
Bohrium: Unmodified NumPy Code on CPU, GPU,
and Cluster

Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, Kenneth Skovhede, and Brian Vinter
Niels Bohr Institute, University of Copenhagen, Denmark

{madsbk/safl/blum/skovhede/vinter}@nbi.dk

Abstract—In this paper we introduce Bohrium, a runtime-
system for mapping array-operations onto a number of different
hardware platforms, from multi-core systems to clusters and
GPU enabled systems. As a result, the Bohrium runtime system
enables NumPy code to utilize CPU, GPU, and Clusters. Bohrium
integrates seamlessly into NumPy through the implicit data
parallelization of array operations, which are called Universal
Functions in NumPy. Bohrium requires no annotations or other
code modifications besides changing the original NumPy import
statement to: “import bohrium as numpy”.

We evaluate the presented design through a setup that
targets a multi-core CPU, an eight-node Cluster, and a GPU, all
implemented as preliminary prototypes. The evaluation includes
three well-known benchmark applications, Black Sholes, Shallow
Water, and N-body, implemented in Python/NumPy.

I. INTRODUCTION

The popularity of the Python programming language is
growing in the HPC community. Python is a high-productivity
programming language that focus on high-productivity rather
than high-performance thus it might seem paradoxical that
such a language would gain popularity in HPC. However,
Python is easily extensible with libraries implemented in high-
performance languages such as C and FORTRAN, which
makes Python a great tool for gluing high-performance li-
braries together[1].

NumPy is the de-facto standard for scientific applications
written in Python[2]. It provides a rich set of high-level
numerical operations and introduces a powerful array object.
NumPy supports a declarative vector programming style where
numerical operations operate on full arrays rather than scalars.
This programming style is often referred to as vector or
array programming and is commonly used in programming
languages and libraries that target the scientific community,
e.g. HPF[3], MATLAB[4], Armadillo[5], and Blitz++[6].

A major shortcoming of Python/NumPy is the lack of
thread-based concurrency. The de-facto Python interpreter,
CPython, uses a Global Interpreter Lock to serialize concurrent
execution of Python bytecode thus parallelism in restricted to
external libraries. Similarly, NumPy does not parallelize array
operations but might use external libraries, such as BLAS or
FFTW, that do support parallelism.

The result is that Python/NumPy is great for gluing HPC
code together, but often it cannot stand by itself. In this paper,
we introduce a framework that addresses this issue. We intro-
duce a runtime system, Bohrium, which seamlessly executes
NumPy array operations in parallel. Through Bohrium, it is
possible to utilize CPU, GPU, and Clusters without changing

the original Python/NumPy code besides adding the import
statement: “import bohrium as numpy”.

In order to couple NumPy with the execution back-end,
Bohrium uses an intermediate vector bytecode that correspond
to the NumPy array operations. The execution back-end is then
able to execute the intermediate vector bytecode without any
Python/NumPy knowledge, which also makes Bohrium usable
for any programming language. Additionally, the intermediate
vector bytecode solves the Python import problem where the
“import numpy” instruction overwhelms the file-system in
supercomputers[7], [8]. With Bohrium, only a single node
needs to run the Python interpreter, the remaining nodes
execute the intermediate vector bytecode directly.

The version of Bohrium we present in this paper is
a proof-of-concept implementation that supports the Python
programming language through a Bohrium implementation
of NumPy1. However, the Bohrium project also supports
additional languages, such as C++ and Common Intermedi-
ate Language (CIL)2, which we have described in previous
work [9]. The proof-of-concept implementation supports three
computer architectures: CPU, GPU, and Cluster.

II. RELATED WORK

The key motivation for Bohrium is to provide a frame-
work for the utilization of diverse and complex comput-
ing systems, with the goal of obtaining high-performance,
high-productivity and high-portability, HP 3. Systems such as
pyOpenCL/pyCUDA[10] provides tools for interfacing a high
abstraction front-end language with kernels written for specific
potentially exotic hardware. In this case, lowering the bar for
harvesting the power of modern GPU’s, by letting the user
write only the GPU-kernels as text strings in the host language
Python. The goal is similar to that of Bohrium – the approach
however is entirely different. Bohrium provides a means to
hide low-level target specific code behind a programming
model and providing a framework and runtime environment
to support it.

Bohrium is more closely related to the work described in
[11], where a compilation framework, unPython, is provided
for execution in a hybrid environment consisting of both
CPUs and GPUs. The framework uses a Python/NumPy based
front-end that uses Python decorators as hints to do selective
optimizations. Bohrium performs data-centric optimizations on
vector operations, which can be viewed as akin to selective
optimizations, in the respect that we do not optimize the

1The implementation is open-source and available at www.bh107.org
2also known as Microsoft .NET

program as a whole. However, we find that the approach used
in the Bohrium Python interface is much less intrusive. All
arrays are by default handled by Bohrium – no decorators
are needed or used. This approach provides the advantage
that any existing NumPy program can run unaltered and take
advantage of Bohrium without changing a single line of code.
In contrast, unPython requires the user to modify the source
code manually, by applying hints in a manner similar to that
of OpenMP. The proposed non-obtrusive design at the source
level is to the author’s knowledge novel.

Microsoft Accelerator [12] introduces ParallelArray, which
is similar to the utilization of the NumPy arrays in Bohrium
but there are strict limitations to the utilization of Paral-
lelArrays. ParallelArrays does not allow the use of direct
indexing, which means that the user must copy a ParallelArray
into a conventional array before indexing. Bohrium instead
allows indexed operations and additionally supports vector-
views, which are vector-aliases that provide multiple ways
to access the same chunk of allocated memory. Thus, the
data structure in Bohrium is highly flexible and provides
elegant programming solutions for a broad range of numerical
algorithms. Intel provides a similar approach called Intel Array
Building Blocks (ArBB) [13] that provides retargetability
and dynamic compilation. It is thereby possible to utilize
heterogeneous architectures from within standard C++. The
retargetability aspect of Intel ArBB is represented in Bohrium
as a simple configuration file that defines the Bohrium runtime
environment. Intel ArBB provides a high performance library
that utilizes a heterogeneous environment and hides the low-
level details behind a declarative vector-programming model
similar to Bohrium. However, ArBB only provides access to
the programming model via C++ whereas Bohrium is not
limited to any one specific front-end language.

On multiple points, Bohrium is closely related in func-
tionality and goals to the SEJITS [14] project, but takes a
different approach towards the front-end and programming
model. SEJITS provides a rich set of computational kernels in
a high-productivity language such as Python or Ruby. These
kernels are then specialized towards an optimality criterion .
The programming model in Bohrium does not provide this
kernel methodology, but deduces computational kernels at
runtime by inspecting the flow of vector bytecode.

Bohrium provides, in this sense, a virtual machine opti-
mized for execution of vector operations. Previous work [15]
was based on a complete virtual machine for generic execution
whereas Bohrium provides an optimized subset.

III. THE FRONT-END LANGUAGE

To hide the complexities of obtaining high-performance
from the diverse hardware making up modern computer sys-
tems any given framework must provide a meaningful high-
level abstraction. This can be realized in the form of domain
specific languages, embedded languages, language extensions,
libraries, APIs etc. Such an abstraction serves two purposes:
(1) It must provide meaning for the end-user such that the goal
of high-productivity can be met with satisfaction. (2) It must
provide an abstraction that consists of a sufficient amount of
information for the system to optimize its utilization.

1 i m p o r t bohrium as numpy
2 solve (grid , epsilon) :
3 center = grid [1 : - 1 , 1 : - 1]
4 north = grid [- 2 : , 1 : - 1]
5 south = grid [2 : , 1 : - 1]
6 east = grid [1 : - 1 , : 2]
7 west = grid [1 : - 1 , 2 :]
8 delta = epsilon+1
9 w h i l e delta > epsilon :

10 tmp = 0 . 2 * (center+north+south+east+west)
11 delta = numpy .sum (numpy .abs (tmp -center))
12 center [:] = tmp

Fig. 1: Python/NumPy implementation of the heat equation solver. The grid
is a two-dimensional NumPy array and the epsilon is a Python scalar. Note
that the first line of code imports the Bohrium module instead of the NumPy
module, which is all the modifications needed in order to utilize the Bohrium
runtime system.

Bohrium does not introduce a new programming language
and is not biased towards any specific choice of abstraction
or front-end technology. However, the front-end must be
compatible with the declarative vector programming model and
support vector slicing, also known as vector or matrix slicing
[3], [4], [16], [17]. Bohrium introduces bridges that integrate
existing languages into the Bohrium runtime system.

The Python Bridge is an extension of NumPy version
1.6, which seamlessly implements a new array back-end that
inherits the manipulation features, such as slice, reshape, offset,
and stride. As a result, the user only needs to modify the import
statement of NumPy (Fig. 1) in order to utilize Bohrium.

The Python Bridge uses hooks to divert function call where
the program accesses Bohrium enabled NumPy arrays. The
hooks will translate a given function into its corresponding
Bohrium bytecode when possible. When it is not possible, the
hooks will feed the function call back into NumPy and thereby
forces NumPy to handle the function call itself. The Bridge
operates with two address spaces for arrays: the Bohrium space
and the NumPy space. The user can explicitly assign new
arrays to either the Bohrium or the NumPy space through
a new array creation parameter. In two circumstances, it is
possible for an array to transfer from one address space to the
other implicitly at runtime.

1) When an operation accesses an array in the Bohrium
address space but it is not possible for the bridge to
translate the operation into Bohrium bytecode. In this
case, the bridge will synchronize and move the data
to the NumPy address space. For efficiency, no data is
actually copied. Instead, the bridge uses the mremap
function to re-map the relevant memory pages when
the data is already present in main memory.

2) When an operations accesses arrays in different ad-
dress spaces the Bridge will transfer the arrays in the
NumPy space to the Bohrium space.

In order to detect direct access to arrays in the Bohrium
address space by the user, the original NumPy implementation,
a Python library, or any other external source, the bridge
protects the memory of arrays that are in the Bohrium address
space using mprotect. Because of this memory protection,
subsequently accesses to the memory will trigger a segmen-
tation fault. The Bridge can then handle this kernel signal by

Bridge

Vector Engine
Manager

Vector Engine
Manager

Vector Engine
Manager

Vector
Engine

Vector
Engine

Vector
Engine

Vector
Engine

Bridge is language bindings and interface to
Bohrium, currently for NumPy

VEM has a simple interface and can support
hierarchical setups. The VEM can distribute
and load-balance as required.

Node level VEM knows about hardware
features and schedules operations optimally
on hardware.

VE's are the workhorses and know how to
implement elementwise operations and
composite operations, currently on CPU and
GPU

Fig. 2: Bohrium Overview

transferring the array to the NumPy address space and cancel
the segmentation fault. This technique makes it possible for the
Bridge to support all valid Python/NumPy application, since it
can always fall back to the original NumPy implementation.

To reduce the overhead related to generating and processing
the bytecode, the Bohrium Bridge uses lazy evaluation for
recording instruction until a side effect can be observed.

IV. THE BOHRIUM RUNTIME SYSTEM

The key contribution in this work is a framework, Boh-
rium, which significantly reduces the costs associated with
high-performance program development. Bohrium provides the
mechanics to couple a programming language or library with
an architecture-specific implementation seamlessly.

Bohrium consists of a number of components that com-
municate by exchanging a Vector Bytecode3. Components are
allowed to be architecture-specific but they are all interchange-
able since all uses the same communication protocol. The idea
is to make it possible to combine components in a setup that
match a specific execution environment. Bohrium consist of
the following three component types (Fig. 2):

Bridge The role of the Bridge is to integrate Bohrium into
existing languages and libraries. The Bridge generates the
Bohrium bytecode that corresponds to the user-code.

Vector Engine Manager (VEM) The role of the VEM is
to manage data location and ownership of arrays. It
also manages the distribution of computing jobs between
potentially several Vector Engines, hence the name.

Vector Engine (VE) The VE is the architecture-specific im-
plementation that executes Bohrium bytecode.

When using the Bohrium framework, at least one imple-
mentation of each component type must be available. However,
the exact component setup depends on the runtime system and
what hardware to utilize, e.g. executing NumPy on a single ma-
chine using the CPU would require a Bridge implementation
for NumPy, a VEM implementation for a machine node, and
a VE implementation for a CPU. Now, in order to utilize a
GPU instead, we can exchange the CPU-VE with a GPU-VE
without having to change a single line of code in the NumPy
application. This is a key contribution of Bohrium: the ability

3The name vector is roughly the same as the NumPy array type, but from
a computer architecture perspective vector is a more precise term

Bridge for NumPy
[numpy]
type = bridge
children = node

Vector Engine Manager for a single machine
[node]
type = vem
impl = libbh_vem_node .so
children = gpu

Vector Engine for a GPU
[gpu]
type = ve
impl = lbbh_ve_gpu .so

Fig. 3: This example configuration provides a setup for utilizing a GPU on
one machine by instructing the Vector Engine Manager to use the GPU Vector
Engine implemented in the shared library lbhvb_ve_gpu.so.

base

type

ndim

start

shape

stride

data

*

*

float64

3

0

2 2 2

7 3 1

0 1 2 3 4 5 6

7 8 9 10 11 12 13

Inner dimension

Middle dimension

O
u
t
e
r

d
i
m
e
n
s
i
o
n

Data structure Data layout

Skip by stride

7 8

11 10

0 1

3 4

Seen 3d-array

Fig. 4: Descriptor for n-dimensional array and corresponding interpretation

to change the execution hardware without changing the user
application.

A. Configuration

To make Bohrium as flexible a framework as possible, we
manage the setup of all the components at runtime through
a configuration file. The idea is that the user or system
administrator can specify the hardware setup of the system
through an ini-file (Fig. 3). Thus, it is just a matter of editing
the configuration file when changing or moving to a new
hardware setup and there is no need to change the user
applications.

B. Vector Bytecode

A vital part of Bohrium is the Vector Bytecode that consti-
tutes the link between the high-level user language and the
low-level execution engine. The bytecode is designed with
the declarative array-programming model in mind where the
bytecode instructions operate on input and output arrays. To
avoid excessive memory copying, the arrays can also be shaped
into multi-dimensional arrays. These reshaped array views are
then not necessarily comprised of elements that are contiguous
in memory. Each dimension comprises a stride and size, such
that any regularly shaped subset of the underlying data can be
accessed. We have chosen to focus on a simple, yet flexible,

data structure that allows us to express any regularly distributed
arrays. Figure 4 shows how the shape is implemented and how
the data is projected.

The aim is to have a vector bytecode that support data
parallelism implicitly and thus makes it easy for the bridge to
translate the user language into the bytecode efficiently. Addi-
tionally, the design enables the VE to exploit data parallelism
through SIMD4 and the VEM through SPMD5.

In the following, we will go through the four types of vector
bytecodes in Bohrium.

1) Element-wise: Element-wise bytecodes performs a
unary or binary operation on all array elements. Bohrium
currently supports 53 element-wise operations, e.g. addition,
multiplication, square root, equal, less than, logical and, bit-
wise and, etc. For element-wise operations, we only allow data
overlap between the input and the output arrays if the access
pattern is the same, which, combined with the fact that they
are all stateless, makes it straightforward to execute them in
parallel.

2) Reduction: Reduction bytecodes reduce an input di-
mension using a binary operator. Again, we do not allow
data overlap between the input and the output arrays and
the operator must be associative. Bohrium currently supports
10 reductions, e.g. addition, multiplication, minimum, etc.
Even though none of them are stateless, the reductions are
all straightforward to execute in parallel because of the non-
overlap and associative properties.

3) Data Management: Data Management bytecodes de-
termine the data ownership of arrays, and consists of three
different bytecodes. The synchronization bytecode orders a
child component to place the array data in the address space
of its parent component. The free bytecode orders a child
component to free the data of a given array in the global
address space. Finally, the discard operator that orders a child
component to free the meta-data associated with a given array,
and signals that any local copy of the data is now invalid.
These three bytecodes enable lazy allocation where the actual
array data allocation is delayed until it is used. Often arrays
are created with a generator (e.g. random, constants) or with
no data (e.g. temporary), which may exist on the computing
device exclusively. Thus, lazy allocation may save several
memory allocations and copies.

4) Extension methods: The above three types of bytecode
make up the bulk of a Bohrium execution. However not all
algorithms may be efficiently implemented in this way. In order
to handle operations that would otherwise be inefficient or even
impossible, we introduce the fourth type of bytecode: extension
methods. We impose no restrictions to this generic operation;
the extension writer has total freedom. However, Bohrium
do not guarantee that all components support the operation.
Initially, the user registers the extension method with paths
to all component-specific implementations of the operation.
The user then receives a new handle for this extension method
and may use it subsequently as a vector bytecode. Matrix
multiplication and FFT are examples of a extension methods
that are obviously needed. For matrix multiplication, a CPU

4Single Instruction, Multiple Data
5Single Program, Multiple Data

specific implementation could simply call a native BLAS
library and a Cluster specific implementation could call the
ScaLAPACK library[18].

C. Bridge

The Bridge component is the bridge between the program-
ming interface, e.g. Python/NumPy, and the VEM. The Bridge
is the only component that is specifically implemented for the
user programming language. In order to add Bohrium support
to a new language or library, only the bridge component needs
to be implemented. The bridge component generates bytecode
based on the user application and sends them to the underlying
VEM.

D. Vector Engine Manager

Rather than allowing the Bridge to communicate directly
with the Vector Engine, we introduce a Vector Engine Manager
into the design. The VEM is responsible for one memory
address space in the hardware configuration. The current
version of Bohrium implements two VEMs: the Node-VEM
that handles the local address space of a single machine and
the Cluster-VEM that handles the global distributed address
space of a computer cluster.

The Node-VEM is very simple since the hardware already
provides a shared memory address space; hence, the Node-
VEM can simply forward all instruction from its parent to its
child components. The Cluster-VEM, on the other hand, has
to distribute all arrays between Node-VEMs in the cluster.

1) Cluster Architectures: In order to utilize scalable archi-
tectures fully, distributed memory parallelism is mandatory.
The current Cluster-VEM implementation is currently quite
naı̈ve; it uses the bulk-synchronous parallel model[19] with
static data decomposition and no communication latency hid-
ing. We know from previous work than such optimizations are
possible[20].

Bohrium implements all communication through the MPI-
2 library and use a process hierarchy that consists of one
master-process and multiple worker-processes. The master-
process executes a regular Bohrium setup with the Bridge,
Cluster-VEM, Node-VEM, and VE. The worker-processes, on
the other hand, execute the same setup but without the Bridge
and thus without the user applications. Instead, the master-
process will broadcast vector bytecode and array meta-data
to the worker-processes throughout the execution of the user
application.

Bohrium use a data-centric approach where a static de-
composition dictates the data distribution between the MPI-
processes. Because of this static data decomposition, all pro-
cesses have full knowledge of the data distribution and need
not exchange data location meta-data. Furthermore, the task of
computing array operations is also statically distributed which
means that any process can calculate locally what needs to
be sent, received, and computed. Meta-data communication is
only needed when broadcasting vector bytecode and creating
new arrays – a task that has an asymptotic complexity of
O(log2 n), where n is the number of nodes.

E. Vector Engine

The Vector Engine (VE) is the only component that actually
does the computations, specified by the user application. It
has to execute instructions it receives in an order that comply
with the dependencies between instructions. Furthermore, it
has to ensure that its parent VEM has access to the results as
governed by the Data Management bytecodes.

1) CPU: The CPU-ve utilizes all cores available on the
given CPU. The CPU-ve is implemented as a in-order inter-
preter of bytecode. It features dynamic compilation for single-
expression just-in-time optimization. Which allows the engine
to perform runtime-value-optimization, such as specialized
interpretation based on the shape and rank of operands. As
well as parallelization using OpenMP.

Dynamic memory allocation on the heap is a time-
consuming task. This is particularly the case when allocating
large chunks of memory because of the involvement of the
system kernel. Typically, NumPy applications use many tem-
porary arrays and thus use many consecutive equally sized
memory allocations and de-allocations. In order to reduce
the overhead associated with these memory allocations and
de-allocations, we make use of a reusing scheme similar to
a Victim Cache[21]. Instead of de-allocating memory im-
mediately, we store the allocation for later reuse. If we, at
a later point, encounter a memory allocation of the same
size as the stored allocation, we can simply reuse the stored
allocation. In order to have an upper bound of the extra
memory footprint, we have a threshold for the maximum
memory consumptions of the cache. When allocating memory
that does not match any cached allocations, we de-allocate
a number of cached allocations such that the total memory
consumption of the cache is below the threshold. Previous
work has proven this memory-reusing scheme very efficient
for Python/NumPy applications[22].

2) GPU: To harness the computational power of the mod-
ern GPU we have created the GPU-VE for Bohrium. Since
Bohrium imposes an array oriented style of programming
on the user, which directly maps to data-parallel execution,
Bohrium byte code is a perfect match for a modern GPU.

We have chosen to implement the GPU-VE in OpenCL
over CUDA. This was the natural choice since one of the major
goals of Bohrium is portability, and OpenCL is supported by
more platforms.

The GPU-VE currently use a simple kernel building and
code generation scheme: It will keep adding instructions to
the current kernel for as long as the shape of the instruction
output matches that of the current kernel, and adding it will not
create a data hazard. Input parameters are registered so they
can be read from global memory. Similarly, output parameters
are registered to be written back to global memory.

The GPU-VE implements a simple method for temporary
array elimination when building kernels:

• If the kernel already reads the input, or it is generated
within the kernel, it will not be read from global
memory.

• If the instruction output is not need later in the
instruction sequence – signaled by a discard – it will

1 . . .
2 ADD t1 , center , north
3 ADD t2 , t1 , south
4 FREE t1
5 DISCARD t1
6 ADD t3 , t2 , east
7 FREE t2
8 DISCARD t2
9 ADD t4 , t3 , west

10 FREE t3
11 DISCARD t3
12 MUL tmp , t4 , 0 . 2
13 FREE t4
14 DISCARD t4
15 MINUS t5 , tmp , center
16 ABS t6 , t5
17 FREE t5
18 DISCARD t5
19 ADD_REDUCE t7 , t6
20 FREE t6
21 DISCARD t6
22 ADD_REDUCE delta , t7
23 FREE t7
24 DISCARD t7
25 COPY center , tmp
26 FREE tmp
27 DISCARD tmp
28 SYNC delta
29 . . .

Fig. 5: Bytecode generated in each iteration of the Jacobi Method code
example (Fig. 1). Note that the SYNC instruction at line 28 transfers the
scalar delta from the Bohrium address space to the NumPy address space
in order for the Python interpreter to evaluate the condition in the Jacobi
Method code example (Fig. 1, line 9).

not be written back to global memory.

This simple scheme has proven fairly efficient. However, the
efficiency is closely linked to the ability of the bridge to send
discards close to the last usage of an array in order to minimize
the active memory footprint since this is a very scarce resource
on the GPU.

The code generation we have in the GPU-VE simply
translates every Bohrium instruction into exactly one line of
OpenCL code.

F. Example

Figure 5 illustrate the list of vector byte code that the
NumPy Bridge will generate when executing one of the
iterations in the Jacobi Method code example (Fig. 1). The
example demonstrates the nearly one-to-one mapping from the
NumPy vector operations to the Bohrium vector byte code. The
code generates seven temporary arrays (t1,...,t7) that are not
specified in the code explicitly but is a result of how Python
interprets the code. In a regular NumPy execution, the seven
temporary arrays translate into seven memory allocations and
de-allocations thus imposing an extra overhead. On the other
hand, a Bohrium execution with the Victim Cache will only
use two memory allocations since six of the temporary arrays
(t1,...,t6) will use the same memory allocation. However, no
writes to memory are eliminated. In the GPU-VE the source
code generation eliminates the memory writes all together.
(t1,...,t5) are stored only in registers. Without this strategy
the speedup gain would no be possible on the GPU due to the
memory bandwidth bottleneck.

CPU Cluster AMD/ATI NVIDIA
0

20

40

60

80

100

120

140

160

2.18

13.2

89.1

140

S
pe

ed
up

Fig. 6: Relative speedup of the Shallow Water application. For the CPU and
Cluster, the application simulates a 2D domain with 25k2 value points in 10
iterations. For the GPUs, it is a 2k× 4k domain in 100 iterations.

Machine: 8-node Cluster GPU Host
Processor: AMD Opteron 6272 AMD Opteron 6274
Clock: 2.1 GHz 2.2 GHz
L3 Cache: 16MB 16MB
Memory: 128GB DDR3 128GB DDR3
Compiler: GCC 4.6.3 GCC 4.6.3 & OpenCL 1.1
Network: Gigabit Ethernet N/A
Software: Linux 3.2, Python 2.7, NumPy 2.6

TABLE I: Machine Specifications

V. PRELIMINARY RESULTS

In order to demonstrate our Bohrium design we have imple-
mented a basic Bohrium setup. This concretization of Bohrium
is by no means exhaustive but only a proof-of-concept. The
implementation supports Python/NumPy when executing on
CPU, GPU, and Clusters. However, the implementation is
preliminary and has a high degree of further optimization
potential. In this section, we present a preliminary performance
study of the implementation that consists of the following three
representative scientific application kernels:

Shallow Water A simulation of a system governed by the
shallow water equations. A drop is placed in a still
container and the water movement is simulated in discrete
time steps. It is a Python/NumPy implementation of a
MATLAB application by Burkardt [23].

Black Scholes The Black-Scholes pricing model is a partial
differential equation, which is used in finance for calcu-
lating price variations over time[24]. This implementation
uses a Monte Carlo simulation to calculate the Black-
Scholes pricing model.

N-Body A Newtonian N-body simulation is one that studies
how bodies, represented by a mass, a location, and
a velocity, move in space according to the laws of
Newtonian physics. We use a straightforward algorithm
that computes all body-body interactions, O(n2), with
collisions detection.

We execute all three applications using four different
hardware setups: one using a two CPUs, one using an eight-
node cluster, one using a AMD GPU, and one using a NVIDIA
GPU. The dual CPU setup uses one of the cluster-nodes
whereas the two GPU setups use a similar AMD machine

CPU Cluster AMD/ATI NVIDIA
0

20

40

60

80

100

120

140

160

180

200

1.28
10.1

130

181

S
pe

ed
up

Fig. 7: Relative speedup of the Black Scholes application. For the CPU and
Cluster, the application generates 10m element arrays using 10 iterations. For
the GPUs, it generates 32m element arrays using 50 iterations.

CPU Cluster AMD/ATI NVIDIA
0

10

20

30

40

50

60

70

80

90

1.29

9.0

41.3

77.1

S
pe

ed
up

Fig. 8: Relative speedup of the N-Body application. For the CPU and Cluster,
the application simulates 25k bodies in 10 iterations. For the GPUs, it is 1600
bodies and 50 iterations.

(Table I, II). For each benchmark/language, we compare the
Bohrium execution with a native NumPy execution and calcu-
late the speedup based on the average wall clock time of five
executions. When executing on the PU, we use all CPU cores
available likewise when executing on the eight-node cluster,
we use all CPU cores available on the cluster-node. The input
and output data is 64bit floating point for all executions. While
measuring the performance, the variation of the timings did not
exceed 1%.

The data set sizes are chosen to represent realistic work-
loads for a cluster and GPU setup respectively. The speedups
reported are obtained by comparing the wall clock time of
the original NumPy execution with the wall clock time for

GPU: AMD/ATI NVIDIA
Processor: ATI Radeon HD 7850 GeForce GTX 680
#Cores: 1024 1536
Core clock: 900 MHz 1006 MHz
Memory: 1GB DDR5 2GB DDR5
Memory bandwidth: 153 GB/s 192 GB/s
Peak (single-precision): 1761 GFLOPS 3090 GFLOPS
Peak (double-precision): 110 GFLOPS 128 GFLOPS

TABLE II: GPU Specifications

executing the same Python program with the same size of
dataset.

A. Discussion

The Shallow Water application is memory intensive and
uses many temporary arrays. This is clear when comparing
the Bohrium execution with the Native NumPy execution on
a single CPU. The Bohrium execution is 2.18 times faster
than the Native NumPy execution primarily because of mem-
ory allocation reuse. The Cluster setup demonstrates good
scalable performance as well. Even without communication
latency hiding, it achieves a speedup of 6.07 compared to the
CPU setup and 13.2 compared to Native NumPy. Finally, the
two GPUs show an impressive 89 and 140 speedup, which
demonstrates the efficiency of parallelizing array operations
on a vector machine. NVIDIA is roughly one and a half times
faster than AMD primarily because of the higher floating-point
performance and memory bandwidth.

The Black Scholes application is computationally intensive
and embarrassingly parallel, which is evident in the benchmark
result. The cluster setup achieve a speedup of 10.1 compared
to the Native NumPy and an almost linearly speedup of 7.91
compared to the CPU. Again, the performance of the GPUs is
superior with a speedup of 130 and 181.

The N-Body application is memory intensive but does not
use many temporary arrays thus the speedup of the CPU
execution with the Native NumPy execution is only 1.29.
However, the application scales well on the Cluster with a
speedup of 9.0 compared to the Native NumPy execution and
a speedup of 7.96 compared to the CPU execution. Finally,
the two GPUs demonstrate a good speedup of 41.3 and 77.1
compared to the Native NumPy execution.

VI. FUTURE WORK

From the experiments, we can see that the performance is
generally good. There is much room for further improvements
when executing on the Cluster. Communication techniques,
such as communication latency hiding and message aggrega-
tions, should improve performance[25], [26] further.

Despite the good results, we are convinced that we can still
improve these results significantly. We are currently working
on an internal representation for bytecode dependencies, which
will enable us to rearrange the instructions and eliminate
the use of temporary storage. In the article describing Intel
Array Building Blocks, the authors report that the removal
of temporary arrays is the single optimization that yields
the greatest performance improvement. Informal testing with
manual removal of temporary storage shows an order of
magnitude improvement, even for simple benchmarks.

The GPU vector engine already uses a simple scanning
algorithm that detects some instances of temporary vectors
usage, as that is required to avoid exhausting the limited GPU
memory. However, the internal representation will enable a
better detection of temporary storage, but also enable loop
detection and improve kernel generation and kernel reusability.

This internal representation will also allow pattern match-
ing, which will allow selective replacement of parts of the
instruction stream with optimized versions. This can be used

to detect cases where the user is calculating a scalar sum, using
a series of reductions, or detect matrix multiplications. By
implementing efficient micro-kernels for known computations,
we can improve the execution significantly.

Once these kernels are implemented, it is simple to offer
them as function calls in the bridges. The bridge implementa-
tion can then simply implement the functionality by sending
a pre-coded sequence of instructions.

We are also investigating the possibility of implementing a
Bohrium Processing Unit, BPU, on FPGAs. With a BPU, we
expect to achieve performance that rivals the best of todays
GPUs, but with lower power consumption. As the FPGAs
come with a built-in Ethernet support, they can also provide
significantly lower latency, possibly providing real-time data
analysis.

Finally, the ultimate goal of the Bohrium project is to
support clusters of heterogeneous computation nodes where
components specialized for GPUs, NUMA6 aware multi-core
CPUs, and Clusters, work together seamlessly.

VII. CONCLUSION

The declarative array-programming model used in Boh-
rium provides a framework for high-performance and high-
productivity. It enables the end-user to execute regular
Python/NumPy applications on a broad range of hardware
architectures efficiently without any hardware specific knowl-
edge. Furthermore, the Bohrium design supports scalable ar-
chitectures such as clusters and supercomputers. It is even
possible to combine architectures in order to exploit hybrid
programming where multiple levels of parallelism exist, which
is essential when fully utilizing supercomputers such as the
Blue Gene/P[27].

In this paper, we introduce a proof-of-concept implemen-
tation of Bohrium that supports the Python programming
language through a Bohrium implementation of NumPy and
three computer architectures: CPU, GPU, and Cluster. The
preliminary results are very promising – a Black Scholes
computation achieves 181 times speedup for the same code,
when comparing a Native NumPy execution and a Bohrium
execution that utilize the GPU back-end.

The results are sufficiently good that we remain optimistic
that we can reach a level where a pure Python/NumPy appli-
cation offers sufficient performance on its own.

REFERENCES

[1] G. van Rossum, “Glue it all together with python,” in Workshop
on Compositional Software Architectures, Workshop Report, Monterey,
California, 1998.

[2] T. E. Oliphant, A Guide to NumPy. Trelgol Publishing USA, 2006,
vol. 1.

[3] D. Loveman, “High performance fortran,” Parallel & Distributed Tech-
nology: Systems & Applications, IEEE, vol. 1, no. 1, pp. 25–42, 1993.

[4] W. Yang, W. Cao, T. Chung, and J. Morris, Applied numerical methods
using MATLAB. Wiley-Interscience, 2005.

[5] C. Sanderson et al., “Armadillo: An open source c++ linear algebra
library for fast prototyping and computationally intensive experiments,”
Technical report, NICTA, Tech. Rep., 2010.

6Non-Uniform Memory Access

[6] T. Veldhuizen, “Arrays in Blitz++,” in Computing in Object-Oriented
Parallel Environments, ser. Lecture Notes in Computer Science, D. Car-
omel, R. Oldehoeft, and M. Tholburn, Eds. Springer Berlin Heidelberg,
1998, vol. 1505, pp. 223–230.

[7] J. Brown, W. Scullin, and A. Ahmadia, “Solving the import
problem: Scalable dynamic loading network file systems,” in Talk
at SciPy conference, Austin, Texas, July 2012. [Online]. Available:
www.bh107.org

[8] J. Enkovaara, N. A. Romero, S. Shende, and J. J. Mortensen, “Gpaw-
massively parallel electronic structure calculations with python-based
software,” Procedia Computer Science, vol. 4, pp. 17–25, 2011.

[9] J. Brown, W. Scullin, and A. Ahmadia, “Solving the import problem:
Scalable dynamic loading network file systems,” 2013. [Online].
Available: www.bh107.org

[10] A. Klckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“PyCUDA and PyOpenCL: A scripting-based approach to GPU run-
time code generation,” Parallel Computing, vol. 38, no. 3, pp. 157 –
174, 2012.

[11] R. Garg and J. N. Amaral, “Compiling python to a hybrid execution
environment,” in Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, ser. GPGPU ’10. New
York, NY, USA: ACM, 2010, pp. 19–30.

[12] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism
to program gpus for general-purpose uses,” SIGARCH Comput. Archit.
News, vol. 34, no. 5, pp. 325–335, Oct. 2006.

[13] C. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. Toit, Z. G.
Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang,
“Intel’s array building blocks: A retargetable, dynamic compiler and
embedded language,” in Code Generation and Optimization (CGO),
2011 9th Annual IEEE/ACM International Symposium on, 2011, pp.
224–235.

[14] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer,
J. Shalf, K. Yelick, and A. Fox, “Sejits: Getting productivity and
performance with selective embedded jit specialization,” Programming
Models for Emerging Architectures, 2009.

[15] R. Andersen and B. Vinter, “The scientific byte code virtual machine,”
in GCA’08, 2008, pp. 175–181.

[16] B. Mailloux, J. Peck, and C. Koster, “Report on the algorithmic
language algol 68,” Numerische Mathematik, vol. 14, no. 2, pp. 79–218,
1969. [Online]. Available: http://dx.doi.org/10.1007/BF02163002

[17] S. Van Der Walt, S. Colbert, and G. Varoquaux, “The numpy array: a
structure for efficient numerical computation,” Computing in Science &
Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[18] L. S. Blackford, “ScaLAPACK,” in Proceedings of the 1996 ACM/IEEE
conference on Supercomputing (CDROM) - Supercomputing 96 Super-
computing 96, 1996, p. 5.

[19] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[20] M. Kristensen and B. Vinter, “Managing communication latency-hiding
at runtime for parallel programming languages and libraries,” in High
Performance Computing and Communication 2012 IEEE 9th Interna-
tional Conference on Embedded Software and Systems (HPCC-ICESS),
2012 IEEE 14th International Conference on, 2012, pp. 546–555.

[21] N. Jouppi, “Improving direct-mapped cache performance by the ad-
dition of a small fully-associative cache and prefetch buffers,” in
Computer Architecture, 1990. Proceedings., 17th Annual International
Symposium on, may 1990, pp. 364 –373.

[22] S. A. F. Lund, K. Skovhede, M. R. B. Kristensen, and B. Vinter,
“Doubling the Performance of Python/NumPy with less than 100
SLOC,” in Python for High Performance and Scientific Computing
(PyHPC 2013), 2013.

[23] J. Burkardt, “Shallow water equations,” people.sc.fsu.edu/\∼jburkardt/
m\ src/shallow\ water\ 2d/, [Online; accessed March 2010].

[24] F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” The journal of political economy, pp. 637–654, 1973.

[25] M. R. B. Kristensen and B. Vinter, “Numerical python for scalable
architectures,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model, ser. PGAS ’10. New York,
NY, USA: ACM, 2010, pp. 15:1–15:9.

[26] M. R. B. Kristensen, Y. Zheng, and B. Vinter, “Pgas for distributed nu-
merical python targeting multi-core clusters,” Parallel and Distributed
Processing Symposium, International, vol. 0, pp. 680–690, 2012.

[27] M. Kristensen, H. Happe, and B. Vinter, “GPAW Optimized for Blue
Gene/P using Hybrid Programming,” in Parallel Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, 2009, pp. 1–6.

