Chapel:
Parallel Programmability
from Desktops to Supercomputers

Brad Chamberlain, Chapel Team, Cray Inc.
University of Copenhagen
February 4, 2016

=

=Rasyr
cCcHARPEL
—

=/

COMPUTE | STORE | ANALYZE

Safe Harbor Statement .

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

\these forward-looking statements. Y

(%J B Copyright 2016 Cray Inc.

Motivation oo

Q: Why doesn’t HPC programming have an equivalent to \

Python I Matlab l Java l C++ / __(your favorite programming language here) ?

e one that makes it easy to get programs up and running quickly
e one that is portable across system architectures and scales
e one that bridges the HPC, data analysis, and mainstream communities

A: We believe this is due not to any particular technical

challenge, but rather a lack of sufficient...
...long-term efforts

...resources

...community will

...co-design between developers and users
...patience

Chapel is our attempt to change this

PEL

COMPUTE | STORE | ANALYZE

Copyright Cray Inc. @

What is Chapel? . o
e § \
Chapel: An emerging parallel programming language \
e extensible
e portable
e Open-source
e a collaborative effort
e a work-in-progress
Goals:
e Support general parallel programming
e “any parallel algorithm on any parallel hardware”
e Make parallel programming far more productive
= COMPUTE | STORE | ANALYZE
C(-c}ji-"-“i Copyright Cray Inc. @

What does “Productivity” mean to you? o

Recent Graduates: \
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmers:

“that sugary stuff that | don’'t need because | wasbornto-suffer-
want full control

to ensure performance’

J

Computational Scientists:
“something that lets me express my parallel computations
without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

COMPUTE | STORE | ANALYZE

=
B ®
= Copyright Cray Inc.

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures:

D A A S B
BLITTTTTTTTTTTTTTIITTTI]T]
4
CCITTTTT T T T T TTTTTT[TTT]
o H

Z,
@H::::
-2

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel:

Z,
@H::::
-2

STREAM Triad: a trivial parallel computation =R

e \
\

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel (distributed memory):

| | |

i i i

| | |
« @ P B ! B | m

Z_...
G= ®

®
!
CRAaY |

STREAM Triad: a trivial parallel computation .o

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel (distributed memory multicore):

| | |

i - i

| | |
« B P B ! & | m

Z_...
G= ®

STREAM Triad: MPI

#include <hpcc.h>

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

}

int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

MPI Comm_size(comm, &commSize);
MPI Comm rank(comm, &myRank) ;

rv = HPCC_Stream(params, 0 == myRank) ;
MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm) ;

return errCount;

int HPCC_Stream(HPCC_ Params *params, int doIO) {

register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
¢ = HPCC_XMALLOC(double, VectorSize);

/7\ cRese
| CHaPEL
\—J

if ('a || 'b || 'e) {

if (c) HPCC_free(c);
if (b) HPCC free(b):;
if (a) HPcc:free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).
\n", VectorSize);
fclose(outFile);

}

return 1;

}

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;
}

scalar = 3.0;

for (j=0; j<VectorSize; j++)
alj]l = b[jl+scalar*c[j];

HPCC_free(c) ;
HPCC_free (b) ;
HPCC_free(a) ;

STREAM Triad: MPI+OpenMP et N

#include <hpcc.h>

#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

}

int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

MPI Comm_size(comm, &commSize);
MPI Comm rank(comm, &myRank) ;

rv = HPCC_Stream(params, 0 == myRank) ;
MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm) ;

return errCount;

int HPCC_Stream(HPCC_ Params *params, int doIO) {

register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
¢ = HPCC_XMALLOC(double, VectorSize);

7N cman
| CHaPEL

BB @@ g
MPI + OpenMP . . .

if ('a || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC free(b); \
if (a) HPcc:free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).
\n", VectorSize);
fclose(outFile);
}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;
}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++)
alj]l = b[jl+scalar*c[j];

HPCC_free(c) ;
HPCC_free (b) ;
HPCC_free(a) ;

STREAM Triad: MPI+OpenMP vs. CUDA S

MPI1 + OpenMP m

#ifdef _OPENMP

#include <omp.h>
#endif
static int VectorSize; - - - -
static double *a, *b, *c; . I . I . I .
]]]
int HPCC_StarStream (HPCC_Params *params) {
int myRank, commSize;

int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI Comm size(comm,
MPI_Comm_rank (comm,

&commSize) ;
&myRank) ;

rv = HPCC_Stream(params, 0 == myRank);

MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

#define N 2000000
int main() {
float *d_a, *d b, *d_c;

float scalar;

cudaMalloc((void**)&d a,
cudaMalloc((void**)&d b,
cudaMalloc((void**)&d c,

A A ar__w _ _1_s11AnN

sizeof (float) *N) ;
sizeof (float) *N) ;
sizeof (float) *N) ;

HPC suffers from too many distinct notations for expressing parallelism and locality

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a
b
c

HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);

if (ta || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile,
fclose(outFile);

"Failed to allocate memory (%d).\n", VectorSize);

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j]l = 2.0;
c[j] = 0.0;

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j]l = b[jl+scalar*c[]j];

HPCC_free(c);
HPCC_free (b) ;
HPCC_free(a);

return O;

/5\v==Aw
CHAaPEL
kﬁ?

set_array<<<dimGrid,dimBlock>>>(d b,
set_array<<<dimGrid,dimBlock>>>(d c,

scalar=3.0f;

.5£, N);
.5£, N);

STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d_a, scalar, N);
cudaThreadSynchronize () ;
cudaFree (d_a);
cudaFree (d_b) ;
cudaFree(d_c);
__global void set_array(float *a, float value, int len) ({
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = wvalue;
}
__global void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];
}

Why so many programming models? . o

HPC tends to approach programming models bottom-up: \

Given a system and its core capabilities...
...provide features that can access the available performance.
e portability, generality, programmability: not strictly necessary.

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable
Intra-node/multicore OpenMP / pthreads iteration/task
Instruction-level vectors/threads pragmas iteration
GPU/accelerator CUDA / Open[CL|MP|ACC] SIMD function/task

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

N mar
cHaPEL

Rewinding a few slides...

MPI1 + OpenMP %

#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c; . I . I . I .
]]
int HPCC_StarStream (HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;

MPI_Comm comm = MPI_COMM_WORLD;

MPI Comm size(comm, &commSize);
MPI_Comm_rank(comm, &myRank) ;

rv = HPCC_Stream(params, 0 == myRank);
MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

T ITITIEIrITTrao

#define N

int main() {

2000000

float *d a, *d b, *d_c; s!'s ! 8! S
float scalar;

cudaMalloc((void**) &d a, sizeof (float) *N);
cudaMalloc((void**) &d b, sizeof (float) *N);
cudaMalloc((void**) &d c, sizeof (float) *N);

A A ar__w _ _1_s11AnN

HPC suffers from too many distinct notations for expressing parallelism and locality

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a
b
c

HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);

if (ta || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j]l = 2.0;
c[j] = 0.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j]l = b[jl+scalar*c[]j];

HPCC_free(c);
HPCC_free (b) ;
HPCC_free(a);

return O;

/5\ e
CHAPEL
N

}

set_array<<<dimGrid,dimBlock>>>(d b,
set_array<<<dimGrid,dimBlock>>>(d c,

.5£, N);
.5£, N);

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d_a, scalar,
cudaThreadSynchronize () ;

N) ;

cudaFree (d_a);
cudaFree (d_b) ;
cudaFree(d_c);

global void set_array(float *a, float value,
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = wvalue;

int len) {

global void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) c[idx] = a[idx]+scalar*b[idx];

STREAM Triad: Chapel

config const m = 1000,
alpha = 3.0;

var A, B, C: [ProblemSpace]
B =2.0;

C = 3.0;

A =B + alpha * C;

const ProblemSpace = {1l..m}(dmapped ..;

real;

. the special
sauce

Philosophy: Good, fop-down language design can tease system-specific
implementation details away from an algorithm, permitting the compiler,
runtime, applied scientist, and HPC expert to each focus on their strengths.

Outline

v Motivation

» Chapel's Design Themes

e Survey of Chapel Concepts

e Project Status and Next Steps

@ COMPUTE | STORE

PEL

~~"7% Copyright Cray Inc.

ANALYZE

Design Themes for Chapel

1) General Parallel Programming

2) Reduce HPC — Mainstream Language Gap
3) Multiresolution Design

4) Global-View Abstractions

5) Control over Locality/Affinity

~__

Design Themes for Chapel

1) General Parallel Programming
2) Reduce HPC — Mainstream Language Gap
3) Multiresolution Design

4) Global-View Abstractions

_ o We'll cover these as we go
5) Control over Locality/Affinity }

COMPUTE | STORE | ANALYZE

@::.t
=y Copyright Cray Inc.

1) General Parallel Programming N

With a unified set of concepts... \

...target any hardware parallelism available in the system
e Types: machines, nodes, accelerators, cores, instructions

...express any software parallelism desired by the user
o Styles: data-parallel, task-parallel, concurrency, nested, ...
e Levels: model, function, loop, statement, expression

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node Chapel task (or executable)
Intra-node/multicore Chapel iteration/task
Instruction-level vectors/threads Chapel iteration
GPU/accelerator Chapel SIMD function/task

N cmaer
GHAl:E -
=

2) Reduce HPC — Mainstream Language Gap =|=A:Yf ~

e \
\

Consider: \
e Students graduate with training in Java, Matlab, Python, etc.
e Yet HPC programming is dominated by Fortran, C/C++, MPI, ...

We'd like to narrow this gulf with Chapel:
e to leverage advances in modern language design
e to better utilize the skills of the entry-level workforce...

...while not alienating the traditional HPC programmer
e e.g., support object-oriented programming, but make it optional

COMPUTE | STORE | ANALYZE

=% Copyright Cray Inc.

3) Multiresolution Design: Motivation

Low-Level

MPI

Implementation
Concepts

Target Machine

“Why is everything so tedious/difficult?”

“‘Why don’t my programes trivially port
fo new systems?”

EEA™ High-Level
(ZPL | Abstractions

Target Machine

“Why don’t I have more control?”

3) Multiresolution Design A

Multiresolution Design: Support multiple tiers of features
e higher levels for programmability, productivity
e |ower levels for greater degrees of control
Chapel language concepts

(Domain Maps)
Data Parallelism

Task Parallelism
Base Language

Locality Control

Target Machine

e build the higher-level concepts in terms of the lower
e permit the user to intermix layers arbitrarily

7\' cRese
CHAPEL
=

Outline

v

v
» Survey of Chapel Concepts

(Domain Maps
Data Parallelism

Task Parallelism

Base Language

Locality Control

Target Machine

e Project Status and Next Steps

N mar
cHaPEL

Lower-level Chapel

Outline .

v
v

» Survey of Chapel Concepts

(Domain Maps
Data Parallelism
Task Parallelism

) 1 Base Language
Locality Control

Lower-level Chapel

Target Machine

e Project Status and Next Steps

N mar
cHaPEL

Static Type Inference .
const pi = 3.14, // pil is a real
coord = 1.2 + 3.4i, // coord is a complex..
coord2 = pi*coord, // ..as 1s coordZ2
name = “brad”, // name 1s a string
verbose = false; // verbose 1s boolean
proc addem (x, y) { // addem () has generic arguments
return x + y; // and an inferred return type
}
var sum = addem(l, pi), // sum 1s a real
fullname = addem(name, “ford”); // fullname is a string
writeln ((sum, fullname)):;

(4.14, bradford)

const r = 1..10;

printVals

proc printVals (r)
for 1 in r do
write (i, “)
writeln () ;

(r);
printVals(r # 3);
printVals (r by 2);
printVals (r by -2);
printVals(r by 2 # 3);
printVals(r # 3 by 2);
printvVals (0.. #n);

{

4 567 8 9 10

3
3
5

7 9
8 6 4 2

Ilterators

C)

iter fibonacci (n)
var current = 0,
next = 1;
for 1..n {
yield current;
current += next;

current <=> next;

~

iter tiledRMO (D, tilesize) {
const tile = {0..#tilesize,
0..#tilesize};
for base in D by tilesize do
for ijJ in D[tile + base] do
yield ij;

for £ in fibonacci (7)

writeln (£f) ;

for ij in tiledRMO({1..m,
write(ij);

1..n}, 2) dé]

CcHAaPEL

(1,1)(1,2) (2,1) (2,2)
(1,3)(1,4) (2,3) (2,4)
(1,3) (1,6) (2,3) (2,6)

"(.3,1) (3,2) (4,1) (4,2)

Zippered Iteration

for (i,f) in zip(0..#n,
writeln (“fib #”, i, ™

fibonacci (n))

144

1s Y, L):

do1

Other Base Language Features

e tuple types and values

e interoperability features

e OOP (value- and reference-based)

e modules (for namespace management)
e rank-independent programming features

e compile-time features for meta-programming
e e.g., compile-time functions to compute types, parameters

e argument intents, default values, match-by-name

e overloading, where clauses

Outline

v
v

» Survey of Chapel Concepts

¢

 md Task Parallelism

Domain Maps

Data Parallelism

Base Language
Locality Control

Target Machine

e Project Status and Next Steps

Task Parallelism: Begin Statements

// create a fire-and-forget task for a statement
begin writeln (“hello world”);
writeln (“goodbye”) ;

Possible outputs:

hello world goodbye
goodbye hello world

Task Parallelism: Coforall Loops

// create a task per iteration
coforall t in O..#numTasks {

writeln (“Hello from task ”, t, ™ of ”, numTasks);
Y // implicit join of the numTasks tasks here

writeln (“All tasks done”);

Sample output:

Hello from task 2
Hello from task O

Hello from task 3
Hello from task 1
All tasks done

Other Task Parallel Concepts . o

cobegins: create tasks using compound statements \

atomic variables: support atomics ops, similar to modern C++

sync/single variables: support producer/consumer patterns

sync statements: join unstructured tasks

serial statements: conditionally squash parallelism

Outline

v
v

» Survey of Chapel Concepts

C Domain Maps
Data Parallelism
Task Parallelism
Base Language
Locality Control

Theme 4: Control over
Locality/Affinity

Target Machine

e Project Status and Next Steps

N mar
cHaPEL

The Locale Type . o

Definition: |
e Abstract unit of target architecture

e Supports reasoning about locality
e defines “here vs. there” / “local vs. remote”

e Capable of running tasks and storing variables
e i.e., has processors and memory

Typically: A compute node (multicore processor or SMP)

g COMPUTE | STORE | ANALYZE
C@-‘L Copyright Cray Inc. @

Getting started with locales

e Specify # of locales when running Chapel programs

$ a.out —-—-numLocales=8 $ a.out —nl 8

e Chapel provides built-in locale variables

config const numlLocales: int = ..;
const Locales: [O..#numLocales] locale = ..;
Locales LO L1 L2 L3 L4 L5 L6 L7

e User'smain () begins executing on locale #0

Locale Operations .

e Locale methods support queries about the target system:

proc locale.physicalMemory(..) { .. }\
proc locale.numCores { .. }

proc locale.id { .. }

proc locale.name { .. }

e On-clauses support placement of computations:

writeln (Y“on locale 07); \\ on A[i,j] do A

bigComputation (A) ;
on Locales[1l] do

writeln (“now on locale 17); on node.left do

search (node.left) ;

writeln (Yon locale 0 again”);

Parallelism and Locality: Orthogonal in Chapel R

e This is a parallel, but local program: \

begin writeln (“Hello world!”);
writeln (“"Goodbye!”) ;

e This Is a distributed, but serial program:

writeln (“Hello from locale 0!”);
on lLocales[l] do writeln(“Hello from locale 1!”);
writeln (“"Goodbye from locale 0!”);

e This is a distributed and parallel program:

~
begin on Locales[l] do writeln(“Hello from locale 1!”);

on Locales[2] do begin writeln(“Hello from locale 2!”);
writeln (“Goodbye from locale 0!”);

.

Chapel: Scoping and Locality

var 1i: int;

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

DD
@::;:
= Copyright Cray Inc.

Chapel: Scoping and Locality

var 1: int;
on Locales[1l] {

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

DD
@::;:
= Copyright Cray Inc.

Chapel: Scoping and Locality

var 1: int;
on Locales[1l] {
var j: int;

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

DD
@::;:
= Copyright Cray Inc.

Chapel: Scoping and Locality

var 1: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

=
@::;:
= Copyright Cray Inc.

Chapel: Scoping and Locality o

var i: int; |
on Locales[1l] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
// within this scope, i, j, and k can be referenced. For example:
k = 2%i + 3;
// The implementation manages any communication.

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

=
=/ Copyright Cray Inc.

Chapel: Locality queries o

var 1: int; |
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;

.here.. // query the locale on which this task is running
..J.locale.. //query the locale on which | is stored

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

=
= Copyright Cray Inc.

Outline

v Motivation

v’ Chapel's Design Themes

» Survey of Chapel Concepts

¢

Domain Maps

Base Language
Locality Control

Target Machine

e Project Status and Next Steps

~__

) Higher-level Chapel

Outline O\

v Motivation \
v’ Chapel's Design Themes

» Survey of Chapel Concepts Theme 5: Global-view

Abstractions

—(/ Domain Maps)
g Higher-level Chapel

Base Language
Locality Control

Target Machine

e Project Status and Next Steps

Data Parallelism By Example: STREAM Triad

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

+ 1l

a .

A = B + alpha * C;

7z
@H::::
-2

STREAM Triad: Chapel (multicore) N

const ProblemSpace = {1..m};

HEN//SEEEEEEEEEEEEEEEEEEE

var A, B, C: [ProblemSpace] real;

A = B + alpha/* C; _ o
No domain map specified = use default layout

* current locale owns all domain indices and array values
« computation will execute using local processors only

7~
Q@HAﬂ =l
=/

\
. . CRAY |

STREAM Triad: Chapel (multilocale, blocked) .o

Q
)
Q@ O |||||||;|||||;| ||||;|||||||| [TT1T111 5 \
const ProblemSpace = {1..m}
dmapped Block (boundingBox={1..m}) ;
IIIIIIiIIIII;IIIIIiIIIIII

var A, B, C: [ProblemSpace] real;

+ 1l

o L T T T T T T]

A =B + alpha * C;

.

STREAM Triad: Chapel (multilocale, cyclic) 0

<:||:III (| I:: [B | I_i_i_;_l (I | IIIE’I:> \

const ProblemSpace = {1..m}
dmapped Cyclic (startIdx=1);
11
11

IIIIIIIIIIII_!_!_!_IIIIII

var A, B, C: [ProblemSpace] real;

cH T -
B Y TS ENNF RS
o

A = B + alpha * C;

(&= ®

STREAM Triad: Chapel

config const m = 1000,
alpha = 3.0;

var A, B, C: [ProblemSpace]
B =2.0;

C = 3.0;

A =B + alpha * C;

const ProblemSpace = {1l..m}(dmapped ..;

real;

. the special
sauce

Philosophy: Good, fop-down language design can tease system-specific
implementation details away from an algorithm, permitting the compiler,
runtime, applied scientist, and HPC expert to each focus on their strengths.

Chapel has Many Types of Domains/Arrays . o

—
b o
I R w R 1~
E O
O

__I_l__l_l____.

: : T | |
dense strided -sparse

associative unstructured

LULESH: a DOE Proxy Application . o

Goal: Solve one octant of the spherical Sedov problem (blast \
wave) using Lagrangian hydrodynamics for a single material

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

N cmaer
EHAl:s -
=

LULESH in Chapel

LULESH in Chapel . o

1288 lines of source code
plus 266 lines of comments
487 blank lines

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This can be found in Chapel v1.9 in examples/benchmarks/lulesh/*.chpl

LULESH in Chapel S

It spemfles
: - data structure ChOlces

< local vs. distributed data
* sparse vs. dense materlals arrays
. a few supportlng |terators

N mar
cHaPEL

Domain Maps . o

Domain maps are “recipes” that instruct the compiler how \
to map the global view of a computation...

...to the target locales’ memory and processors:

| |
! !
| |
! !
+ | + |
| |
! !
| |
[[

Locale 1

(&= ®

Chapel’s Domain Map Philosophy o
1. Chapel provides a library of standard domain maps \
e to support common array implementations effortlessly

2. Expert users can write their own domain maps in Chapel
e to cope with any shortcomings in our standard library

Domain Maps

Task Parallelism

Base Language
Locality Control

3. Chapel’s standard domain maps are written using the

same end-user framework
e to avoid a performance cliff between “built-in” and user-defined cases

For More Information on Domain Maps . o

HotPAR’10: User-Defined Distributions and Layouts in Chapel:
Philosophy and Framework
Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:

e Technical notes detailing the domain map interface for implementers:
http://chapel.cray.com/docs/latest/technotes/dsi.html
e Current domain maps:
$CHPL_HOME/modules/dists/*.chpl
layouts/*.chpl
internal/Default*.chpl

Two Other Thematically Similar Features .

1) parallel iterators: Permit users to specify the parallelism and

work decomposition used by forall loops
e including zippered forall loops

2) locale models: Permit users to model the target architecture

and how Chapel should be implemented on it
e e.g., how to manage memory, create tasks, communicate, ...

Like domain maps, these are...
...written in Chapel by expert users using lower-level features
e e.g., task parallelism, on-clauses, base language features, ...
...available to the end-user via higher-level abstractions
e e.9., forall loops, on-clauses, lexically scoped PGAS memory, ...

COMPUTE | STORE | ANALYZE

=
@::.t
= Copyright Cray Inc.

Language Summary .

HPC programmers deserve better programming models

Higher-level programming models can help insulate
algorithms from parallel implementation details
e yet, without necessarily abdicating control
e Chapel does this via its multiresolution design

e domain maps, parallel iterators, and locale models are all examples
e avoids locking crucial policy decisions into the language definition

We believe Chapel can greatly improve productivity
...for current and emerging HPC architectures
...for HPC users and mainstream uses of parallelism at scale

COMPUTE | STORE | ANALYZE

=
@::.t
= Copyright Cray Inc.

Outline

v Motivation

v Chapel's Design Themes

v Survey of Chapel Concepts

» Project Status and Next Steps

= COMPUTE | STORE

= Copyright 2016 Cray Inc.

ANALYZE

Chapel is Portable . o

e Chapel’s design is intended to be hardware-independent

e The current release requires:
e a C/C++ compiler
e a *NIX environment (Linux, OS X, BSD, Cygwin, ...)
e POSIX threads
e (for distributed execution): support for RDMA, MPI, or UDP

e Chapel can run on...
...laptops and workstations
...commodity clusters
...the cloud
...HPC systems from Cray and other vendors
...modern processors like Intel Xeon Phi, GPUs*, etc.

* = academic work only; not yet supported in the official release
(a\\\ COMPUTE | STORE | ANALYZE
(oo

=% Copyright Cray Inc.

Chapel is Open-Source

e Chapel’s development is hosted at GitHub
e https://github.com/chapel-lang

e Chapel is licensed as Apache v2.0 software

e Instructions for download + install are online
e see http://chapel.cray.com/download.html to get started

A Year in the Life of Chapel . o

e Two major releases per year (April / October) \
e ~a month later: detailed release notes

e CHIUW: Chapel Implementers and Users Workshop (May/June)
e (3" annual) CHIUW 2016 will be held at IPDPS (Chicago, IL)

e SC (Nov)
e tutorials, panels, BoFs, posters, educator sessions, exhibits, ...
e annual CHUG (Chapel Users Group) happy hour

e Talks, tutorials, research visits, blog posts, ... (year-round)

i
CcC=RANY

The Chapel Team at Cray (Spring 2015) .o

\
; B, S 7 !
' - . » 7 e
— . /#”
1 o . v s
g7 BE 2 '
,’~ : '
LA -“ !
~d Etad
. "3
- " p— - \
o’ a E
o
% L

/%

Chapel is a Collaborative Effort . o

<Y : LABORATORY FOR
U‘ E 4 L I TELECOMMUNICATIONS m o @
A “ SCIENCES ZurlCh

B Lawrence Livermore

National Laboratory Sandia National Laboratories
l" frereer I/l} OAK %/
| RIDGE Pacific Northwest
A rgo n n e NATIONAL LABORATORY
BERKELEY LAB NATIONAL LABORATORY National Laboratory Proudly Operated by Baftelle Since 1965

Lawrence Berkeley
National Laboratory

Y yma R
— N . 2\) ‘
% E"\ j: § UNIVERSIDAD UNIVERSITY OEF

C ’ THE UNIVERSITY OF TOKYO DE MALAGA MARYLAND

(and many others as well...)

http://chapel.cray.com/collaborations.html

=~
N

Chapel is a Work-in-Progress

e Currently being picked up by early adopters
e Users who try it generally like what they see
e Last release got 1400+ downloads over six months

o Most features are functional and working well

e some areas need improvements: strings, object-oriented features, ...

e Performance can be hit-or-miss
e shared memory performance is often competitive with C+OpenMP
e distributed memory performance needs more work

e We are actively working to address these lacks

@ COMPUTE | STORE | ANALYZE

PEL

=% Copyright Cray Inc.

Stream-EP Performance Over Time KOO

Stream EP Performance Across Chapel Releases |

- (128 nodes)
90

Q 80

-8 70

c 60

L

QD 5o

Q.

7)) 40

Q- —MPI+OpenMP
20 —
o —Chapel
0 | | I
v1.9 v1.10 v1.11 v1.12

Chapel version (six-months per release)

Chapel Resources: For More Information

Chapel Websites o

Project page: http://chapel.cray.com
e overview, papers, presentations, language spec, ...

GitHub page: https://github.com/chapel-lang
e download Chapel; browse source repository; contribute code

Facebook page: https://www.facebook.com/ChapelLanguage

(__ Chapel highlights
_ taskParallel.chpl Chapel Programming Language

Neoforall 1oc in 1ocs IS ON Facebook.
on loc {

- const numrtasks « 10 connect with Chapel Programming Language, sign up for Facebook today.
coforall tid in
writef (“Hell Sign Up
)
dataParallel.chpl
icDist;

Parallel

Timeline About Photos Likes Videos

b cmece
A PEL

(€ @

Suggested Chapel Reading .

Chapel chapter from Programming Models for Parallel Computing
e published by MIT Press
e a detailed overview of Chapel’s history, motivating themes, features
e an early draft is available online,
entitled A Brief Overview of Chapel

PROGRANMMING
MODELS
FOR PARALLEI

COMPUTING

epiTep Y PAVAN BALAJ

Other Chapel papers/publications available at http://chapel.cray.com/papers.html

Chapel Blog Articles o

Chapel: Productive Parallel Programming, Cray Blog, May 2013. \
e a short-and-sweet introduction to Chapel

Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
e a series of articles illustrating the basics of parallelism and locality in Chapel

Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.
e a series of articles answering common questions about why we are pursuing
Chapel in spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, IEEE TCSC Blog

(index available on chapel.cray.com “blog articles” page), Apr-Nov 2012.
e a series of technical opinion pieces designed to arque against standard
reasons given for not developing high-level parallel languages

COMPUTE | STORE | ANALYZE

e @
Copyright Cray Inc.

Chapel Mailing Aliases .

read-only:
chapel-announce@lists.sourceforge.net: announcements about Chapel

read/write:
chapel-users@lists.sourceforge.net: user-oriented discussion list
chapel-developers@lists.sourceforge.net: developer discussions
chapel-education@lists.sourceforge.net: educator discussions
chapel-bugs@lists.sourceforge.net: public bug forum

write-only:
chapel_info@cray.com: contact the team at Cray
chapel bugs@cray.com: for reporting non-public bugs

Subscribe at SourceForge: http://sourceforge.net/p/chapel/mailman/
e (also serves as an alternate release download site to GitHub)

= COMPUTE | STORE | ANALYZE
@\-.h Copyright Cray Inc.

Questions?

=
=

=Rasyr
cCcHARPEL
—

COMPUTE

| STORE |

Copyright 2016 Cray Inc.

ANALYZE

\
- . (el — PPN
Legal Disclaimer . o
Information in this document is provided in connection with Cray Inc. products. No license, express or “ \ \

implied, to any intellectual property rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without noftice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other

countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICEZ2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2016 Cray Inc.

(&= @

\ cRANyY

CHHAaARPRPEL
=/

CRANY

THE SUPERCOMPUTER COMPANY

OC V_Iapp_ue J mro.g: Ccr

