation for the con-
tract both(c1, both( · · · , cn)). We use the all shortcut with the translate

combinator to implement a schedule of payments.
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Γ ` e : τ

x : τ ∈ Γ

Γ ` x : τ Γ ` r : Real Γ ` b : Bool

l ∈ Labelτ

Γ ` obs(l, t) : τ

Γ ` ei : τi ` op : τ1 × · · · × τn → τ

Γ ` op(e1, . . . , en) : τ

Γ, x : τ ` e1 : τ Γ ` e2 : τ

Γ ` acc(λx. e1, d, e2) : τ

Γ ` c : Contr

Γ ` zero : Contr Γ ` transfer(p, q, a) : Contr

Γ ` c : Contr

Γ ` translate(d, c) : Contr

Γ ` ci : Contr

Γ ` both(c1, c2) : Contr

Γ ` e : Real Γ ` c : Contr

Γ ` scale(e, c) : Contr

Γ ` e : τ Γ, x : τ ` c : Contr

Γ ` let x = e in c : Contr

Γ ` e : Bool Γ ` ci : Contr

Γ ` ifWithin(e, d, c1, c2) : Contr

Figure 2.3: Typing rules for contracts and expressions of CL.

Using CL, considered in the present work, we can abstract some parameters
of the contact in Example 2.1 to template variables (T for expiration date, and
S for strike)1:

translate(T,

if(obs(AAPL,0) > S,

scale(obs(AAPL,0) - S, transfer(you, me, USD)),

zero))

Such a parameterisation plays well with a way how users could interact
with a contract management system. Contract templates could be exposed to
users as instruments that can be instantiated with concrete values from users'
input.

Next, we discuss how adding template expressions to the contract language
a�ects its semantics. We extend the denotational semantics from [BBE15]
to accommodate the idea of template expressions. The semantics for the ex-
pression sublanguage stays unchanged, since these expressions do not contain
template expressions. That is, the semantics for an expression e ∈ Exp in
Figure 2.1 is given by the partial function E JeK : JΓK × Env ⇀ JτK. On the
other hand, we modify the semantic function for contacts by adding a template

1In our implementation we focus on contract templates allowing for template expressions
to represent temporal parameters, like maturity. Other parameters, e.g. strike, could be
expressed as constant observable values.
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` op : τ1 × · · · × τn → τ

` ⊕ : Real× Real→ Real for ⊕ ∈ {+,−, ·, /,max ,min}
` ⊕ : Real× Real→ Bool for ⊕ ∈ {≤, <,=,≥, >}
` ⊕ : Bool× Bool→ Bool for ⊕ ∈ {∧,∨}
` ¬ : Bool→ Bool

` if : Bool× τ × τ → τ for τ ∈ {Real, Bool}

Figure 2.4: Typing of expression operators.

environment as an argument:

C JcK : JΓK× Env× TEnv⇀ Trace

Trace = N→ Trans

Trans = Party× Party× Asset→ R

As the original contract semantics, it depends on the external environment
Env : N× Label→ R∪B and variable assignments that map each free variable
of type τ to a value in JτK. Where

JRealK = R
JBoolK = B

(2.1)

Given a typing environment Γ, the set of variable assignments in Γ, written
JΓK, is the set of all partial mappings γ from variable names to R∪B such that
γ(x) ∈ JτK i� x : τ ∈ Γ. The typing rules also remain the same for expressions
and for contracts. These rules are presented in Figure 2.3, and the typing of
expression operators is given in Figure 2.4.

By the result on the semantics of contracts [BBE15, Proposition 3], for well-
typed expressions and well-typed closed contracts semantic functions E J−K and
C J−K are total. The semantics for expressions and contracts is given in Figure
2.5.

We de�ne an instantiation function that takes a contract and a template
environment containing values for template variables, and produces another
contract that does not contain template variables by replacing all occurrences
of template variables with corresponding values from the template environment.

De�nition 2.2.1 (Instantiation function).

inst : Contr × TEnv→ Contr

inst(zero, δ) = zero

inst(let e in c, δ) = inst(c, δ)

inst(transfer(p1, p2, a), δ) = transfer(p1, p2, a)

inst(scale(e, c), δ) = inst(c, δ)

inst(translate(t, c), δ) = translate(T JtKδ , inst(c, δ))

inst(both(c1, c2), δ) = both(inst(c1, δ), inst(c2, δ))

inst(ifWithin(e, t, c1, c2), δ) = ifWithin(e, T JtKδ , inst(c1, δ), inst(c2, δ))
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T JtK : TEnv→ N

T JnKδ = n T JvKδ = δ(v)

E JeK : JΓK× Env→ JτK

E JrKγ,ρ = r; E JbKγ,ρ = b; E JxKγ,ρ = γ(x)

E Jobs(l, t)Kγ,ρ = ρ(l, t)

E Jop(e1, . . . , en)Kγ,ρ = JopK (E Je1Kγ,ρ , . . . , E JenKγ,ρ)

E Jacc(λx. e1, d, e2)Kγ,ρ =

{
E Je2Kγ,ρ if d = 0

E Je1Kγ[x 7→v],ρ if d > 0

where v = E Jacc(e1, d− 1, e2)Kγ,ρ/−1

C JcK : JΓK× Env× TEnv→ N→ Trans

Trans = Party× Party× Asset→ R
C JzeroKγ,ρ,δ = λn.λt.0

C Jscale(e, c)Kγ,ρ,δ = λn.λ(p, q, a).E JeKγ,ρ,δ · C JcKγ,ρ,δ (n)(p, q, a) where

(− · −) : R→ Trace→ Trace

denotes trace multiplication de�ned pointwise.

C Jboth(c1, c2)Kγ,ρ,δ = λn.λt.C Jc1Kγ,ρ,δ (n)(t) + C Jc2Kγ,ρ,δ (n)(t) where

(−+−) : Trace→ Trace→ Trace

denotes trace addition de�ned pointwise.

C Jtranslate(t, c)Kγ,ρ,δ = delay(T JT Kδ , C JcKγ,ρ,δ), where

delay(d, f) = λn.

{
f(n− d) if n ≥ d
λx.0 otherwise

C Jtransfer(p, q, a)Kγ,ρ,δ =

{
λn.λt.0 if p = q

unita,p,q otherwise, where

unita,p,q(n)(p′, q′, b) =


1 if b = a, p = p′, q = q′, n = 0

−1 if b = a, p = q′, q = p′, n = 0

0 otherwise

C Jlet x = e in cKγ,ρ,δ = C JcKγ[x 7→v],ρ , where v = E JeKγ,ρ,δ
C JifWithin(e, t, c1, c2)Kγ,ρ,δ = iter(T JtKδ , ρ), where

iter(i, ρ′) =
C Jc1Kγ,ρ′ if E JeKγ,ρ′ = true

C Jc2Kγ,ρ′ if E JeKγ,ρ′ = false ∧ i = 0

delay(1, iter(i− 1, ρ′/1)) if E JeKγ,ρ′ = false ∧ i > 0

Figure 2.5: Denotational semantics of expressions and contracts of CL.
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T C(c)

T C(zero)

T C(c)
T C(let e in c) T C(transfer(p1, p2, a))

T C(c)
T C(scale(e, c))

n is a numeral T C(c)
translate(n, c)

T C(c1) T C(c2)

T C(both(c1, c2))

n is a numeral T C(c1) T C(c2)

T C(ifWithin(e, n, c1, c2))

Figure 2.6: Template-closed contracts.

We de�ne an inductive predicate that holds only for contract expressions
without template variables (Figure 2.6). We call such contracts template-closed.

Lemma 2.2.1. It is straightforward to establish the following fact: for any
contract c and template environment δ, application of the instantiation function
gives a template-closed contract:

T C(inst(c, δ))

Proof. By induction on the structure of c. �

Lemma 2.2.2 (Instantiation soundness). For any contract c, template en-
vironments δ and δ′, external environment ρ, and any value environment γ,
the contract c and inst(c, δ) are semantically equivalent. That is, C JcKγ,ρ,δ =
C Jinst(c, δ)Kγ,ρ,δ′ .

Proof. By induction on the structure of c. The case of ifWithin(e, t, c1, c2)
requires inner induction on n = T JtKδ.

Notice also, that the semantic function on the right hand side takes arbitrary
template environments δ′, since after instantiation, the template environment
does not a�ect the result. �

The reduction semantics of the contract language presented in [BBE15] re-
mains the same, although, we make additional assumption that the contract
expressions is closed wrt. template variables. We provide the reduction seman-
tics in Figure 2.7 for completeness of the presentation.

The functions translate(n, c), both(c1, c2), and scale(e, c) represent corre-
sponding smart constructors, which perform some simpli�cations before con-
structing a corresponding contract. Expressions built using smart constructors
are semantically equivalent to the corresponding expressions that use ordinary
constructors. The spE function denotes contract specialisation (see [BBE15,
Section 4.1]).

Example 2.3: Let us consider a simple example of the contract reduction. We
take the following contract containing two transfers: one transfer is scheduled
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c
T

=⇒γ,ρ c
′

c
T

=⇒γ,ρ c
′

translate(0, c)
T

=⇒γ,ρ c′ zero
T0=⇒γ,ρ zero transfer(p, q, a)

Tp,q,a
=⇒γ,ρ zero

d > 0

translate(d, c)
T0=⇒ρ translate(d− 1, c)

c
T

=⇒γ,ρ c
′ r = spE(e, γ, ρ) r ∈ R

scale(e, c)
r∗T

=⇒γ,ρ scale(r, c′)

ci
Ti=⇒γ,ρ c

′
i

both(c1, c2)
T1+T2=⇒γ,ρ both(c′1, c

′
2)

c
T0=⇒γ,ρ c

′ e′ = spE(e, γ, ρ)

scale(e, c)
T0=⇒γ,ρ scale(translExp(−1, e′), c′)

spE(e, γ, ρ) = e′

c
T

=⇒γ′,ρ c
′

γ′ =

{
γ[x 7→ e′] if e′ ∈ R ∪ B
γ otherwise

let x = e in c
T

=⇒γ,ρ let x = translExp(−1, e′) in c

spE(e, γ, ρ) = false c2
T

=⇒γ,ρ c
′

ifWithin(e, 0, c1, c2)
T

=⇒γ,ρ c′

spE(e, γ, ρ) = true c2
T

=⇒γ,ρ c
′

ifWithin(e, d, c1, c2)
T

=⇒γ,ρ c′

spE(e, γ, ρ) = false d > 0

ifWithin(e, d, c1, c2)
T0=⇒γ,ρ ifWithin(e, d− 1, c1, c2)

where T0 = λt.0 r ∗ T = λt.r · T (t)

T1 + T2 = λt.T1(t) + T2(t)

Tp,q,a = λ(p′, q′, a′).


1 if (p′, q′, a′) = (p, q, a)

−1 if (p′, q′, a′) = (q, p, a)

0 otherwise

Figure 2.7: Contract reduction semantics assuming T C(c).

on the current day (no translation into the future), and another transfer is
scheduled on the following day.

c :≡ both(transfer(you,me),

translate(1,transfer(you,me)))
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We get the following derivation tree for a one-step reduction of c:

transfer(you,me, USD)

Tyou,me
=⇒ zero

1 > 0

translate(1, transfer(you,me, USD))

T0=⇒ transfer(you,me, USD)

c
Tyou,me

=⇒ transfer(you,me, USD)

There is an implicit simpli�cation in the result of reduction due to the usage
of smart constructors:

both(zero, translate(0, transfer(you,me, USD))) = transfer(you,me, USD)

2.2.2 Traces as a Vector Space

In Section 2.4 of the paper on CL [BBE15] it was mentioned that the set Trans
of transfers between parties forms a vector space. In this section we will make
this precise and go a bit further, discussing the set of traces Trace and the
delay operation on traces.

First, we recall the de�nition of a vector space.

De�nition 2.2.2 (Vector Space). A vector space over a �eld F is a set V
equipped with two operations:

• vector addition −+− : V × V → V

• scalar multiplication − · − : F× V → V

These operations satisfy the following axioms.

• associativity of vector addition: ∀u, v, w ∈ V, (u+ v) +w = u+ (v +w);

• commutativity of vector addition: ∀u, v ∈ V.u+ v = v + u;

• identity of vector addition: there exists a zero vector 0, s.t ∀v ∈ V. v+0 =
v;

• inverse of vector addition : for every v ∈ V there exists an additive inverse
−v, s.t. v + (−v) = 0;

• compatibility of scalar multiplication with �eld multiplication: ∀a, b ∈
F, v ∈ V. (ab) · v = a · (b · v)

• identity of scalar multiplication: ∀v ∈ V. 1 · u = u

• distributivity of scalar multiplication over vector addition: ∀a ∈ F, v, u ∈
V. a · (v + u) = a · v + a · u;

• distributivity of scalar multiplication over �eld addition: ∀a, b ∈ F, v ∈
V. (a+ b) · v = a · v + b · v
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Transfers are de�ned as functions to real numbers:

Trans = Party× Party× Asset→ R

It is a well-known fact that functions to a �eld form a vectors space with
operations given pointwise.

We shall spell out explicitly how transfers form a vector space. We use T to
denote elements of Trans. Operations on elements of Trans are the following:

• T1 + T2 = λp. T1(p) + T2(p), where p : Party× Party× Asset

• r · T = λp. r · T (p)

Let us now check that these two operations satisfy the axioms of a vector space.

• associativity and commutativity of transfer addition follow from the prop-
erties of addition on real numbers;

• the zero vector is just a constantly zero transfer 0 = λp. 0, and its
property follows from addition with zero in R: (T + 0)(p) = T (p) + 0 =
T (p);

• the inverse is also just a negation from R: (−T ) = λp.(−T (p));

• identity of scalar multiplication follows from multiplication of real num-
bers;

• both distributivity laws follow from the fact that R is a �eld.

As one can see, we have never used any speci�c properties of Trans to de�ne the
operations, or in our reasoning about vector space axioms. The fact that Trans
is a vector space is indeed an instance of a more general result as we could have
used any function to R and show that it satis�es vector space axioms.

Now we consider the type of the semantics function for contracts. We de�ne
a trace to be a function from the set of natural numbers N to Trans

Trace = N→ Trans

The semantics of well-types contracts is de�ned in terms of traces

C JcK : JΓK× Env× TEnv→ Trace

Traces are functions to Trans and we have shown that Trans is a vector
space. We can show that Trace with operations de�ned pointwise also a vector
space. The argument is essentially the same as for transfers, but with all the
properties of real numbers replaced by the properties of Trans.

Remark 2.2.1. In addition to the usual vector space structure, transfers sat-
isfy an additional anti-symmetry axiom. That is, for any parties p1, p2, and
an asset a

T (p1, p2, a) = −T (p2, p1, a)

This property extends pointwise to traces as well. This means that CL is
interpreted into a subspace of the vector space Trace given by all traces with
anti-symmetry property.
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Contract combinators, like scale and both are interpreted as operations of
a vector space Trace: scalar multiplication and vector addition respectively.
In addition to these operations, the translate combinator of the contract
language could be interpreted in terms of vectors spaces. Let us �rst recall a
de�nition of a linear map.

Theorem 2.2.1 (Linear map). For two vector spaces V and W over the same
�eld F we call the function f : V → W a linear map, if it preserves vector
addition and vector multiplication. That is, it satis�es the following conditions
(for any v ∈ V , w ∈W and a ∈ F)

f(v + w) = f(v) + f(w)

f(a · v) = a · f(v)

Let as consider the delay operation on contracts (see 2.5):

delay(−,−) : N× Trace→ Trace

delay(d, f) = λn.

{
f(n− d) if n ≥ d
λx.0 otherwise

(2.2)

For some �xed n ∈ N we have delay(n,−) : Trace → Trace. We know that
Trace is a vector space, so we can ask if the delay function is a linear map.

Lemma 2.2.3. The delay function de�ned by equation 2.2 is a linear map.

Proof. First, we show that delay preserves vector addition. Fix some n ∈ N,
we write delayn for delay(n,−), and T for elements on Trace. By functional
extensionality, for any t ∈ N, we have to show

delayn(T 1 + T 2)(t) = delayn(T 1)(t) + delayn(T 2)(t)

We proceed by cases of t ≥ n.

• t ≥ n:

delayn(T 1 + T 2)(t) = by de�nition of delay for t ≥ n
= (T 1 + T 2)(t− n)

= by de�nition of pointwise addition of traces

= T 1(t− n) + T 2(t− n)

= by de�nition of delay for T 1 and T 2

= delayn(T 1)(t) + delayn(T 2)(t)

• otherwise:
0 = 0 + 0

where 0 = λx.0 is the constantly zero transfer. This holds by the identity
of vector addition axiom.

Now we show that delay preserves scalar multiplication. Fix some n ∈ N.
By functional extensionality, for any t ∈ N we have to show

delayn(r · T )(t) = r · delayn(T )(t)

We proceed by cases of t ≥ n.
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• t ≥ n:

delayn(r · T )(t) = by de�nition of delay for t ≥ n
= (r · T )(t− n)

= by de�nition of pointwise scalar multiplication of traces

= r · T (t− n)

= by de�nition of delay for T

= r · delayn(T )(t)

• otherwise:
0 = r · 0

where 0 = λx.0. This is one of the properties of vectors, which can be
derived from the basic vector space axioms.

�

Knowing that Trace is a vector space gives us the important set of proper-
ties, which are used in the proofs involving the contract semantics. We will see
some examples in the proof of compilation soundness in Section 2.4. Moreover,
a many contract equivalences are direct re�ections of vector space axioms.

2.3 The Payo� Intermediate Language

2.3.1 Motivation

The contract language allows for capturing di�erent aspects of �nancial con-
tracts. We consider a particular use case for the contract language, where one
wants to calculate an estimated price of a contract according to some stochas-
tic model by performing simulations. Simulations is often implemented using
Monte Carlo techniques, for instance, by evaluating a contract price at current
time for randomly generated possible market scenarios and discounting the out-
come according to some model. A software component that implements such a
procedure is called a pricing engine and aims to be very e�cient in performing
large amount of calculations by exploiting the parallelism [ABB+16]. For this
use case, one has to take the following aspects into account:

• Contracts should be represented as simple functions that take prices of
assets involved in the contract (randomly generated by a pricing engine)
and return one value corresponding to the overall outcome of the contract.

• The resulting value of the contract should be discounted according to a
given discount function.

One way of achieving this would be to implement an interpreter for the contract
language as part of a pricing engine. Although this approach is quite general,
interpreting a contract in the process of pricing will cause signi�cant perfor-
mance overhead. Moreover, it will be harder to reason about correctness of the
interpreter, since it could require non-trivial encoding in languages targeting
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GPGPU devices. For that reason we take another approach: translating a con-
tract from CL to an intermediate representation and, eventually, to a function
in the pricing engine implementation language.

The main motivation behind the payo� language is to bridge the gap be-
tween CL and programming languages usually used to implement pricing en-
gines. The payo� language should be relatively easy to compile to various
target languages such as Haskell, Futhark [HEO14], or OpenCL. We would
like to consider a language containing fewer domain-speci�c features and being
closer to a subset of some general purpose language, making a mapping from
the payo� language to a target language straightforward. Moreover, we would
like to parameterise payo� expressions with template expressions, like in our
extended CL. In addition to template expressions we want payo� expressions
to capture the dynamic nature of contracts: reduction with the passage of
time. This feature is usually not present in most of payo� languages, but it is
important for e�cient interaction with a pricing engine. Since our target lan-
guages include high-performance languages for GPGPU computing, and payo�
functions are usually relatively small pieces of code, for e�cient execution one
often needs to inline these functions. If our payo� code was not parametric,
it would require recompiling of big portions of the pricing engine code base
when contracts evolve in time. Sometimes it is also necessary to estimate the
sensitivity of a contract to the passage of time. In this case one wants the time
parameter to be a part of the payo� expression.

2.3.2 Syntax and Semantics

The payo� intermediate language is an expression language (il ∈ ILExpr)
with binary and unary operations, extended with conditionals and generalised
conditionals loopif, behaving similarly to ifWithin. Template expressions
(t ∈ TExprZ) in this language are extensions of the template expressions of the
contract language with integer literals and addition. We will often refer to this
language as payo� expressions.

il ::= now | model(l, t) | if(il1, il2, il3) |
loopif(il , il , il , t) | payoff(t, p, p) |
unop(il) | binop(il1, il2) | te

unop ::= neg | not
binop ::= add | mult | sub | lt | and | or | ltn | . . .

te ::= n | i | v | tplus(te1, t
e
2)

The semantics of payo� expressions (Figure 2.8) depends on environments
ρ ∈ Env and δ ∈ TEnv similarly to the semantics of the contract language.
Payo� expressions can evaluate to a value of type N, R, or B. We add N to
the semantic domain, because we need to interpret the now construct, which
represents the �current time� parameter and template expressions te. The se-
mantics also depends on a discount function d : N→ R. The t0 ∈ N parameter
is used to add relative time shifts introduced by the semantics of loopif; t is
a current time, which will be important later, when we introduce a mechanism
to cut payo�s before a certain point in time.

The semantics for unary and binary operations is a straightforward map-
ping to corresponding arithmetic and logical operations, provided that the
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IL JilK : Env× TEnv× N× N× (N→ R)× Party× Party⇀ N ∪ R ∪ B

IL JteKρ,δ,t0,t,d,p1,p2 = T JteKδ + t0

IL Junop(il)Kρ,δ,t0,t,d,p1,p2 = JunopK (IL JilKρ,δ,t0,t,d,p1,p2)

IL Jbinop(il0, il1)Kρ,δ,t0,t,d,p1,p2 = JbinopK (IL Jil0Kρ,δ,t0,t,d,p1,p2 , IL Jil1Kρ,δ,t0,t,d,p1,p2)

IL Jmodel(l, te)Kρ,δ,t0,t,d,p1,p2 = ρ(l, T JteKδ + t0)

IL JnowKρ,δ,t0,t,d,p1,p2 = t

IL Jif(il0, il1, il2)Kρ,δ,t0,t,d,p1,p2 =

{
IL Jil1Kρ,δ,t0,t,d,p1,p2 if IL Jil0Kρ,δ,t0,t,d,p1,p2 = true

IL Jil2, Kρ,δ,t0,t,d,p1,p2 if IL Jil0Kρ,δ,t0,t,d,p1,p2 = false

IL Jpayoff(te, p′1, p
′
2)Kρ,δ,t0,t,d,p1,p2 =


d(T JteKδ) if p′1 = p1, p

′
2 = p2

−d(T JteKδ) if p′1 = p2, p
′
2 = p1

0 otherwise

IL Jloopif(il0, il1, il2, t
e)Kρ,δ,t0,t,d,p1,p2 = iter(T JteKδ , t0), where

iter n t0 =


IL Jil1Kρ,δ,t0,t,d,p1,p2 if IL Jil0Kρ,δ,t0,t,d,p1,p2 = true

IL Jil2Kρ,δ,t0,t,d,p1,p2 if IL Jil0Kρ,δ,t0,t,d,p1,p2 = false ∧ n = 0

iter(n− 1)(t0 + 1) if IL Jil0Kρ,δ,t0,t,d,p1,p2 = false ∧ i > 0

Figure 2.8: Semantics of payo� expressions.

arguments have appropriate types. For example, JaddK (v1, v2) = v1 + v2, if
v1, v2 ∈ R.

The semantics for loopif is very similar to the semantics of ifWithin,
although we do not �advance� external environments. Instead, we increment
parameter t0, which is added to the time shift when looking up a value in
the semantics for model. The semantic function IL J−K considers only payo�s
between two parties p1 and p2, which are given as the last two parameters.
More precisely, it considers payo�s from party p1 to party p2 as positive and
as negative, if payo�s go in the opposite direction.

Another way of de�ning the semantics could be a bilateral view on payo�s.
In this case only cash�ows to or from one �xed party to any other party are
considered. The semantics for the payoff then would be de�ned as follows:

IL Jpayoff(t, p′1, p
′
2)Kρ,δ,t0,t,d,p =


d(T JtKδ) if p′2 = p

−d(T JtKδ) if p′1 = p

0 otherwise
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2.4 Compiling Contracts to Payo�s

The contract language (Figure 2.1) consist of two levels, namely constructors
to build contracts (c) and constructors to build expressions (e), which are
used in the constructors for contracts (scale, ifWithin, etc.). We compile
both levels into a single payo� language. The compilation functions τe J−K :
Expr×TExprZ⇀ ILExpr and τc J−K : Contr×TExprZ⇀ ILExpr are recursively
de�ned on the syntax of expressions and contracts, respectively, taking the
starting time t0 ∈ TExprZ as a parameter.

τe Jcond(b, e0, e1])Kt0 = if(τe JbKt0 , τe Je0Kt0 , τe Je1Kt0)

τe Jobs(l, i)Kt0 = model(l, tplus(t0, i))

τc Jtransfer(p1, p2, a)Kt0 = payoff(t0, p1, p2)

τc Jscale(e, c)Kt0 = mult(τe JeKt0 , τc JcKt0)

τc JzeroKt0 = 0

τc Jtranslate(t, c)Kt0 = τc JcKtplus(t0,t)
, where

tplus(t1, t2) =

{
t1 + t2 if t1, t2 are numerals

tplus(t1, t2) otherwise

τc Jboth(c0, c1)Kt0 = add(τc Jc0Kt0 , τc Jc1Kt0)

τc JifWithin(e, t, c1, c2)Kt0 = loopif(τe JeKt0 , τc Jc0Kt0 , τc Jc1Kt0 , t)

The important point to note here is that all the relative time shifts in CL are
accumulated to the t0 parameter. The resulting payo� expression only contains
lookups in the external environment where time is given explicitly, and does not
depend on nesting of time shifts as it was in the case of translate(t, c) in CL.
Such a representation allows for a more straightforward evaluation model. We
also would like to emphasise that acc and let constructs are not supported by
our compilation procedure. On the supported subset of the contract language,
compilation functions τe JeK, and τc JcK are total.

Let us show an example of the contract compilation. We consider the code
of a contract in CL extended with template expressions and demonstrate how
nested occurrences of translate are compiled to a payo� expression.

Example 2.4: We consider the following contract (t0 and t1 denote template
variables): the party �you� transfer to the party �me� 100 USD in t0 days in
the future, and after t1 more days �you� transfers to �me� an amount equal
to the di�erence between the current price of the AAPL ticker and 100 USD,
provided that the price of AAPL is higher then 100 USD (we use in�x notation
for arithmetic operations to make code more readable).

c =
translate(t0,

both(scale(100.0, transfer(you,me)),

translate(t1,

if(obs(AAPL,0) > 100.0,

scale(obs(AAPL,0) - 100.0, transfer(you, me)),

zero)))
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This contract compiles to the following code in the Payo� Intermediate
Language:

e =
(100.0 * payoff(t0,you,me)) +

if (model(AAPL,t0+t1) > 100.0,

(model(AAPL,t0+t1) - 100.0) * payoff(t0+t1,you,me),

0.0)

As one can see, all the nested occurrences of translate construct were accu-
mulated from top to bottom. That is, in the if case we calculate payo�s and
lookup for values of �AAPL� at time (t0+t1).

To be able to reason about soundness of the compilation process, one needs
to make a connection between the semantics of the two languages. For the
expression sublanguage of CL it is simple: we can just compare the values
that original expression and compiled expression evaluates to. In case of the
contract language (denoted by c in Figure 2.1) the situation is di�erent, since
the semantics of contracts is given in terms of Trace, and expressions of the
payo� intermediate language evaluate to a single value. On the other hand, we
know that the compiled expression represents the sum of the contract cash�ows
with discount.

Before we state and sketch the proof of the soundness theorem, let us state
some additional lemmas.

Lemma 2.4.1 (Delay scale). For any s : R, t : N and a trace tr , the following
holds:

delay(t, s · tr) = s · delay(t, tr)

Lemma 2.4.2 (Delay add). For any t : N and traces tr1,tr2, the following
holds:

delay(t, tr1 + tr2) = delay(t, tr1) + delay(t, tr2)

Lemmas 2.4.1 and 2.4.2 correspond to the fact that the delay function is a
linear map (see Section 2.2.2).

Lemma 2.4.3 (Common factor). For any function f : N → R, s : R, and
t0, n : N, we have the following obvious result:

t0+n∑
t=t0

s · f(t) = s ·
t0+n∑
t=t0

f(t)

Lemma 2.4.4 (Split sum). For any function f, g : N → R, we have the
following:

t0+n∑
t=t0

(
f(t) + g(t)

)
=

t0+n∑
t=t0

f(t) +

t0+n∑
t=t0

g(t)

Lemma 2.4.5 (Sum delay). For any trace tr t0, t1, t2 : N, discount function
d : N→ R, and parties p1, p2, we have the following:

t0+t1+t2∑
t=t0

d(t)·delay(t0+t1, tr)(t)(p1, p2) =

t0+t1+t2∑
t=t0+t1

d(t)·delay(t0+t1, tr)(t)(p1, p2)
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Intuitively, Lemma 2.4.5 says that summing up the delayed trace before the
delay point does not a�ect the result.

We assume a function HOR : TEnv×Contr→ N that returns a conservative
upper bound on the length of a contract. We often write τe JeK0 = il , or
τc JcK0 = il to emphasise that the compilation function returns some result.
The compilation function satis�es the following properties:

Theorem 2.4.1 (Soundness). Assume parties p1 and p2 and discount function
d : N→ R, environments ρ ∈ Env and δ ∈ TEnv.

(i) If τe JeK0 = il and E JeKρ,δ = v1 and IL JilKρ,δ,0,0,d,p1,p2 = v2 then v1 = v2.

(ii) If τc JcK0 = il and C JcKρ,δ = tr , where tr : N → Party × Party → R,
and IL JilKρ,δ,0,0,d,p1,p2 = v then

horδ(c)∑
t=0

d(t)× tr(t)(p1, p2) = v

Proof. We will outline the proof here to show which properties we use in par-
ticular cases. This proof is completely formalised in Coq and all the details
can be found in the source code.

The proof of part (i) proceeds by induction on the structure of e and mostly
straightforward.

To prove part (ii) we �rst generalise the statement of the theorem for an
arbitrary template expression t0 : TExpZ in place of 0 as the initial value
for the contact compilation function.2 This is required because the compi-
lation function aggregates all the nested time shift in the contract, and for
the case of translate(t, c) the induction hypothesis should be more general.
The same approach is used to prove properties of tail-recursive functions (e.g.
fold_left). Once the initial for the compilation function becomes t0, we have
to �compensate� this by delaying the trace of the contract. One way to do
it is to use translate in the theorem statement. That is, assumptions be-
come τc JcKt0 = il , and C Jtranslate(T Jt0Kδ , c)Kρ,δ = tr , and the conclusion
becomes

t0+horδ(c)∑
t=t0

d(t)× tr(t)(p1, p2) = v

The proof proceeds by induction on the structure of c. We have the following
cases to consider.

Case 1 (zero): We use the fact that the empty trace gives the zero transfer at
any point of time.

Case 2 (transfer(p1, p2, a)): By case analysis on decidable equality of parties.

Case 3 (translate(t, c)): We prove this case by application of the induction
hypothesis with Lemma 2.4.5.

2We need to generalise the initial value for loopif semantics from 0 to some n as well,
i.e. IL JilKρ,δ,n,0,d,p1,p2 = v. This can be done in the same way as for t0, and we omit this
generalisation in the proof presented here for readability
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Case 4 (scale(e, c)): In this case the sum on the left-hand side (let us call it
sigma) is equal to a product of two values v1 · v2, where v1 comes from the
expression e and v2 from the contract c. The overall idea is to transform the sum
into the product as well, so we can split the goal into two independent goals.
We achieve that by using Lemmas 2.4.1 (delay comes from the generalisation of
the theorem statement for arbitrary t0) and 2.4.3. After that we can prove the
two goals using soundness of expression compilation (part (i) of this theorem)
for v1, and the induction hypothesis for v2.

Case 5 (both(c1, c2)): In this case the sigma on the left-hand side is equal to
the sum of two values v1 · v2, where v1 comes from the contract c1 and v2 from
the contract c2. The overall idea is to transform the sigma into the sum of two
sigmas, so that we can split the goal into two independent goals. Again, we
achieve that by using Lemmas 2.4.2 (delay comes from the generalisation of
the theorem statement for arbitrary t0) and 2.4.4. After that, we can use the
induction hypotheses on c1 and c2 to prove the two goals, but we have to do
some extra work doing case analysis on horδ(both(c1, c2)), since it is de�ned
as the maximum of horizons of the two contracts.

Case 6 (ifWithin(e, t, c1, c2)): The proof proceeds by nested induction on n =
T JtKδ, for n ∈ N. In the base case and in the inductive step case we perform
a case analysis on the result of expression evaluation b = E JeKρ,δ, for b ∈
B. Moreover, in each subcase of the case analysis on b we perform a case
analysis for horδ(ifWithin(e, t, c1, c2)) for the same reason as in the case for
both(c1, c2).

�

Remark 2.4.1. The �rst version of a soundness proof was developed for
the original contract language without template expressions. The proof was
somewhat easier, since the aggregation of nested time shifts introduced by
translate(n, c) constructs during compilation was implemented as addition
of natural numbers, corresponding to time shifts. In the presence of template
expressions, the compilation function builds a syntactic expression using the
tplus constructor. There are some places in proofs where it was crucial to
use associativity of addition to prove the goal, but this does not work for
template expressions. For example, tplus(tplus(t1, t2), t3) is not equal to
tplus(t1, tplus(t2, t3)), because these expressions represent di�erent syntactic
trees, although semantically equivalent. Instead of restating proofs in terms of
this semantic equivalence (signi�cantly complicating the proofs), we used the
following approach. The compilation function uses the smart constructor tplus
instead of just plain construction of the template expression. This allowed us
to recover the property we needed to complete the soundness proof without
altering too much of its structure.

The soundness theorem (Theorem 2.4.1) makes an assumption that the
compiled expression evaluates to some value. We do not develop a type system
for our payo� language to ensure this property. Instead, we show that it is
su�cient for a contract to be well-typed to ensure that the compiled expression
always evaluates to some value.
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Theorem 2.4.2 (Total semantics for compiled contracts). Assume parties p1
and p2 and discount function d : N → R, well-typed external environment
ρ ∈ Env, template environment δ ∈ TEnv, and typing context Γ. We have the
following two results:

(i) for any e ∈ Exp, t0 ∈ TExprZ t′0 ∈ N, if Γ ` e : τ τe JeKt0 = il, then

∃v, IL JilKρ,δ,t′0,0,d,p1,p2 = v, and v ∈ JτK

(ii) for any c ∈ Contr, t0 t
′
0, if Γ ` c and τc JcKt0 = il, then

∃v, IL JilKρ,δ,t′0,0,d,p1,p2 = v, and v ∈ R

Proof. The proof for the statement (i) proceeds by induction on the typing
derivation for expressions (see Figure 2.3). The case for operations uses in-
duction hypothesis, which gives a value. The part v ∈ JτK in the conclusion
serves as a logical relation allowing us to get typing information required for the
particular operation. The case for obs(l, t) uses well-typedness of the external
environments.

The proof for statement (ii) proceeds by induction on the typing derivation
for contracts (see Figure 2.3), and uses the previously proved property of ex-
pressions (i) for scale(e, c) and ifWithin(e, t, c1, c2). The case ifWithin also
requires a nested induction on n = T JtKδ, for n ∈ N, and case analysis on the
result of expression the evaluation b = E JeKρ,δ, for b ∈ B. �

Notice that Theorem 2.4.2 holds for any t0 ∈ TExprZ and t′0 ∈ N. These
parameters do not a�ect totality of the semantics and can be arbitrary, but it is
crucial to add appropriate delays, corresponding to arbitrary t0 and t′0 for the
compilation soundness property (see the proof of part (ii) of Theorem 2.4.1).

Theorems 2.4.1 and 2.4.2 ensure that our compilation procedure produces
a payo� expression that evaluates to a value re�ecting the aggregated price of
a contract after discounting.

2.4.1 Avoiding recompilation

To avoid recompilation of a contract when time moves forward, we de�ne a
function cutPayoff(). This function is de�ned recursively on the syntax of
intermediate language expressions.

cutPayoff(now) = now

cutPayoff(model(l, t)) = model(l, t)

cutPayoff(if(il1, il2, il3)) = if(cutPayoff(il1), cutPayoff(il2), cutPayoff(il3))

cutPayoff(payoff(t, p1, p2)) = if(t < now, 0, payoff(t, p1, p2))

cutPayoff(unop(il)) = unop(cutPayoff(il))

cutPayoff(binop(il1, il2)) = binop(cutPayoff(il1), cutPayoff(il2))

The most important case is the case for payoff. The function wraps payoff
with a condition guarding whether this payo� a�ects the resulting value. For
the remaining cases, the function recurses on subexpressions and returns oth-
erwise unmodi�ed expressions.
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Example 2.5: Let us consider Example 2.4 again and apply the cutPayoff()
function to the expression e:

cutPayoff(e) =
(100.0 * disc(t0) * if(t0 < now, 0, payoff(you,me)) +

if (model(AAPL,t0+t1) > 100.0,

(model(AAPL,t0+t1) - 100.0) * disc(t0+t1) *

if(t1+t0 < now, 0, payoff(you,me)),

0.0)

Each payoff in the payo� expression is now guarded by the condition,
comparing the time of the particular payo� with now. Notice that the templates
variables t0 and t1 are mapped to concrete values in the template environment.

To be able to state a soundness property for the cutPayoff() function we
again need to �nd a way to connect it to the semantics of CL. Since cutPayoff()
deals with the dynamic behavior of the contract with respect to time, it seems
natural to formulate the soundness property in this case in terms of contract
reduction (Figure 2.7). The semantics of the payo� language takes the �current
time� t as a parameter. We should be able to connect the t parameter to the
step of contract reduction.

Remark 2.4.2. In the next lemmas we will implicitly assume parties p1 and
p2, discount function d : N → R, an external environment ρ ∈ Env, and a
template environment δ ∈ TEnv.

De�nition 2.4.1. We say that two payo� expressions il1 and il2 are equivalent
at (t0, t) for if

∀ρ, δ, d, p1, p2. IL Jil1Kρ,δ,t0,t,d,p1,p2 = IL Jil2Kρ,δ,t0,t,d,p1,p2

We write il1 '(t0,t) il2 for this equivalence.

De�nition 2.4.1 de�nes an equivalence parameterised by two parameters:
t0 ∈ N (a �counter� of loopif iterations), and t (time, up to which we want to
ignore the payo�s).

Let us �rst start with a simple property showing that if we take �current
time� to be zero, i.e. t = 0 in the semantic function, then the application of
cutPayoff() should not have any e�ect.

Lemma 2.4.6. Any il : ILExpr is equivalent at (t0, 0) to cutPayoff(il) for any
n ∈ N

cutPayoff(il) '(n,0) il

The next lemmas show other properties when the value of a payo� expres-
sion stays the same after application of cutPayoff().

We have the following obvious property for the expression sublanguage of
CL.

Lemma 2.4.7. For any contract expression e ∈ Exp, payo� expression il , and
t0 ∈ ILTExprZ, if τe JeKt0 = il then

cutPayoff(il) = il
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Notice that for compiled contract expressions Exp we have a stronger prop-
erty, stated using just equality of terms, and not the equivalence. The reason
for this is that there are no payoff constructs in compiled contract expressions
and application of cutPayoff() does not a�ect the payo� expression.

Lemma 2.4.8. For any contract c, payo� expression il , t0 ∈ ILTExprZ, n ∈ N,
current time tnow, if τc JcKt0 = il, and tnow ≤ T Jt0Kδ, then

cutPayoff(il) '(n,tnow) il

Lemma 2.4.9. For any contract c, payo� expression il , n ∈ N, current time
tnow, if tnow ≤ n, then

cutPayoff(il) '(n,tnow) il

Since the contract reduction relation uses smart constructors, we would like
to show how they interact with functions involved in the de�nition of soundness.

Lemma 2.4.10. For any contract c, contract expression e, and template en-
vironment δ, if e is not a zero literal, then the following property holds:

horδ(c) = horδ(scale(e, c))

Lemma 2.4.11. For any contracts c1, c2 and a template environment δ, then
the following property holds:

horδ(both(c1, c2)) = horδ(both(c1, c2))

Now, we can state a theorem relating the semantics of the payo� interme-
diate language with the contract reduction semantics.

Theorem 2.4.3 (Contract compilation soudness wrt. contract reduction).
We assume parties p1, p2, discount function d : N → R. For any well-typed
and template-closed contact c, i.e. we assume Γ ` c, and T C(c), an external
environment ρ′ ∈ Env extending a partial external environment ρ ∈ Envp, if c

steps to some c′ by the reduction relation c
T

=⇒ρ c′, for some transfer T , such
that C Jc′Kρ′/1 = trace, and τc JcK0 = il, then

horδ(c
′)∑

t′=0

d(t′ + 1)× trace(t′) = IL JcutPayoff(P )Kρ′,δ,0,1,d,p1,p2

Where ρ′/1 denotes the external environment ρ advanced by one time step:

ρ′/1 = λ(l, i). ρ′(l, i+ 1), l ∈ Label, i ∈ Z

Proof. The proof proceeds by induction on the derivation for the contract re-
duction. We group cases according to the shape of the contract c and show
only the general structure of the proof, highlighting which lemmas we use in
particular cases.

Case 1 (zero): Both values are zeros.
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Case 2 (transfer(p1, p2, a)): By case analysis on decidable equality of parties.
In the case parties are not equal, we observe that condition 0 < tnow is true,
since tnow = 1 and that gives zeros on both sides of the equation.

Case 3 (translate(t, c)): We have two subcases: t = 0 and t = n+ 1 for some
n ∈ N.

• t = 0. By induction hypothesis.

• t = n + 1. We observe that contract c is translated n + 1 steps into the
future. Ignoring payo�s before time tnow = 1 will not a�ect the result
of the evaluation of the corresponding payo� expression, since all the
potential payo�s can happen only after n+ 1 steps.

That is, we use soundness of contract compilation (Theorem 2.4.1, (ii))
with Lemma 2.4.8 and soundness of contract reduction (see [BBE15, The-
orem 11]).

Case 4 (scale(e, c)): The smart constructor scale does not preserve the sym-
bolic horizon in general, i.e. horδ(scale(e, c)) 6= horδ(scale(, e)c). This is
due to the �shortcut� behavior: if expression specialisation gives the zero lit-
eral, then the contract collapses to the empty one, giving zero horizon. For that
reason we perform case analysis on the outcome of the expression specialisation.

• spE(e, ρ) = 0. We use soundness of expression specialisation (see [BBE15,
Theorem 10]), Theorem 2.4.1(i), and Lemma 2.4.7 to proof this subcase.

• spE(e, ρ) 6= 0. We use the same idea as in the case of scale in the proof
of the compilation soundness theorem to split the goal into two cases.
We prove the �rst goal using Theorem 2.4.1(i). The second goal we can
prove by induction hypothesis and Lemma 2.4.10, since we know that
spE(e, ρ) 6= 0.

Case 5 (both(c1, c2)): We use the same idea to split the goal into two as in the
proof of Theorem 2.4.1, and then use induction hypotheses with Lemma 2.4.11.

Case 6 (ifWithin(e, t, c1, c2)): This case consists of three subcases.

• e evaluates to true. We prove this subcase by the induction hypothesis,
using Theorem 2.4.1(i) to show that the corresponding payo� expression
also evaluates to true.

• e evaluates to false and t = 0. The proof is similar to the previous
subcase.

• e evaluates to false and t = n + 1 for some n ∈ N. We observe that
the starting value for ifWithin is n + 1 and we know that e evaluates
to false. This means that all the potential payo�s can happen after at
least one step, and evaluating the corresponding payo� expression at time
tnow = 1 will not a�ect the result. We complete the proof by using the
compilation soundness (Theorem 2.4.1(ii)) and Lemma 2.4.9.

�
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From the contract pricing perspective, the partial external environment ρ
contains historical data (e.g., historical stock quotes) and the extended environ-
ment ρ′ is a union of two environments ρ and ρ′′, where ρ′′ contains simulated
data, produced by means of simulation in the pricing engine (e.g., using Monte
Carlo techniques).

One also might be interested in the following property. The following two
ways of using our compilation procedure give identical results:

• �rst reduce, compile, then evaluate;

• �rst compile, apply cutPayoff(), and then evaluate, specifying the appro-
priate value for the �current time� parameter.

Let us introduce some notation �rst. We �x the well-typed external envi-
ronment ρ, the partial environment ρ′, which is historically complete (ρ′(l, i) is
de�ned for all labels l and i ≤ 0), and a discount function d : N→ R. Next, we
assume that contracts are well-typed, and closed both with respect to variables
bound by let and template variables, the compilation function is applied to
supported constructs only, and that the reduction function, corresponding to
the reduction relation is total on ρ′ (see [BBE15, Theorem 11]). This gives us
the following total functions:

redρ′ : Contr→ Contr

τc J−K0 : Contr→ ILExpr

These function correspond to the contract reduction function and the con-
tract compilation function. We also de�ne an evaluation function for compiled
payo� expressions as a shortcut for the payo� expression semantics.

evalAt− : N→ ILExpr× Env× Disc→ R + B
evalAt t(e, ρ, d) = IL JeKρ,∅,0,t,d,p1,p2

for some parties p1 and p2. We know by Theorem 2.4.2 that evalAt is total
on payo� expressions produced by the compilation function from well-typed
contracts.

We summarise the property by depicting it as a commuting diagram (we
give the theorem here without a proof, but emphasise that we have formalised
this theorem in our Coq development).

Theorem 2.4.4. Given notation and assumptions above, the following diagram
commutes:

Contr Contr

ILExpr ILExpr

R

redρ′

cutPayoff ◦ τcJ−K0 τcJ−K0

evalAt1(−,ρ,d)
evalAt0(−,ρ/1,d/1)

Where we write ρ/1 and d/1 for shifted one step external environment and
discount function, respectively.
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The above diagram gives rise to the following equation:

evalAt1(−, ρ, d) ◦ cutPayoff ◦ τc J−K0 = evalAt0(−, ρ/1, d/1) ◦ τc J−K0 ◦ redρ′

This property shows, that we can use our implementation in both the settings:
if a contract is compiled upfront with cutPayoff(), and if a reduced contract is
compiled to the payo� for each time. The former use case allows more �exibility
for users. For example, one can develop a system where users de�ne contracts
directly in terms of CL working in a specialised IDE. The latter case gives
performance improvement allowing for the use a set of prede�ned �nancial
instruments (or contract templates). Adding a new instrument is possible, but
requires recompilation.

We also point out that the path (in a diagram given in Theorem 2.4.4)
evalAt1(−, ρ, d) ◦ cutPayoff ◦ τc J−K0, requires an external environment con-
taining all historical data from the beginning of the contract and up to t. While
for the other path it is often possible to use only simulated data for pricing.

Avoiding recompilation using contract templates can signi�cantly improve
performance especially on GPGPU devices. On the other hand, additional
conditional expressions are inserted into the code, which results in a number
of additional checks at runtime. Experiments conducted with �hand-compiled�
OpenCL code, which was semantically equivalent to the payo� language code,
showed that for the simple contracts, such as European options, additional
conditions, introduced by cutPayoff() do not signi�cantly decrease performance.
The estimated overhead was around 2.5 percent, while compilation time is in
the order of a magnitude bigger than the total execution time.

2.5 Formalisation in Coq

Our formalisation in Coq extends the previous work [BBE15] by introducing
the concept of template expressions and by developing a certi�ed compilation
technique for translating contracts to payo� expressions. The modi�ed de-
notational semantics has been presented in Section 2.2.1. This modi�cation
required us to propagate changes to all the proofs a�ected by the change of
syntax and semantics. We start this section with a description of the original
formalisation, and then continue with modi�cations and additions made by the
author of this work.

The formalisation described in [BBE15] uses an extrinsic encoding of CL.
That means that syntax is represented using Coq's inductive data types, and a
typing relation on these raw terms are given separately. For example, the type
of the expression sublanguage is de�ned as follows.

Inductive Exp : Set :=

OpE (op : Op) (args : list Exp)

| Obs (l : ObsLabel) (i : Z)

| VarE (v : Var)

| Acc (f : Exp) (d : nat) (e : Exp).

One of the design choices in the de�nition of Exp is to make the constructor
of operations OpE take �code� for an operation and the list of arguments. Such
an implementation makes adding new operations somewhat easier. Although,
we would like to point out that this de�nition is a nested inductive de�nition
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(see [Chl13, Section 3.8]). In such cases Coq cannot automatically derive strong
enough induction principle, and it should be de�ned manually. In the case
of Exp it is not hard to see, that one needs to add a generalised induction
hypothesis in case of OpE, saying that some predicate holds for all elements in
the arguments list.

Although the extrinsic encoding requires more work in terms of proving, it
has a big advantage for code extraction, since simple inductive data types are
easier to use in the Haskell wrapper for CL.

One of the consequences of this encoding is that semantic functions for
contracts Contr and expressions Exp are partial, since they are de�ned on raw
terms which might not be well-typed. This partiality is implemented with the
Option type, which is equivalent to Haskell's Maybe. To structure the usage
of these partial functions, authors de�ne the Option monad and use monadic
binding

bind : forall A B : Type, option A → (A → option B) → option B

to compose calls of partial functions together. The functions

liftM: forall A B : Type,

(A → B) → option A → option B

liftM2 : forall A B C : Type,

(A → B → C) → option A → option B → option C

liftM3 : forall A B C D : Type,

(A → B → C → D) → option A → option B →
option C → option D

allow for a total function of one, two, or three arguments to be lifted to the
Option type. The implementation includes poofs of some properties of bind
and the lifting functions. These properties include cases for which an expression
evaluates to some value.

bind_some : forall (A B : Type) (x : option A)

(v : B) (f : A → option B),

x >>= f = Some v → exists x' : A, x = Some x' ∧ f x' = Some v

The similar lemmas could be proved for other functions related to the
Option type. To simplify the work with the Option monad, the implemen-
tation de�nes tactics in the Ltac language (part of Coq's infrastructure). The
tactics option_inv and option_inv_auto use properties of operations like
bind and liftM to invert hypotheses like e = Some v, where e contains afore-
mentioned functions. The implementation uses some tactics from [PdAC+16].
Particularly, the tryfalse tactic is widely used. It tries to resolve the current
goal by looking for contradictions in assumptions, which conveniently removes
impossible cases.

The original formalisation of the contract language was modi�ed by intro-
ducing the type of template expressions

Parameter TVar : Set.

Inductive TExpr : Set := Tvar (t : TVar) | Tnum (n : nat).
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We keep the type of variables abstract and do not impose any restrictions
on it. Although, one could add decidability of equality for TVar, if required,
but we do not compare template variables in our formalisation. We modify the
de�nition of the type of contracts Contr such that constructors of expressions
related to temporal aspects now accept TExpr instead of nat (If corresponds
to ifWithin):

Translate : TExpr → Contr → Contr

If : Exp → TExpr → Contr → Contr → Contr.

and leave other constructors unmodi�ed.
We de�ne a template environment as a function type TEnv := TVar → nat

similarly to the de�nition of the external environment. Such a de�nition allows
for easier modi�cation of existing code base in comparison with partial map-
pings. According to the de�nitions in Section 2.2.1 we modify the semantic
function for contracts, and the symbolic horizon function to take an additional
parameter of type TEnv. Propagation of these changes was not very problem-
atic and almost mechanical. Although, the �rst attempt to parameterise the
reduction relation with a template environment led to some problems, and we
decided to de�ne the reduction relation only for template-closed contracts. In
most cases it is su�cient to instantiate a contract, containing template vari-
ables using the instantiation function (2.2.1), and then reduce it to a new
contract. Although instantiation requires a template environment, containing
all the mapping for template variables mentioned in the contract, we do not
consider this a big limitation.

The de�nition of the payo� intermediate language (following Section 2.3.2)
also uses an extrinsic encoding to represent raw terms as an inductive data type.
We de�ne one type for the payo� language expressions ILExpr, since there is
no such separation as in CL on contracts and expressions. The de�nition of
template expressions used in the de�nition of ILExpr is an extended version
of the de�nition of template expressions TExpr used in the contract language
de�nition.

Inductive ILTExpr : Set :=

ILTplus (e1 : ILTExpr) (e2 : ILTExpr)

| ILTexpr (e : TExpr).

Inductive ILTExprZ : Set :=

ILTplusZ (e1 : ILTExprZ) (e2 : ILTExprZ)

| ILTexprZ (e : ILTExpr)

| ILTnumZ (z : Z).

Notice that we use two di�erent types of template expressions ILTExpr

and ILTExprZ. The former extends the de�nition of TExpr with the addition
operation, and the latter extends it further with integer literals and with the
corresponding addition operation (recall that template expressions used in CL
can be either natural number literals or variables). The reason why we have
to extend TExpr with addition is that we want to accumulate time shifts in-
troduced by Translate in one expression using (syntactic) addition. In the
expression sublanguage of CL, observables can refer to the past by negative
time indices. For that reason we introduce the ILTExprZ type.
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The full de�nition of syntax for the payo� intermediate language in our Coq
formalisation looks as follows:

Inductive ILExpr : Set :=

| ILIf : ILExpr → ILExpr → ILExpr → ILExpr

| ILFloat : R → ILExpr

| ILNat : nat → ILExpr

| ILBool : bool → ILExpr

| ILtexpr : ILTExpr → ILExpr

| ILNow : ILExpr

| ILModel : ObsLabel → ILTExprZ → ILExpr

| ILUnExpr : ILUnOp → ILExpr → ILExpr

| ILBinExpr : ILBinOp → ILExpr → ILExpr → ILExpr

| ILLoopIf : ILExpr → ILExpr → ILExpr → TExpr → ILExpr

| ILPayoff : ILTExpr → Party → Party → ILExpr.

Notice that we use template expressions, which could represent negative num-
bers (ILTExprZ) in the constructor ILModel. This constructor corresponds to
observable values in the contract language and allows for negative time indices
corresponding to historical data.

We could have generalised our formalisation to deal with di�erent types
of template variables and add a simple type system on top of the template
expression language, but we decided to keep our implementation simple, since
the main goal was to demonstrate that it is possible to extend the original
contract language to contract templates with temporal variables.

All the theorems and lemmas from Section 2.4 are completely formalised
in our Coq development. We use a limited amount of proof automation in the
soundness proofs. We use proof automation mainly in the proofs related to
compilation of contract expression sublanguage, since compilation is straight-
forward and proofs are relatively easily to automate. Moreover, without the
proof automation one would have to consider a large number of very similar
cases leading to code duplication. In addition to option_inv_auto mentioned
above, we use a tactic that helps to get rid of cases when expressions (a source
expression in Exp and a target expression in ILEpxr) evaluate to values of
di�erent types (denoted by the corresponding constructor).

Ltac destruct_vals := repeat (match goal with

| [x : Val |- _] ⇒ destruct x; tryfalse

| [x : ILVal |- _] ⇒ destruct x; tryfalse

end).

Where the Val and IVal types corresponds to values of the contract expression
sublanguage and the payo� expression language respectively.

Another tactic that signi�cantly reduces the complexity of the proofs is
the omega tactic from Coq's standard library. This tactic implements a de-
cision procedure for expressions in Presburger arithmetic. That is, goals can
be equations or inequations of integers, or natural numbers with addition and
multiplication by a constant. The tactic uses assumptions from the current
context to solve the goal automatically.

The principle we use in the organisation of the proofs is to use proof au-
tomation to solve most trivial and tedious goals and to be more explicit about
the proof structure in cases requiring more sophisticated reasoning.
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There are a few aspects that introduce complications to the development
of proofs of the compilation properties.

• Accumulation of relative time shifts during compilation. Because of this
we have to generalise our lemmas to any initial time t0. The same holds
for the semantics of loopif, since there is an additional parameter in the
semantics to implement iterative behavior.

• Presence of template expressions. The complications we faced with in
this case are described in Remark 2.4.1. We resolves these complications
with smart constructors, but it still adds some overhead.

• Conversion between types of numbers. We use integers and natural num-
bers (nat and Z type from the standard library). In some places, including
the semantics of template expressions, we use a conversion from natural
numbers to integers. This conversion makes automation with the omega
tactic more complicated, because it requires �rst to use properties of
conversion, which is harder to automate. With the accumulation aspect,
conversions add even more overheard.

• We use contract horizon in the statement of soundness theorems, which
often leads to additional case analysis in proofs.

2.5.1 Code Extraction

The Coq proof assistant allows for extracting Coq functions into programs in
some functional languages [Let08]. The implementation described in [BBE15]
supports code extraction of the contract type checker and contract manipula-
tion functions into the Haskell programming language. We extend the code ex-
traction part of the implementation with features related to contract templates
and contract compilation. Particularly, we extract Haskell implementations of
the following functions:

• inst_contr function that instantiates a given contract according to given
template environment;

• fromExp function for compiling the contract expression sublanguage;

• fromContr function for compiling contract language constructs;

• cutPayoff function for parameterising a payo� expression with the �cur-
rent time�.

• ILsem semantic function for payo� expressions, which can be used as an
interpreter.

We update the Haskell front end, exposing the contract language in conve-
nient to use form, with combinators for contract templates. We keep the orig-
inal versions of extended constructs, such as translate and within without
changes and add translateT and withinT combinators supporting template
variables.

Our implementation contains an extended collection of contract examples,
examples of contract compilation, and evaluation of resulting payo� expres-
sions.
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2.5.2 Code Generation

To exemplify how the payo� language can be used to produce a payo� function
in a subset of some general purpose language, we have implemented a code
generation procedure to the Haskell programming language. That is, we have
implemented the following chain of transformations:

CL→ Payo� Intermediate Language→ Haskell

We make use of the code extraction mechanism described in Section 2.5.1 to
obtain a certi�ed compilation function, which we use to translate expressions
in CL to expressions in the payo� language.

The code generation procedure is (almost) a one-to-one mapping of the
payo� language constructs to Haskell expressions. One primitive, which we
could not map directly to Haskell build-in functions was the loopif construct.
We have solved this issue by implementing loopif as a higher-order function.
The implementation essentially follows the de�nition of the semantics of loopif
in Coq.

loopif :: Int → Int → (Int → Bool) → (Int → a) → (Int → a) → a

loopif n t0 b e1 e2 = let b' = b t0 in

case b' of
True → e1 t0

False → case n of

0 → e2 t0

_ → loopif (n−1) (t0+1) b e1 e2

The resulting payo� function has the following signature:

payoff :: Map.Map ([ Char], Int) Double → Map.Map [Char] Int
→ Int → Party → Party → Double

That is, the function takes an external environment, a template environment,
current time, and two parties. The payoff function calls the payoffInternal
function, which takes an additional parameter � an initial value for the loopif
function needed for technical reasons.

Example 2.6:
We apply the code generation procedure to the expression e from Example 2.4.
The result of code generation is given below.

module Examples.PayoffFunction where

import qualified Data.Map as Map

import BaseTypes

import Examples.BasePayoff
payoffInternal ext tenv t0 t_now p1 p2=
(100.0 ∗ (if (X== p1 && Y== p2) then 1 else

if (X== p2 && Y== p1) then −1 else 0)) +
loopif 0 t0

(\t0→ (100.0 < (ext Map.! ("AAPL",(0 + (tenv Map.! "t1") +
(tenv Map.! "t0")+ t0)))))

(\t0→ (((ext Map.! ("AAPL",(0 + (tenv Map.! "t1") + (tenv Map.! "t0")+ t0)))
∗ 100.0) ∗ (if (X== p1 && Y== p2) then 1 else

if (X== p2 && Y== p1) then −1 else 0)))
(\t0→ 0.0)

payoff ext tenv t_now p1 p2=payoffInternal ext tenv 0 t_now p1 p2
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As one can see, the external environment and the template environment
are represented using Haskell's Data.Map, and Map.! is an in�x notation for
the lookup function. The Haskell code above makes use of the loopif function
with zero as the �rst argument. It is possible to replace it with the regular if
by a simple optimisation. One could also add more optimisations to our Coq
implementation along with proofs of soundness.

A module declaring the payoff function can be used as an ordinary Haskell
module as a part of the development requiring the payo� functions. For exam-
ple, it could be used in the context of the FinPar benchmark [ABB+16], which
contains a Haskell implementation of pricing among other routines. Moreover,
the cutPayoff() function can be used to obtain a parameterised version of a
payo� function in Haskell, allowing us to reproduce the contract reduction
behavior.

2.6 Conclusion

This work extends the certi�ed contract management system of [BBE15] with
template expressions, which allows for drastic performance improvements and
reusability in terms of the concept of instruments (i.e. contract templates).
Along with changes to the contract language, we have developed a formalisation
of the payo� intermediate language and a certi�ed compilation procedure in
Coq. Our approach uses an extrinsic encoding, since we are aiming at using
code extraction for obtaining a correct implementation of the compiler function
that translates expressions in CL to payo� expressions. We have also developed
a technique allowing for capturing contract development over time.

A number of important properties, including soundness of the translation
from CL to the payo� language have been proven in Coq. We have exempli�ed
how the payo� intermediate language can be used to generate code in a target
language by mapping payo� expressions to a subset of Haskell.

There are number of possibilities for future work:

• Generalise Theorems 2.4.3 and 2.4.4 to n-step contract reduction. We
have de�ned some steps of the proofs in this generalised setting, but
details still need to be worked out.

• The representation of traces as functions N → Trans is equivalent to
in�nite streams of transfers. It would be interesting to explore this idea
of using streams further, since observable values also can be naturally
represented as streams.

• Improve the design of the payo� intermediate language to support all CL
constructs. Also, adding loopif seems to be somewhat ad-hoc. It could
be possible to a have more general language construct for iteration and
compile ifWithin to a combination of iteration and conditions.

• Implement a translation from the payo� intermediate language to the
Futhark programming language for data-parallel GPGPU computations
[HSE+17]. Futhark seems to be a natural choice as a target language,
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since there is an implementation of the pricing engine in Futhark, and
we believe that mapping from payo� expressions to a subset of Futhark
should be similar to our experience with Haskell.

• Develop a formalised infrastructure to work with external environment
representations. That is, instead of �nite maps as in our Haskell code
generator (Section 2.5.2), one could use arrays to represent external en-
vironments. In this case one has to implement some reindexing scheme,
since a naive translation of external environments could result in sparse
arrays. Particularly, this will be important for targeting array languages
like Futhark.



Chapter 3

Formalising Modules

In this chapter we present a number of techniques that allow for formal rea-
soning with nested and mutually inductive structures built up from �nite maps
and sets (also called semantic objects), and at the same time allow for working
with binding structures over sets of variables. The techniques, which build on
the theory of nominal sets combined with the ability to work with multiple
isomorphic representations of �nite maps, make it possible to give a formal
treatment, in Coq, of a higher-order module language for Futhark, an optimis-
ing compiler targeting data-parallel architectures, such as GPGPUs [HSE+17].
We want to emphasise that the main focus of this chapter is on a formal de-
velopment in the Coq proof assistant: encoding of semantic objects, formal
treatment of issues related to variable binding, and proof techniques applied.

The rest of this chapter is structured as follows. In Section 3.1 we present
the motivation and background for development of a module system for the
Futhark language. In Section 3.3 we introduce a formal system for the module
language speci�cation. in Section 3.2, we provide a well known result demon-
strating normalisation of the simply typed lambda-calculus (STLC) using a
logical relation argument. The purpose of this exposition is to motivate how
we can late use a similar technique to prove the normalisation of static inter-
pretation of the module language. We give basic de�nitions from the theory of
nominal sets and discuss motivations and applications of nominal techniques
to the module language formalisation in Section 3.4. In the same section we
develop an example in a simpli�ed setting to demonstrate how nominal tech-
niques apply to our formalisation. We discuss our Coq development in Section
3.5. The aim of this section is to highlight speci�cs of the development, and
show applications of reasoning techniques developed to solve issues related to
representation of the structures given in the previous section. Our develop-
ment presented in Section 3.5 is the �rst treatment of the static interpretation
of modules in the style of [Els99] in the Coq proof assistant. Our Coq formali-
sation covers de�nitions required to state and prove an important property of
the static interpretation: static interpretation for well-typed modules termi-
nates. While another important property - the static interpretation procedure
preserves the typing of target language expressions - is not covered by our
implementation and left as future work.

41
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3.1 Motivation

Modules in the style of Standard ML and OCaml provide a powerful abstrac-
tion mechanism allowing for writing generic highly parameterised code. A
common issue with an abstraction mechanism is that it can introduce a run-
time overhead. For some application domains it is important to have static
guarantees that module abstractions introduce no overhead. This can be done
by statically interpreting the module system expressions at compile time. This
technique is similar to the way C++ templates are eliminated at compile time
with the di�erence that using modules give more static guarantees by means of
a type system. The presented work extends the previous work to higher-order
modules [Els99].

As an application of the abstraction mechanism provided by higher-order
modules we consider a module language implemented on top of the monomor-
phic, �rst-order functional data-parallel language Futhark, which features a
number of polymorphic second-order array combinators (SOACs) with parallel
semantics, such as map, reduce, scan, and �lter, but has no support for
user-de�ned polymorphic higher-order functions. The module language allows
for de�ning certain kind of polymorphic functions in Futhark with the guaran-
tee that, at compile time, module level language constructs will be compiled
away. That is, the module language gives rise to highly reusable components,
which, for instance, form the grounds of a Basis Library for Futhark.

Example 3.1: For the purpose of demonstrating static interpretation in action,
consider the (contrived) example Futhark program.

module type MT = {
module F: (X:{ val b:int } → { val f:int→int })

}
module H = funct (M:MT) ⇒ M.F { val b = 8 }
module Main =
H ( { module F =

funct (X:{ val b:int }) ⇒ { fun f(x:int) = X.b+x }
})

fun main (a:int) : int = Main.f a

The program declares a module type MT and a higher-order module H, which
is applied to a module containing a parameterised module F. The result of the
module application is a module containing a function f of type int → int.
The contained function is called in the main function with the input to the
program. Static interpretation partially evaluates the program to achieve the
following result.

val b = 8
fun f (x:int) = b + x

fun main (a:int) = f a

The code snipped presents monomorphic target code, which can be com-
posed, analysed, and compiled without any module language considerations.
This feature provides the target language implementor with the essential meta-
level abstraction property that the module language features are orthogonal to
the domain of the source language.
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3.2 Normalisation in the Call-by-Value Simply-Typed

Lambda Calculus

In this section we present a well-known result that simply-typed lambda calcu-
lus (STLC) is normalising. We use a big-step semantics with explicit closures,
and assume a call-by-value evaluation strategy for STLC. We use STLC as anal-
ogy for the static interpretation of a module language, which we will present
formally in subsequent sections. For that reason, the argument usually used
to prove normalisation of STLC in some adapted form is also applicable to the
module language. We use Tait's method of logical relations [Tai67] in the proof
we present in this section.

We assume countably in�nite set of variables, ranged over by x, and i ranges
over integers.

τ ∈ Ty :: = int | τ1 → τ2 (3.1)

e ∈ Lam :: = i | x | λx.e | e1e2 (3.2)

A context Γ maps variables to types.

Γ ` i : int
ty-int

Γ(x) = τ

Γ ` x : τ
ty-var

Γ, x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2
ty-lam

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ2

Γ ` e1e2 : τ2
ty-app

We de�ne a big-step call-be-value operational semantics with explicit clo-
sures. Evaluation contexts E map variables to values. Values can be either
closures, or integer literals.

v ∈ V al :: = Cl E x e | i

E ` i⇒ i
ev-int

E ` λx.e =⇒ Cl E x e
ev-lam

E(x) = v

E ` x =⇒ v
ev-lam

E ` e1 =⇒ Cl E0 x e0 E ` e2 =⇒ v0 E0[x 7→ v0] ` e0 =⇒ v

E ` e1e2 =⇒ v
ev-app

We de�ne a logical relation, which we will use in the proof of normalisation
in Figure 3.1. Similarly, we de�ne a relation on typing and evaluation contexts:

dom(E) = dom(Γ) ∀x. E(x) = v ∧ Γ(x) = τ ⇒ v |= τ

E |= Γ
(3.3)

Lemma 3.2.1. For any typing context Γ, evaluation context E, variable x,
value v and type τ , if E |= Γ and v |= τ , then E[x 7→ v] |= Γ, x : τ .
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i ∈ Z
i |= int

lr-int

v = Cl E x e (∀v1. v1 |= τ1 ⇒ ∃v2. E[x 7→ v1] ` e0 ⇒ v2 ∧ v2 |= τ2)

v |= τ1 → τ2
lr-arr

Figure 3.1: Logical relation.

Theorem 3.2.1 (Normalisation1). For any typing context Γ, evaluation con-

text E, term e and type τ , if
T

Γ ` e : τ and
R

Γ |= E then there exists a value v,
such that

E ` e =⇒ v and v |= τ

T and R denote a typing derivation and a logical relation derivation respec-
tively.

Proof. The proof proceeds by induction on the typing derivation T . We con-
sider cases for lambda abstraction and application.

Case 1 (ty-lam): T =

T1
Γ, x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2
We take v = Cl E x e. We get E ` e =⇒ Cl E x e from the evaluation rule

for lambda-abstraction ev-lam. We have to show Cl E x e |= τ1 → τ2. By
the rule of logical relation for the arrow type, su�ces to show that assuming

v1, s.t.
R1

v1 |= τ1 we have ∃v2. E[x 7→ v1] ` e0 ⇒ v2 ∧ v2 |= τ2.

From Lemma 3.2.1, withR from assumptions andR1, we get
R1

E[x 7→ v1] |= Γ, x : τ1.
We complete the proof of this case by using the induction hypothesis on T1
with R1.

Case 2 (ty-app): T =

T1
Γ ` e1 : τ1 → τ2

T2
Γ ` e2 : τ2

Γ ` e1e2 : τ2
By using the induction hypothesis on T1 with R, we get: there exists some v1,
s.t.

E1
E ` e1 =⇒ v1 and

R1

v1 |= τ1 → τ2

By using the induction hypothesis on T2 with R, we get: there exists some v2,
s.t.

E2
E ` e2 =⇒ v2 and

R2

v2 |= τ1

From R1, we get x, e0, E0, s.t.

v = Cl E0 x e0

1We have developed a standalone formalisation of this theorem in Coq.
See https://annenkov.github.io/stlcnorm/Stlc.stlc.html

https://annenkov.github.io/stlcnorm/Stlc.stlc.html
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and
∀v′. v′ |= τ1 ⇒ ∃v′′. E[x 7→ v′] ` e0 ⇒ v′′ ∧ v′′ |= τ2) (3.4)

From (3.4) with v2 and R2, we get: there exists some v3, s.t.

E3
E[x 7→ v2] ` e0 ⇒ v3 and

R3

v3 |= τ2

Now, take v = v3 and use the rule for application (ev-app) to construct the
required derivation.

E1
E ` e1 =⇒ Cl E0 x e0

E2
E ` e2 =⇒ v2 E0[x 7→ v2] ` e0 =⇒ v3

E ` e1e2 =⇒ v3

From from R3, we can conclude v3 |= τ2 as required.

�

Theorem 3.2.1 can be used to show that a well-typed closed term always
evaluates to some value. For example, we have the following corollary.

Corollary 3.2.1. Every closed term of type int evaluates to an integer literal.
That is, if {} ` t : int then there exists i : int, s.t. {} ` e =⇒ i. Here, {} is
the empty context

Proof. In Theorem 3.2.1, take Γ and E to be the empty context {}. Then the
claim follows immediately, since {} |= {} is trivially satis�ed. �

3.3 Formal Speci�cation

The module language can be considered parameterised over a core language,
which, for the purpose of the presentation, is a simple functional language. We
assume countably in�nite sets of type identi�ers (tid), value identi�ers (vid),
and module identi�ers (mid). For each of the above identi�er sets X, we de�ne
the associated set of long identi�ers LongX, inductively with X as the base
set and mid .longx as the inductive case with longx ∈ LongX and mid being
a module identi�er. For the module language, we also assume a denumerably
in�nite set of module type identi�ers (mtid). Long identi�ers, such as x.y.z,
allow users to use traditional dot-notation for accessing components deep within
modules and the separation of identi�er classes makes it clear in what syntactic
category an identi�er belongs.

The simple core language is de�ned by notions of type expressions (ty), core
language expressions (exp), and core language declarations (dec):

ty ::= longtid | ty1 → ty2

exp ::= longvid | λvid → exp | exp1 exp2 | exp : ty
dec ::= val vid = exp

The core language can be understood entirely in isolation from the module
language except that long identi�ers may be used to access values and types
in modules.

The grammar for the module language is given in Figure 3.2. The module
language is separated into a language for specifying module types (mty) and
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mty ::= { spec }

| mtid
| mid :mty1 → mty2

| mty with longtid = ty
spec ::= val vid : ty

| type tid
| module mid : mty
| include mty
| spec1 spec2 | ε

mexp ::= { mdec }

| mid | mexp .mid
| funct mid :mty ⇒ mexp
| longmid (mexp)

mdec ::= dec
| type tid = ty
| module mid = mexp
| module type mtid = mty
| open mexp
| mdec1 mdec2 | ε

Figure 3.2: Grammar for the module language excluding derived forms.

a language for declaring modules (mdec). The language for module types is a
two-level language with sub-languages for specifying module components and
for expressing module types. Similarly, the language for declaring (i.e., de�n-
ing) modules is a two-level language for declaring module components and for
expressing module manipulations. At the very toplevel, a program is simply
a module declaration, possibly consisting of a sequence of module declarations
where later declarations may depend on earlier declarations.

As will become apparent from the typing rules, in declarations of the form
mdec1 mdec2, identi�ers declared by mdec1 are considered bound in mdec2
(similar considerations hold for composing speci�cations and programs).

3.3.1 Semantic objects

For the static semantics, we assume a countably in�nite set TSet of type vari-
ables (t). A semantic type (or simply a type), ranged over by τ , takes the
form:

τ ::= t | τ1 → τ2

Types relate straightforwardly to syntactic types with the di�erence that syn-
tactic types contain type identi�ers and semantic types contain type variables.
This di�erence is essential in that it enables the support for type parameteri-
sation and type abstraction.

At the core level, a value environment (VE ) maps value identi�ers (vid) to
types and a type environment (TE ) maps type identi�ers (tid) to types.

The module language semantic objects are shown in Figure 3.3. The seman-
tic objects constitute a number of mutually dependent inductive de�nitions. An
environment (E) is a quadruple (TE ,VE ,ME , G) of a type environment TE ,
a variable environment VE , a module environment (ME ), which maps mod-
ule identi�ers to modules, and a module type environment (G), which maps
module type identi�ers to module types. A module is either an environment
E, representing a non-parameterised module, or a parameterised module type
F , which is an object ∀T.(E,Σ), for which the type variables in T are con-
sidered bound. A module type (Σ) is a pair, written ∃T.M , of a set of type
variables T and a module M . In a module type ∃T.M , type variables in T are
considered bound and we consider module types identical up-to renaming of
bound variables and removal of type variables that do not appear in M . When
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E = (TE ,VE ,ME , G) ∈ Env = TEnv×VEnv×MEnv×MTEnv

ME ∈ MEnv = Mid
�n→ Mod

M ∈ Mod = Env ∪ FunSig
F = ∀T.(E,Σ) ∈ FunSig = Fin(TSet)× Env×MTy

Σ = ∃T.M ∈ MTy = Fin(TSet)×Mod

G ∈ MTEnv = MTid
�n→ MTy

Figure 3.3: Module language semantic objects. Parameterised module types
(F ) and module types (Σ) are parameterised over �nite sets of type variables
(written Fin(TSet)), ranged over by T .

T is empty, we often write M instead of ∃∅.M . We consider module function
types ∀T.(E,Σ) identical up-to renaming of bound type variables and removal
of type variables in T that do not occur free in (E,Σ).

When X is some tuple and when x is some identi�er, we shall often write
X(x) for the result of looking up x in the appropriate projected �nite map in
X. Moreover, when longx is some long identi�er, we write X(longx) to denote
the lookup in X, possibly inductively through module environments.

De�nition 3.3.1. When X and Y are �nite maps, the modi�cation of X by
Y , written X+Y , is the map with Dom(X+Y ) = Dom X∪Dom Y and values

(X + Y )(x) =

{
Y (x) if x ∈ Dom Y
X(x) otherwise

The notion of modi�cation is extended pointwise to tuples, as are operations
such as Dom, ∩, and ∪.

De�nition 3.3.2. A �nite map X extends another �nite map X ′, written
X w X ′, if Dom X ⊇ Dom X ′ and X(x) = X ′(x) for all x ∈ Dom X ′.

Given a particular kind of environment, such as a module environmentME ,
we shall often be implicit about its injection ({}, {},ME , {}) into environments
of type Env. Moreover, given an identi�er, such as tid , its class speci�es ex-
actly that, given some type τ , {tid 7→ τ} denotes a type environment of type
TE , which again, by the above convention, can be injected implicitly into an
environment of type Env.

As an example, if t is a type identi�er, a and b are value identi�ers, and A

is a module identi�er, we can write {t 7→ t}+{A 7→ {a 7→ t}} for specifying the
environment E = ({t 7→ t}, {}, {A 7→ E′}, {}), where E′ = ({}, {a 7→ t}, {}, {})
and where E w {t 7→ t}. Moreover, looking up the long identi�er A.a in E,
written E(A.a), yields t.

3.3.2 Elaboration

The elaboration rules for the core language (Figure 3.4) illustrate the interac-
tion between the module language and the core language through the concept
of long identi�ers.



CHAPTER 3. FORMALISING MODULES 48

Type Expressions

E ` ty : τ

E(longtid) = τ

E ` longtid : τ
(5)

E ` ty i : τi i = [1, 2]

E ` ty1 → ty2 : τ1 → τ2
(6)

Core language expressions

E ` exp : τ

E(longvid) = τ

E ` longvid : τ
(7)

E ` exp : τ E ` ty : τ

E ` exp : ty : τ
(8)

E + {vid 7→ τ} ` exp : τ ′

E ` λvid → exp : τ → τ ′
(9)

E ` exp1 : τ → τ ′ E ` exp2 : τ

E ` exp1 exp2 : τ ′
(10)

Figure 3.4: Elaboration rules for the core language.

Module Types

E ` mty : Σ

E(mtid) = Σ

E ` mtid : Σ
(11)

E ` ty : τ E′(longtid) = t t ∈ T
E ` mty : ∃T.E′ Σ = ∃(T \ {t}).(E′[τ/t])

E ` mty with longtid = ty : Σ
(12)

E ` spec : Σ

E ` { spec } : Σ
(13)

E ` mty1 : ∃T.E′ T ∩ (tvs(E) ∪ T ′) = ∅
E + {mid 7→ E′} ` mty2 : ∃T ′.M

E ` mid : mty1 → mty2 : ∀T.(E′,∃T ′.M)
(14)

Module Speci�cations

E ` spec : ∃T.E′

E ` type tid : ∃{t}.{tid 7→ t} (15)
E ` ty : τ

E ` val vid : ty : {vid 7→ τ} (16)

E ` mty : ∃T.M
E `module mid : mty : ∃T.{mid 7→M} (17)

E ` mty : ∃T.E′
E ` include mty : ∃T.E′ (18)

E ` spec1 : ∃T1.E1 E + E1 ` spec2 : ∃T2.E2

T1 ∩ (tvs(E) ∪ T2) = ∅ Dom E1 ∩Dom E2 = ∅
E ` spec1 spec2 : ∃(T1 ∪ T2).(E1 + E2)

(19)
E ` ε : {} (20)

Figure 3.5: Elaboration rules for module types and module speci�cations. This
sub-language does not directly depend on the rules for module expressions and
module declaration.
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Elaboration of module types and speci�cations is de�ned as a mutual induc-
tive relation allowing inferences among sentences of the forms E ` mty : Σ and
E ` spec : ∃T.E′. The rules are presented in Figure 3.5. There is a subtle di�er-
ence between module type expressions (mty) and speci�cations (spec). Whereas
module type expressions may elaborate to parameterised module types, speci�-
cations only elaborate to non-parameterised module types, which may, however,
contain parameterised modules inside. Thus, in the speci�cation rule for includ-
ing module types, we require that the included module is a non-parameterised
module type.

An essential aspects of the semantic technique is that of requiring, for in-
stance, that the sets T1 and T2 in Rule (19) are disjoint. This property can
always be satis�ed by α-renaming, which is applied often (and in the Coq im-
plementation, explicitly) when proving properties of the language (see Example
3.9 and Remark 3.5.5 in Section 3.5.3).

The elaboration rules for module language expressions and declarations
are given in Figure 3.6 and allow inferences among sentences of the forms
E ` mdec : Σ and E ` mexp : ∃T.E. The rules make use of the previously in-
troduced rules for module type expressions and core language declarations and
types. Similarly to the elaboration di�erence between module type expressions
and speci�cations, module expressions may elaborate to general module types,
of the form ∃T.M , whereas module declarations elaborate to non-parameterised
module types of the form ∃T.E.

The by far most complicated rule is Rule (25), the rule for application
of a parameterised module. The rule looks up a parameterised module type
∀T0.(E0,Σ0) for the long module identi�er in the environment and seeks to
match the parameter module type ∃T0.E0 against a cut-down version (accord-
ing to the enrichment relation) of the module type resulting from elaborating
the argument module expression. The result of elaborating the application is
the result module type perhaps with additional abstract type variables stem-
ming from elaborating the argument module expression. The need for also
quantifying over the type set T in the result module type comes from the
desire to prove a property that if E ` mexp : ∃T.E′ then tvs(E′) ⊆ tvs(E)∪T .

3.3.3 Enrichment

Next, we introduce a notion of enrichment. Intuitively, the enrichment relation
for semantic objects is a generalised version of environment extension (De�ni-
tion 3.3.2). We write E′ � E for E′ enriches E meaning that E′ contains the
same elements as or more elements then E. The formal speci�cation of the
enrichment relation is given in Figure 3.7.

Notice that enrichment for parameterised modules is contravariant in pa-
rameter environments. Notice also the special treatment of module type en-
vironments. Because a module type cannot specify bindings of module types,
we can safely require that when E′ � E, the module type environment in E is
empty.

3.3.4 Target Language

We assume a denumerably in�nite set LSet of labels, ranged over by l. Target
expressions are basically identical to core level expressions with the modi�ca-
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Module Expressions

E ` mexp : Σ

E ` mdec : Σ

E ` { mdec } : Σ
(21)

E ` mexp : ∃T.E′
E′(mid) = E′′

E ` mexp .mid : ∃T.E′′ (22)

E ` mty : ∃T.E′
E + {mid 7→ E′} ` mexp : Σ

T ∩ tvs(E) = ∅ F = ∀T.(E′,Σ)

E ` funct mid : mty ⇒ mexp : ∃∅.F (23)
E(mid) = E′

E ` mid : E′
(24)

E ` mexp : ∃T.E′ T ∩ T ′ = ∅
E(longmid) ≥ (E′′,∃T ′.E′′′)

E′ � E′′ (T ∪ T ′) ∩ tvs(E) = ∅
E ` longmid ( mexp ) : ∃(T ∪ T ′).E′′′ (25)

Module Declarations

E ` mdec : ∃T.E′
mdec = dec E ` dec : E′

E ` mdec : E′
(26)

E ` ty : τ

E ` type tid = ty : {tid 7→ τ} (27)

E ` mexp : ∃T.M
E `module mid = mexp : ∃T.{mid 7→M} (28)

E ` mexp : Σ

E ` open mexp : Σ
(29)

E ` mty : Σ

E `module type mtid = mty : ∃∅.{mtid 7→ Σ} (30)
E ` ε : {} (31)

T1 ∩ (tvs(E) ∪ T2) = ∅
E ` mdec1 : ∃T1.E1 E + E1 ` mdec2 : ∃T2.E2

E ` mdec1 mdec2 : ∃(T1 ∪ T2).(E1 + E2)
(32)

Figure 3.6: Elaboration rules for module language expressions and declarations.
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E′ = (TE ′,VE ′,ME ′, G′) E = (TE ,VE ,ME , {})
VE ′ w VE TE ′ w TE ME ′ � ME )

E′ � E
Dom ME ′ ⊇ Dom ME ∀mid ∈ Dom ME . ME ′(mid) � ME (mid)

ME ′ � ME

M ′ = E′ M = E E′ � E
M ′ �M

M ′ = ∀T ′.(E′,Σ′) M = ∀T.(E,Σ)
T ′ = T E � E′ Σ′ � Σ

M ′ �M
M ′ �M Σ′ = ∃T.M ′ Σ = ∃T.M

Σ′ � Σ

Figure 3.7: The enrichment relation.

Γ ` c1 : Γ1 Γ + Γ1 ` c2 : Γ2

Γ ` c1 ; c2 : Γ1 + Γ2
(33)

Γ ` ε : {} (34)

Γ ` ex : τ

Γ ` val l = ex : {l 7→ τ} (35)

Figure 3.8: Type rules for the target language. For the purpose of the presen-
tation, the target language is simple and mimics closely the source language
with the di�erence that long identi�ers are replaced with labels for referring to
previously de�ned value declarations.

tion that value identi�ers are replaced with labels. For the simple core language
that we are considering, target expressions (ex ) and target code (c) take the
form:

ex ::= l | λl→ ex | ex 1 ex 2

c ::= val l = ex | c1 ; c2 | ε

The type system for the target language is simple (for the purpose of this
work) and allows inferences among sentences of the forms Γ ` ex : τ and
Γ ` c : Γ′, which are read: �In the context Γ, the expression ex has type τ �
and �in the context Γ, the target code c declares the context Γ′. Contexts Γ
map labels to types. The type system for the target language is presented in
Figure 3.8.

3.3.5 Interpretation Objects

In the following, we shall use the term name to refer to either a type variable
t or a label l. We write NSet to refer to the disjoint union of TSet and LSet.
Moreover, we use N to range over �nite subsets of NSet.
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An interpretation value environment (VE) maps value identi�ers to a la-
bel and an associated type. An interpretation environment (E) is a quadru-
ple (TE ,VE,ME,G) of a type environment, an interpretation value envi-
ronment, an interpretation module environment, and a module type environ-
ment. An interpretation module environment (ME) maps module identi�ers
to module interpretations. A module interpretation (M) is either an inter-
pretation environment E or a functor closure Φ. A functor closure (Φ) is a
triple (E , F, λmid ⇒ mexp) of an interpretation environment, a parameterised
module type, and a representation of a parameterised module expression. Fi-
nally, an interpretation target object (∃N.(E , c)) is a triple of a name set, an
interpretation environment, and a target code object.

3.3.6 Interpretation Erasure

For establishing a link between interpretation objects and elaboration objects,
we introduce the concept of interpretation erasure. Given an interpretation
object O, we de�ne the interpretation erasure of O, written O, as follows:

(TE ,VE,ME,G) = (TE ,VE,ME,G)

(E , F, λmid ⇒ mexp) = F

{vid i 7→ li : τi}n = {vid i 7→ τi}n

{mid i 7→ Mi}n = {mid i 7→ Mi}n
∃N.(E , c) = ∃(TSet ∩N).E

3.3.7 Core Language Compilation

Core language expressions and declarations are compiled into target language
expressions and declarations, respectively. The rules specifying the compilation
allow inferences among sentences of the forms (1) E ` exp ⇒ ex , τ and (2)
E ` dec ⇒ ∃N.(E ′, c). The rules are given in Figure 3.9.

The rules track type information and it is straightforward to establish the
following property of the compilation:

Lemma 3.3.1. If E ` dec ⇒ ∃N.(E ′, c) then E ` dec : ∃N.(E ′, c).

3.3.8 Environment Filtering

Corresponding to the notion of enrichment for elaboration, we introduce a
notion of �ltering for the purpose of static interpretation, which �lters inter-
pretation environments to contain components as speci�ed by an elaboration
environment. Filtering is essential to the interpretation rule for applications of
parameterised modules and is de�ned mutual inductively based on the struc-
ture of elaboration environments and elaboration module environments.

More formally, the �ltering of an interpretation environment E to an elab-
oration environment E results in another interpretation environment E ′ with
only elements from E that are also present in E. The �ltering relation is de-
�ned by a number of inference rules that allow inferences among sentences of the
forms (1) ` E :: E ⇒ E ′, (2) ` VE :: VE ⇒ VE′, (3) ` ME :: ME ⇒ME′,
and (4) ` M :: M ⇒ M′. The inference rules for �ltering are presented in
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Compiling Expressions

E ` exp ⇒ ex , τ

E(longvid) = (l, τ)

E ` longvid ⇒ l, τ
(36)

E + {vid 7→ (l, τ)} ` exp ⇒ ex , τ ′

E ` λvid → exp ⇒ λl→ ex , τ → τ ′
(37)

E ` exp1 ⇒ ex 1, τ → τ ′ E ` exp2 ⇒ ex 2, τ

E ` exp1exp2 ⇒ ex 1 ex 2, τ
′ (38)

E ` exp ⇒ ex , τ E ` ty : τ

E ` exp : ty ⇒ ex , τ
(39)

Compiling Declarations

E ` dec ⇒ ∃N.(E ′, c)
E ` exp ⇒ ex , τ l 6∈ names(E)

E ` val vid = exp ⇒ ∃{l}.({vid 7→ (l, τ)},val l = ex )
(40)

Figure 3.9: Core language compilation.

Figure 3.10. It is a straightforward to establish the connection between �ltering
and enrichment.

Lemma 3.3.2 (Filtering to enrichment). It is a straightforward exercise to
demonstrate that if ` E :: E ⇒ E ′ then it holds that E � E.

3.3.9 Static Interpretation Rules

Static interpretation of the module language is de�ned by a number of mutu-
ally inductive inference rules allowing inferences among sentences of the forms
(1) E ` mexp ⇒ Ψ and (2) E ` mdec ⇒ ∃N.(E ′, c), which state that in an in-
terpretation environment E , static interpretation of a module expression mexp
results in an interpretation target object Ψ, and static interpretation of a mod-
ule declaration mdec results in an interpretation target object ∃N.(E ′, c). The
rules for static interpretation are presented in Figure 3.11.

3.3.10 Static Interpretation Normalisation

The proof technique we use to prove the static interpretation normalisation
property is similar to the one we showed in Section 3.2. That is, we �rst de�ne
an appropriate logical relation (Figure 3.12), which we call the consistency
relation, and based on this relation, we can state a property establishing that
static interpretation is possible and terminates for all elaborating programs.
We consider only the termination property of static interpretation, since in the
current Coq formalisation we have implemented it in this form. In general,
one would like to add the type soundness property, which states that target
programs are appropriately typed. We leave this property for future extensions
of our formalisation.
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Environments

` E :: E ⇒ E ′
` VE :: VE ⇒ VE′

` ME :: ME ⇒ME′ TE � TE ′

` (TE ,VE,ME, {}) :: (TE ′,VE ,ME , {})⇒ (TE ′,VE′,ME′, {}) (41)

Value Environments

` VE :: VE ⇒ VE′

m ≥ n
` {vid i 7→ li : τi}m :: {vid i 7→ τi}n ⇒ {vid i 7→ li : τi}n

(42)

Module Environments

` ME :: ME ⇒ME′

m ≥ n ` Mi :: Mi ⇒M′i i = 1..n

` {mid i 7→ Mi}m :: {mid i 7→Mi}n ⇒ {mid i 7→ M′i}n
(43)

Module Interpretations

` M :: M ⇒M′

M = E ` E :: E ⇒ E ′
` M :: E ⇒ E ′ (44)

Φ = (E , F ′, λmid ⇒ mexp) F ′ � F
` Φ :: F ⇒ (E , F, λmid ⇒ mexp)

(45)

Figure 3.10: Filtering relation specifying how an interpretation environment
can be constrained by an elaboration environment to form a restricted inter-
pretation environment.

Before we state the theorem and sketch its proof, let us formulate auxil-
iary lemmas, related to properties of relations and operations involved in the
de�nition of the type consistency relation.

Lemma 3.3.3 (Lookup consistency). If looking up a module for some mid in
any semantic object E gives a module M , and E is related to some E by the
consistency relation (Figure 3.12), then looking up for the same mid in the
interpretation environment E must give some module interpretation M, such
that M is consistent withM.

That is, if E |= E, and E(mid), then ∃M. E(mid) =M∧M |=M.

Lemma 3.3.4 (Uniformness). This lemma can be seen as some an inversion
principle for the consistency relation: if we know something about the shape of
a module, we know what the shape of a corresponding module interpretation is.

That is, if M is a module, and M is consistent with some module interpre-
tationM, then:
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Module Expressions

E ` mexp ⇒ Ψ

E ` mdec ⇒ ∃N.(E ′, c)
E ` { mdec }⇒ ∃N.(E ′, c) (46)

E(mid) = E ′
E ` mid ⇒ ∃∅.(E ′, ε) (47)

E ′(mid) = E ′′
E ` mexp ⇒ ∃N.(E ′, c)

E ` mexp .mid ⇒ ∃N.(E ′′, c) (48)

E ` mty : ∃T.E T ∩ names(E) = ∅
E + {mid 7→ E} ` mexp : Σ F = ∀T.(E,Σ)

Φ = (E , F, λmid ⇒ mexp)

E ` funct mid : mty ⇒ mexp ⇒ ∃∅.Φ (49)

E ` mexp ⇒ ∃N.(E ′, c) (N ∪N ′) ∩ names(E) = ∅ N ∩N ′ = ∅
E(longmid) = (E0, F, λmid ⇒ mexp′) F ≥ (E′,∃T ′.E′′) T ′ ⊆ N ′
` E ′ :: E′ ⇒ E ′′ E0 + {mid 7→ E ′′} ` mexp′ ⇒ ∃N ′.(E ′′′, c′)

E ` longmid( mexp )⇒ ∃(N ∪N ′).(E ′′′, c ; c′) (50)

Module declarations

E ` mdec ⇒ ∃N.(E ′, c)
mdec = dec E ` dec ⇒ ∃N.(E ′, c)

E ` mdec ⇒ ∃N.(E ′, c) (51)

E ` ty : τ

E ` type tid = ty ⇒ ∃∅.({tid 7→ τ}, ε) (52)

E ` mexp ⇒ ∃N.(Φ, c)
E `module mid = mexp ⇒ ∃N.({mid 7→ Φ}, c) (53)

E ` mty : Σ E ′ = {mtid 7→ Σ}
E `module type mtid = mty ⇒ ∃∅.(E ′, ε) (54)

E ` mexp ⇒ Ψ

E ` open mexp ⇒ Ψ
(55)

E ` mdec1 ⇒ ∃N1.(E1, c1)
E + E1 ` mdec2 ⇒ ∃N2.(E2, c2)
N1 ∩ (names(E) ∪N2) = ∅

E ` mdec1 mdec2 ⇒ ∃(N1 ∪N2).(E1 + E2, c1 ; c2)
(56)

E ` ε⇒ ∃∅.({}, ε) (57)

Figure 3.11: Static interpretation rules for module expressions and module
declarations.
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E = (TE ,VE,ME,G) VE |= VE ME |=ME

(TE ,VE ,ME , G) |= E
DomME = DomME ∀mid ∈ DomME ,ME (mid) |=ME(mid)

ME |=ME

DomVE = DomVE ∀x ∈ DomVE , τ = VE (x) ∧ (l, τ) = VE(x)

VE |= VE
M = E M = E E |= E

M |=M
M = ∀T.(E,∃T ′.M ′) M = (E ,∀T.(E,∃T ′.M ′), λmid⇒ mexp)

(∀E ′, E |= E ′ =⇒ ∃N ′,M′, c. (E + {mid 7→ E ′}) ` mexp ⇒ ∃N ′.(M′, c) ∧M ′ |=M′

M |=S M

Figure 3.12: Type consistency logical relation.

(i) if M is a non-parameterised module, thenM is also a non-parameterised
module interpretation for some interpretation environment E. That is, if
M = E, and M |=M, then ∃E .M = E.

(ii) if M is a functor, then M is a functor closure, which is consistent with
the module M . That is, if M = ∀T.(E,∃T ′.M ′) and M |= M, then
M = (E ,∀T.(E,Σ), λmid ⇒ mexp), and the corresponding consistency
condition holds (we write =⇒ for implication ):

∀E ′, E |= E ′ =⇒
∃N ′,M′, c. ((E + {mid 7→ E ′}) ` mexp ⇒ ∃N ′.(M′, c)) ∧M ′ |=M′

Lemma 3.3.5 (Type consistency to erasure). If some semantic object E is
consistent with some interpretation environment E, then erasure of E gives us
exactly E.

That is, if E |= E then E = E.

Lemma 3.3.6 (Consistency and environment extension (cf. Lemma 3.2.1)).
If some semantic object E is consistent with some interpretation environment
E, and some module M is consistent with some module interpretationM, then
for some module identi�er mid, the extension of E with a mapping mid 7→M
is consistent with E extended with the mapping mid 7→ M.

That is, if E |= E andM |=M then (E+{mid 7→M}) |= (E+{mid 7→ M})

Lemma 3.3.7 (Consistency of environment modi�cation). For any semantic
objects E1, E2, and interpretation environments E1, E2, if E1 |= E1 and E2 |=
E2, then (E1 + E2) |= (E1 + E2).

Lemma 3.3.8 (Termination of the declarations compilation). For any en-
vironments E and E′, interpretation environment E, and declaration dec, if
E ` dec : E′, and E |= E, then there exist N , E ′, c, s.t. E ` dec ⇒ ∃N.(E ′, c)
and E′ |= E ′.
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Lemma 3.3.9 (Consistency of �ltering). For any environments E′ and E,
interpretation environment E ′, if E′ � E, and E′ |= E ′ then there exist an
interpretation environment E, s.t. E ′ :: E ⇒ E and E |= E.

The idea of the proof of Lemma 3.3.9 is to construct the environment E .
The de�nition of the �ltering relation does not de�ne a particular algorithm
for constructing a �ltered environment, but instead serves as a speci�cation.
One can de�ne a function that actually implements �ltering and show that
this function satis�es the speci�cation give by the de�nition in Figure 3.10.
Essentially, we take this approach in our Coq development.

Theorem 3.3.1. (Static Interpretation Normalization)

If
Dmexp

E ` mexp : ∃T.M and
C

E |= E then there exists N ,M, c such that

E ` mdec ⇒ ∃N.(M, c), and M |=M

and (mutually)

if
Dmdec

E ` mdec : ∃T.E′ and
C

E |= E then there exists N , E ′, c such that

E ` mdec ⇒ ∃N.(E ′, c), and E′ |= E ′

Proof. The proof sketch presented here is following our development in the
Coq proof assistant. We omit some details, since they worked out fully in the
formalisation, and we aim here to show the overall structure of the proof and
refer to auxiliary lemmas, which are crucial to use in particular cases. We also
emphasise the simplifying assumptions we made for our development.

The proof proceeds by mutual induction over derivations Dmdec and Dmexp.

Case 1 (

Dmdec
E ` mdec : Σ

E ` { mdec } : Σ
):

By induction hypothesis on Dmdec with C, we get N , E c, and we take
M = E and apply Rule (51).

Case 2 (
E(mid) = E′

E ` mid : E′
):

By lemma 3.3.3, we get M′, s.t. M |= M′. Take N = ∅, M = M′, and
c = ε. We get the derivation for the interpretation by applying Rule (47), and
we already have M |=M′ from having applied Lemma 3.3.3 earlier.

Case 3 (

Dmexp
E ` mexp : ∃T.E′ E′(mid) = E′′

E ` mexp .mid : ∃T.E′′
):

By induction hypothesis on Dmexp with C, we get N , M, c, s.t. E ` mexp ⇒
∃N.(M, c), and M |= M, where M is a non-parameterised module E′. By
Lemma 3.3.4, we get E′ |= E ′ for some E ′.

Now, by applying the lookup consistency lemma (Lemma 3.3.3), we get all
the required pieces to construct a derivation of static interpretation using Rule
(48).

We already have M |=M′ from the induction hypothesis.
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Case 4 (
E ` mty : ∃∅.E′

Dmexp
E + {mid 7→ E′} ` mexp : Σ F = ∀∅.(E′,Σ)

E ` funct mid : mty ⇒ mexp : ∃∅.F
):

Since we are in the simpli�ed setting here, we instantiate universally and exis-
tentially quanti�ed variables with empty sets in the rule.

Take N = ∅, M = (E , F, λ ⇒ mexp) (a functor closure), c = ε. From

assumptions we have
C

E |= E . From C with the consistency to erasure lemma
(Lemma 3.3.5), we get E = E. Now, we apply Rule (49).

ProvingM |=M in this case requires some work. We get a required premise
for the corresponding rule of the consistency relation from the induction hy-
pothesis with the consistency and the environment extension lemma (Lemma
3.3.6) (cf. Theorem 3.2.1, Case ty-lam).

Case 5 (

Dmexp
E0 ` mexp : ∃∅.E E0(longmid) ≥ (E′,∃∅.E′′) E � E′

E0 ` longmid ( mexp ) : ∃∅.E′′
):

This is the most complicated case of our proof. Again, we consider a sim-
pli�ed setting where sets of variables in binding positions are empty. More-
over, instead of instantiation E0(longmid) ≥ (E′,∃∅.E′′) we use simple equality
E0(longmid) = (E′,∃∅.E′′).

First, we use the lookup consistency lemma (Lemma 3.3.3) to getM0, s.t.
E(longid) =M0 and M |=M0.

From the uniformness lemma (Lemma 3.3.4(ii)) we know that M0 is a
functor closure (E1,M, λmid ⇒ mexp1) for some E1 and mexp1. From this
lemma we also get the consistency condition; we will denote it as Hc and use
it later.

Next, from the induction hypothesis on Dmexp with C, we get N1,M1, c1,
s.t. E ` mexp ⇒ ∃N1.(M1, c1) and E |= M1. From the uniformness lemma
3.3.4(i) we know thatM1 is also some non-parameterised module interpreta-

tion E ′, and so
He

E |= E ′.
From the consistency of �ltering lemma (Lemma 3.3.9), we get E ′′, s.t.

E ′ :: E′ ⇒ E ′′ and
C′

E′ |= E ′′. We can use the consistency condition Hc with
C′ to get N2, M2, c2, s.t. (E ′ + {mid 7→ E ′′}) ` mexp1 ⇒ ∃N2.(M2, c2) and

C′′

E′′ |=M2.
Now, we take N = N1 ∪N2,M =M2, c = c1; c2 in our goal. We construct

the required derivation by applying Rule (50).
The consistency part follows from C′′. (cf. Theorem 3.2.1, Case ty-app.

Although in the present proof we do not have two induction hypotheses and
instead of the �rst induction hypothesis we look up for the longid).

Case 6 (
mdec = dec E ` dec : E′

E ` mdec : E′
):

By the consistency to erasure lemma (Lemma 3.3.5) with C, we get E = E.
By the termination of the declarations compilation lemma 3.3.8, we get N ,E ′,c,
s.t.

E ` dec ⇒ ∃N.(E ′, c) (3.58)
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E |= E ′ (3.59)

We construct the required derivation by applying Rule (51) with (3.58), and
we have E |= E ′ from (3.59).

Case 7 (
E ` ty : τ

E ` type tid = ty : {tid 7→ τ}
):

By the consistency to erasure lemma 3.3.5 with C, we get E = E. Take N = ∅,
E ′ = {tid 7→ τ}, c = ε.
We construct the required derivation by applying Rule (52). We get {tid 7→
τ} |= {tid 7→ τ}, since the environments are equal.

Case 8 (
E ` mexp : ∃T.M

E `module mid = mexp : ∃T.{mid 7→M}
):

By induction hypothesis on Dmexp with C, we get N , M, c, s.t. E ` mexp ⇒
∃N.(M, c) and M |=M. Take E ′ = {mid 7→ M}. We construct the required
derivation by applying Rule (53).

We get {mid 7→ M} |= {tid 7→ M} by the consistency and environment
extension lemma (Lemma 3.3.6) with E = E = {}, and the fact that {} |= {}.

Case 9 (

Dmexp
E ` mexp : Σ

E ` open mexp : Σ
):

By induction hypothesis on Dmexp with C, we get required pieces to construct
the derivation using Rule (55).

Case 10 (
E ` mty : Σ

E `module type mtid = mty : ∃∅.{mtid 7→ Σ}
):

Take N = ∅, E ′ = {mtid 7→ Σ}, c = ε. By the consistency to erasure lemma
(Lemma 3.3.5) with C, we get E = E. We construct the required derivation by
applying Rule (54).

We get {mtid 7→ Σ} |= {mtid 7→ Σ}, since the environments are equal.

Case 11 (

T1 ∩ (tvs(E) ∪ T2) = ∅
Dmdec1

E ` mdec1 : ∃T1.E1

Dmdec2
E + E1 ` mdec2 : ∃T2.E2

E ` mdec1 mdec2 : ∃(T1 ∪ T2).(E1 + E2)
):

In this case we do not make simplifying assumptions and leave sets T1 and
T2 non-empty along with corresponding sets in the static interpretation rule
to show where we need to apply the bound variable convention (see Remark
3.5.5).

By induction hypotheses on Dmdec1 and Dmdec2 with C, we get

N1, E1, c1, s.t. E ` mdec1 ⇒ ∃N1.(E1, c1) and E1 |= E1,
N2, E2, c2, s.t. E ` mdec2 ⇒ ∃N2.(E2, c2) and E2 |= E2.

We can always α-rename ∃N1.(E1, c1) and ∃N2.(E2, c2) in such a way that N1

and N2 will satisfy the disjointness condition in Rule (56).
Take N = N1 ∪ N2, E ′ = E1 + E2, c = c1; c2. We construct the required
derivation by applying Rule (56).
We get (E1+E2) |= (E1+E2) from the consistency of environment modi�cation
lemma (Lemma 3.3.7).
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Case 12 (
E ` ε : {}

):

Take N = ∅, E ′ = {}, c = ε. We construct the required derivation by applying
Rule (57).

We get {} |= {} trivially.

�

3.4 Variable Binding and Nominal Techniques

In this section we are going to give a general introduction to nominal sets
[GP02, Pit13], and we give motivations why we have decided to use nominal
techniques in our formalisation. We outline de�nitions of relevant concepts
such as atoms, permutation of atoms, freshness relation, equivariance, and so
on.

Such aspects as freshness of variables and α-renaming are often left implicit
in pen-and-paper formalisations, but in proof assistants one has to pay atten-
tion to all the details related to these aspects. Moreover, it is a well-known
fact, that an implementation of variable binding conventions in proof assistants
often requires signi�cant e�orts. There are multiple ways to approach variable
binding and related issues in proof assistants, such as de Bruijn indices [dB72],
locally named and locally nameless representation [MP93, Gor94, Cha12], para-
metric higher-order abstract syntax [Chl08], and so on. One of the goals of our
formalisation of the module system in Coq is to keep it close to the presen-
tation given in Section 3.3. Since this representation uses names, changing to
another way of treating bound variables (like de Bruijn indices) will require
us to deviate from this representation. Moreover, since our setting is di�erent
from well-studied systems such as the lambda-calculus (mutual inductive de�-
nitions, sets of variables in binding positions), we would like to use a �rst-order
representation as a more �exible approach applicable for various structures
with variable binding. The approach based on nominal sets seems to be a good
�t in our situation.

Broadly speaking, the theory of nominal sets is a theory of names involved
in di�erent data structures, covering such aspects as variable binding, scope,
and freshness of variables. Nominal sets o�er a solid foundation for expressing
independence of data structures on the particular choices of bound variables
[Pit16]. The theory of nominal sets based on the idea of permutations of
variables and notion of �nite support.2 The theory gives a uniform approach
to deal with bound variables and allows for generalisation of binders to various
structures [Clo13] We are interested in the particular generalisation where one
can bind a set of variables at once. Moreover, since nominal sets o�er a uniform
approach it can be applied to various structures even if they are quite di�erent
from well-studied systems such as the lambda calculus. Our goal is to de�ne
a nominal set semantic objects (see Section 3.3.1) and use nominal reasoning
techniques in our formalisation.

2Similarly to the development in Agda [Cho15] we do not consider the notion of unique
smallest �nite support. This allows us to develop required notions constructively. For the
detailed discussion about nominal sets in constructive set theory see [Swa17].
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First, we give basic de�nitions from the theory of nominal sets and show
how these notions can be implemented in the proof assistant Coq (see Section
3.5.3).

De�nition 3.4.1 (Atoms). Let A be a set of atoms, if it satis�es two axioms:

• elements of A has decidable equality, i.e. ∀a, b ∈ A.(a = b) ∨ (a 6= b);

• A is countably in�nite, i.e. for any �nite set of atoms F , ∃b ∈ A.b /∈ F .

De�nition 3.4.2 (Permutation). We write Perm A for the set of all �nitely
supported permutations π : A → A. That is, π is a bijection on A with the
�nite support property: there exists a �nite set of atoms F , s.t. ∀a /∈ F.πa = a.
We call F the support of the permutation π.

Intuitively, De�nition 3.4.2 says that π is a bijection which permutes only
elements of some �nite subset of A and leaves other elements outside of F
untouched.

The set Perm A has a group structure with function composition as group
operation, the identity function (treated as a permutation) id as a neutral
element, and the inverse function (since permutations are bijections) as a group
inverse.

De�nition 3.4.3 (Transposition). There is an elementary permutation which
we call a transposition:

(a b)c :≡


a, if b = c

b, if a = c

c, otherwise

The transposition (a b), being a permutation, has support set {a, b}. Any
permutation can be non-uniquely factored through a sequence of transpositions.
Transpositions are involutions, that is, being applied twice they �cancel out�
each other: (a b) ◦ (a b) = id. Transpositions can be generalised from single
atoms to n-tuples of atoms.

De�nition 3.4.4 (Generalised transposition). Let −→a :≡ (a1, a2, . . . , an),
−→
b :≡

(b1, b2, . . . , bn), then we de�ne a generalised transposition of −→a and
−→
b as a

composition of simple transpositions:

(−→a
−→
b ) :≡ (a1 b1) ◦ (a2 b2) ◦ · · · ◦ (an bn)

De�nition 3.4.5 (Action). We de�ne the action of a Perm A on a set X as
a binary operation − · − : Perm A→ X → X with the following properties:

• for any x ∈ X, id · x = x

• for any x ∈ X, π1, π2 ∈ Perm A, π1 · (π2 · x) = (π1 ◦ π2) · x

An action of π on some x basically allows one to �apply� a permutation to
occurrences of atoms �inside� x.
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De�nition 3.4.6 (Support). Consider a �nite subset F of atoms A, and a
subgroup of permutations PermF A satisfying ∀a ∈ F.πa = a. We say that
F supports an element x ∈ X if for any permutation π in PermF A we have
π · x = x. We write supp x for the support of x.

We can also give an alternative characterisation of support using transpo-
sitions: if for any two elements outside of the a �nite subset F of A, it holds
that if (a b) · x = x for an element x ∈ X, then F supports x.

The characterisation in terms of transposition gives an intuitive understand-
ing of support as the �nite set of atoms that may occur �inside� x, since if we
pick two elements outside of the support of x, then the action of the transpo-
sition of these elements will have no e�ect on x.3

De�nition 3.4.7 (Nominal set). A nominal set X is a set X together with
the action − · − : A → X → X, such that each element of x ∈ X there exists
a �nite subset S of atoms A supporting x.

De�nition 3.4.8 (Freshness). We say that an atom a ∈ A is fresh for an
element of a nominal set x ∈ X if there exists some �nite support S of x such
that a /∈ S.

De�nition 3.4.8 is the usual notion of freshness for a single atom. We can
also de�ne a generalised notion of freshness following [Clo13], which will be
useful in the context of our formalisation.

De�nition 3.4.9 (Generalised freshness). We say that the set of atoms of
x ∈ X is fresh for the set of atoms of y ∈ Y (we also can say that y is fresh
for x) if for some �nite support S1 of x and some �nite support S2 of y the
following holds: S1 ∩ S2 = ∅. That is, S1 and S2 are disjoint.

We will use the following notation for the freshness relation: x#y, which
one can read as �x is fresh for y�. We will use the same notation for both
freshness and generalised freshness relations, and say explicitly, which notation
is used in case of ambiguity.

Remark 3.4.1. In our Coq development, each implementation of a nominal set
module type contains a supp function that accepts an element of the nominal
set and returns its �nite support. Since we are not requiring for a nominal set to
have the smallest support, we cannot prove some general properties as we would
be able to do with the smallest support requirement. For example, we cannot
show that any supp function is equivariant, because this is not true in general.
Instead, for all the de�nitions of nominal sets used in our formalisation we
choose the de�nitions of supp in such a way that they satisfy the equivariance
property. For every such de�nition of supp we provide a separate proof of
equivariance. The same applies to the freshness relation (since it depends on
supp): for each nominal set in our formalisation we have to show that it is
equivariant.

3Since we are not de�ning a smallest support, supp x may contain more elements than
the set of all atoms occurring in x
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Example 3.2: The set of lambda terms Lam (see (3.2) in Section 3.2, assuming
that variables v ∈ A) is a nominal set Lam with the action:

π · i :≡ i
π · v :≡ πv

π · (λx.e) :≡ λ(πx.π · e)
π · (e1e2) :≡ (π · e1)(π · e2)

The action of π is applied uniformly to all occurrences of variables: binding,
bound and free. Support is de�ned as follows:

supp i :≡ ∅
supp v :≡ {v}

supp (λx.e) :≡ {x} ∪ supp e)

supp (e1e2) :≡ (supp e1) ∪ (supp e2)

That is, the support of a lambda term is the set of all variables occurring in
the term.

Example 3.3: The set of atoms A is a nominal set A. In this case the action
on a : A is just an application of a permutation:

π · a :≡ πa

The support of a : A is the singleton set {a}.

Example 3.4: The set of �nite sets of atoms FinA is a nominal set FinA. In
this case the action of a permutation π on X ∈ FinA can be de�ned as an
application of π to each element of the set:

π ·X :≡ {πa | a ∈ X}

The support of X ∈ FinA is the �nite set X itself.

As a running example, which is relevant in our setting of a module system
formalisation, let us consider a simpli�ed version of semantic objects (Figure
3.13). We consider only module speci�cations with a ��at� environment struc-
ture, avoiding mutual de�nitions for simplicity.

Example 3.5: Types T form a nominal set T with the action given by

π · (τ1 → τ2) :≡ (π · τ1)→ (π · τ2)

π · t :≡ πt

And support given by

supp (τ1 → τ2) :≡ (supp τ1) ∪ (supp τ2)

supp t :≡ {t}
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t ∈ A
τ ∈ T :: = t | τ1 → τ2

E ∈ Env = tid
�n→ τ

Σ = ∃T.E ∈ MTy = FinA(TSet)× Env

Type Expressions

E ` ty : τ

ty ::= tid | Arr ty1 ty2

E(tid) = τ

E ` tid : τ
ty-tid

E ` ty i : τi i = [1, 2]

E ` Arr ty1 ty2 : τ1 → τ2
ty-arr

Module Speci�cations

E ` spec : ∃T.E′

spec ::= type tid | type tid = ty | spec1; spec2

E ` type tid : ∃{t}.{tid 7→ t}
spec-type

E ` ty : τ

E ` type tid = τ : ∃{}.{tid 7→ τ}
spec-type-assgn

E ` spec1 : ∃T1.E1

E + E1 ` spec2 : ∃T2.E2 T1#(E, T2) Dom E1 ∩Dom E2 = ∅
E ` spec1; spec2 : ∃(T1 ∪ T2).(E1 + E2)

spec-seq

Figure 3.13: Simpli�ed semantic objects and elaboration rules for type expres-
sions and module speci�cations.
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Example 3.6: Environments (or �nite maps) Env, mapping type identi�ers to
types τ form a nominal set Env with the action given by

π · e :≡ {(k 7→ π ·T τ) | (k 7→ τ) ∈ e}

We get a new �nite map by applying the permutation action to every element
in the codomain. Subscript T on the action of permutation π means that we
apply the action on nominal set T.

The support is de�ned as follows:

supp e :≡
⋃

({supp τ | (k 7→ τ) ∈ e})

That is, the support of e is a union of sets given by supports of all elements in
the codomain.

From the examples above we can de�ne a nominal set for the type of module
signatures Σ, which are pairs of a �nite set of existentially quanti�ed variables
T and an environment E where these variables may occur.

Example 3.7: We de�ne a nominal setMTy of module signatures MTy equipped
with the action de�ned in terms of actions on nominal sets FinA and Env

π · (∃T.E) :≡ ∃(π ·FinA T ).(π ·Env E)

The same applies to the de�nition of support:

supp (∃T.E) :≡ (suppFinA
T ) ∪ (suppEnv E)

From now on we will omit explicit annotations on the action of a permuta-
tion and on the support, since it can be determined from the type of argument.

An important notion in the theory of nominal sets is the notion of equiv-
ariance.

De�nition 3.4.10 (Equivariant functions). For two nominal sets X and Y, a
function between the carrier sets f : X → Y is called equivariant if it has the
following property:

∀x ∈ X,π ∈ Perm A. f (π · x) = π · (f x)

That is, f preserves the action of a permutation π.

De�nition 3.4.11 (The category of nominal sets). Nominal sets form a cat-
egory Nom where objects are nominal sets and morphisms are equivariant
functions.

The Nom category is Cartesian closed. Particularly, our example of MTy
being a nominal set boils down to the fact that Nom has �nite products.

The same way as we de�ned the notion of equivariant functions above (def-
inition 3.4.10), one can de�ne the notion of equivariant relation.

De�nition 3.4.12 (Equivariant relations). For two nominal sets X and Y a
relation R ⊆ X × Y is equivariant if

∀x ∈ X, y ∈ Y, π ∈ Perm A. xRy ⇒ (π · x)R(π · y)
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Lemma 3.4.1. The following operations are equivariant:

• the union of two �nite sets X and Y :

π ·X ∪ Y = (π ·X) ∪ (π · Y )

• the intersection of two �nite sets X and Y :

π ·X ∩ Y = (π ·X) ∩ (π · Y )

• the modi�cation of environment E1 by environment E2 (see De�nition
3.3.1):

π · (E1 + E2) = (π · E1) + (π · E2)

Lemma 3.4.2. The generalised freshness relation for nominal sets FinA and
Env, with �nite supports for the elements given by the supp function de�ned
in Examples 3.4 and 3.6, is equivariant. That is, for elements x and y of these
nominal sets we have the following:

x#y ⇒ (π · x)#(π · y)

Remark 3.4.2. We write X = Y , where X and Y are two �nite sets, for
extensional equality of sets, i.e. x ∈ X ⇐⇒ y ∈ Y . The same holds for
environments.

Let us consider proofs of equivariance of elaboration relations (see Figure
3.13. We present detailed proofs of two lemmas below.

Lemma 3.4.3. The elaboration relation for type expressions E ` ty : τ (see
Figure 3.13) is equivariant. That is, for any π, E, ty and τ

T
E ` ty : τ ⇒ (π · E) ` ty : (π · τ)

Proof. By induction on derivation T .

Case 1: T =
E(tid) = τ

E ` tid : τ
ty-tid

From the assumption E(k) = v, and the de�nition of the action on environ-
ments, we get (π · E)(tid) = π · τ .

Now, we can construct the required derivation

(π · E)(tid) = π · τ
(π · E) ` tid : π · τ

ty-tid

Case 2: T =

Ti
E ` ty i : τi i = [1, 2]

E ` Arr ty1 ty2 : τ1 → τ2
ty-arr

By induction hypotheses, we get two derivations:
T ′1 = (π · E) ` tid : π · τ1
T ′2 = (π · E) ` tid : π · τ2
We construct the required derivation from T ′1 and T ′2 using the rule ty-arr.

�
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Lemma 3.4.4. The elaboration relation for module speci�cations E ` spec : ∃T.E′
(see Figure 3.13) is equivariant. That is, for any π, E, E′, spec and T

T
E ` spec : ∃T.E′ ⇒ (π · E) ` spec : ∃(π · T ).(π · E)

Proof. By induction on the derivation E .

Case 1: E =
E ` type tid : ∃{t}.{tid 7→ t}

spec-type

We use the fact that π · {x} = {π · x}. The same holds for the singleton
environment π · {k 7→ v} = {k 7→ π · x}. We construct the required derivation
using these facts and the rule spec-type.

Case 2: E =

T
E ` ty : τ

E ` type tid = τ : ∃{}.{tid 7→ τ}
spec-type-assgn.

We know that π ·{} = {}, and π ·{k 7→ v} = {k 7→ π ·x}. From equivariance
of the elaboration relation for type expressions (Lemma 3.4.3) with T , we get
T ′ = (π · E) ` ty : (π · τ).

Now, we can construct the required derivation using the rule spec-type-assgn.

Case 3: E =

E1
E ` spec1 : ∃T1.E1

E2
E + E1 ` spec2 : ∃T2.E2

T1#(E, T2) Dom E1 ∩Dom E2 = ∅
E ` spec1; spec2 : ∃(T1 ∪ T2).(E1 + E2)

spec-seq

We have to construct a derivation for

(π · E) ` spec1; spec2 : π · (∃(T1 ∪ T2).(E1 + E2))

Using the de�nition of the action of π on module signatures MTy, and
the facts that the union operation on sets and the modi�cation operation on
environments are equivariant, we transform our goal to the following form:

(π · E) ` spec1; spec2 : (∃(π · T1 ∪ π · T2).(π · E1 + π · E2))

Next, by equivariance of the freshness relation for nominal sets FinA and Env
(Lemma 3.4.2), we get

(π · T1)#(π · E, π · T2) (3.60)

we also get
Dom (π · E1) ∩Dom (π · E2) = ∅ (3.61)

since the permutation action on environments does not a�ect the domain. By
induction hypothesis on E1, we get

E ′1 = (π · E) ` spec1 : ∃(π · T1).(π · E1)

By induction hypothesis on E2, we get

E ′2 = (π · E + E1) ` spec2 : (π · T2).(π · E2)

Using the equivariance of the modi�cation operation on environments, we get

E ′′2 = (π · E + π · E1) ` spec2 : (π · T2).(π · E2)
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We get the required derivation using Rule spec-seq with E ′1, E ′′2 , (3.60), and
(3.61).

We observe, that the proof of equivariance boils down to showing that opera-
tions and relations involved in the relation de�nition are themselves equivariant
(see [Pit13, Section 7.3]).

�

The notion of α-equivalence is often used to say that two terms are equal
�up to� renaming of bound variables. Using α-equivalence one can express
independence of particular choices for names of bound variables. Using nominal
techniques, we can give a de�nition of α-equivalence just in terms of freshness
and permutation of variables.

Example 3.8: First, let us consider a traditional setting of the lambda calculus.
The following inductively de�ned relation speci�es α-equivalence of lambda
terms [GP02]:

a =α a

t1 =α t
′
1 t2 =α t

′
2

t1t2 =α t
′
1t
′
2

(a1 b) · t1 =α (a2 b) · t2 b#(a1, a2, t1, t2)

λa1.t1 =α λa2.t2

It has been shown in [GP02] that the de�nition of α-equivalence in terms
of permutations corresponds to the usual notion of α-equivalence on lambda
terms. Moreover, the support of t ∈ Lam/=α (where Lam/=α is a quotient
set) is exactly the set of free variables of t.

For our running example of simpli�ed semantic objects given in Figure 3.13,
we could consider a characterisation of α-equivalence in terms of generalised
transpositions (De�nition 3.4.4). In this case, we would have to �x some (ar-

bitrary) order for the sets of variables in binding positions. We write
−→
T for

the set of variables T ordered according to some �xed order. We can de�ne an
α-equivalence relation on Env as follows:

(
−→
T1
−→
T ) · E1 (

−→
T2
−→
T ) · E2 T#(T1, T2, E1, E2)

card T1 = card T2 = card T

∃T1.E1 =α ∃T2.E2

In this de�nition we assume that cardinalities of the �nite sets of variables T1,
T2, and T are equal.

Unfortunately, since we have to �x some arbitrary order on sets of variables,
some properties of generalised transpositions does not play well with the idea
of sets of variables to be unordered. For example, if we have sets T = T1 ∪ T2
and T ′ = T ′1 ∪ T ′2, where T1 is disjoint from T2, and T

′
1 is disjoint from T ′2 this

property fails to hold:

(
−−−−−−→
(T1 ∪ T2)

−−−−−−→
(T ′1 ∪ T ′2)) 6= (

−→
T1
−→
T ′1) ◦ (

−→
T2
−→
T ′2)



CHAPTER 3. FORMALISING MODULES 69

Instead of de�ning α-equivalence in terms of generalised transpositions, we
give a more general de�nition that imposes constraints on the permutation
applied, instead of using transpositions explicitly.

π · (∃T1.E1) = ∃T2.E2 ∀a.a ∈ (supp E1 − T1)⇒ πa = a

∃T1.E1 =α ∃T2.E2

(3.62)

The constraint on the permutation π says that the permutation is an identity
on free variables of E1, that is, it a�ects only bound variables in E1. Since
π · (∃T1.E1) = ∃T2.E2 = ∃(π · T1).(π · E1),

Rule (3.62) says that two module signatures are α-equivalent for any permu-
tation π such that it a�ects only bound variables of E1 and makes components
of the signatures equal. This de�nition does not depend on the particular way
of constructing a permutation π. Particularly, in certain situations, when we
need such a permutation, we can use a generalised transposition to construct
it.

All the examples related to the simpli�ed setting of module speci�cations
given in Figure 3.13 generalises to the full setting of mutually dependent de�-
nitions of semantic objects given in Section 3.3.1. We will provide some details
of how nominal techniques apply to the full setting when discussing our for-
malisation in the Coq proof assistant (see section 3.5.3).

In the conclusion of this section, we would like to mention the following.
The use of nominal techniques could provide us with the mechanism for con-
venient reasoning about structures with binders using an induction principle
that incorporates the idea of α-conversion. As it has been shown (see [Pit06]
and [UBN07]), for equivariant relations one can derive a stronger induction
principle with an additional �nitely supported induction context C. Instanti-
ating the induction context appropriately, one can obtain the required freshness
conditions for cases where it is required.

Even for certain formulations of the simply-typed lambda calculus, to be
able to prove the weakening property in a proof assistant, one has to use α-
conversion explicitly. That is, if we de�ned the typing rule for the case of
lambda abstraction in the following form

Γ, x : τ1 ` e : τ2 x /∈ dom(Γ)

Γ ` λx.e : τ1 → τ2

then in the proof of the weakening lemma we would have to show that x /∈
dom(Γ′) for Γ ⊆ Γ′, knowing that x /∈ dom(Γ). This is usually done informally:
by variable convention we always can pick such x, but in the formalisation
one has to make precise why such a renaming is possible. Since the typing
relation is equivariant (and relations used in side conditions as well), one can
use a strengthened induction principle. The induction principle, adapting the
de�nition from [UBN07] looks as follows. For any predicate P C Γ e τ , where
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C is an additional induction context, we have:

∀C Γ n, P C Γ n Int

∀C Γ x τ, Γ(x) = τ ⇒ P C Γ x τ

∀C Γ x e τ1 τ2, x#Γ⇒ x#C ⇒
Γ, x : τ1 ` e : τ2 ⇒ (∀C,P C (Γ, x : τ1) e τ1)⇒
P C Γ (λx.e)(τ1 → τ2)

∀C Γ e1 e2 τ1 τ2, Γ ` e1 : τ1 → τ2 ⇒ (∀C,P C Γ e1 (τ1 → τ2))⇒
Γ ` e2 : τ1 ⇒ (∀C,P C Γ e2 τ1)⇒
P C Γ (e1 e2) τ2

∀ C Γ e τ, Γ ` e : τ ⇒ P C Γ e τ

Notice an additional condition x#C in the case of lambda abstraction. Using
this induction principle, the case for λx.e could be proved by instantiating the
context C with Γ′.

3.5 Formalisation in Coq

We have formalised, in the Coq proof assistant, essential parts of the de�nitions
given in Section 3.3 along with the proof of static interpretation normalisation.
We have taken an extrinsic approach [BHKM12], as opposed to an intrinsic one,
to the representation of the core language, the module language, and the target
language, which keeps our implementation close to the approach presented in
the paper. The extrinsic encoding has an advantage of being more suitable for
code extraction to obtain a certi�ed implementation.

We use two extra axioms in our Coq formalisation: the axiom of functional
extensionality and the axiom of proof irrelevance. Both axioms are consistent
with the theoretical foundation of the Coq proof assistant - Calculus of In-
ductive Constructions (CIC). See Remark 3.5.1 for the details about the proof
irrelevance axiom.

That is, we have implemented the abstract syntax as simple inductive data
types and given separate inductive de�nitions for relations such as elaboration,
typing, and so on. The semantic objects from Section 3.3.1 have been imple-
mented as mutually de�ned inductive types using Coq's with clause. The same
approach is used in de�nitions of relations on semantic objects.

For proof automation, we make use of the crush tactic from [Chl13] and
some tactics from [PdAC+16]. We have striven to keep the structure of proofs
explicit, using automation to resolve only the most tedious and repetitive cases.
When proving goals involving dependent types (like vectors) we use tactics
dependent destruction and dependent induction from the Program.Equality
module.

In the following, we are going to discuss issues related to some details of
the implementation in Coq. Particularly, we will discuss the de�nitions of
environments (�nite maps) with properties that simplify proof development,
some issues related to the conservative strict positivity checks in Coq for the
de�nition of semantic objects, and induction principles used in proofs. We
describe the nominal sets implementation and provide details of de�nitions
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of particular nominal sets relevant for our development. We also present an
implementation of the logical relation and highlight some details related to the
proof of static interpretation normalisation (Theorem 3.3.1).

We will use Coq's syntax for most of the de�nitions in the reminder of
this chapter, including lemmas and theorems, which directly correspond to our
implementation. In the proof sketches that follow, we are aiming at show-
ing the overall ideas and intuitions, which will serve as a guide to our Coq
implementation.

3.5.1 Semantic Objects Representation

As described in Section 3.3, semantic objects are represented using �nite maps
(which we also call environments) and sets (see Figure 3.3). Indeed, the im-
plementation makes use of Coq's standard library implementations of such
objects. For environments we de�ne a module type, which speci�es operations
on environments used in our implementation following our naming convention.
We de�ne a module, corresponding to this module type by mapping operations
from our custom module type to the operations from the standard library.
Speci�cally, we use the FMapList implementations of the FMap interface. In
the FMapList implementation, the underlying data structure is a list of pairs
list (Key * A), where Key is the type of keys (a domain) and A is the type of
values (a codomain). This list is equipped with the property of being ordered
according to a strict order of keys (we assume that the type Key has a strict
order). The list and the property are packed together using Coq's records,
which can be seen as a generalisation of Σ-types. We use the de�nition from
the FMapList module from the Coq standard library:

De�nition 3.5.1. Record slist (A : Type) :=

{this :> list A; sorted : sort (ltk A) this}.

Here, the this �eld denotes an underlying list, and the sorted �eld rep-
resents the property of the list being ordered with respect to a strict order on
keys:

Definition ltk : forall A : Type, Key * A → Key * A → Prop :=

fun (A : Type) (p p' : Key * A) ⇒ Key.lt (fst p) (fst p')

Coq automatically generates a constructor for the de�ned record:

Build_slist: forall (A : Type) (xs : list A),

sort (ltk A) this → slist A

In our implementation, we instantiate the FMapList module from the stan-
dard library by the name En. We use En.t to refer to the environment type
constructor, which corresponds internally to slist from De�nition 3.5.1.

The property given by the sorted �eld of the slist record gives us the
canonical representation of environments. The canonical representation allows
us to prove an important property, which makes proofs involving environments
easier to write: if two environments contain the same mappings, they are propo-
sitionaly equal in Coq. We call this property environments extensionality :

De�nition 3.5.2 (Environments extensionality). For any type A : Type and
for any two environments E E' : En.t A, we have
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(forall k : Key, look k E = look k E') → E = E'

Here the equals sign �=� refers to the Coq propositional equality, and

look : Key → En.t A → option A

is a lookup function.

Having this property for environments, one can use all of Coq's rewriting
machinery instead of using a setoid equality.

Sometimes, using the concrete representation of some abstract notion can
be helpful to prove properties by computation. For example, let us consider
the following lemma (we use the notation ++ for the environment modi�cation
operation):

Lemma plus_empty_r: forall {A} (e : En.t A),

e ++ empty = e.

Proof.

reflexivity.

Qed.

The proof of this lemma makes use of the concrete representation of environ-
ments as lists with a well-formedness condition. In fact, this lemma is just a
de�nitional equality, which is why we can prove it by reflexivity directly.
The same trick does not work for the slightly di�erent lemma:

Lemma plus_empty_l: forall {A} (e : En.t A),

empty ++ e = e.

To prove this lemma using the concrete representation would require us to
do induction and use properties of the fold_left function on lists, since this
is how environment modi�cation (addition) is de�ned. Instead, we can use
environment extensionality to prove this lemma by using the speci�cation of
the environment modi�cation operation.

In general, abstracting from the concrete representation has an advantage
that we can change from one representation to another, but in this case we
lose a computational behavior. As we will see in Section 3.5.4 it is not always
possible to use an abstract representation.

Remark 3.5.1. In order to prove the environments extensionality property,
we have to add the axiom of proof irrelevance:

proof_irrelevance : forall (P:Prop) (p1 p2:P), p1 = p2.

One can read this axiom as �any two inhabitants (proofs) of the same proposi-
tion are equal�. Although, we could have taken another approach, and de�ne
the property of list to be ordered as a boolean-valued predicate, instead of
Prop-valued. Then the property of a list xs being ordered could look like this:
sorted : isSorted xs ltk = true. In this case we could have used the fact,
that for types with decidable equality (type bool, in our case), uniqueness of
identity proofs is provable (the Hedberg's theorem [Hed98]). We use this ap-
proach to prove the extensionality property for the MSetList (more modern)
implementation of �nite sets from the standard library (the well-formedness
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predicate is boolean-valued in this implementation). The implementation of
FMapList still states sortedness condition in Prop. To enable easier reuse of
the standard library implementation, we have chosen to assume proof irrele-
vance to prove extensionality of environments.

Having environments as described above, we can now try to de�ne semantic
objects using Coq's mechanism of mutually inductive de�nitions. First of all,
we de�ne type environments in the obvious way (value environments VEnv are
de�ned similarly):

Definition TEnv := AEnv Ty.

We would like to give a de�nition of semantic objects in the following way:

Inductive Env :=

| EnvCtr : TEnv → VEnv → MEnv → MTEnv → Env

with MEnv :=

| MEnvCtr : AEnv Mod → MEnv

with MTEnv :=

| MTEnvCtr : AEnv MTy → MTEnv

with Mod :=

| NonParamMod : Env → Mod

| Ftor : TSet → Env → MTy → Mod

with MTy :=

| MSigma : TSet → Mod → MTy.

Unfortunately, this de�nition does not work because of the conservative
strict positivity check implementation in Coq. Speci�cally in de�nitions of
MEnv and MTEnv we use the VEnv type constructor. Coq does not accept such
a de�nition as strictly positive.

Remark 3.5.2. One simple example that violates strict positivity of inductive
de�nitions is a de�nition of lambda terms that uses Coq's function space to
represent lambda-abstraction:

Inductive term : Set :=

| App : term → term → term

| Abs : (term → term) → term.

This de�nition violates strict positivity, since the constructor Abs takes a func-
tion from term to term. That is, the inductive type being de�ned occurs in
the negative position, to the left of an arrow. If Coq allowed such de�nitions,
its underlying theory would become unsound, since one could than write non-
terminating de�nitions (see examples in [Chl13, Section 3.6]). For that reason
Coq performs a check for strict positivity, and this check is an overapproxima-
tion. That is, there are some de�nitions, which are strictly positive, but Coq
is unable to recognize that. In the case of semantic objects, this is exactly the
case, as we will see later.

If we drop the condition in the de�nition of AEnv that the list is sorted,
then we can write a de�nition of Env. That is, we could have an association
list for MEnv and MTEnv instead of proper environments, and than we would
have to add a well-formedness condition to all the theorems related to semantic
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objects. In [RRD10] the authors have chosen the approach with the separate
well-formedness condition in the Coq formalisation. In our case such a design
decision would lead to signi�cant complications due to the presence of mutual
inductive de�nitions. From a practical point of view, dependent types are useful
exactly for propagating certain invariants associated with the data structure
[Ler09]. For that reason, we would like to keep the well-formedness condition
packed together with the underlying association list.

Instead, we introduce an isomorphic pair-of-vectors representation of envi-
ronments, where the �rst vector is an ordered vector of keys and the second
vector is a vector of values. By vector we mean the following inductive family
of types indexed by natural numbers, as it is de�ned in the Vector module
from the Coq standard library:

De�nition 3.5.3.

Inductive Vec A : nat → Type :=

|nil : Vec A 0

|cons : forall (h:A) (n:nat), Vec A n → Vec A (S n).

The important feature of vectors is that they carry information about their
lengths in the type �by construction�. An alternative way to pack a list with
its length is by using subset types:

Definition VecAlt A n := {xs : list A | length xs = n }

Such a de�nition would lead to the same problem as before: the de�nition
of semantic objects would not pass the strict positivity check.

Separating keys and values in di�erent vectors allows us to de�ne seman-
tic objects in a way acceptable for Coq's strict positivity checker. The idea
of using an isomorphic representation is similar to Wadler's notion of views
[Wad87]. We can see the two representations of environments as two views
associated with the abstract �type� of environments, which corresponds to a
module specifying operations on and properties of environments.

More precisely, we de�ne our new representation of environments using
Coq's records and subset types:

Definition skeys n := {vs : Vec Key n | vsort Key.lt vs }.

Record VecEnv (A : Type) :=

mkVecEnv { v_size : nat;

keys : skeys v_size;

vals : Vec A v_size }.

This de�nition again uses dependent types to maintain two invariants, specify-
ing (i) that the vector of keys is sorted, and (ii) that the vector of keys and the
vector of values have the same length. Notice that using the subset types for
the de�nition of skeys will not cause problems for the strict positivity check,
because the type of keys is independent of the mutual inductive structure of
semantic objects. The reason why we need the lengths of two vectors to be the
same is the following. We are aiming to de�ne our alternative representation
of environments in such a way that we have enough information to show the
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isomorphism between the two representations without adding any side condi-
tions. In particular, if we did not include the condition on lengths of vectors
and used just lists, we would have to add an extra side condition when de�ning
a conversion function from the pair-of-vector representation to the one from the
standard library. That would again lead to the same problem as with adding a
well-formedness side condition to all the theorems related to semantic objects.

Before we start showing the isomorphism between the two representations,
let us give some useful de�nitions related to propositional equality, since we
use will have to reason about equality of dependent types. The Homotopy
Type Theory book [Uni13] establishes the terminology and provides de�nition
of basic notions, which we are going to use when we talk about equalities.

De�nition 3.5.4 (Transport). We call the following function transport :

transport : forall {A : Type} {a b : A} {P : A → Type},

a = b → P a → P b

Informally, one can read this de�nition as �if a is equal to b and P a holds,
then P b also holds�. Following [Uni13], we are going to call p : a = b a path
between a and b.

De�nition 3.5.5 (Path concatenation). Paths may be concatenated, which
corresponds to transitivity of equality:

path_concat : forall {A : Type} {x y z : A},

x = y → y = z → x = z

De�nition 3.5.6 (Action on paths). The application of f to a path (or action
on paths) :

ap : forall {A B : Type} {a a' : A}

(f : A → B) (p : a = a'),

f a = f a'.

Now, we give some useful properties of transport.

Lemma 3.5.1 (Lemma 2.3.9 in [Uni13]). For any A : Type, type family
B : A → Type, x y z : A, u : B x, and paths p : x = y and q : y = z

we have

transport q (transport p u) = transport (path_concat p q) u.

Lemma 3.5.1 says, that transporting something twice, �rst along the path p

and then along the path q is equal to transporting once, but along the concate-
nated path path_concat p q. The next lemma allows us to move transport
in and out of the application.

Lemma 3.5.2 (Lemma 2.3.11 in [Uni13]). For any A : Type, type families
F,G : A → Type, a,a' : A, u : F x, dependent function
f : forall (a : A), F a → G a, and path p : a = a' we have
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f (transport p u) = transport p (f u).

Lemma 3.5.3. For any A : Type, x y : A, and p : x = y the following
equations hold:

(i) path_concat p (eq_sym p) = eq_refl

(ii) path_concat (eq_sym p) p = eq_refl

Where (eq_sym p) : y = x

Having lemmas about equality at hand, we can show the isomorphism be-
tween the two representations. The idea of the approach is simple: we use a
well-known list-of-pairs to pair-of-lists correspondence. Although, for us it is a
bit more subtle, since we use vectors instead of lists, and we have to maintain
an additional invariant � vector of keys is sorted. First of all, we de�ne zip and
unzip operations on vectors. The zip operation on vectors has the following
type:

vzip : forall {A B n}, Vec A n → Vec B n → Vec (A * B) n

The important di�erence from the zip function on lists is that dependent
types allow us to ensure that the two input vectors and the output vector have
the same size. Writing de�nitions like this in Coq sometimes is a non-trivial
task. Pattern-matching in Coq requires additional work to pass all required
information for the de�nition to type-check. That is, we use a convoy pattern
[Chl13] to propagate the information that the length of two input vectors is
the same during pattern-matching. The implementation of the vzip function
in inspired by [Bre15].

Definition vzip {A B : Type} :

forall {n}, Vec A n → Vec B n → Vec (A * B) n :=

fix zip {n} vs := match vs in Vec _ m

return Vec B m → Vec (A * B) m with

| [] ⇒ fun vs' ⇒ []

| cons _ v n0 tl ⇒
fun vs' ⇒

(match vs' in Vec _ m'

return (S n0 = m' → match m' with 0 ⇒
(unit : Type) | S _ ⇒ Vec _ _ end) with

| [] ⇒ fun _ ⇒ tt

| cons _ v' n1 tl' ⇒
fun H ⇒
cons _ (v,v') _

(zip tl (transport (eq_add_S _ _ (eq_sym H)) tl'))

end) eq_refl

end.

There are two details to point out in this de�nition. First, after matching
the �rst vector against the cons constructor, we already know that the second
input vector cannot be empty, although Coq still requires us to exhaustively
cover all the cases. We apply the usual trick here: use a return clause to
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specify that in the impossible case we return a trivial type unit. The second
detail is the recursive call. The second argument (the tail of the second vector)
is not exactly of the right type. It has type Vec B n1, but we need a term
of type Vec B n0, where n0 is the length of the �rst vector. At this point we
use the convoy pattern to make a connection between the lengths of the two
vectors: the return type of the match on vs' is a function, taking equality as
an argument:

S n0 = m' → match m' with

| 0 ⇒ (unit : Type)

| S _ ⇒ Vec _ _ end.

Here n0 is bound to the length of the �rst vector vs, and we apply this function
to eq_refl to indicate that we expect lengths of the two vectors to be equal.
Thus, in the cons case for the second vector, we now have H : S n0 = S n1

at our disposal, and we can use it to construct a term of the right type for the
second argument of the recursive call. In order to do that, we have to transport
tl' along the equality p : n0 = n1 (we will discuss transport later, when we
state the isomorphism between the two representations of environments). We
get p from H using injectivity of constructors (we use the eq_add_s lemma from
the standard library).

The de�nition for the vunzip function is simpler, and does not involve
complications with dependent pattern-matching.

Definition vunzip {A B : Type} :

forall {n}, (Vec (A * B) n) → (Vec A n * Vec B n) :=

fix unzip {n} vs := match vs with

| [] ⇒ ([],[])

| (a,b) :: tl ⇒ (a :: fst (unzip tl), b :: snd (unzip tl))

end.

Now, we can show that vzip/vunzip are inverses of each other:

Lemma 3.5.4 (vzip/vunzip inverses). For the functions vzip and vunzip,
de�ned above, and any n, A, B, the following holds:

(i) for any vector of pairs kvs : Vec (A*B) n we have
(fun p ⇒ vzip (fst p) (snd p)) (vunzip kvs) = kvs

(ii) for any two vectors vs : Vec A n and vs' : Vec A n we have
vunzip (vzip vs vs') = (vs, vs')

Proof. We show

(i) By induction on kvs.

(ii) By induction on vs and performing dependent case analysis (using the
dependent destruction tactics) on vs'.

�

So far, we have shown a conversion between a pair of vectors and a vector of
pairs, but we need another �layer� of conversion functions, which also compose
to identity in both directions.
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De�nition 3.5.7. Conversion function between lists and vectors:

to_list : forall (A : Type) (n : nat), Vec A n → list A

of_list : forall (A : Type) (xs : list A), Vec A (length xs)

We need an auxiliary lemma, before we start showing that these two func-
tions are inverses of each other.

Lemma 3.5.5. For any n m : nat, a vector vs : Vec A n, a : A, S the
successor constructor of nat, and a path p : n = m we have

transport (ap S p) (a :: vs) = a :: transport p vs.

Proof. First, let us check if the statement type-checks. On the right-hand side
we have (transport p vs) : Vec A m (transporting Vec A n along the path
p : n = m). Applying the cons constructor gives us (according to the De�-
nition 3.5.3) (a :: transport p vs) : Vec A (S m). For the left-hand side
we have (a :: vs) : Vec A (S n), and we use action on paths of the succes-
sor constructor for natural numbers to get the right path : (ap S p) : S n = S m.
Now, it is easy to see that the whole left-hand side has the same type as the
right-hand side: transport (ap S p) (a :: vs) : Vec A (S m).

We prove the lemma by case analysis on p: it su�ces to consider the case,
when m is n and p is eq_refl. Then our goal reduces to

transport (ap S eq_refl) (a :: vs) = a :: transport eq_refl vs

Both, transport and ap compute on eq_refl. After simpli�cation, we get

a :: vs = a :: vs

as required. �

Composition of to_list and of_list in one direction is easy to state
and prove to be the identity. Speci�cally, the proof of the fact that for any
A : Type and xs : list A, to_list (of_list xs) = xs can be found in
the standard library. Let us focus on the other direction (there is no proof
of this property in the standard library). Even to state it requires some
work. If we did it naively, as �for any n : nat, A : Type, and vs : Vec A n,
(of_list (to_list vs)) = vs�, then our de�nition would not type-check
and we would get the error �The term "vs" has type "Vec A n" while it is ex-
pected to have type "Vec A (length (to_list vs))"�. The reason for that
error is that the right-hand side and the left-hand side of the equation are of
di�erent type. We can �x this problem using the following observation: if we
pass a vector vs : Vec A n to the to_list function, then the resulting list
will be exactly of length n.

to_list_length : forall (n : nat) (A : Type) (vs : Vec A n),

n = length (to_list vs)
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Remark 3.5.3. Notice that in our Coq implementation we make the de�ni-
tion of to_list_length transparent by using the Defined keyword instead
of Qed. This way, we make the term, witnessing the equality, available for
simpli�cation, so we can exploit de�nitional qualities in some proofs.

Now, we are ready to state properties of to_list and of_list.

Lemma 3.5.6. For the functions to_list and of_list (De�nition 3.5.7),
we have the following equations:

(i) for any A : Type and xs : list A we have
to_list (of_list xs) = xs

(ii) for any A : Type, n : nat, vs : Vec A n we have
of_list (to_list vs) = transport (to_list_length vs) vs

Proof. We show

(i) by induction on xs. In the base case, both sides of the equation evaluate
to the empty list. In the induction step, we simplify the goal and rewrite
it using the induction hypothesis.

(ii) by induction on vs. In the base case both sides of the equation evaluate
to the empty list. In the induction step, we apply the following equational
reasoning:

h :: of_list (to_list vs)

= transport (to_list_length (h :: vs)) (h :: vs)

= {by de�nitional equality (see Remark 3.5.3)}

= transport (ap S (to_list_length vs)) (h :: vs)

= {by lemma 3.5.5}

= h :: transport (to_list_length vs) vs

= {by induction hypothesis}

= h :: of_list (to_list vs)

�

Another invariant, which should be preserved by the conversion functions
is the order of the elements. We have proved several auxiliary lemmas showing
that the order is preserved by the functions vzip/vunzip and the functions
to_list/of_list. Proofs of these lemmas are quite straightforward, since
none of these functions rearrange the elements.

We de�ne the conversion function between the two representations of en-
vironments using the de�nitions above. We use En.t to refer to the standard
library implementation of environments corresponding to De�nition 3.5.1:

Definition toOrdEnv {A : Type} (ve : VecEnv A) : En.t A :=

match ve with

| mkVecEnv _ _ (exist _ ks sorted_ks) vs ⇒
let skvs := vzip_sorted ks vs sorted_ks

in Build_slist (to_list_sorted (vzip' (ks,vs)) skvs)
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end.

Definition fromOrdEnv {A : Type} (oe : En.t A) : VecEnv A :=

match oe with

| @En.Build_slist _ xs xs_sort ⇒
let kvs := vunzip (of_list xs) in

let vs := snd kvs in

let skvs := vunzip_sorted (of_list xs)

(of_list_sorted _ xs_sort)

in mkVecEnv A _ (exist _ (fst kvs) skvs) vs

end.

Notice that in the de�nition of toOrdEnv we use the function

zip' : forall {A B : Type}, Vec A n * Vec B n → Vec (A * B) a,

which is a curried version of the zip function.
Let us prove congruence lemmas, which we are going to use in our proof

that the functions toOdrEnv/fromOrdEnv are inverses of each other.

Lemma 3.5.7 (Congruence for ordered-list environments). For any A : Type,
lists xs ys: list (Key.t * A), which are sorted according to the strict or-
der of keys sxs : sort ltk xs, sys : sort ltk ys, if xs = ys then two
records, corresponding to the environments are equal:
{| En.this := xs; En.sorted := sxs |} =
{| En.this := ys; En.sorted := sys |}.

Proof. Essentially, this is the same property as for subset types in presence
of proof irrelevance. The �rst components are equal by assumption, and
sxs = sys by proof irrelevance. �

Lemma 3.5.8 (Congruence for pair-of-vectors environments). For any A : Type,
n,n' : A, two sorted vectors of keys
ks : Vec Key.t n, ks_sort : vsort Key.lt ks,
ks' : Vec Key.t n', ks_sort' : vsort Key.lt ks',
two vectors of values vs : Vec A n and vs' : Vec A n', and path p : n = n',
if (transport p ks) = ks' and (transport p vs) = vs' then

{| v_size := n; keys := exist _ ks ks_sort; vals := vs |} =

{| v_size := n'; keys := exist _ ks' ks_sort'; vals := vs' |}.

Proof. The proof follows essentially the same patterns as the proof of Lemma
3.5.7. First, by case analysis on p, we get ks = ks' and vs = vs', be-
cause transport computes on eq_refl. It only remains to be shown, that
ks_sort = ks_sort', but this equality holds by proof irrelevance. �

Lemma 3.5.9 (toOrdEnv/fromOrdEnv inverses). For any A, ve : VecEnv A,
and oe : En.t we have

(i) (toOrdEnv (fromOrdEnv oe)) = oe

(ii) (fromOrdEnv (toOrdEnv ve)) = ve
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Proof. We prove

(i) using Lemmas 3.5.7, 3.5.6(i) and 3.5.4(i);

(ii) as follows. This direction is a bit harder to prove, since we have to reason
about equality of vectors. We use Lemma 3.5.8, which gives us two goals
that are quite similar. We prove them using lemmas about transport
(Lemmas 3.5.2 and 3.5.1) to bring together paths that give re�exivity by
Lemma 3.5.3, and Lemmas 3.5.6(ii) and 3.5.4(ii).

�

We could have de�ned similar operations on pair-of-vectors environments
and prove all the required properties as for the environments from the standard
library, but this would be a quite time consuming process. Instead, we use
Coq's coercion mechanism. The coercion functions are precisely the functions
given by the isomorphism between the two representations.

Coercion _to {A} := toOrdEnv (A:=A).

Coercion _from {A} := fromOrdEnv (A:=A).

In most situations, Coq inserts coercion functions automatically in an expected
way, which simpli�es development using a pair-of-vectors representation of en-
vironments. However, if there is some ambiguity in what way coercions could
be applied, we have to fallback to manual application of the coercion functions.

Our Coq development shows that in most of the proofs involving the pair-
of-vectors environments it su�ces to just use Lemma 3.5.9.

We can now de�ne semantic objects using a pair-of-vectors representation
without violating Coq's strict positivity check. The isomorphism between the
two representations ensures that we can transfer properties of one representa-
tion to the other.

De�nition 3.5.8 (Semantic objects).

Inductive Env :=

| EnvCtr : TEnv → VEnv → MEnv → MTEnv → Env

with MEnv :=

| MEnvCtr : VecEnv Mod → MEnv

with MTEnv :=

| MTEnvCtr : VecEnv MTy → MTEnv

with Mod :=

| NonParamMod : Env → Mod

| Ftor : TSet → Env → MTy → Mod

with MTy :=

| MSigma : TSet → Mod → MTy.

The de�nition of interpretation environments has a similar structure and
uses the same approach with a pair-of-vector representation.

De�nition 3.5.9 (Interpretation environments).



CHAPTER 3. FORMALISING MODULES 82

Definition IVEnv := EnvMod.t (label*Ty).

Inductive IEnv :=

| IEnvCtr : TEnv → IVEnv → IMEnv → MTEnv → IEnv

with IMEnv :=

| IMEnvCtr : (VecEnv.VecEnv IMod) → IMEnv

with IMod :=

| INonParamMod : IEnv → IMod

| IFtor : IEnv → TSet → Env → MTy → mid → mexp → IMod.

Operations on Semantic Objects

We brie�y describe operations on semantic objects, such as lookup for di�er-
ent types of identi�ers, including long identi�ers, which represent paths in the
nested module structure. Most of the operations are just liftings of correspond-
ing operations of ��at� environments, such as described in the subsection 3.3.1.
All the implicit injections and operations on components of semantic objects,
mentioned in Section 3.3.1, are made explicit in our Coq implementation.

We consider several examples of de�nitions to sketch the overall idea. First,
we start with the concept of long identi�ers. Long identi�ers are de�ned as an
inductive data type with two constructors: one for the type, value or module
identi�er, and the other one to build a path out of a sequence of module
identi�ers.

Inductive longtid :=

| Tid_longtid : tid → longtid

| Long_longtid : mid → longtid → longtid.

This de�nition shows how the long identi�ers for type lookup are de�ned.
Our implementation contains two more similar de�nitions of long identi�ers,
longvid and longmid for looking up values and modules, respectively.

The lookup function can be de�ned by recursion on the structure of a long
identi�er.

Fixpoint lookLongTid (longk : longtid) (e : Env) : option Ty :=

match e with

| EnvCtr te _ me _ ⇒
match longk with

| Tid_longtid k ⇒ look k te

| Long_longtid m_id longk' ⇒
match (lookMid m_id me) with

| Some (NonParamMod e') ⇒ lookLongTid longk' e'

| _ ⇒ None

end

end

end.

For the values and modules components of the semantic objects we de�ne
the similar functions, following the name convention.

lookLongVid (longk : longvid) (e : Env) : option Ty

lookLongMid (longk : longmid) (e : Env) : option Mod
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The lookup function for ��at� environments

look : forall A : Type, En.key → En.t A → option A

is polymorphic with respect to the type of values in the environment. Envi-
ronments containing modules and module types (MEnv and MTEnv) are part of
the mutually recursive structure and therefore wrapped in constructors. Before
looking up in these environments we pattern-match on the respective construc-
tor to �unwrap� the environment and then apply the look function. The add

operation (the operation that adds a new mapping to an environment) in case
of the pair-of-vectors environment types MEnv and MTEnv, �rst transports an
environment through the isomorphism, applies the usual add (of standard li-
brary implementation of environments) and then transports the result back.
The operation of environment modi�cation for the semantic objects is de�ned
componentwise.

3.5.2 Induction Principles

In order to prove theorems by induction over the structure of semantic objects,
or relations containing mutual de�nitions, Coq's Scheme command is used to
generate suitable induction principles. For some of the de�nitions, such as those
for semantic objects and interpretation environments, the generated induction
principles are not su�ciently strong, which is caused by the presence of nested
inductive types; some constructors take environments as parameters, and the
environments, being essentially list-like structures, make the whole de�nition
a nested inductive de�nition. For each of these cases, a suitable induction
principle is de�ned manually, following essentially the same approach as in
[Chl13, Section 3.8].

Let us consider an induction principle for the semantic objects given by
De�nition 3.5.8. Usually, Coq generates an induction principle from the de�ni-
tion of an inductive data type, but nested inductive de�nitions are not covered
by this procedure. In the case of MEnv (the case of MTEnv is similar), we want
the induction hypothesis saying that some predicate P : Mod → Prop holds
for all the values in the pair-of-vectors environment argument of the MEnvCtr

constructor. Since we are interested only in a predicate on values in the en-
vironment (a codomain), we can use the projection from the pair-of-vectors
representation to a vector of values:

vals : forall {A : Type} (v : VecEnv A), Vec A (v_size A v)

That is, we just need a predicate stating that some property holds for all the
elements in a vector. There are at least two ways to de�ne such a predicate:
by recursion and by induction. We are going to use the inductive variant of
the predicate from the Vector module of the standard library:

Inductive Forall {A} (P: A → Prop)

: forall {n} (v: t A n), Prop :=

|Forall_nil: Forall P []

|Forall_cons {n} x (v: t A n) : P x → Forall P v →
Forall P (x::v).

With this de�nition of the Forall predicate, we can de�ne a su�ciently strong
induction principle for semantic objects:
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Definition Env_mut' (P : Env → Prop) (P0 : MEnv → Prop)

(P1 : MTEnv → Prop)

(P2 : Mod → Prop) (P3 : MTy → Prop)

(f : forall (t : TEnv) (v : VEnv) (m : MEnv),

P0 m → forall m0 : MTEnv, P1 m0 → P (EnvCtr t v m m0))

(f0 : forall (t : VecEnv Mod),

Forall P2 t → P0 (MEnvCtr t))

(f1 : forall (t : VecEnv MTy),

Forall P3 t → P1 (MTEnvCtr t))

(f2 : forall e : Env, P e → P2 (NonParamMod e))

(f3 : forall (t : TSet) (e : Env),

P e → forall m : MTy, P3 m → P2 (Ftor t e m))

(f4 : forall (t : TSet) (m : Mod), P2 m → P3 (MSigma t m)) :=

fix F (e : Env) : P e :=

match e as e0 return (P e0) with

| EnvCtr t v m m0 ⇒ f t v m (F0 m) m0 (F1 m0)

end

with F0 (m : MEnv) : P0 m :=

match m as m0 return (P0 m0) with

| @MEnvCtr t ⇒ let fix step {n} (ms : Vec Mod n) : Forall P2 ms :=

match ms in Vec _ n' return @Forall _ P2 n' ms with

| [] ⇒ Forall_nil P2

| y :: l ⇒
@Forall_cons _ P2 _ y _ (F2 y) (step l)

end

in f0 t (step (vals _ t))

end

with F1 (m : MTEnv) : P1 m :=

match m as m0 return (P1 m0) with

| @MTEnvCtr t ⇒ let fix step {n} (ms : Vec MTy n) : Forall P3 ms :=

match ms with

| [] ⇒ Forall_nil P3

| y :: l ⇒
@Forall_cons _ _ _ y l (F3 y) (step l)

end

in f1 t (step t)

end

with F2 (m : Mod) : P2 m :=

match m as m0 return (P2 m0) with

| NonParamMod e ⇒ f2 e (F e)

| Ftor t e m0 ⇒ f3 t e (F e) m0 (F3 m0)

end

with F3 (m : MTy) : P3 m :=

match m as m0 return (P3 m0) with

| MSigma t m0 ⇒ f4 t m0 (F2 m0)

end

for F.

A large portion of this induction principle is generated by the Scheme com-
mand. The important modi�cations we have had to do manually are concerned
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with the f0 and f1 cases (and the F0 and F1 cases of the proof term respec-
tively), where we use the Forall predicate to specify the desired property.

3.5.3 Nominal Techniques in Coq

There are existing developments of nominal techniques for proof assistants.
Probably, the most developed one is the Nominal Isabelle package for the
Isabelle proof assistant [UT05], which includes generalised name abstraction
[UK11]. On the other hand, for the Coq proof assistant, there are no packages
for nominal techniques in the standard distribution. Probably, the only known
work on nominal techniques in Coq is [ABW07]. This work is mostly focused
on the case of simply typed lambda calculus and does not cover generalised
name abstraction.

We have developed an implementation of notions described in Section 3.4
using Coq's module system along with dependent records. Ideally, we would
like to use only dependent records in our implementation, but unfortunately,
�nite sets from the Coq's standard library are implemented as parameterised
modules. We wanted to use the standard library in our development as much
as possible to avoid extra e�orts spent on implementing standard functionality.

We started with the de�nition of atoms. Since the de�nition of atoms in-
volves �nite sets, and since the nominal techniques use �nite sets extensively,
we decided to use an MSet implementation of �nite sets from Coq's standard li-
brary. We expose �nite sets through our own module type, which adds required
operations and properties missing in the MSet interface:

• set disjointness relation;

• set extensionality;

• map operation on sets.

We call our module type of �nite sets SetExtT and the implementation of this
module type SetExt.

We de�ne the following module type for atoms:

Module Type Atom.

Declare Module V : SetExtT.

Axiom Atom_inf : forall (X : V.t), {x : V.elt | ∼ V.In x X}.

End Atom.

We use V.t for the type of �nite sets and V.elt for the type of elements.
The Atom_inf axiom says that for any given �nite subset of atoms, one can
always �nd an element, which is not in this �nite subset. We use subset
types to specify that there exists such an element. It is important to use
Type in this de�nition and not Prop, since if we de�ned the Atom_inf as
forall (X : V.t), exists x : V.elt,∼ V.In x X, we would not be able
to use Atom_inf to construct functions that generate fresh atoms. This is due
to limitations on Prop, allowing to eliminate propositions only to Prop again.
In other words, proofs can be used to construct other proofs, but not programs.

We de�ne a parameterised module Nominal that accepts an implementation
of the Atom module type. De�nitions below are contained in the Nominal

module.
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Let us �rst give de�nitions of notions required to de�ne a permutation. We
de�ne predicates is_inj and is_surj, representing injectivity and surjectivity
of a function, respectively, as follows:

Definition is_inj {A B : Type} (f : A → B) : Prop :=

forall (x y : A), f x = f y → x = y.

Definition is_surj {A B : Type} (f : A → B) : Prop :=

forall (y : B), exists (x : A), f x = y.

We then say that a function f is bijective if it is both injective and surjective:

Definition is_biject {A B} (f : A → B) :=

(is_inj f) ∧ (is_surj f).

We de�ne a predicate has_fin_support of a function f as

Definition has_fin_supp f :=

exists S, (forall t, ∼ V.In t S → f t = t).

Finally, we de�ne a �nitely supported permutation using Coq's dependent
records:

Record Perm :=

{ perm : V.elt → V.elt;

is_biject_perm : is_biject perm;

has_fin_supp_perm : has_fin_supp perm}.

That is, to de�ne an inhabitant of Perm, one needs to provide a function and
proofs of two properties: that the function is a bijection, and that is has a
�nite support. We call the projection perm of the Perm record the underlying
function of a permutation.

Notice that since we de�ned properties of the underlying function of a per-
mutation as inhabitants of type Prop, in presence of the proof irrelevance ax-
iom, we can prove that two permutations are equal if their underlying functions
are equal.

As an example, let us de�ne �rst an identity permutation. We take the
identity function id as an underlying permutation function. Proofs of required
properties of permutation are simple, and we use the refine tactic here to
construct the permutation. The refine tactic allows one to provide parts of
the de�nition leaving other parts as �holes� that generate proof obligations.

Definition id_perm : Perm.

refine ({| perm:=id; is_biject_perm := _; has_fin_supp_perm := _ |}).

+ split. auto. refine (fun y ⇒ ex_intro _ y _);reflexivity.

+ exists V.empty;intros;auto.

Defined.

Next, we de�ne the composition of permutations. We use the same ap-
proach here, namely the refine tactic with a partially constructed record,
corresponding to the permutation.

Definition perm_comp (p p' : Perm) : Perm.

refine ({| perm:= (perm p) ◦ (perm p');

is_biject_perm := _;

has_fin_supp_perm := _ |}).
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(* Proofs are omitted *)

Defined.

We omit proofs of obligations generated by refine here. The proof that com-
position is a bijection boils down to facts that injectivity and surjectivity are
preserved by function composition. For the �nite support we choose the union
of supports of the composed permutations. We de�ne the following notation
for the composition of permutations:

Notation "p ◦p p'" := (perm_comp p p') (at level 40).

The transposition function of two atoms follows De�nition 3.4.3:

Definition swap_fn (a b c : V.elt) : V.elt :=

if (V.E.eq_dec a c) then b

else (if (V.E.eq_dec b c) then a

else c).

We prove that the swap_fn function is a bijection and that its �nite support is
the two element set {a, b}. By packing the swap_fn function with these proofs
we de�ne the corresponding instance of Perm.

To de�ne the underlying function of a generalised transposition (De�nition
3.4.4) we use the fold_right function that accumulates elementary swaps by
composing them as functions starting from the identity function:

Definition swap_iter_fn (vs : list (V.elt * V.elt))

: V.elt → V.elt :=

fold_right (fun (e' : (V.elt * V.elt)) (f : V.elt → V.elt) ⇒
let (e1,e2) := e' in f ◦ (swap_fn e1 e2)) id vs.

We prove that this function satis�es properties of �nitary permutations. That
is, swap_iter is bijective and has a �nite support, which is a set of all variables
from the argument list. With these properties at hand we can construct an
inhabitant of the Perm type.

Our implementation also provides the functionality for generation of fresh
names for a given set of atoms. The freshness relation is de�ned as it is de-
scribed in Section 3.4 (De�nitions 3.4.8 and 3.4.9).

Definition fresh a A := V.In a A.

Definition all_fresh (x y : V.t) :=

forall k, (V.In k x ∧ V.In k y).

Infix "#" := fresh (at level 40) : a_scope.

Infix "#" := all_fresh (at level 40) : as_scope.

Delimit Scope a_scope with Atom.

We overload the notation for the freshness relation to use it in both cases: for
a single atom and for a set of atoms.

We start with generating one fresh name along with the proof of freshness.
First, we de�ne a type of functions from the type of �nite sets to the type of
atoms, with the property that when applied to a �nite set, it returns a fresh
atom (with respect to the given set). We use subset types to equip a function
with the property:
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Definition FreshFn a :=

{f : V.t → V.elt | forall x, ((f x) # a)%Atom.

We use explicit scope annotation here to point out which freshness relation we
use.

Now, we can de�ne a function that takes a set of atoms and returns a fresh
atom with the proof of freshness. In order to obtain a fresh atom we use the
fact that the set of atoms is countably in�nite:

Definition fresh_fn : forall a : V.t, FreshFn a :=

fun a ⇒ let H := Atom.Atom_inf a in

exist (fun f : t → elt ⇒ forall x : t, (f x ? a)%Atom)

(fun _ : t ⇒ proj1_sig H)

(fun _ : t ⇒ proj2_sig H).

In this way we abstract the mechanism of fresh atoms generation, since it
will work with any implementations of module type Atom used to instantiate
the Nominal module.

Next, we generalise the fresh_fn to return a set of fresh atoms with the
proof of freshness. Again, we �rst de�ne a subset type that packs together
a �nite set, the property of freshness, and the cardinality of the set of fresh
atoms:

Definition AllFresh a n :=

{ b : V.t | (b ? a) ∧ V.cardinal b = n }.

To generate a set of n fresh atoms (with respect to some �nite set X), we
have to recursively pass the set X with a newly generated atom added to the
set to ensure freshness of all n new atoms. We de�ne a function that generates
a set of n atoms by recursion on n:

Fixpoint get_freshs_internal (X : V.t) (n : nat) : V.t :=

match n with

| O ⇒ empty

| S n' ⇒ let fatom := (proj1_sig (fresh_fn X)) X in

add fatom (get_freshs_internal (add fatom X) n')

end.

By induction on n one can show that these atoms are indeed fresh and the
cardinality of the resulting set is equal to n. Finally, we can de�ne a function
that returns a value of type AllFresh a n for some �nite set a and a natural
number n:

Definition get_freshs (X : V.t) (n : nat) : AllFresh X n :=

exist _ (get_freshs_internal X n)

(conj (get_freshs_internal_all_fresh n X)

(get_freshs_cardinality n X)).

To implement a nominal set we use Coq's module system. That is, we de�ne
a module type of nominal sets, which follows De�nition 3.4.7 and includes such
components as the type of elements, the action of a �nitary permutation on
the elements of this type (along with properties of the action), and the �nite
support.
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Module Type NominalSet.

Import V.

Parameter X : Type.

Parameter action : Perm → X → X.

Notation "r @ x" := (action r x) (at level 80).

Axiom action_id : forall (x : X), (id_perm @ x) = x.

Axiom action_compose : forall (x : X) (r r' : Perm),

(r @ (r' @ x)) = ((r ◦p r') @ x).

Parameter supp : X → V.t.

Axiom supp_spec : forall (r : Perm) (x : X),

(forall (a : elt), In a (supp x) → (perm r) a = a) →
(r @ x) = x.

End NominalSet.

Remark 3.5.4. The module type NominalSet allows for de�ning a support
function supp that returns a �nite support of an element that is not necessarily
the smallest one, meaning that not all the de�nitions of supp will be equivariant
functions. In each instance of NominalSet in our Coq development there is an
obvious way to de�ne a supp function such that it returns a smallest support
of an element. Although, this is not enforced by the de�nition of the nominal
set that we have. One can remedy this by adding an explicit constraint on a
supp function to NominalSet saying that the function must be equivariant.

Our Nominal module includes an implementation of NominalSet for the
type of �nite sets of atoms in the way it is given by De�nition 3.4. This module
also includes additional facts like an action on a singleton set, equivariance of
the union and intersection operation on �nite sets, and equivariance of the set
disjointness relation.

The running example of simpli�ed semantic objects from Section 3.4 is
implemented as a nominal set using the NominalSet signature. Our imple-
mentation includes both de�nitions of α-equivalence: the one using generalised
transpositions and the other with a condition on a permutation. Moreover,
we have developed a proof of equivariance of the elaboration relation in the
simpli�ed setting (Figure 3.13).

We have de�ned a nominal set of full semantic objects. One interesting as-
pect to point out is that the action and the support, being de�ned as �xpoints,
were accepted by Coq, despite the fact that they call map and fold_right

functions for the case of module environments MEnv and module type environ-
ments MTEnv. We provide one example of the permutation action de�nition for
semantic objects:

Fixpoint action (p : Perm) (E : X) :=

match E with

| EnvCtr te ve me mte ⇒
EnvCtr (PermPlainEnv.action p te)

(PermPlainEnv.action p ve)
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(action_me p me) (action_mte p mte)

end

with action_me p me :=

match me with

| MEnvCtr {| v_size := nn; keys := ks; vals := vs |} ⇒
MEnvCtr {| v_size := nn; keys := ks;

vals := (map (action_mod p) vs) |}

end

with action_mte (p : Perm) mte:=

match mte with

| MTEnvCtr {| v_size := nn; keys := ks; vals := vs |} ⇒
MTEnvCtr {| v_size := nn; keys := ks;

vals := (map (action_mty p) vs) |}

end

with action_mod p (md : Mod) : Mod :=

match md with

| NonParamMod e ⇒ NonParamMod (action p e)

| Ftor ts e mty ⇒ Ftor (PFin.action p ts)

(action p e)

(action_mty p mty)

end

with action_mty p (mty : MTy) : MTy :=

match mty with

| MSigma ts m ⇒ MSigma (PFin.action p ts) (action_mod p m)

end.

The de�nition above uses previously constructed nominal sets for ��at� envi-
ronments PermPlainEnv, �nite sets PFin, and the map function on vectors to
apply actions action_mod and action_mty to all values in the corresponding
environments.

The implementation of NominalSet for the interpretation environments fol-
lows the same pattern, since they have a structure similar to semantic objects.
Some components of the interpretation environments de�nition includes pieces
of semantic objects, such as Env, MTEnv, MTy, and we use respective functions
from the nominal set of semantic objects in the de�nition of the action and the
support for interpretation environments.

We de�ne the α-equivalence relation on semantic objects using a similar
approach as in De�nition 3.62 in Section 3.4, following the mutual inductive
structure of semantic objects.

We use the following notation for the di�erence operation on sets, the action
of a permutation on �nite sets, and the action of a permutation on modules.

Infix ":-:" := Atom.V.diff (at level 40).

Notation "r @ x" := (PFin.action r x) (at level 80) : set_scope.

Notation "r @ x" :=

(PermSemOb.action_mod r x) (at level 80) : env_scope.

Delimit Scope set_scope with S.

Delimit Scope env_scope with E.

The α-equivalence relation is de�ned as follows.
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Inductive ae_env : Env → Env → Prop :=

| ae_env_c : forall (ve' ve : VEnv) (te' te : TEnv)

(me' me : MEnv) (mte' mte : MTEnv),

ve' = ve →
te' = te →
ae_menv me' me →
ae_mte mte' mte →
ae_env (EnvCtr te' ve' me' mte') (EnvCtr te ve me mte)

with

ae_menv : MEnv → MEnv → Prop :=

| ae_menv_c : forall (me' me : VE.VecEnv Mod),

(forall mid (e' e : Mod),

look mid (_to me') = Some e' →
look mid (_to me) = Some e →
ae_mod e' e) →

ae_menv (MEnvCtr me') (MEnvCtr me)

with

ae_mte : MTEnv → MTEnv → Prop :=

| ae_mte_c : forall (mte' mte : VE.VecEnv MTy),

(forall mtid (e' e : MTy),

look mtid (_to mte') = Some e' →
look mtid (_to mte) = Some e →
ae_mty e' e) →

ae_mte (MTEnvCtr mte') (MTEnvCtr mte)

with

ae_mod : Mod → Mod → Prop :=

| ae_mod_np : forall e' e,

ae_env e' e → ae_mod (NonParamMod e') (NonParamMod e)

| ae_mod_ftor : forall t e e' mty mty',

ae_env e e' →
ae_mty mty mty' →
ae_mod (Ftor t e' mty') (Ftor t e mty)

with

ae_mty : MTy → MTy → Prop :=

| ae_mty_c : forall m m',

forall (T T' : Atom.V.t) p,

(forall a, Atom.V.In a ((PermSemOb.supp_mod m) :-: T)

→ (perm p) a = a) →
ae_mod m' (p @ m)%E →
T' = (p @ T)%S →
ae_mty (MSigma T' m') (MSigma T m).

The essential part of this de�nition is the ae_mty case. It allows for relating
module types up to permutations that a�ect only variables distinct form the
set T.

Let us show an example, where explicit α-equivalence is needed in order to
elaborate a module declaration.

Example 3.9: Let F = ∀∅.({},∃{x}.{a 7→ x}) be a functor and E = {f 7→ F}
be an environment containing this functor. We want to elaborate a sequence
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of module declarations

module m1 = f(ε);module m2 = f(ε)

in the environment E into the following module type

∃{x, y}.{m1 7→ {a 7→ x}, {m2 7→ {a 7→ y}}

Two di�erent functor applications give us results that could di�er in names of
bound variables. According to Rule (31) we have to build two derivations (side
conditions are trivially satis�ed in this case). We start with the �rst one.

E ` ε : {} E(f) = ({},∃{x}.{a 7→ x})
E ` f(ε) : ∃{x}.{a 7→ x}

E `module m1 = f(ε) : ∃{x}.{m1 7→ {a 7→ x}}

The derivation for the second declaration in the sequence is not very di�erent.
The key observation here is that we can only derive the following:

E + {a 7→ x} `module m2 = f(ε) : ∃{x}.{m2 7→ {a 7→ x}}

The reason for this is that we are looking up f in the environment E+{a 7→
x}, which gives the same result as in the environment E. Now, we have to
apply α-renaming. Otherwise it would be impossible to satisfy the condition
T1 ∩ (tvs(E) ∪ T2) = ∅ in (31). That is, we have to rename x in the second
derivation.

The possibility of α-renaming as illustrated in Example 3.9 is usually im-
plicit on paper, but in the Coq formalisation, we have to include it explicitly
in the rule. Rule (31) becomes the following.

E ` mdec1 : ∃T1.E1 E + E1 ` mdec2 : ∃T2.E2

∃T1.E1 =α ∃T ′1.E′1 ∃T2.E2 =α ∃T ′2.E′2
T ′1#T ′2 T ′1#tvs(E)

E ` mdec1 mdec2 : ∃(T ′1 ∪ T ′2).(E′1 + E′2)
(63)

Notice, that we also express the side condition on variable sets disjointness
using the freshness relation. Re�ecting these changes to our implementation
allows us to build a derivation for Example 3.9.

Remark 3.5.5. We have formalised the proof of Theorem 3.3.1 in a simpli�ed
setting, by taking sets of variables in binding positions to be empty. For se-
quencing rules (rules (31) and (19)), addition of α-equivalence is not required
for the proof of Theorem 3.3.1, since we assume elaborate modules. However,
to build a derivation for static interpretation we must be able to α-rename sets
of variables N and N ′ in Rule (56) appropriately. In order to achieve this, we
can add additional premises allowing for α-rename such as those in Rule (63).
The same applies to Lemma 3.3.8 (see Rule (39)).

Currently, the proof of Theorem 3.3.1 ignores issues related to α-conversion.
However, we have an implementation of the rules with explicit α-equivalence
demonstrating Example 3.9; these changes are not yet incorporated into the
proof of Theorem 3.3.1.
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3.5.4 Proof of Normalisation of Static Interpretation

The proof of static interpretation normalisation is carried out as it is described
in Section 3.3.10. The logical relation is implemented as a �xpoint rather than
as an inductive relation. The reason for this representation is essential. If
the relation was de�ned as an inductive predicate, the de�nition would not
pass the strict positivity constraint for inductive de�nitions in Coq. From the
de�nition of our logical relation, it is straightforward to establish that the re-
lation is well-formed because it is decreasing structurally in its left argument.
For this reason, it can be expressed as a �xpoint de�nition, using also Coq's
anonymous �x-construct, corresponding to the nested structure of the semantic
objects. Unfortunately, we cannot keep our environment representation com-
pletely abstract, since we de�ne the logical relation recursively on the structure
of environments. Restrictions on �xpoint de�nitions in Coq require us to use
a nested �xpoint on underlying structures in the de�nition of environments.
Again, we use a pair-of-vectors view to de�ne a corresponding nested �xpoint
in the de�nition of the consistency relation of (Figure 3.12).

Fixpoint consistent_IEnv (E:Env) (IE:IEnv) : Prop :=

match E, IE with

EnvCtr TE VE ME MTE, IEnvCtr TE' IVE IME MTE' ⇒
TE = TE'

∧ consistent_IVEnv VE IVE

∧ consistent_IMEnv ME IME

∧ MTE = MTE'

end

with consistent_IMEnv (ME:MEnv) (IME:IMEnv) : Prop :=

match ME, IME with

MEnvCtr me, IMEnvCtr ime ⇒
dom (SemObjects.VE._to me) = dom (SemObjects.VE._to ime) ∧
match me,ime with

VecEnv.mkVecEnv _ nn (exist _ ks _) vs,

VecEnv.mkVecEnv _ nn' (exist _ ks' _) vs' ⇒
(fix con_step {n n'} (l : Vec Mod n) (ll : Vec IMod n')

: Prop :=

match l,ll with

| [],[] ⇒ True

| m :: tl, im :: tl' ⇒
con_step tl tl' ∧ consistent_IMod m im

| _,_ ⇒ False

end) nn nn' vs vs'

end

end

with consistent_IMod (M:Mod) (IM:IMod) : Prop :=

match M with

NonParamMod E ⇒
match IM with

INonParamMod IE ⇒ consistent_IEnv E IE

| IFtor _ _ _ _ _ _ ⇒ False

end

| Ftor T0 E (MSigma T M) ⇒
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exists IE0 mid mexp,

IM = IFtor IE0 T0 E (MSigma T M) mid mexp

∧ forall IE,

consistent_IEnv E IE →
exists N IM c,

(Mexp_int (addIEnvMid mid (INonParamMod IE) IE0) mexp N IM c

∧ consistent_IMod M IM)

end.

There are several design decisions that we want to emphasise. Instead of forc-
ing two vectors to be of the same length in the consistent_IMEnv function, we
just return False in case vectors are not aligned. This de�nition also makes use
of a concrete representation of module type environments as a pair-of-vectors.
We would not be able to use any abstract representation of environments (like
a type constructor exposed through the module type) in the de�nition. The
reason for that is that we would have to use a recursor provided by the ab-
stract representation to de�ne the inner �xpoint and Coq would not accept the
de�nition as terminating.

Remark 3.5.6. Instead of the inner �xpoint con_step we would like to use a
separately de�ned function stating that some predicate (P : A → B → Prop)

holds for two vectors componentwise. The function is de�ned as follows:

Fixpoint Forall2_fix {A B} (P : A → B → Prop) (n n' : nat)

(l : Vec A n) (ll : Vec B n') : Prop :=

match l,ll with

| [],[] ⇒ True

| m :: tl, im :: tl' ⇒
Forall2_fix P _ _ tl tl' ∧ P m im

| _,_ ⇒ False

end.

Unfortunately, this does not work for our de�nition. Probably, Coq does not
unfold Forall2_fix here to see that the argument is decreasing. Although,
sometimes Coq is able to do some unfoldings, when checking a de�nition for
termination (see de�nition of ntsize in [Chl13, Section 2.8] and the de�nition
of action in Section 3.5.3).

Although we cannot use Forall2_fix directly in the de�nition of the con-
sistency relation, we can prove that the nested �xpoint con_step corresponds
to Forall2_fix. This way we can use properties of Forall2_fix in the proofs
related to the consistency relation. Particularly, we are interested in convert-
ing this �intensional� representation to the extensional one that relates two
environments using environment membership:

Definition EnvRel {A B} (P : A → B → Prop)

(E : En.t A) (E' : En.t B) : Prop :=

(forall k, In _ k E ↔ In _ k E')

∧ (forall k v v', look k E = Some v →
look k E' = Some v' →
P v v').
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In most proofs we use properties of environments, which are stated in terms
of look, and it is very unwieldy to use Forall2_fix in such proofs, since in
this case proofs have to be carried out by induction on the structure of the
underlying vector environment.

Putting it all together, we de�ne equations allowing us to fold the nested
�xpoint in the de�nition of the consistency relation:

Lemma Forall2_fix_fold_unfold {A B} (P : A → B → Prop) :

Forall2_fix P =

(fix ff {n n'} (l : Vec A n) (ll : Vec B n') : Prop :=

match l,ll with

| [],[] ⇒ True

| v :: tl, v' :: tl' ⇒
ff tl tl' ∧ P v v'

| _,_ ⇒ False

end).

Lemma ForallEnv2_fold_unfold {A B} (P : A → B → Prop) ve ve' :

ForallEnv2_fix P ve ve'=

match ve,ve' with

VecEnv.mkVecEnv _ n (exist _ ks _) vs,

VecEnv.mkVecEnv _ n' (exist _ ks' _) vs' ⇒
Forall2_fix P n n' vs vs'

end.

We also provide a logical equivalence between Forall2_fix and EnvRel:

Lemma ForallEnv2_fix_EnvRel_iff (A B : Type)

(P : A → B → Prop)

(ve : VecEnv A) (ve' : VecEnv B)

: (dom ve = dom ve' ∧ ForallEnv2_fix P ve ve') ↔ EnvRel P ve ve'.

In proofs involving the consistency relation we use the following pattern:

• rewrite using fold/unfold lemmas;

• rewrite by ForallEnv2_fix_EnvRel_iff

In this way we bridge the gap between the �intensional� recursive de�nition
and the �extensional� de�nition, allowing for more convenient reasoning.

We have kept the Coq development close to the representation in this chap-
ter. However, the �ltering relation in Figure 3.10 does not de�ne a �ltering
algorithm directly, but serves as a speci�cation for it. In the proof of nor-
malisation of static interpretation, we have to show the existence of a �ltered
environment. Due to the limitations of Coq's �xpoint constructs, we have de-
�ned a �ltering algorithm as an inductively de�ned relation. We consider it
future work to investigate the use of general recursion in Coq for �ltering, which
would be useful for applying code extraction to obtain a certi�ed static inter-
pretation implementation. We believe it is a reasonable approach to separate
the relational �declarative� de�nitions from de�nitions that compute for code
extraction. One can then establish a correspondence between the relational
and functional representations to show soundness of the implementation.
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3.6 Related Work

The concept of static interpretation of modules is not new and has been applied
earlier in the context of the MLKit Standard ML compiler [Els99]. In the
present work we focus on the formalisation of a higher-order module language
in the Coq proof assistant in the style of [Els99]. For that reason, as related
work we mention mostly alternative approaches at providing mechanised meta-
theories for module languages.

The work on compilation of higher-order modules into Fω, the higher-order
polymorphic lambda calculus [RRD10], comes with a Coq implementation of
the work. Compared to our work, which eliminates all module language con-
structs at compile time, [RRD10] make no distinction between core language
and module language constructs in the target code. Moreover, the style of
formalisation is di�erent from our Coq development since we use a more direct
encoding of the module language semantics in term of semantic objects.

Earlier works include the work on using Twelf to provide a mechanised
meta-theory for Standard ML [LCH07], based on Harper-Stone semantics of
Standard ML [HS00]. Compared to our work, however, this approach also does
not address the problem of eliminating modules at compile time.

Another body of work related to mechanising the meta-theory of ML is the
work on CakeML [TMK+16], which, however, supports only non-parameterised
modules.

The category of works related to our proof techniques and the approach to
the formalisation includes works on reasoning with isomorphic representations
of abstract data types in the context of homotopy type theory [Dan12, Dij13].
Nominal techniques are implemented in the Nominal Isabelle package [UT05,
UK11] and to a limited extend in Coq (mostly focusing on simply-typed lambda
calculus) [ABW07].

3.7 Conclusion and Future Work

We have developed a formalisation in Coq of a higher-order module system
along with the static interpretation with the guarantee of termination in the
style of [Els99]. Our implementation is one of the �rst attempts to formalise
a module system in this style in the Coq proof assistant. In the course of the
implementation we have developed the following techniques.

• Extension of the standard library implementation of sets and environ-
ments (�nite maps) with extensionality property.

• Isomorphic representations of environments (�nite maps) to overcome
the issue with the conservative strict positivity check in Coq. The tech-
nique developed allowed us to implement semantic objects in Coq with
almost no proof obligation overhead despite the fact of using di�erent
environment representations.

• Formalisation of nominal sets and applications of generalised nominal
techniques allowing to work with sets of variables in binding positions.
This is the �rst implementation in Coq dealing with generalised binders.
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• The normalisation proof of the static interpretation using the Tait's
method of logical relations [Tai67] in the setting of higher-order mod-
ules.

The current version of our Coq development is about 6.5k lines of code, ex-
cluding comments and blank lines. It includes de�nitions from Section 3.3, the
proof of Theorem 3.3.1, the module implementing nominal techniques (with
examples in the simpli�ed setting discussed in Section 3.4), the module im-
plementing a pair-of-vectors representation of environments, and the proof of
strong normalisation for the simply-typed lambda calculus.

Although our implementation makes some simplifying assumptions, we be-
lieve it is can be extended to a full setting with no fundamental limitations.
Particularly, the nominal techniques gives a uniform structuring principle for
dealing with binders.

Moreover, our Coq implementation and the formal speci�cation given in
Section 3.3 has been developed hand-in-hand with the Haskell implementa-
tion integrated with the Futhark compiler, serving as a guiding line for the
development. Using semantic objects allows for the structure of the Haskell
implementation to be in a close correspondence with our Coq implementation.

As future work, we would like to extend our implementation of nominal
sets with more features and eventually expose it as a library. Regarding the
implementation of nominal techniques, we would like to note that a solution
making use of type classes instead of modules to structure the library would
be bene�cial. Ideally, such an implementation would require �nite sets to be
implemented using type classes as well, which is not the case in the standard
library of Coq, where they are implemented using modules.4 We believe that
such an implementation would allow for better proof automation, especially for
proving properties such as equivariance.

Another direction of extension of our development in Coq would be an
implementation of algorithms corresponding to the relational speci�cations of
elaboration, �ltering, and eventually, static interpretation. Having such imple-
mentations, one could use Coq's code extraction mechanism to obtain certi�ed
code in one of the target languages, which could be used as part of a compiler
for the Futhark programming language.

4An experimental standalone implementation that uses Coq's type classes to implement
nominal sets has been developed by the author, and it is available online: https://github.
com/annenkov/stlcnorm. This implementation, however, still uses the module-based �nite
sets implementation from the standard library.

https://github.com/annenkov/stlcnorm
https://github.com/annenkov/stlcnorm


Chapter 4

Formalising Two-Level Type

Theory

4.1 Introduction

Homotopy Type Theory (HoTT) is a variant of Martin-Löf type theory that
pays particular attention to the equality (or identity) type. The equality type
in Martin-Löf type theory is de�ned as an inductive family generated by the
single constructor refl, called re�exivity. For any two inhabitants a and b of
some type A, one can ask if a and b are equal by forming the equality type
a = b. Since a = b is also a type, one can ask if two proofs of equality are
equal, i.e. for p, q : a = b, one can form h : p = q, and so on. The eliminator of
the equality (or identity) types is usually called J (see rule elim-= in Section
4.3). As it was observed by Hofmann and Streicher in [HS96], it is not possible
from J to show that two proofs of equality are equal.

Therefore, there are two options: one could add axiom K (or equivalently,
Uniqueness of Identity Proofs axiom), making any two proofs of equality equal,
i.e.

Γ ` a1, a2 : A Γ ` p, q : a1 = a2

Γ ` K(p, q) : p = q
uip

The other option is to allow for di�erent ways to identify types by introduc-
ing the univalence axiom [Uni13]. The univalence axiom says that two types
are considered equal when they are equivalent, re�ecting the informal principle
that is usually used in mathematics. That is, for any two types A and B

Univalence : (A = B) ' (A ' B)

More precisely, is says that a function idtoequiv(A = B)→ (A ' B), which can
be de�ned by induction on equality, is an equivalence. In other words there is
another function, ua : (A ' B)→ (A = B) that goes in the opposite direction
and allows one to get proofs of equality from proofs of equivalence (see more
on de�nition of equivalences in [Uni13, Chapter 4]).

Types in HoTT are weak ∞-groupoids, which allows for capturing impor-
tant notions from homotopy theory and for developing it synthetically in type
theory.

Homotopy type theory is implemented in a number of proof assistants al-
lowing for development of machine-checkable proofs in such areas as homotopy

98
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theory, category theory and other areas of mathematics. From the functional
programming point of view, it also allows for solving abstraction problems in
dependently typed programming, since equivalent types can be identi�ed and
changing between equivalent representation does not require additional e�orts.

If we restrict ourselves to just sets (types, for which two proofs of equality of
two elements are equal, also called hSets), the notion of equivalence will be just
an isomorphism between types. In this setting, one can bene�t from the fact
that isomorphic types become equal in the presence of the univalence axiom.
That means that all the proofs of properties of some type A are immediately
transferred to types isomorphic to A, since we can always substitute equals for
equals. This approach allows for better abstraction preservation in proof and
program development. Particularly, one could have an abstract representation
of some structure, for example environments (or �nite maps), as we saw in
Chapter 3. One can de�ne several isomorphic representations satisfying the
abstract speci�cation and move between these representations using the fact
that isomorphic types are considered equal. These ideas are considered in
[Dan12, Dij13].

In our development of the Futhark module system formalisation described
in Chapter 3 we could have used univalence to switch between the two en-
vironment representations easily, while keeping the speci�cation completely
abstract. Such a possibility would allow us to take advantage of computational
behaviours of concrete representations, since it is impossible to compute with
the speci�cation given by abstract type or opaque module.

Another interesting feature of HoTT are higher inductive types (HITs).
For instance, HITs allow for avoiding so called �setoid hell� by adding equality
constructors to inductive de�nitions. A setoid is a set equipped with an equiv-
alence relation. Whenever we want to compare two elements of setoid we have
to use this custom equivalence relation instead of usual equality. Because of
that all the operations on setoids have to respect its equivalence, which require
a lot of proofs. Using HITs (to be precise, a specialised version called quotient
inductive types, or QITs), one can use the usual propositional equality again
when comparing two elements of a setoid.

Homotopy type theory is an active developing �eld with a number of open
questions. Particularly, not being able to talk about strict equality in HoTT
sometimes make certain constructions problematic. We will address this prob-
lem in the following sections.

The rest of the chapter is structured as follows. In Section 4.2 we discuss
motivations for two-level type theory (2LTT). In Section 4.3 we provide a for-
mal speci�cation of 2LTT and discus di�erences with homotopy type system
(HTS). Section 4.4 describes an internalisation of some results on inverse di-
agrams in 2LTT. The implementation of 2LTT in the Lean proof assistant is
discussed in Section 4.5, which outlines the overall idea of the approach to the
implementation of 2LTT in a proof assistant and then demonstrates features
of our Lean development including the results from Section 4.4. Section 4.5
represents the main contribution of the author to the development of two-level
type theory.
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4.2 Motivation

The motivation for two-level type theory is twofold.
Many results of homotopy type theory are completely internal to HoTT and

can be formalised directly in a proof assistant, and a lot of work has been done
using Agda, Coq, and Lean. Some other results are only partially internal to
HoTT. One example is the constructions of n-restricted semi-simplicial types
which we can do only after �xing the number n externally (i.e. we have to
decide which n we use before we start writing it down in a proof assistant).
The reason, why such constructions are problematic to write in HoTT is that
the usual de�nition of n-restricted semi-simplicial type as a strict functor from
the category of �nite non-empty ordinals and strictly monotone maps to the
category of types: S : ∆op

+ → U require functor laws to hold strictly (the functor
laws correspond to semi-simplicial identities). In HoTT it would require in�nite
tower of coherencies ensuring that certain proofs of equality are equal, proofs
of equality of proofs of equality are equal, and so on.

One can try to avoid writing equalities corresponding to the semi-simplicial
identities by using an equivalent representation of n-restricted semi-simplicial
types as a nested Σ-type with face maps being projections. For example, if
we �x n = 3, we can write the following de�nition (we use Lean [dMKA+15]
notation here):

definition SST3 :=

Σ (X0 : Type)

(X1 : X0 → X0 → Type),

Π (x0 x1 x2 : X0), X1 x0 x1 → X1 x1 x2 → X1 x0 x1 → Type

In the de�nition for SST3 we think of X0 as points, X1 as lines, and Π (x0 x1 x

2 : X0), X1 x0 x1 → X1 x1 x2 → X1 x0 x1 → Type as triangles. To form
a triangle, we need for the end of one side and the beginning of another side to
be the same point. Instead of using semi-simplicial identities here (formulated
using equalities), we just use the same point again for the point that should
match the given point. For example X1 x0 x1 is the line that starts at x0 and
ends at x1, and X1 x1 x2 starts at x1 and ends at x2.

Although it is possible to write such a de�nition for any �xed n, it seems
to be not possible to generalise it for an arbitrary n internally in HoTT. For
the detailed explanation see the introduction section in [ACK16].

Another example of this kind is the work by Shulman on inverse dia-
grams [Shu15], for which we can do constructions in type theory once we �x a
(�nite) inverse category in the meta-theory. One of the examples of the inverse
diagrams is n-restricted semi-simplicial types described above.

In many situations, one would like such constructions to be completely
internal (using a variable n : N or an inverse category expressed internally)
and formalisable in a proof assistant, but unfortunately, it is either unknown
how this is doable or it is known to be impossible. Two-level type theory gives
a way to completely formalise such results. This is the aspect that we explore
in the paper [ACK17].

A second motivation of two-level type theory is that it allows for extending
homotopy type theory in a �controlled� way. It gives a framework that makes it
easy to write down enhancements of the theory, where one can relatively easily
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check whether these assumptions hold in some models (models are explored
in [Cap16]).

In the present work we are focusing on the �rst motivation, namely on
internalisation of results that can only be partially internalised in HoTT. We
also will demonstrate how one can implement two-level type theory in a proof
assistant and discuss our experience with developing a formalisation in such an
implementation.

4.3 Two-Level Type Theory

To address the issues arising from the lack of strict equality, presented in Section
4.2, we introduce two level type theory, which consists of two fragments: a strict
fragment (a form of MLTTwith UIP) and a �brant fragment (essentially HoTT).
The �brant fragment of our type theory has all the basic types and type formers
found in HoTT[Uni13, Appendix A.2]:

• Π, the type former of dependent functions;

• Σ, the type former of dependent pairs;

• +, the coproduct type former;

• 1, the unit type;

• 0, the empty type;

• N, the �brant type of natural numbers;

• =, the equality type (in the sense of HoTT);

• a hierarchy U0,U1, . . . of universes;

• possibly inductive and higher inductive types.

Furthermore, we have:

• +s, the strict coproduct;

• 0s, the strict empty pretype;

• Ns, the strict pretype of natural numbers;

• s
=, the strict equality;

• a hierarchy U s
0,U s

1, . . . of strict universes;

• possibly inductive types and quotient types.

We refer to the elements of Ui as �brant types, while the elements of U s
i are

pretypes. The intuition is that �brant types are the usual types that are found
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in HoTT, whereas pretypes are what one gets if one is allowed to talk about
strict equality internally. The rules of

s
= :

Γ ` A : U s
i Γ ` a, b : A

Γ ` a s
= b : U s

i

form-
s
=

Γ ` a : A

Γ ` refls
a : a

s
= a

intro-
s
=

Γ ` a : A Γ(b : A)(p : a
s
= b) ` P : U s

i Γ ` d : P [a, refls
a]

Γ(b : a)(p : a
s
= b) ` J s

P (d) : P
elim-

s
=,

together with the judgmental computation rule:

J s
P (d)[a, refls

a] ≡ d.

Rules for �brant equality look very similar to those for strict equality:

Γ ` A : Ui Γ ` a1, a2 : A

Γ ` a1 = a2 : Ui
form-=

Γ ` a : A

Γ ` refla : a = a
intro-=

Γ ` a : A Γ(b : A)(p : a = b) ` P : Ui Γ ` d : P [a, refla]

Γ(b : a)(p : a = b) ` JP (d) : P
elim-=

It is important to note, that the rules form-=, intro-=, and elim-= only
involve �brant types. For example, we cannot apply the equality type former
to two elements of U s

i . We assume that universes Ui are univalent, that is for
any two types X,Y : Ui, the map (X = Y )→ (X ' Y ) is an equivalence.

Γ ` A : Ui
Γ ` A : U s

i

fib-pre
Γ ` A : Ui Γ.A ` B : Ui

Γ ` ΠAB : Ui
pi-fib

Γ ` A : Ui Γ.A ` B : Ui
Γ ` ΣAB : Ui

sigma-fib

By the rule fib-pre, the type a1 = a2 is also a pretype, but it is di�erent
from the pretype a1

s
= a2.

For pretypes A,B : U s
i , we can form the pretype of strict isomorphisms,

written A 's B (unlike in HoTT, it is enough to have maps in both direc-
tions such that both compositions are pointwise strictly equal to the identity).
However, we do not assume that U s

i is univalent. Instead, we add rules cor-
responding to the principle of uniqueness of identity proofs uip and function
extensionality funext as follows:

Γ ` a1, a2 : A Γ ` p, q : a1
s
= a2

Γ ` Ks(p, q) : p
s
= q

uip

Γ ` f, g : Πa:AB(a) Γ(a : A) ` p(a) : f(a)
s
= g(a)

Γ ` funext(p) : f
s
= g

funext

That is, strict equality serves as an internalised version of judgmental equal-
ity. These ideas of di�erentiating pretypes and �brant types are inspired by
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Voevodsky's Homotopy Type System (HTS) [Voe13]. Although, there are some
important di�erences. In particular, two-level type theory does not assume
the re�ection rule for strict equality. Instead, we only require that it satis�es
UIP. Another important di�erence is that HTS assumes that 0, N, and + from
the �brant fragment eliminate to arbitrary types. We do not assume that in
two-level type theory, since all presented results do not depend on these as-
sumptions. Moreover, we leave a possibility to add such assumptions, which
makes two-level type theory a �framework� allowing to explore di�erent vari-
ations of resulting type theory. For example, if we allowed for coercion from
strict natural numbers Ns to �brant natural numbers N then from the con-
struction of type of the n-restricted semi-simplicial types, one would get a type
family N→ U in the �brant fragment.

4.4 Applications

One way to look at two-level type theory is to start with ordinary type theory,
which correspond to the �brant fragment, and then add parts of its meta-theory
on top of it as an additional type-theoretic layer. This additional layer cor-
responds to the strict fragment, which can be used to capture meta-theoretic
reasoning. This internalisation leads to a uniform treatment of results, which
traditionally requires mixing external and internal reasoning. We show appli-
cability of two-level type theory to these kinds of problems internalising some
results on Reedy �brant diagrams [Shu15]. Particularly, we de�ne the notion
of Reedy �bration, and show that Reedy �brant diagrams I → U have limits in
U , where I is a �nite inverse category, and U is a universe of �brant types. Let
us �rst de�ne notions required to formulate the theorem about Reedy �brant
diagrams, which is one of the central results of our Lean formalisation (we will
discuss implementation details in Section 4.7). We closely follow the style of
de�nitions given in [ACK17].

It is often not necessary to know that a pretype A : U s is a �brant type.
Instead, it is usually su�cient to have a �brant type B : U and a strict isomor-
phism A 's B. If this is the case, we say that A is essentially �brant. Clearly,
every �brant type is also an essentially �brant pretype.

Recall that, in usual type-theoretic terminology, Finn is the �nite type with
n elements. In two-level type theory, for a strict natural number n : Ns, we
have the �nite type Fins

n. If we have inductive types in the strict fragment, we
can de�ne it as usual, but we do not need to: we can simply de�ne it as the
pretype of strict natural numbers smaller than n. Similarly, we have a �brant
type Finn (note that a strict natural number can always be seen as a �brant
natural number, but not vice versa).

We say that a pretype I is �nite if we have a number n : Ns and a strict
isomorphism I 's Fins

n.
Similar to essential �brancy, we have the following de�nition:

De�nition 4.4.1 (�bration; see [ACK17, De�nition 4]). Let p : E → B be a
function (with E,B : U s). We say that p is a �bration for all b : B, the �bre of

p over b, i.e. the pretype Σ (e : E) . p(e)
s
= b, is essentially �brant.

We de�ne the notion of a category in the strict fragment with categorical
laws formulated using strict equality.
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Figure 4.1: Coslice category.

De�nition 4.4.2 (category; see [ACK17, De�nition 7]). A strict category (or
simply category) C is given by

• a pretype |C| : U s of objects;

• for all pairs x, y : |C|, a pretype C(x, y) : U s of arrows or morphisms;

• an identity arrow id : C(x, x) for every object x;

• and a composition function ◦ : C(y, z)→ C(x, y)→ C(x, z) for all objects
x, y, z;

• such that the usual categorical laws holds, that is, we have f ◦ id
s
= f and

id ◦ f s
= f , as well as h ◦ (g ◦ f)

s
= (h ◦ g) ◦ f).

We say that a strict category is �brant if the pretype of objects and the
family of morphisms are �brant.

The de�nition of the strict category corresponds to that of a precategory
from [Uni13, Chapter 9].

In the following, we will usually drop the attribute �strict� and simply talk
about categories. A canonical example of a category is the category of pretypes,
whose objects are the pretypes in a given universe U s, and morphisms are
functions. By slight abuse of notation, we write U s for this category. The
usual theory of categories can be reproduced in the context of our categories
(at least as long as we stay constructive). In particular, one can de�ne the
notions of functor, natural transformation, limits, adjunctions in the obvious
way, or show that limits (if they exist) are unique up to isomorphism, and so
on.

In the context of Reedy �brations, an important categorical construction is
the following one:

De�nition 4.4.3 (reduced coslice; see [ACK17, De�nition 9]). Given a cate-
gory C and an object c : C, the reduced coslice c � C is the full subcategory of
non-identity arrows in the coslice category c/C. A concrete de�nition is the fol-
lowing. The objects of c�C are triples of an y : |C|, a morphism f : C(x, y), and

a proof ¬
(
p∗(f)

s
= id

)
, for all p : x

s
= y, where p∗ denotes the transport func-

tion C(x, y) → C(y, y). Morphisms between (a, f, s) and (b, g, s′) are elements

u : C(a, b) such that u ◦ f s
= g in C (see Figure 4.1).

Notice that we have a �forgetful functor� forget : c � C → C, given by the
�rst projection on objects as well as on morphisms.



CHAPTER 4. FORMALISING TWO-LEVEL TYPE THEORY 105

Consider the category (Ns)op which has n : Ns as objects, and

(Ns)op(n,m) :≡ n ≥s m

(the function >s: Ns → Ns → Props is de�ned in the canonical way). Then, we
de�ne:

De�nition 4.4.4 (inverse category; see [ACK17, De�nition 10]). We say that
a category C is an inverse category if there is a functor ϕ : C → (Ns)op which

re�ects identities; i.e. if we have f : C(x, y) and ϕx
s
= ϕy, then we also have

p : x
s
= y and p∗(f)

s
= idy. We call ϕ the rank functor, and say that an object

i : |C| has rank ϕ(i).

Notice that re�ecting identities usually means that f is an identity whenever
ϕ(f) is. In (Ns)op, a morphism is an identity if and only if its domain and

codomain coincide. Notice that the expression f
s
= idy does not type-check,

and to remedy this, we have to transport f along a strict equality between x
and y, using the notation p∗(f) from [Uni13].

Remark 4.4.1. There are several equivalent ways to de�ne inverse categories.
They are often characterised as dual to direct categories, which in turn can
be described as not having an in�nite sequence of non-identity arrows as in
→→→ · · · . Another way to formulate this following [Shu15] is �An inverse
category is a category such that the relation `x receives a nonidentity arrow
from y' on its objects is well-founded.� This formulation allows one to use well-
founded induction to de�ne diagrams on inverse categories. One important
example of an inverse category is ∆op

+ , a category of �nite non-empty ordinals
and strictly monotone maps. That is, a functor S : ∆op

+ → U is an inverse
diagram on ∆op

+ .

4.4.1 Reedy Fibrant Limits

Recall that our �rst example of a category was a strict universe U s of pretypes
and functions. Much of what is known about the category of sets in traditional
category theory holds for U s. For example, the following result translates rather
directly:

Lemma 4.4.1 (see [ACK17, Lemma 11]). The category U s has all small limits,
where small means that the corresponding diagram has an index category whose
objects and morphisms are pretypes in U s.

Proof. Let C be a category with |C| : U s and C(x, y) : U s (for all x, y). Let X :
C → U s be a functor. We de�ne L to be the pretype of natural transformations
1 → X, where 1 : C → U s is the constant functor on 1. Clearly, L : U s, and a
routine veri�cation shows that L satis�es the universal property of the limit of
X. �

Unfortunately, the category U of �brant types is not as well-behaved. Even
pullbacks of �brant types are not �brant in general (but see Lemma 4.4.2).
Since U is a subcategory of U s, a functor X : C → U can always be regarded
as a functor C → U s, and we always have a limit in U s. If this limit happens
to be essentially �brant, we say that X has a �brant limit. Since U is a full
subcategory of U s, this limit will then be a limit of the original diagram C → U .
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Lemma 4.4.2 (see [ACK17, Lemma 12]). The pullback of a �bration E → B
along any function f : A→ B is a �bration.

Proof. We can assume that E is of the form Σ (b : B) . C(b) and p is the �rst
projection. Clearly, the �rst projection of Σ (a : A) . C(f(a)) satis�es the uni-
versal property of the pullback. �

Lemma 4.4.2 makes it possible to construct �brant limits of certain �well-
behaved� functors from inverse categories.

In the subsequent de�nitions we always assume that C is an inverse category.

De�nition 4.4.5 (matching object; see [ACK17, De�nition 13] and [Shu15,
Chapter. 11]). Let X : C → U s be a functor. For any z : C, we de�ne the

matching object MX
z to be the limit of the composition z � C forget−−−→ C X−→ U s.

De�nition 4.4.6 (Reedy �brations; see [ACK17, De�nition 14] and [Shu15,
Def. 11.3]). Let X,Y : C → U s be two diagrams (functors). Further, assume
p : X → Y is a natural transformation. We say that p is a Reedy �bration if,
for all z : C, the canonical map

Xz →MX
z ×MY

z
Yz,

induced by the universal property of the pullback, is a �bration.
A diagram X is said to be Reedy �brant if the canonical map X → 1 is a

Reedy �bration, where 1 is of course the diagram that is constantly the unit
type.

The following lemma will be useful for choosing an element with the maxi-
mal rank from an inverse category with non-empty �nite type of objects.

Lemma 4.4.3. For some inverse category C with non-empty �nite type of
objects, i.e. for any n : Ns, we have ψ : |C| 's Fins

n+1, and the rank functor
ϕ : C → (Ns)op, we can chose an element z : |C| with the maximal rank, i.e. for
any c : |C|, ϕc ≤ ϕz.

Proof. We want to construct an inhabitant of the following type:

Σ (z : |C|) .Πc:|C|ϕc ≤ ϕz (4.1)

We use

f : |C| → Fins
n+1

g : Fins
n+1 → |C|

l : ∀x, g(f x)
s
= x

r : ∀y, f(g y)
s
= y

for the components of the isomorphism ψ.
We proceed by induction on n.
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Case 1 (|C| 's Fins
1): We take z ≡ g 0s. Thus, we have to show that for any

c : |C| we have ϕc ≤ ϕ(g 0s).

c
s
= {by left inverse l}
s
= g(f c)
s
= {(f c)

s
= 0s, since 0s is the only inhabitant of Fins

1}
s
= g 0s

So, we get ϕ(g 0s) ≤ ϕ(g 0s) as required.

Case 2 (|C| 's Fins
(n′+1)+1): Let us pick some element z′ : |C| (this is possible,

since |C| is �nite, for example, we could take z′ ≡ g 0s, but this proof does
not depend on our choice of an element of Fins

(n′+1)+1, to which we apply the
function g). We call C ′ the category C with the element z′ removed. Also,
we have ψ′ : |C|′ 's Fins

n′+1. We call ϕ′ a function ϕ restricted to |C′|. By
induction hypothesis with ψ′ and ϕ′ we have z′′ : |C′| s.t.

Πc:|C′|ϕ
′
c ≤ ϕ′z′′ (4.2)

We observe that ϕ′c ≡ ϕc and ϕ′z′′ ≡ ϕz′′ , since both c and z′′ are in |C|′. We do
not know how ϕz′ and ϕz′′ are related, but since the order on N is decidable,
we proceed by case analysis on ϕz′ ≤ ϕz′′ .

Subcase 1 ϕz′ ≤ ϕz′′ . We take z ≡ z′′ in (1) We have to show that for any
c : |C|, ϕc ≤ ϕ′′z . By case analysis on decidable equality we again get two cases:

• c s
= z′′. The claim follows from the assumption ϕ′z ≤ ϕ′′z .

• c 6=s z′′. Since C′ is a category without z′′, we know that c : |C′|. We
complete the proof by (2).

Subcase 2 ϕ′z > ϕ′′z . We take z ≡ z′ in (1). We have to show that for any
c : |C|, ϕc ≤ ϕ′z. We again proceed by case analysis on decidable equality.

• c s
= z′. Follows immediately, since ϕ′z ≤ ϕ′z.

• c 6=s z′. Again, we now that c : |C′|, and complete the proof by (2).

�

Remark 4.4.2. Notice that in Lemma 4.4.3 we could not just pick the maximal
element in Fins

(n+1) and get an element in C with maximal rank, since we want
the lemma to be independent of particular isomorphism ψ.

Using the de�nition of Reedy �brations (De�nition 4.4.6), we can make
precise the claim that we can construct �brant limits of certain well-behaved
diagrams. The following theorem is (probably) the most involved result of our
formalisation:

Theorem 4.4.1 (see [ACK17, Theorem 15] and [Shu15, Lemma 11.8]). As-
sume that C is an inverse category with a �nite type of objects |C|. Assume
further that X : C → U s is a Reedy �brant diagram which is pointwise es-
sentially �brant (which means we may assume that it is given as a diagram
C → U).

Then, X has a �brant limit.
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Proof. By induction on the cardinality of |C|. In the case |C| 's Fins
0, the limit

is the unit type.
Otherwise, we have |C| 's Fins

n+1. Let us consider the rank functor

ϕ : C → (Ns)op.

We choose an object z : C such that ϕz is maximal using Lemma 4.4.3 Let
us call C′ the category that we get if we remove z from C; that is, we set
|C′| :≡ Σ (x : |C|) .¬(x

s
= z). Clearly, C′ is still inverse, and we have |C′| 's Fins

n.
Let X : C → U be Reedy �brant. We can write down the limit of X

explicitly as

Σ
(
c : Πy:|C|Xy

)
.Πy,y′:|C|Πf :C(y,y′)Xf(cy)

s
= cy′ . (4.3)

Writing the pretype |C| as a coproduct 1 +s |C|′, we get that the above pretype
is strictly isomorphic to

Σ (cz : Xz) .Σ
(
c : Πy:|C|′Xy

)
.(

Πf :C(z,z)Xf(cz)
s
= cz

)
×(

Πy:|C|′ Πf :C(y,z)Xf(cy)
s
= cz

)
×(

Πy:|C|′ Πf :C(z,y)Xf(cz)
s
= cy

)
×(

Πy,y′:|C|′ Πf :C(y,y′)Xf(cy)
s
= cy′

)
.

(4.4)

Using that z has no incoming non-identity arrows (together with uip), two of
the components of the above type are contractible and can be removed, leaving
us with

Σ (cz : Xz) .Σ
(
c : Πy:|C|′Xy

)
.(

Πy:|C|′ Πf :C(z,y)Xf(cz)
s
= cy

)
×(

Πy,y′:|C|′ Πf :C(y,y′)Xf(cy)
s
= cy′

)
.

(4.5)

Let us write L for the limit of X restricted to C′, and let us further write p
for the canonical map p : L→MX

z . Further, we write q for the mapXz →MX
z .

Then, (4.5) is strictly isomorphic to

Σ (cz : Xz) .Σ (d : L) . p(d)
s
= q(cz). (4.6)

Swapping sigmas in (4.6) gives us

Σ (d : L) .Σ (cz : Xz) . p(d)
s
= q(cz). (4.7)

This is the pullback of the span L
p−→MX

z
q←− Xz:

L×MX
z
Xz

f

��

g // Xz

q

��
L

p // MX
z

(4.8)
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By Reedy �brancy of X, the map q is a �bration. Thus, by Lemma 4.4.2,
the map f : Σ (cz : Xz) .Σ (d : L) . p(d)

s
= q(cz) → L on (4.8) is a �bration.

By the induction hypothesis, L is essentially �brant. This implies that (4.6)
is essentially �brant, as it is the domain of a �bration whose codomain is
essentially �brant. �

4.5 Formalisation in Lean

With a proof assistant that implements our two-level theory, one would thus be
able to mechanise the results of the paper rather directly, or at least similarly
directly as papers with purely internal results can be implemented in current
proof assistants: of course, there is always still some work to do because some
low-level steps are omitted in informal presentations. As we do not have such
a proof assistant at hand, the task is to implement two level type theory in
conventional proof assistants reusing as many features as possible.

An overall idea of an approach to implementation that is suitable for most
existing proof assistants is the following. We work in a type theory with uni-
verses of �strict� types (i.e. where uip holds). Pretypes correspond to the
ordinary types of the proof assistant and (�brant) types are represented as
pretypes �tagged� with the extra property of being �brant. The role of our
strict equality is played by the ordinary propositional equality of the proof as-
sistant (which, thanks to uip, is indeed propositional in the sense of HoTT).
The �brant equality type is postulated together with its elimination rule J . We
further postulate �brancy preservation rules for Π and Σ as they are given in
Section 4.3. The usual computation rule for J is de�ned using strict equality.

The proof assistant Lean [dMKA+15], which we have chosen for our for-
malisation,1 can operate in two di�erent �modes�: one with a built-in uip, and
one which is suitable for HoTT. Our Lean implementation is based on �strict�,
Lean mode. That means that Lean's Type now becomes a pretype in two-level
type theory sense.

Remark 4.5.1 (Notation). Before we start describing our Lean development
we introduce some notation used in the Lean code snippets:

• A → B for the type of functions from A to B

• x −→ y for morphisms (hom �eld in the category structure)

• C ⇒ D for functors from a category C to a category D

• Nat(F,G) for natural transformations from a functor F to a functor G

• p . a for transport of a along the equality p

Fibrant types Fib are implemented using Lean dependent records with two
�elds: a pretype, and the property that it is �brant:

structure Fib : Type := mk ::

(pretype : Type)

(fib : is_fibrant pretype)

1The code is available at https://github.com/annenkov/two-level.

https://github.com/annenkov/two-level
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The is_fibrant property is de�ned using the type class mechanism pro-
vided by the language.

constant is_fibrant_internal : Type → Prop

structure is_fibrant [class] (X : Type) := mk ::

fib_internal : is_fibrant_internal X

We declare the Fib.pretype �eld to be a coercion, allowing to project a
pretype out of Fib. For that purpose, we use the mechanism of attributes.

attribute Fib.pretype [coercion]

Such a declaration implements the fib-pre rule, which says that every �brant
type is also a pretype.

For the second component of the Fib structure, we de�ne the following
attribute:

attribute Fib.fib [instance]

This de�nition makes available for every inhabitant of Fib an instance of the
is_fibrant type class.

The rules that Σ- and Π-types preserve �brancy (rules sigma-fib and
pi-fib) are also postulated and exposed as instances of the is_fibrant type
class:

constant sigma_is_fibrant_internal {X : Type}{Y : X → Type}

: is_fibrant X

→ (Π (x : X), is_fibrant (Y x))

→ is_fibrant_internal (Σ (x : X), Y x)

definition sigma_is_fibrant [instance] {X : Type}{Y : X → Type}

[fibX : is_fibrant X] [fibY : Π (x : X), is_fibrant (Y x)] :

is_fibrant (Σ (x : X), Y x) :=

is_fibrant.mk (sigma_is_fibrant_internal fibX fibY)

The rule for Π-types is implemented in a similar way. In the same way we
postulate that the unit type, equality types and Fib itself are �brant.

The presentation of �brant types using type classes results in a very elegant
implementation of the �brant fragment of the type theory. The class instance
resolution mechanism allows us to leave the property of being �brant implicit
in most cases. We use Fib in de�nitions and let Lean insert coercions auto-
matically in places where a pretype is expected, or where a witness that a type
is �brant is required. We will consider several examples showing how Lean's
class resolution mechanism helps writing de�nitions involving �brant types.

First, we declare some variables, which will be used in our examples:

variables {A : Fib} {B : Fib} {C : Fib} (P : A → Fib)

Now we can use these declarations in any de�nition in the same namespace and
Lean will automatically add them as arguments to de�nitions that use them.2

Another point to note here is that because of the [instance] attribute for the

2The details about namespaces, variables and other Lean features can be found in the
Lean Tutorial https://leanprover.github.io/tutorial/tutorial.pdf

https://leanprover.github.io/tutorial/tutorial.pdf
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Fib.fib �eld, all instances of the is_fibrant type class for declared variables
of type Fib are available for Lean's resolution mechanism.

Our �st example is an equivalence lemma known as associativity of the
product type:

definition prod_assoc : A × (B × C) ' (A × B) × C := sorry

Since in this example we care only about the statement itself, and not about the
proof, we will use the sorry keyword, which allows us to assume a de�nition.
Because we state a �brant equivalence between �brant types in prod_assoc,
both sides of the equivalence must be some �brant types. All we know from
the variable declarations above is that types A, B, and C are �brant. To show
that the product of these types is �brant as well we would have to apply a
special case of the sigma-fib rule (which we call prod_is_fibrant) two times
on each side. Thanks to the class instance resolution mechanism we can leave
this task to Lean. We change some pretty-printing options to be able to see
implicit arguments for the prod_assoc de�nition.

set_option pp.implicit true

set_option pp.notation false

Running the check @prod_assoc command gives us the following result:

prod_assoc :

Π {A} {B} {C},

@fib_equiv (prod A (prod B C)) (prod (prod A B) C)

-- inferred by Lean --

(@prod_is_fibrant A (prod B C) (Fib.fib A) (@prod_is_fibrant

B C (Fib.fib B) (Fib.fib C)))

(@prod_is_fibrant (prod A B) C (@prod_is_fibrant A B (Fib.

fib A) (Fib.fib B)) (Fib.fib C))

----------------------

This example shows nested applications of prod_is_fibrant, which were re-
solved automatically by Lean. The same resolution procedure allows for infer-
ring implicit �brancy conditions using �brancy-preservation rules for di�erent
type formers. In the following example, expressing the universal property of
the product type, rules pi-fib and a special case of sigma-fib are used.

definition prod_universal : (C → A × B) ' (C → A) × (C → B)

:= sorry

We can inspect the inferred implicit arguments again by running the check

@prod_assoc command:

prod_universal :

Π {A} {B} {C},

@fib_equiv (C → prod A B) (prod (C → A) (C → B))

-- inferred by Lean --

(@pi_is_fibrant C (λ a, prod A B) (Fib.fib C)

(λ x, @prod_is_fibrant A B (Fib.fib A) (Fib.fib B)))

(@prod_is_fibrant (C → A) (C → B)

(@pi_is_fibrant C (λ a, A) (Fib.fib C) (λ x, Fib.fib A))

(@pi_is_fibrant C (λ a, B) (Fib.fib C) (λ x, Fib.fib B)))

----------------------
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The following example highlights one of the reasons behind our choice of
Lean for implementing two-level type theory.

variables (Q : A → Type) [Π a, is_fibrant (Q a)]

definition pi_eq (f : Π (a :A), Q a) : f ∼ f := refl _

An experimental implementation in Agda uses a de�nition like the above, and
the example failed to work in Agda. As it became clear later, the example failed
to work because of a small di�erence in the inference of implicit arguments,
That is, changing Π a, is_fibrant (Q a) to Π{a}, is_fibrant (Q a) (in
the corresponding Agda code), would make the example be accepted by Agda
(see also Section 4.8.2). In our Lean development pi_eq successfully type-
checks, and Lean infers the following:

pi_eq : Π {A} Q [_inst_1] f,

@fib_eq (Π a, Q a)

-- inferred by Lean --

(@pi_is_fibrant A Q (Fib.fib A) _inst_1)

----------------------

f f

Where _inst_1 is an automatically generated name for the instance of a type
class corresponding to [Π a, is_fibrant (Q a)] appearing in the variables
declaration.

Remark 4.5.2. It is worth pointing out, however, that in our formalisation
we do not make a distinction between �brant and essentially �brant pretypes,
having instead a single predicate is_fibrant to express this property. That
is, every type which is strictly isomorphic to a �brant type is also considered
�brant by the axiom we postulate in our implementation. This makes the devel-
opment more convenient as long as we use essentially �brant types for most of
the results presented in the current formalisation. For instance, Theorem 4.4.1
and a number of auxiliary lemmas for this theorem involve essentially �brant
types.

4.6 Working in the Fibrant Fragment

To show how to work with the �brant type theory, we have formalised some
simple facts from the HoTT library. Our implementation shows that many
proofs can be reused almost without change, provided that the same notation
is used for basic de�nitions. For instance, we have ported some theorems
about product types with only minor modi�cations. In particular, induction
on �brant equalities works as expected: we annotate the postulated elimination
principle with the [recursor] attribute, and the induction tactic applies this
induction principle automatically.

A point to note is that the computation (or β-) rule for the J eliminator of
the �brant equality type is implemented as a strict equality, using the propo-
sitional equality of the proof assistant. This means that the rule does not hold
judgmentally. Consequently, this computation does a priori not happen auto-
matically, and explicit rewrites along the propositional β-rules are needed in
proof implementations. This and other issues of the same kind are addressed by
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using one of Lean's proof automation features. We annotate all the �computa-
tional� rules with the attribute [simp]. This attribute is used to guide Lean's
simpli�cation tactic simp which performs reductions in the goal according to
the base of available simpli�cation rules. That allows us to use a simple proof
pattern: do induction on relevant equalities and then apply the simp tactic.
However, the simp tactic is not a well-documented feature of Lean. Sometimes
it fails to simplify goals, and in such cases we apply repeated rewrites using
propositional computation rules.

Let us consider the following example from the HoTT Lean library. Notice
that we use = for equality here and that it corresponds to the usual HoTT
equality, since we are considering an example from the HoTT Lean library,
which supports HoTT natively.

definition prod_transport (p : a = a′) (u : P a × Q a) :

p . u = (p . u.1, p . u.2) :=

by induction p; induction u; reflexivity

After applying induction on p and u, we get the following goal:

refla . (a1, a2) = (refla . (a1, a2).1, refla . (a1, a2).2)

Since we are in the HoTT mode of Lean, computation rule for transport holds
judgmentally, and we can simplify the expression above to

(a1, a2) = ((a1, a2).1, (a1, a2).2)

This goal we can prove by re�(a1,a2), since ((a1, a2).1, (a1, a2).2) reduces to
(a1, a2). The reflexivity tactic performs these reduction steps and proves
the goal. We use �∼� in place of �=� for the �brant equality in our two-level
type theory.

In the �brant fragment of type theory we can express this proof in the
following form:

definition prod_transport (p : a ∼ a′) (u : P a × Q a) :

p . u ∼ (p . u.1, p . u.2) :=

by induction p; induction u; repeat rewrite transportβ

In this case, after applying induction on p and u, we get the same goal as in
the previous example (up to notation for the equality):

refla . (a1, a2) ∼ (refla . (a1, a2).1, refla . (a1, a2).2)

The di�erence is that we cannot reduce this goal and apply reflexivity,
since in the �brant fragment computation rule for transport is de�ned using
propositional equality. That is, simpli�cation of the goal gives us only that:

refla . (a1, a2) ∼ (refla . a1, refla . a2)

We can �nish the proof with the help of Lean's proof automation by repeatedly
applying rewriting with transportβ . An alternative would be to use the simp
tactic to simplify the goal; in this case the proof will look very close to the
original one:

by induction p; induction u; simp

There is another issue which arises, particularly, when de�ning propositional
β-rules for equality-dependent de�nitions. As an example let us consider an
action on paths, which depends of some path p.
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apd {X : Type} {P : X -> Fib} {x y : X}

(f : Π x, P x) (p : x ∼ y) : p . f x ∼ f y

When de�ning the computation rule for apd we would like to write the follow-
ing:

apd f reflx
s
= refl(fx),

Unfortunately, this term is not well-typed, since the left-hand side of the equa-
tion has type reflx . (fx) = fx, while the right-hand side has type fx = fx,
where . stand for transport along the �brant equality. In order to make this
de�nition well-typed we have to apply explicitly the propositional computation
rule for transport. This leads to the following equation:

apdβ {P : X → Fib} (f : Π x, P x) {x y : X} :

(transportβ (f x)) .s (apd f reflx)
s
= refl(fx)

where .s denotes transport along the strict equality, i.e. Lean's propositional
equality (we could have transported the right-hand side instead). Writing
de�nitions like that is inconvenient, but there is a way to avoid it. We can
de�ne propositional β-rules only for some basic cases (like transport) and unfold
de�nitions in proofs to a form for which these basic rules can be applied. We
tested this strategy while porting some theorems about Σ-types from Lean's
HoTT library. In general, this issue could appear in more complex cases than
those we have investigated; it is similar to the problem appearing in axiomatic
de�nitions of higher inductive types in Coq [Bar13], where a proposed solution
has been to use private inductive types (see section 4.8.1).

4.7 Internalising the Inverse Diagrams

This section describes the details of the implementation of results from Section
4.4. As we are working in strict Lean, we have decided to use the existing
formalisation of category theory from the standard library.3 Unfortunately,
it is not as developed as the formalisation in HoTT Lean. For that reason,
additional e�ort was needed to formalise some concepts from category theory
required for the results given in the paper.

The following de�nitions from the Lean standard library are used in our
formalisation:

• categories;

• functors;

• natural transformations.

We had to implement the following notions:

• pullbacks and general limits;

• construction of the limit for Pretype category;

• coslice and reduced coslice;

3The standard library is part of the Lean's distribution. The source code in available at
https://github.com/leanprover/lean2.

https://github.com/leanprover/lean2


CHAPTER 4. FORMALISING TWO-LEVEL TYPE THEORY 115

• matching object;

• inverse categories

In addition, we have proved some properties of the strict isomorphism and
�nite sets.

We will outline some de�nitions from the Lean's standard library and then
discuss in details what we have implemented ourselves.

A de�nition of a category from Lean standard library corresponds to the
notion of strict category (De�nition 4.4.2). The usual approach to encode al-
gebraic structures as dependent records (or structures) is used in the Lean
standard library. Dependent records, being a generalisation of Σ-types, al-
low for �elds in the de�nition to depend on previously de�ned �elds. In this
way, one can combine operations and laws that these operations must satisfy.
Usually, laws are expressed in the form of propositions (type Prop in Lean).

In particular, a category is de�ned as follows:

structure category [class] (ob : Type) : Type :=

(hom : ob → ob → Type)

(comp : Π{|a b c : ob|}, hom b c → hom a b → hom a c)

(ID : Π (a : ob), hom a a)

(assoc : Π {|a b c d : ob|} (h : hom c d)

(g : hom b c) (f : hom a b),

comp h (comp g f) = comp (comp h g) f)

(id_left : Π {|a b : ob|} (f : hom a b), comp !ID f = f)

(id_right : Π {|a b : ob|} (f : hom a b), comp f !ID = f)

The de�nition speci�es a category for the pretype of objects ob (note that Type
in our Lean formalisation corresponds to pretypes in two-level type theory).
Other �elds in the de�nition follow De�nition 4.4.2 quite closely.

The de�nition of functors follows the same idea of using dependent records.
Functors are structures with four �elds, de�ning how the functor acts on objects
and morphisms, along with two usual functor laws. Natural transformations
could have been represented as structures as well, but library implementors
have chosen an equivalent representation as an inductive data type with one
constructor taking two arguments: the components and the property, express-
ing naturality square. Since laws in the de�nitions of our structures have type
Prop, and in the strict Lean mode we have proof irrelevance, to prove that
two inhabitants of the structure are (strictly) equal it is su�cient to show that
only components, for which these laws are de�ned are equal. Moreover, Lean
treats any two propositions of the same type as de�nitionally equal, allowing
for more proofs to be completed by computation. For example, for any two
natural transformations N M : Nat(F,G), for some functors F and G, we have
the following:

natural_map N = natural_map M → N = M

Where natural_map : Nat(F,G) → Π (a : C), hom (F a) (G a) projects
components from a given natural transformation.

We de�ned a reduced coslice directly following De�nition 4.4.3 as a coslice
with an additional property.

structure coslice_obs {ob : Type} (C : category ob) (a : ob) :=
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(to : ob)

(hom_to : hom a to)

open coslice_obs

structure red_coslice_obs {A : Type} (C : category A) (c : A)

extends coslice_obs C c :=

(RC_non_id_hom : Π (p : c = to), ¬ (p .s hom_to = category.id))

We use an inheritance mechanism here to add an additional property to the
regular coslice de�nition. The rc_non_id_hom property states that a morphism
hom_to cannot be the identity morphism. We use transport along the strict
equality (.s) to make the de�nition well-typed.

The reduced coslice forms a category, which is a full subcategory of the
coslice category, although, we do not use this fact in the implementation. In-
stead, we de�ne the reduced coslice category directly.4 We will show the full
de�nition of the reduced coslice category to demonstrate some Lean's features.

definition reduced_coslice {ob : Type}

(C : category ob) (c : ob)

: category (red_coslice_obs C c) :=

{| category,
hom := λa b, Σ(u : hom (to a) (to b)),

u ◦ hom_to a = hom_to b,

comp := λ a b c g f,

〈 (pr1 g ◦ pr1 f),

(show (pr1 g ◦ pr1 f) ◦ hom_to a = hom_to c,

proof

calc

(pr1 g ◦ pr1 f) ◦ hom_to a = pr1 g ◦ (pr1 f ◦ hom_to a):

eq.symm !assoc

... = pr1 g ◦ hom_to b : {pr2 f}

... = hom_to c : {pr2 g}

qed) 〉,
ID := (λ a, 〈 id, !id_left 〉),
assoc := (λ a b c d h g f, sigma.eq !assoc !proof_irrel),

id_left := (λ a b f, sigma.eq !id_left !proof_irrel),

id_right := (λ a b f, sigma.eq !id_right !proof_irrel) |}

The morphisms in the this category are commutative triangles with a �tip� c
(Figure 4.1b), which we de�ne as

Σ(u : hom (to a) (to b)), u ◦ hom_to a = hom_to b

The �rst projection is a morphism u between the codomains of morphisms
going from c (a morphism u : a −→ b in Figure 4.1b). The second projection
is an equation corresponding to the commutative triangle.

This de�nition uses one convenient feature of Lean, namely the calc envi-
ronment. The calc environment allows one to combine a sequence of equations

4this code is a slightly modi�ed de�nition of the coslice category from Lean's standard
library, which was commented out for some reason unknown to the author.
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combined using transitivity of equality. Moreover, the same reasoning is possi-
ble with any transitive relation, and we are going to use it later for reasoning
with isomorphism.

To construct a composition of morphisms in the category of (reduced)
coslices we have to show that two commutative triangles with one common
side form a bigger commutative triangle. The angle brackets notation 〈a, b〉 is
used to construct a Σ-type. In the de�nition of comp the �rst component is just
a composition of two morphisms (pr1 f and pr1 g correspond to morphisms
u1 : a −→ b and u2 : b −→ c in Figure 4.1c), and the second component must
be a proof that we get a commutative triangle with a composition pr1 g ◦ pr1
f as a bottom side. This proof is carried out in three steps using reasoning in
the calc environment. First, we use associativity of the function composition
(assoc) to rearrange the composition. After that we rewrite using the com-
mutative triangle for f (r2 fpr2 f), and then complete the proof by rewriting
with the commutative triangle for g (r2 gpr2 g).

The proofs of the categorical laws assoc, id_left, id_riht for reduced_coslice
boils down to respective properties of morphisms in C. To �lift� these properties
to morphisms in c//C the property of path in Σ-type sigma.eq is used.

Before we de�ne inverse categories, we have to de�ne a category (Ns)op:

definition nat_cat_op [instance] : category N :=

{| category,
hom := λ a b, a ≥ b,

comp := λ a b c, @nat.le_trans c b a,

ID := nat.le_refl,

assoc := λ a b c d h g f, eq.refl _,

id_left := λ a b f, eq.refl _,

id_right := λ a b f, eq.refl _ |}

definition Nop : Category := Mk nat_cat_op

In our Lean implementation we use Nop to denote (Ns)op. A morphism between
two objects in Nop is the ≥-relation on natural numbers. composition is given
by transitivity of ≥, identity morphism is re�exivity of ≥ (we use properties
of ≥-relation from the standard library), and proofs of other properties is just
eq.refl meaning that they hold de�nitionally in Lean. This is a consequence
of what we mentioned before: two inhabitants of the same proposition are
de�nitionally equal in Lean. Let us consider a case for associativity. For any
f : a ≥ b, g : b ≥ c, h : c ≥ d we have to show that

nat.le_trans h (nat.le_trans g f) : a ≥ d =

nat.le_trans (nat.le_trans h g) f : a ≥ d

Since both sides have the same type a ≥ d, and this is a proposition, from
Lean's point of view they represent the same value.

We de�ne the property of a functor that it re�ects identities in the following
way:

definition id_reflect {C D: Category} (ϕ : C ⇒ D) :=

Π {|x y : C|} (f : x −→ y), (Σ (q : ϕ x = ϕ y), q . ϕ f =

id) → Σ (p : x = y), p . f = id
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The de�nition of inverse categories uses a specialised version of id_reflect
for the case of Nop, which does not require ϕ f to be an identity.

definition id_reflect_Nop {C : Category} (ϕ : C ⇒ Nop) :=

Π {|x y : C|} (f : x −→ y), ϕ x = ϕ y → (Σ (p : x = y), p

. f = id)

We use id_reflect in our Lean implementation, and show that these two
de�nitions are logically equivalent. The proof of that uses the fact that the
only morphism f : x −→ x in Nop is the identity morphism.

Now we can de�ne inverse categories by equipping a category C with a rank
functor.

structure has_idreflect [class] (C D : Category) :=

(ϕ : C ⇒ D)

(reflecting_id : id_reflect ϕ)

structure invcat [class] (C : Category) :=

(reflecting_id_Nop : has_idreflect C Nop)

For the de�nition of the matching object we use the previously constructed
limit in the Pretype category (see remark 4.7.1).

lemma limit_nat_unit {C : Category.{1 1}}

(X : C ⇒ Type_category) (z : C)

: limit_obj (limit_in_pretype X) = Nat(1,X) := rfl

definition matching_object.{u} {C : Category.{1 1}} [invcat C]

(X : C ⇒ Type_category.{u}) (z : C) :=

Nat(1, (X ◦f (forget C z)))

Where 1 : C⇒ Type_category is a functor, which is constantly the unit type.
The functor forget is de�ned exactly as speci�ed in Section 4.4: an action on
objects is the projection to of the coslice_obs structure, and on morphisms
the action is a projection of the �bottom� morphism of the commutative triangle
(the morphism u in Figure 4.1b), which is a �rst component of the Σ-type
de�ning morphisms in reduced_coslice.

definition forget (C : Category) (c : C) : (c // C) ⇒ C :=

{| functor,
object := λ a, to a,

morphism := λ a b f, pr1 f,

respect_id := λa, eq.refl _,

respect_comp := λ a b c f g, eq.refl _ |}

Remark 4.7.1. [Limits and Pullbacks] The limit.lean contains general def-
inition of limits as a terminal object in the category of cones. We also de�ne
here an explicit representation of limits (see (3)) along with the proof that this
de�nition is isomorphic to our general de�nition. We also construct limits in
the category of pretypes and show that the limit of the diagram 2→ U s is iso-
morphic to the product pretype. The pullback.lean �le contains de�nitions
of pullbacks constructed in di�erent ways along with proofs that the de�nitions
are isomorphic.
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We chose to specialise De�nition 4.4.6, by taking Y to be a constant func-
tor to the unit type, instead of implementing a general de�nition of a Reedy
�bration. That is, we de�ne the canonical map Xz →MX

z as the following:

definition matching_obj_map {C : Category.{1 1}}

[invC : invcat C]

(X : C ⇒ Type_category) (z : C)

: X z → matching_object X z :=

λ x, natural_transformation.mk (λ a u, X (hom_to a) x)

begin

-- proof of naturality is omitted

end

Since matching object is the limit in the Pretype category, it is a natural
transformation. We give only the natural map in the de�nition, omitting the
proof of the naturality condition for brevity.

In our implementation we use the following de�nition of a �bration:

definition is_fibration_alt [reducible] {E B : Type} (p : E → B)

:= Π (b : B), is_fibrant (fibres p b)

Where fibres is a �strict� �bre, that is a �bre de�ned using strict equality:

definition fibres {X Y : Type} (f : X → Y) (y : Y)

:= Σ (x : X), f x = y

Now we have all the ingredients to write a de�nition of Reedy �brant dia-
grams.

definition is_reedy_fibrant [class] (X : C ⇒ Type_category) :=

Π z, is_fibration_alt (matching_obj_map X z)

4.7.1 Proof of the Fibrant Limit Theorem

In the current implementation, besides the general two-level framework, we
have implemented the machinery required to de�ne Reedy �brant diagrams
and have fully formalised a proof of Theorem 4.4.1. The formalisation of The-
orem 4.4.1 closely follows the structure given in the paper [ACK17].

Let us consider some steps of the proof in details. The base case was
relatively easy to prove, and we will focus on the inductive step. We use the
lemma max_fun_to_N to pick an element with the maximal rank from the
category C. The way we do it closely corresponds to the proof of Lemma 4.4.3
Surprisingly, proving that after removal of z from C the resulting C′ is �nite,
inverse and that diagram X ′ : C′ → U s is still Reedy �brant required writing a
lot of boilerplate code (see Remark 4.7.2).

The overall idea of the proof of the inductive step is to show that our goal
is strictly isomorphic to some �brant type. Thus, one of the central parts of
the proof was a transformation of the limit of a Reedy �brant diagram through
the chain of strict isomorphisms. In our Lean formalisation, it is implemented
using the calc environment, which gives a very convenient way of chaining
transitive steps.

We proved each step of the reasoning using isomorphisms in a separate
lemma and then chained them together in the calc environment. The most
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essential transformations are the limit_two_piece_limit_equiv and the
two_piece_limit_pullback_p_q_equiv lemmas.

The limit_two_piece_limit_equiv lemma allows us to represent the limit
as a product of two parts:

(Σ (c : Π y, X y), Π y y′ f, morphism X f (c y) = c y′)

's
(Σ (c_z : X z) (c : (Π y : C_without_z z, X y)),

(Π (y : C_without_z z) (f : z −→ obj y ), X f c_z = c y) ×
(Π (y y′ : C_without_z z) (f : @hom (subcat_obj _ _) _ y y′),

(Functor_from_C′ z X) f (c y) = c y′))

Listing 4.1: Limit isomorphism

Where C_without_z z corresponds to the category C′ (a category C with z
removed) in Theorem 4.4.1. We explicitly construct a functor from the category
C′ using the functor X : C → U s. This lemma also implicitly includes the step
(4) (see Theorem 4.4.1). While constructing the isomorphism given in Listing
4.1 we perform a case analysis on the equalities (since they are decidable)
y = z and y′ = z, which gives us four cases corresponding to the product of
four parts in 4.4. In case where y = z and y′ = z, we use the property that
the only morphism from z to z in C is the identity morphism. The case where
y 6= z and y′ = z is impossible, since we have a morphism f : y −→ z, and z
has a maximal rank, the only morphism with z as a codomain is the identity
morphism, but we know that y 6= z.

For the next transformation step, we use the two_piece_limit_pullback_p_q_equiv
lemma, which allows us to get (6):

Σ (c_z : X z) d, p d = q c_z

Where p and q are de�ned as the following:

q := matching_obj_map X z

p := map_L_to_Mz_alt z X

In the Lean implementation we use a tactic-level let construct to declare these
maps. It is important to use let here, although we could use the have construct
instead. The di�erence is that let allows us to keep de�nitions transparent for
the simpli�cation.

The map p is a map from the limit of the diagram X restricted to the category
C_without_z z to the matching object. We use explicit an representation of
the limit as a natural transformation:

definition lim_restricted (X : C ⇒ Type_category) (z : C)

[invC : invcat C]

:= Σ (c : Π y, (Functor_from_C′ z X) y),

Π (y y′ : C_without_z z) (f : @hom (subcat_obj C _) _ y y′),

((Functor_from_C′ z X) f) (c y) = c y′

definition map_L_to_Mz_alt (z : C) (X : C ⇒ Type_category.{u})

[invC : invcat C]

(L : lim_restricted X z)

: matching_object X z :=

match L with
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| 〈η, NatSq〉 :=

by refine natural_transformation.mk

(λ a u, η (mk _ (reduced_coslice_ne z a)))

(λ a b f, funext (λ u, NatSq _ _ _))

end

To show that lim_restricted X z is �brant we would like to use the
induction hypothesis, but in order to do that we �rst have to show that (

Functor_from_C′ z X) is Reedy �brant and that C_without_z z is still a
category with a �nite object type. We prove this facts in the separate lemmas
Functor_from_C′_reedy_fibrant and C_without_z_is_obj_finite, respec-
tively.

Remark 4.7.2. From the code above, one can see, that removing the element
from C requires us to show to propagate this change through all the layers,
such as de�nitions of functors and limits, properties if category C_without_z

z etc. These changes are usually considered �obvious� on paper, but in the
formal setting in a proof assistant could require signi�cant e�orts. It was
important to write the de�nitions related to these lemmas in such a way that
they can be simpli�ed as much as possible using Lean's de�nitional equalities.
Currently, this part of the implementation is the least readable part. Probably,
there is a way to generalise this by developing suitable machinery to work with
subcategories, but we did not explore that possibility.

By rearranging sigmas using sigma_swap lemma, we get the following:

(Σ (c_z : X z) (d : lim_restricted X z), p d = q c_z) 's
(Σ (d : lim_restricted X z) (c_z : X z), q c_z = p d)

And this is exactly the pullback of the span

lim_restricted X z −→ matching_object X z ←− X z

By the lemma 4.4.2 (which we call Pullback′_is_fibrant), and we know that
the map

(Σ (d : lim_restricted X z) (c_z : X z), q c_z = p d) ->

lim_restricted X z}

is a �bration.
To complete the proof, we need to show that the domain of a �bration with

�brant codomain is �brant, i.e.

Π (p : E → B), is_fibration_alt p → is_fibrant E

In order to do this we make use of the fact that we can �contract� some parts
of the type. This is known as a singleton contraction (see Lemma 3.11.8 in
[Uni13]):

definition singleton_contrs [instance] {A}

: Π b, (Σ (a : A), b = a) ' poly_unit

Here poly_unit is a universe-polymorphic unit type. We mark our de�nition
with the [instance] attribute to make this de�nition available for Lean's type
class instance resolution mechanism. The full proof of the lemma looks very
concise:
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definition singleton_contr_fibers {E B : Type} {p : E → B}

: (Σ b, fibres p b) 's E :=

calc

(Σ b x, p x = b) 's (Σ x b, p x = b) : _

... 's (Σ (x : E), poly_unit) : _

... 's E : _

This lemma shows another example where type classes are convenient to use
in proofs. All the witnesses for the proof steps are inferred automatically on
the base of available instances of the strict isomorphism. For the second step,
Lean's inference is able to infer that we �rst need to apply a congruence for Σ-
types and then use a singleton contraction lemma. The resulting term, which
was constructed by Lean looks as follows (showing all the implicit arguments
and replacing notation with textual representation):

@sigma_congr2 E (λ x, @sigma B (@eq B (p x)))

(λ x, poly_unit)

(λ a, @singleton_contrs B (p a))

Now we can show, that for any �bration p : E → B and �brant B, the
type E is �brant. First, use singleton_contr_fibers to show E is strictly
isomorphic to (Σ b, fibres p b), and this type is �brant, since Σ-type pre-
serve �brancy, B is �brant and Π (b : B), is_fibrant (fibres p b) from
the fact that p is a �bration. Again, in Lean it is su�cient to give a hint,
which type E is equivalent to, and the rest could be resolved automatically.
The resulting proof looks very concise:

definition fibration_domain_is_fibrant {E : Type} {B : Fib} :

Π (p : E → B), is_fibration_alt p → is_fibrant E

:= λp is_fibr_p, @equiv_is_fibrant (Σ b, fibres p b) _ _ _

Application of this lemma concludes the proof of the Theorem 4.4.1.

4.7.2 Additional facts

In the proof of Theorem 4.4.1 we use some properties of strict isomorphism
and �nite sets. These lemmas can be found in the �les facts.lean and
finite.lean of our implementation. For the strict isomorphism (which is
called equiv in the Lean's standard library), we implemented congruence lem-
mas for Π- and Σ-types.

pi_congr1 [instance] {F′ : A′ → Type} [ϕ : A ' A′]

: (Π (a : A), F′ (ϕ • a)) ' (Π (a : A′), F′ a)

pi_congr2 [instance] {F G : A → Type} [ϕ : Π a, F a ' G a]

: (Π (a : A), F a) ' (Π (a : A), G a)

pi_congr [instance] {F : A → Type} {F′ : A′ → Type}

[ϕ : A ' A′] [ϕ′ : Π a, F a ' F′ (ϕ • a)]

: (Π a, F a) ' Π a, F′ a

sigma_congr1 [instance] {A B: Type} {F : B → Type} [ϕ : A ' B]

: (Σ a : A, F (ϕ • a)) ' Σ b : B, F b
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sigma_congr2 [instance] {A : Type} {F G : A → Type}

[ϕ : Π a : A, F a ' G a]

: (Σ a, F a) ' Σ a, G a

sigma_congr {A B : Type} {F : A → Type} {G : B → Type}

[ϕ : A ' B] [ϕ′ : Π a : A, F a ' G (ϕ • a)]

: (Σ a, F a) ' Σ a, G a

We used these lemmas in many proofs including the proofs of Theorem 4.4.1,
where transformation thorough the sequence of isomorphisms is an important
part of the proof. As mentioned before, properties of the isomorphism are
instances of a corresponding type class. That allows for proving some goals
involving isomorphisms automatically.

Properties of �nite sets required for our development are related to the
removal of an element from a given �nite set.

fin_remove_max {n : N} :

(Σ i : fin (nat.succ n), i 6= maxi) ' fin n

fin_remove_equiv {n : N } (z : fin (nat.succ n))

: (Σ i : fin (nat.succ n), i 6= z) ' fin n

The fin_remove_max lemma shows that removing the maximal element gives
us a �nite set of smaller cardinality, and fin_remove_equiv generalises this
result to the removal of any element. The proof of the last lemma uses several
additional lemmas allowing us to manipulate �nite sets using transpositions:

definition fin_transpose {n} (i j k : fin n) : fin n :=

match fin.has_decidable_eq _ i k with

| inl _ := j

| inr _ := match fin.has_decidable_eq _ j k with

| inl _ := i

| inr _ := k

end

end

4.8 Other Formalisations

4.8.1 The Boulier-Tabareau Coq Development

Boulier and Tabareau [BT16] have implemented a theory with two equalities in
the Coq proof assistant [BC10]. It uses an approach that is somewhat similar
to our own development of two-level type theory. In particular, the authors use
Coq type classes to track �brant types and exploit the corresponding features of
the type class resolution mechanism to derive �brancy automatically. However,
there are some di�erences in the details of how the �brant equality type is
implemented.

In our Lean development we postulate a �brant equality type and the equal-
ity eliminator, while in [BT16] the authors de�ne it as a private inductive
type [Ber13]. This feature of the Coq proof assistant allows one to de�ne an
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inductive type so that no eliminators are generated and no pattern-matching
is allowed outside of the module where this type is de�ned. Exposing a cus-
tom induction principle for such a private inductive type allows one to retain
computational behaviour, while restricting the user to explicitly provided elim-
inators.

Although such an implementation has some advantages, like making more
proofs compute, it relies on speci�c implementation details. In the current
version of Coq, private inductive de�nitions are still an experimental extension.
The authors of [BT16] had to use a custom rewrite tactic implemented in
OCaml in order to �x an incorrect behaviour of the private de�nition under
the standard Coq rewriting tactic.

Our development in Lean could be seen as more explicit and straightforward
approach to the implementation of a two-level type theory, and the simplicity
of the encoding of �brancy constraints makes it potentially more portable to
di�erent systems, as long as they are equipped with a powerful enough type
class resolution mechanism.

4.8.2 Experience with Agda

Our choice of Lean as the language for the formalisation of this paper has been
a consequence of a failed attempt at embedding two-level type theory in the
Agda proof assistant [Nor07].

Analogously to the development that has been eventually realised in Lean,
our plan was to consider Agda's underlying theory, which includes uip, as the
strict fragment of our two-level type theory, and use instance arguments, which
are Agda's implementation of type classes, to express �brancy conditions on
pretypes.

Unfortunately, due to the way instance and implicit arguments get resolved
in Agda, we were not able to get automatic propagation of �brancy conditions
over type expressions involving families of types, such as Π or Σ types in our
initial attempt in Agda.

The self-contained example by Paolo Capriotti shows that certain ways of
de�ning �brancy condition fail to resolve implicit arguments.

module tltt where

postulate

is-fibrant : ∀ {i} → Set i → Set i

instance Π-is-fibrant : ∀ {i}{j}{A : Set i}{B : A → Set j}

→ {| fibA : is-fibrant A |}
→ {| fibB : (a : A) → is-fibrant (B a) |}
→ is-fibrant ((a : A) → B a)

module _ {i} {A : Set i} {| fibA : is-fibrant A |} where

postulate

_~_ : A → A → Set i
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module test {i}{j}{A : Set i}{B : A → Set j}

{| fibA : is-fibrant A |}

-- this will work, if we change (a : A) → is-fibrant (B a)

-- to {a : A} → is-fibrant (B a)

{| fibB : (a : A) → is-fibrant (B a) |} where

test : (f : (a : A) → B a) → f ~ f

test = ?

As it became clear later, a small change in the de�nition of fibB in the test
module from fibB : (a : A) → is-fibrant (B a) to fibB : {a : A} →
is-fibrant (B a) will make Agda's resolution mechanism work. It was not
clear from the documentation why the original de�nition fails to work5. Al-
though there is a way to make the example above work, it is still not clear if
it is possible to develop two-level type theory in Agda in the same way as we
have done in Lean.

We therefore considered alternative approaches, such as postulating a uni-
verse of �brant types and the corresponding type formers. Using a certain trick
suggested by Thorsten Altenkirch, one can make sure that the �brant type for-
mers agree with the primitive ones. The trick is similar to the one that allows
higher inductive types with judgemental reduction rules to be implemented in
Agda [com12].

However, it appeared that such an approach, although probably feasible, is
not as convenient and immediate as the solution based on type classes that we
eventually settled with in Lean.

4.9 Conclusion

Two-level type theory is a promising approach to internalisation of results which
are currently only partially internal to HoTT, and it is unclear if they can be
fully internalised. We have demonstrated that two level type theory can be
implemented in an existing proof assistant, outlining the general idea of the
implementation. The approach to the implementation is suitable for most of
the existing proof assistants based on dependent type theory, since we do not
rely on implementation-speci�c details. Although, for our implementation to
be convenient to use, one will require type classes, proof automation, or some
way to add new judgmental equalities.

Our Lean development should still be considered a proof of concept, as
it does not fully implement all the results presented in the paper [ACK17].
However, we hope that it serves as a compelling demonstration of the feasibility
of our formalisation approach. To test how one can work in the �brant fragment
in our Lean development, we have ported some theorems from the Lean HoTT
library. We used proof automation to mimic computational behavior of the β-
rule for the �brant equality eliminator. In most cases that we have considered,

5Thanks to Nils Danielsson for pointing out what needs to be changed in this example.
Also, see https://github.com/agda/agda/issues/2755

https://github.com/agda/agda/issues/2755
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modi�cations of proofs were not substantial. Although, it is worth pointing out
that in some situations it is inconvenient to write statements where reduction
in types involving the β-rule for �brant equality is required.

As a possible extension of results presented in this work, one could consider
to explore the conservativity result from [Cap16]. Having conservativity, one
could take, for example, a de�nition of n-restricted semi-simplicial types in in
two-level type theory. Instantiating the de�nition with particular strict natural
number (i.e. some n : Ns) 0, 1, 3, etc., and evaluating the term in the strict
fragment one could acquire a term, which belongs to the �brant fragment of our
two-level type theory. Since the �brant fragment represents HoTT, it should
be possible to use this term in the proof assistant, where HoTT is supported
directly (after converting the term appropriately). In the context of our Lean
development it would require only minimal e�orts, since Lean (version 2) has
a mode supporting HoTT �natively�.



Chapter 5

Conclusion

The results of our work show how we have addressed the questions that we
stated in the introduction to the thesis.

First, we have developed a payo� intermediate language along with a com-
pilation procedure. The compilation procedure allows us to translate contract
speci�cations in a domain-speci�c language for �nancial contracts (CL) to pay-
o� expressions. The template extension to the original contract language and
the parameterisation of payo� expressions with the �current time� parameter
allow for compiling contact templates (or instruments) once and then reuse the
compiled code, instantiating the parameters with di�erent values. Our experi-
ence with Haskell code generation shows that payo� expressions are relatively
easy to map to a subset of a functional language, and we expect that code gen-
eration into the Futhark language [HSE+17] could be implemented in a similar
way. Moreover, performance measurements for payo� expressions compiled
�by hand� to OpenCL show that for simple contracts the runtime overhead is
very small in comparison with the recompilation time. Although, one could
potentially �nd some limitations for more complicated contracts, properties of
our implementation do not restrict one from using the contract reduction and
recompilation approach. All the development has been carried out in the Coq
proof assistant from the beginning and all proofs and de�nitions related to
the payo� intermediate language (including the soundness proofs in Chapter
2) are high-level explanations of the Coq formalisation. We can say that we
successfully addressed most of the questions related to this part of the thesis.

Second, we have partially formalised static interpretation of a higher-order
module system for Futhark. Particularly, we have de�ned the core notions
required for the formalisation, namely semantic objects, along with required
relations. We have proved one part of the normalisation theorem, speci�cally,
that static interpretation terminates with a target language expression. An-
other part of the theorem related to the typing of target language expressions
has not been formalised (we leave this for future work).

The implementation of semantic objects turned out to be surprisingly tricky
due to the conservative strict positivity check in Coq. We have developed a
technique allowing for another representation of �nite maps to be used in the
de�nition of semantic objects. We have proved that this representation is iso-
morphic to the one from the standard library of Coq and used the implicit
coercion mechanism to reuse operations on �nite maps from the standard li-
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brary. We have built most of the required machinery to deal with bindings in
semantic objects using nominal techniques. For a simpli�ed notion of seman-
tic objects, we have developed a corresponding nominal set and have de�ned
α-equivalence. In the full setting we have sketched the approach and have
developed examples showing the feasibility of our approach. However these
changes are not yet incorporated into the proof of Theorem 3.3.1.

Our experience shows that some restrictions on de�nitions in Coq do not
allow one to use abstractions properly. For example, in the de�nition of seman-
tic objects, it is impossible to use an abstract type of �nite maps, otherwise
Coq will not be able to check the de�nition for strict positivity. When using
the Fixpoint construct one has to be very explicit about recursive calls and in
most cases it is not possible to call another function, implementing for example
a nested �xpoint. Instead, one has to inline the de�nition (see Remark 3.5.6).

We have developed most of the machinery required for the full formalisation
of static interpretation normalisation, and we believe it is possible to �nish the
formalisation given enough time. Having the full result we can then approach
the problem of extracting a certi�ed implementation from our formalisation.

Third, we have implemented a formalisation of two-level type theory in
the Lean proof assistant using only features available for the users and not by
modifying Lean's code. We showed that in order to make such an encoding
usable in an existing proof assistant, support for type classes, or support for a
similar mechanism is required. Our example application to internalisation of
inverse diagrams shows that our implementation is suitable for this purpose.

We believe that there are no conceptual di�culties in extending our Lean
development with other results from [ACK17] because most of the reasoning
happens in the strict fragment. However, such an extension requires a well-
developed standard library to avoid formalising notions not directly related to
the results. We would like to mention that working in the �brant fragment is
somewhat less convenient in comparison with the proof assistant with �native�
support for homotopy type theory. This is mainly due to the lack of com-
putational behavior of the �brant equality eliminator. We have found ways
to overcome this limitation, but it could still cause inconveniences for more
complicated proofs in the �brant fragment.



Bibliography

[ABB+16] Christian Andreetta, Vivien Bégot, Jost Berthold, Martin Els-
man, Fritz Henglein, Troels Henriksen, Maj-Britt Nordfang, and
Cosmin E. Oancea. FinPar: A parallel �nancial benchmark. ACM
Trans. Archit. Code Optim., 13(2):18:1�18:27, June 2016.

[ABW07] Brian Aydemir, Aaron Bohannon, and Stephanie Weirich. Nomi-
nal reasoning techniques in Coq. Electron. Notes Theor. Comput.
Sci., 174(5):69�77, June 2007.

[ACK16] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. Extend-
ing Homotopy Type Theory with Strict Equality. In Jean-Marc
Talbot and Laurent Regnier, editors, 25th EACSL Annual Con-
ference on Computer Science Logic (CSL 2016), volume 62, pages
21:1�21:17, Dagstuhl, Germany, 2016.

[ACK17] D. Annenkov, P. Capriotti, and N. Kraus. Two-Level Type Theory
and Applications. ArXiv e-prints, May 2017.

[AEH+06] Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob Grue Si-
monsen, and Christian Stefansen. Compositional speci�cation of
commercial contracts. International Journal on Software Tools
for Technology Transfer, 8(6):485�516, 2006.

[AVR95] B.R.T Arnold, A. Van Deursen, and M. Res. An algebraic speci�-
cation of a language for describing �nancial products. In ICSE-17
Workshop on Formal Methods Application in Software Engineer-
ing, pages 6�13, 1995.

[Bar13] Bruno Barras. Native implementation of Higher Inductive Types
(HITs) in Coq, September 2013. Available at http://www.crm.
cat/en/Activities/Documents/barras-crm-2013.pdf.

[BBE15] Patrick Bahr, Jost Berthold, and Martin Elsman. Certi�ed sym-
bolic management of �nancial multi-party contracts. In Proceed-
ings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ICFP'2015, pages 315�327, September
2015.

[BC10] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development: Coq'Art: The Calculus of Inductive
Constructions. EATCS Texts in Theoretical Computer Science.
Springer-Verlag, 2010.

129

http://www.crm.cat/en/Activities/Documents/barras-crm-2013.pdf
http://www.crm.cat/en/Activities/Documents/barras-crm-2013.pdf


BIBLIOGRAPHY 130

[Ber13] Yves Bertot. Private Inductive Types: Proposing a language ex-
tension, 2013. Available at http://coq.inria.fr/files/coq5_
submission_3.pdf.

[BHKM12] Nick Benton, Chung-Kil Hur, Andrew Kennedy, and Conor
McBride. Strongly typed term representations in Coq. J. Au-
tom. Reasoning, 49(2):141�159, 2012.

[Bre15] Matthew Brecknell. Pattern-matching dependent types in
Coq. Available at https://matthew.brecknell.net/post/

pattern-matching-dependent-types-in-coq/, 2015. Talk.

[BT16] Simon Boulier and Nicolas Tabareau. Formalization of model
structures in Homotopy Type System (in Coq), 2016. https:

//github.com/SimonBoulier/ModelStructure-HTS.

[Cap16] Paolo Capriotti. Models of Type Theory with Strict Equality. PhD
thesis, School of Computer Science, University of Nottingham,
Nottingham, UK, 2016.

[CH88] Thierry Coquand and Gérard Huet. The calculus of constructions.
Information and Computation, 76(2):95 � 120, 1988.

[Cha12] Arthur Charguéraud. The locally nameless representation. Jour-
nal of Automated Reasoning, 49(3):363�408, Oct 2012.

[Chl08] Adam Chlipala. Parametric higher-order abstract syntax for
mechanized semantics. In Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming, ICFP '08,
pages 143�156, New York, NY, USA, 2008. ACM.

[Chl13] Adam Chlipala. Certi�ed Programming with Dependent Types: A
Pragmatic Introduction to the Coq Proof Assistant. MIT Press,
2013.

[Cho15] Pritam Choudhury. Constructive representation of nominal sets
in agda. MPhil Thesis, University of Cambridge, 2015.

[Clo13] Ranald Clouston. Generalised name abstraction for nominal sets.
In Frank Pfenning, editor, Foundations of Software Science and
Computation Structures: 16th International Conference, FOS-
SACS 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings, pages 434�449. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

[com12] The HoTT and UF community. Homotopy Type Theory, Since
2012. Agda library, available online at https://github.com/

HoTT/HoTT-Agda.

[CP90] Thierry Coquand and Christine Paulin. Inductively de�ned types.
In Per Martin-Löf and Grigori Mints, editors, COLOG-88: Inter-
national Conference on Computer Logic Tallinn, USSR, December
12�16, 1988 Proceedings, pages 50�66. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1990.

http://coq.inria.fr/files/coq5_submission_3.pdf
http://coq.inria.fr/files/coq5_submission_3.pdf
https://matthew.brecknell.net/post/pattern-matching-dependent-types-in-coq/
https://matthew.brecknell.net/post/pattern-matching-dependent-types-in-coq/
https://github.com/SimonBoulier/ModelStructure-HTS
https://github.com/SimonBoulier/ModelStructure-HTS
https://github.com/HoTT/HoTT-Agda
https://github.com/HoTT/HoTT-Agda


BIBLIOGRAPHY 131

[Cur34] H. B. Curry. Functionality in Combinatory Logic. In Proceed-
ings of the National Academy of Sciences of the United States of
America, volume 20, pages 584�590, November 1934.

[Dan12] Daniel Licata. Abstract Types with Isomorphic
Types. https://homotopytypetheory.org/2012/11/12/

abstract-types-with-isomorphic-types/, 2012. Blog post.

[dB72] N.G de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
church-rosser theorem. Indagationes Mathematicae (Proceedings),
75(5):381 � 392, 1972.

[Dij13] Gabe Dijkstra. Programming in homotopy type theory and eras-
ing propositions. Master's thesis, Utrecht University, 2013.

[dMKA+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van
Doorn, and Jakob von Raumer. The Lean theorem prover. In
Automated Deduction - CADE-25, 25th International Conference
on Automated Deduction, 2015.

[Els99] Martin Elsman. Static interpretation of modules. In Procedings
of Fourth International Conference on Functional Programming,
ICFP '99, pages 208�219. ACM Press, September 1999.

[FSNB09] Simon Frankau, Diomidis Spinellis, Nick Nassuphis, and
Christoph Burgard. Commercial uses: Going functional on exotic
trades. Journal of Functional Programming, 19(1):27�45, 2009.

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot,
Cyril Cohen, François Garillot, Stéphane Le Roux, Assia Mah-
boubi, Russell O'Connor, Sidi Ould Biha, Ioana Pasca, Laurence
Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A
Machine-Checked Proof of the Odd Order Theorem. In Sandrine
Blazy, Christine Paulin-Mohring, and David Pichardie, editors,
Interactive Theorem Proving: 4th International Conference, ITP
2013, Rennes, France, July 22-26, 2013. Proceedings, pages 163�
179. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[GKN10] Adam Grabowski, Artur Kornilowicz, and Adam Naumowicz.
Mizar in a Nutshell. Journal of Formalized Reasoning, 3(2):153�
245, 2010.

[Gon08] Georges Gonthier. The Four Colour Theorem: Engineering of a
Formal Proof. In Deepak Kapur, editor, Computer Mathematics:
8th Asian Symposium, ASCM 2007, Singapore, December 15-17,
2007. Revised and Invited Papers, pages 333�333, Berlin, Heidel-
berg, 2008. Springer Berlin Heidelberg.

[Gor94] Andrew D. Gordon. A mechanisation of name-carrying syntax up
to alpha-conversion. In Je�rey J. Joyce and Carl-Johan H. Seger,
editors, Higher Order Logic Theorem Proving and Its Applica-
tions: 6th International Workshop, HUG '93 Vancouver, B. C.,

https://homotopytypetheory.org/2012/11/12/abstract-types-with-isomorphic-types/
https://homotopytypetheory.org/2012/11/12/abstract-types-with-isomorphic-types/


BIBLIOGRAPHY 132

Canada, August 11�13, 1993 Proceedings, pages 413�425. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1994.

[GP02] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to
abstract syntax with variable binding. Formal Aspects of Com-
puting, 13(3):341�363, Jul 2002.

[Hed98] Michael Hedberg. A coherence theorem for Martin-Löf's type
theory. J. Funct. Program., 8(4):413�436, 1998.

[HEO14] Troels Henriksen, Martin Elsman, and Cosmin E Oancea. Size
slicing: a hybrid approach to size inference in Futhark. In Pro-
ceedings of the 3rd ACM SIGPLAN workshop on Functional high-
performance computing, pages 31�42. ACM, 2014.

[HKZ12] Tom Hvitved, Felix Klaedtke, and Eugen Zalinescu. A trace-
based model for multiparty contracts. The Journal of Logic and
Algebraic Programming, 81(2):72�98, 2012.

[How80] W. A. Howard. The formulae-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: essays on
combinatory logic, lambda calculus and formalism, pages 480�490.
Academic Press, London-New York, 1980.

[HS96] Martin Hofmann and Thomas Streicher. The groupoid interpreta-
tion of type theory. In In Venice Festschrift, pages 83�111. Oxford
University Press, 1996.

[HS00] Robert Harper and Christopher Stone. A type-theoretic inter-
pretation of Standard ML. In Gordon Plotkin, Colin Stirling,
and Mads Tofte, editors, Proof, Language, and Interaction, pages
341�387. MIT Press, Cambridge, MA, USA, 2000.

[HSE+17] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Hen-
glein, and Cosmin E. Oancea. Futhark: Purely functional gpu-
programming with nested parallelism and in-place array updates.
In Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2017,
pages 556�571, New York, NY, USA, 2017. ACM.

[KS15] Pepijn Kokke and Wouter Swierstra. Auto in Agda. In Ralf Hinze
and Janis Voigtländer, editors, Mathematics of Program Con-
struction: 12th International Conference, MPC 2015, Königswin-
ter, Germany, June 29�July 1, 2015. Proceedings, pages 276�301.
Springer International Publishing, Cham, 2015.

[Lam80] J. Lambek. From λ-calculus to Cartesian closed categories. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, pages
375�402. Academic Press, London, 1980.

[LCH07] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mech-
anized metatheory of Standard ML. In Proceedings of the 34th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of



BIBLIOGRAPHY 133

Programming Languages, POPL '07, pages 173�184, New York,
NY, USA, 2007. ACM.

[Ler06] Xavier Leroy. Formal certi�cation of a compiler back-end, or:
programming a compiler with a proof assistant. In POPL, pages
42�54, 2006.

[Ler09] Xavier Leroy. Programming with dependent types: passing fad
or useful tool? Available at http://www.cs.ox.ac.uk/ralf.

hinze/WG2.8/26/slides/xavier.pdf, 2009. Talk.

[Let08] Pierre Letouzey. Extraction in Coq: An overview. In Computabil-
ity in Europe, volume 5028 of LNCS, pages 359�369, 2008.

[Lex] LexiFi. Contract description language (MLFi).
Available at http://www.lexifi.com/technology/

contract-description-language.

[Lex08] LexiFi. Structuring, Pricing, and Processing Complex Finan-
cial Products with MLFi. http://www.lexifi.com/files/

resources/MLFiWhitePaper.pdf, 2008. White paper.

[LS13] Daniel R. Licata and Michael Shulman. Calculating the funda-
mental group of the circle in homotopy type theory. In Proceed-
ings of the 2013 28th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS '13, pages 223�232, Washington, DC,
USA, 2013. IEEE Computer Society.

[ML84] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in
Proof Theory. Bibliopolis, 1984. Notes by Giovanni Sambin of a
series of lectures given in Padua, June 1980.

[MP93] James McKinna and Robert Pollack. Pure type systems for-
malized. In Marc Bezem and Jan Friso Groote, editors, Typed
Lambda Calculi and Applications: International Conference on
Typed Lambda Calculi and Applications TLCA '93 March, 16�
18, 1993, Utrech, The Netherlands Proceedings, pages 289�305.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash sys-
tem. Available at http://bitcoin.org/bitcoin.pdf, 2008.

[Nor07] Ulf Norell. Towards a practical programming language based on
dependent type theory. PhD thesis, Department of Computer Sci-
ence and Engineering, Chalmers University of Technology and
Göteborg University, Göteborg, Sweden, 2007.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Is-
abelle/HOL: A Proof Assistant for Higher-order Logic. Springer-
Verlag, Berlin, Heidelberg, 2002.

[PdAC+16] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casingh-
ino, Marco Gaboardi, Michael Greenberg, C�at�alin Hriµcu, Vil-
helm Sjöberg, and Brent Yorgey. Software Foundations. Elec-
tronic textbook, 2016. Version 4.0. http://www.cis.upenn.edu/
~bcpierce/sf.

http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/26/slides/xavier.pdf
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/26/slides/xavier.pdf
http://www.lexifi.com/technology/contract-description-language
http://www.lexifi.com/technology/contract-description-language
http://www.lexifi.com/files/resources/MLFiWhitePaper.pdf
http://www.lexifi.com/files/resources/MLFiWhitePaper.pdf
http://bitcoin.org/bitcoin.pdf
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf


BIBLIOGRAPHY 134

[PES00] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Com-
posing contracts: an adventure in �nancial engineering (functional
pearl). In Proceedings of the ACM SIGPLAN International Con-
ference on Functional Programming, ICFP'2000, September 2000.

[PI17] Grant Olney Passmore and Denis Ignatovich. Formal veri�cation
of �nancial algorithms. In Leonardo de Moura, editor, Automated
Deduction � CADE 26: 26th International Conference on Auto-
mated Deduction, Gothenburg, Sweden, August 6�11, 2017, Pro-
ceedings, pages 26�41. Springer International Publishing, Cham,
2017.

[Pit06] A. M. Pitts. Alpha-structural recursion and induction. Journal
of the ACM, 53:459�506, 2006.

[Pit13] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Com-
puter Science. Cambridge University Press, New York, NY, USA,
2013.

[Pit16] A. M. Pitts. Nominal techniques. ACM SIGLOG News, 3(1):57�
72, January 2016.

[PS99] Frank Pfenning and Carsten Schürmann. System description:
Twelf - a meta-logical framework for deductive systems. In Pro-
ceedings of the 16th International Conference on Automated De-
duction: Automated Deduction, CADE-16, pages 202�206, Lon-
don, UK, UK, 1999. Springer-Verlag.

[RRD10] Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing
modules. In Proceedings of the 5th ACM SIGPLAN Workshop on
Types in Language Design and Implementation, TLDI '10, pages
89�102, New York, NY, USA, 2010. ACM.

[Shu15] Michael Shulman. Univalence for Inverse Diagrams and Homotopy
Canonicity. Mathematical Structures in Computer Science, pages
1�75, Jan 2015.

[Sim09] SimCorp A/S. XpressInstruments solutions. Company white-
paper. Available at http://simcorp.com, 2009.

[Swa17] A. Swan. Some Brouwerian Counterexamples Regarding Nominal
Sets in Constructive Set Theory. ArXiv e-prints, February 2017.

[Tai67] William W. Tait. Intensional interpretations of functionals of �-
nite type. Journal of symbolic logic, 32:198�212, 1967.

[TMK+16] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony
Fox, Scott Owens, and Michael Norrish. A new veri�ed com-
piler backend for CakeML. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming,
ICFP 2016, pages 60�73, New York, NY, USA, 2016. ACM.

http://simcorp.com


BIBLIOGRAPHY 135

[UBN07] Christian Urban, Stefan Berghofer, and Michael Norrish. Baren-
dregt's variable convention in rule inductions. In Frank Pfen-
ning, editor, Automated Deduction � CADE-21: 21st Interna-
tional Conference on Automated Deduction Bremen, Germany,
July 17-20, 2007 Proceedings, pages 35�50. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2007.

[UK11] Christian Urban and Cezary Kaliszyk. General bindings and
alpha-equivalence in Nominal Isabelle. In Gilles Barthe, editor,
Programming Languages and Systems: 20th European Symposium
on Programming, ESOP 2011, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS
2011, Saarbrücken, Germany, March 26�April 3, 2011. Proceed-
ings, pages 480�500. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2011.

[Uni13] The Univalent Foundations Program. Homotopy Type The-
ory: Univalent Foundations of Mathematics. http://

homotopytypetheory.org/book/, Institute for Advanced Study,
2013.

[UT05] Christian Urban and Christine Tasson. Nominal techniques in
Isabelle/HOL. In Robert Nieuwenhuis, editor, Automated Deduc-
tion � CADE-20: 20th International Conference on Automated
Deduction, Tallinn, Estonia, July 22-27, 2005. Proceedings, pages
38�53. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[VAG+] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al.
UniMath: Univalent Mathematics. Available at https://github.
com/UniMath.

[Voe13] Vladimir Voevodsky. A simple type system with two
identity types. Available at https://ncatlab.org/

homotopytypetheory/files/HTS.pdf, 2013. Unpublished
note.

[Wad87] P. Wadler. Views: A way for pattern matching to cohabit with
data abstraction. In Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages,
POPL '87, pages 307�313, New York, NY, USA, 1987. ACM.

[Wad15] Philip Wadler. Propositions as types. Commun. ACM, 58(12):75�
84, November 2015.

[Woo15] Gavin Wood. Ethereum: A secure decentralised generalised trans-
action ledger, 2015. Homestead revision, Founder, Ethereum &
Ethcore, gavin@ethcore.io.

http://homotopytypetheory.org/book/
http://homotopytypetheory.org/book/
https://github.com/UniMath
https://github.com/UniMath
https://ncatlab.org/homotopytypetheory/files/HTS.pdf
https://ncatlab.org/homotopytypetheory/files/HTS.pdf

	Preface
	Acknowledgments
	Introduction
	Type Theory and the Curry-Howard Correspondence
	Proof Assistants and Certified Programming
	Coq
	Lean
	Agda

	Thesis
	Contributions
	Structure of the Dissertation

	Certified Compilation of Financial Contracts
	Background and Motivation
	The Contract Language
	Syntax and Semantics
	Traces as a Vector Space

	The Payoff Intermediate Language
	Motivation
	Syntax and Semantics

	Compiling Contracts to Payoffs
	Avoiding recompilation

	Formalisation in Coq
	Code Extraction
	Code Generation

	Conclusion

	Formalising Modules
	Motivation
	Normalisation in the Call-by-Value Simply-Typed Lambda Calculus
	Formal Specification
	Semantic objects
	Elaboration
	Enrichment
	Target Language
	Interpretation Objects
	Interpretation Erasure
	Core Language Compilation
	Environment Filtering
	Static Interpretation Rules
	Static Interpretation Normalisation

	Variable Binding and Nominal Techniques
	Formalisation in Coq
	Semantic Objects Representation
	Operations on Semantic Objects

	Induction Principles
	Nominal Techniques in Coq
	Proof of Normalisation of Static Interpretation

	Related Work
	Conclusion and Future Work

	Formalising Two-Level Type Theory
	Introduction
	Motivation
	Two-Level Type Theory
	Applications
	Reedy Fibrant Limits

	Formalisation in Lean
	Working in the Fibrant Fragment
	Internalising the Inverse Diagrams
	Proof of the Fibrant Limit Theorem
	Additional facts

	Other Formalisations
	The Boulier-Tabareau Coq Development
	Experience with Agda

	Conclusion

	Conclusion
	Bibliography

