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Abstract
We present an approach for compiling a rich subset of APL into data-
parallel programs that can be executed on GPUs. The compiler is
based on the APLTAIL compiler, which compiles APL programs into
a typed array intermediate language, called TAIL [11]. We translate
TAIL programs into Haskell source code, employing Accelerate [6],
a Haskell-library for general purpose GPU-programming.

We demonstrate the feasibility of the approach by presenting
some encouraging results for a number of smaller benchmarks. We
also outline some problems that we need to overcome in order for
the approach to result in competitive code for larger benchmarks.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classification—Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages

Keywords APL compilation, Data parallelism, GPGPU

1. Introduction
APL is a dynamically typed, second-order programming language
developed in the 1960s for manipulating multi-dimensional arrays.
The succinct syntax of APL where the large number of built-in
operations are written as symbols (e.g., ↑ and ↓ for take and drop,
respectively), suggests a data-parallel programming style, which has
become increasingly relevant in this multi-core era of programming.
Our interest in APL springs from its selection of built-in operations,
which, through 50 years of history, have shown to be suitable for a
large range of applications. Moreover, a large number of real-world
APL programs exists, many of which are written in a data-parallel
style and which can be used more or less directly as benchmarks.

Our previous work on APLTAIL [11] compiles a subset of
APL into a typed array intermediate language called TAIL. In this
paper, we present a compiler from TAIL to Haskell source code,
which employs the Accelerate library [6]. Accelerate is an array
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language embedded in Haskell. It supports multi-dimensional arrays
and provides various backends, most prominently a skeleton-based
parallel GPU backend using CUDA [22].

TAIL is a statically typed, functional, array programming lan-
guage, providing a subset of the operations available in APL, with
the same semantics as found in APL. For a formal description of the
type system and operational semantics of TAIL consult [11].

As a simple example of compilation, consider the following
program, which calculates an approximation to

∫︀ 10

0
2/(𝑥+ 2) 𝑑𝑥:

f ← { 2 ÷ 𝜔 + 2 } � Function 𝜆x. 2 / (x+2)
N ← 10000000 � No. of valuation points
dx ← 10 ÷ N
domain ← dx × 𝜄N � Integrate from 0 to 10
integral ← dx × +/f¨domain � Compute integral

This program first declares the function f to be integrated (𝜔
represents the right argument) and the number of valuation points
(N). It then computes a discretisation of the integration domain (the
𝜄-function, iota, generates the array containing values 1 through 𝑁 )
and computes the integral by simple numeric integration, using a
sum-reduce (+/) over the weighted function values.

The example APL program is compiled into the TAIL program
in Figure 1. Notice the presence of vector types with explicit length
attributes and the explicit array type [double]0, which denotes a
scalar double (i.e., a rank zero array.) The TAIL code can be compiled
into the Haskell code given in Figure 2, by employing our TAIL to
Accelerate compiler, which we refer to as the APLACC compiler
in the following [5]. The program references the module Prim,
which provides Accelerate-implementations for TAIL primitives.
Unqualified functions and types come from the Haskell prelude and
the Accelerate module.

The contributions of this paper are the following:

1. We give a detailed presentation of a compiler from the intermedi-
ate language TAIL to Accelerate. The compiler enables compila-
tion of a subset of APL to programs that, in particular, can use
CUDA-supported GPUs to perform calculations in parallel.

2. We demonstrate the feasibility of using Accelerate as the target
for an APL compiler by evaluating the performance of the
compiled programs, running on a GPU, with the results of
using a backend to APLTAIL that compiles the benchmarks into
sequential C code.

3. We demonstrate the use of APLTAIL as a generic APL compiler
frontend and that larger benchmarks can be expressed in TAIL.

APLACC is open source and available online for download at
github.com/mbudde/aplacc and is to be used in concert with
APLTAIL, available at github.com/melsman/apltail.

The remainder of this paper is organised as follows. We give a
quick overview of TAIL and Accelerate in Section 2 and Section 3,
respectively. In Section 4, which contains the main contribution of
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let v5:<double>1000000 =
eachV{[double,double],[1000000]}(
fn v4:[double]0 => muld(10.0,v4),
eachV{[double,double],[1000000]}(
fn v3:[double]0 => divd(v3,1e6),
eachV{[int,double],[1000000]}(i2d,

iotaV(1000000)))) in
let v12:[double]0 =

reduce{[double],[0]}(addd,0.0,
eachV{[double,double],[1000000]}(
fn v9:[double]0 => divd(v9,1e6),
eachV{[double,double],[1000000]}(
fn v7:[double]0 =>
divd(2.0,addd(v7,2.0)),v5))) in

v12

Figure 1: The result of compiling the example APL program into TAIL.

v ::= 𝑖 | 𝑑 | 𝑐 | tt | ff | inf (base values)
e ::= 𝑣 | 𝑥 | [ �⃗� ] | 𝑥 𝜄( �⃗� ) (expressions)

| fn 𝑥 : 𝜏 => 𝑒
| let 𝑥 : 𝜏 = 𝑒1 in 𝑒2

𝜅 ::= int | double | char | bool | 𝛼 (base types)
𝜌 ::= 𝑖 | 𝛾 | 𝜌+ 𝜌′ (shape types)
𝜏 ::= [𝜅]𝜌 | ⟨𝜅⟩𝜌 | S(𝜅, 𝜌) | SV(𝜅, 𝜌) (types)

| 𝜏 → 𝜏
𝜄 ::= { �⃗� , 𝜌 } | 𝜖 (instance lists)
𝜎 ::= ∀�⃗��⃗�.𝜏 (type schemes)

Figure 3: Grammar describing the TAIL language.

the paper, we give a presentation of the compilation from TAIL to
Accelerate. In Section 5, we present runtime performance numbers
of a handful of compiled example programs and discuss the effec-
tiveness of our approach. The idea of using Accelerate as a target
language, and the problems encountered, is discussed in Section 6.
We present related work in Section 7 and conclude with Section 8,
where we also discuss potential future projects.

2. TAIL
The APLACC compiler takes TAIL programs as input. Figure 3
shows the TAIL syntax supported by the compiler. The syntax
deviates somewhat from the grammar described in [11], which has
been updated to work with character and boolean arrays.

We assume a denumerable infinite set of program variables (𝑥).
For some 𝑧, we write �⃗�(𝑛) to denote the sequence 𝑧0, 𝑧1, . . . , 𝑧𝑛−1.
If the exact length of the sequence is unknown or irrelevant, we leave
it out and write �⃗�.

A base value (𝑣) is either an integer (𝑖), a double (𝑑), a character
literal (𝑐), a boolean (tt or ff), or infinity (inf). An expression is
either a value (𝑣), a variable (𝑥), a vector expression, a function call,
a fn-expression, or a let-expression. For presentation purposes, a
TAIL program consists of a single top-level expression. As we shall
see, a number of built-in primitives are bound in the top-level initial
environment, which, for instance, allow for multi-dimensional arrays,
to be constructed during program execution.

Types are segmented into base types (𝜅), shape types (𝜌), types
(𝜏 ), and type schemes (𝜎). Shape types (𝜌) are considered identical
upto associativity and commutativity of + and upto evaluation of
constant shape-type expressions involving +. Types (𝜏 ) include a
type for multi-dimensional arrays of rank 𝜌 ([𝜅]𝜌), a type for vectors
of a specific length (⟨𝜅⟩𝜌), singleton types for integers and booleans

(S(𝜅, 𝜌)), singleton types for single-element integer and boolean
vectors (SV(𝜅, 𝜌)), and a type for functions. As special notation, we
often write 𝜅 to denote the scalar array type [𝜅]0. Type schemes 𝜎
are used for specifying the types for built-in operations. Function
calls in TAIL are annotated with instance lists, which specify the
particular instance of a polymorphic function. The first list contains
type instantiations and the second list contains rank instantiations.
The numbers of elements in the two lists depend on the function. For
example, the type of the reduce function is given as:

reduce : ∀𝛼𝛾. (𝛼 → 𝛼 → 𝛼) → 𝛼 → [𝛼]𝛾+1 → [𝛼]𝛾

The type is parameterized over two type parameters 𝛼 and 𝛾, where
𝛼 denotes a base type and 𝛾 a rank. Notice, as just mentioned, that 𝛼
is used to denote the scalar array type [𝛼]0. An instantiation list for a
call to reduce contains the particular values of 𝛼 and 𝛾 for that call.
Here is an example call to reduce, with 𝛼 = int and 𝛾 = 0:

reduce{[int],[0]}(addi, 0, [1,2,3])

The type of this expression is int. Formally, instantiation lists are
defined in terms of a notion of substitution, which we, for space
reasons, will not develop here.

We shall only present type schemes for a small number of
TAIL primitive operations. We have already seen the type scheme
for reduce. Here is the type scheme for eachV, which takes as
arguments a scalar function and a compatible vector of length 𝛾 and
returns a vector also of length 𝛾:

eachV : ∀𝛼𝛾. (𝛼 → 𝛽) → ⟨𝛼⟩𝛾 → ⟨𝛽⟩𝛾

As described in [11], the somewhat elaborate type system of
TAIL allows for expressing a number of complex operations, such
as APL’s inner and outer product operators, as derived operations.

3. Accelerate
Accelerate is an array language embedded in Haskell. An array
computation represents an abstract syntax tree of the computation.
When running an array computation, the tree is optimized in various
ways and then passed on to a backend, which takes care of executing
the computation and returning the result. There exists a number of
different backends to Accelerate but the primary one is the CUDA
backend. This backend compiles the Accelerate AST to CUDA code
and runs it in parallel on a GPU.

Arrays are multi-dimensional and are represented by the type

(Shape sh, Elt e) ⇒ Array sh e

Shapes have the number of dimensions encoded in the type and are
constructed using the snoc operator (which is both a type constructor
and a type level operator):

Z :. 5 :. 8 :: Z :. Int :. Int

Accelerate provides a large number of library functions. To ac-
commodate the APL-style semantics of TAIL, we provide additional
operations required by TAIL which are not already provided by Ac-
celerate in a separate module, the aforementioned Prim module. For
instance, the APL take operation adds a default value when overtak-
ing, instead of failing, and take also supports a negative argument, in
which case it takes elements from the end of the array.

4. From TAIL to Accelerate
In this section, we present the translation from TAIL to Accelerate.
The first step is to parse TAIL source code into a TAIL AST. This
TAIL AST is then translated into an untyped version of the Accelerate
AST, after which it is a straightforward task to output Haskell code
with calls to the Accelerate library. In the remainder of this section,
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program :: IO (Acc (Scalar Double))
program = do let v5 = Prim.eachV (\ v4 -> (constant (10.0 :: Double)) * (v4))

(Prim.eachV (\ v3 -> (v3) / (constant (1000000.0 :: Double)))
(Prim.eachV Prim.i2d (Prim.iotaV (constant (1000000 :: Int)))))
:: Acc (Array DIM1 Double)

let v12 = the (Prim.reduce (+) (constant (0.0 :: Double))
(Prim.eachV (\ v9 -> (v9) / (constant (1000000.0 :: Double)))
(Prim.eachV (\ v7 -> (constant (2.0 :: Double)) /

((v7) + (constant (2.0 :: Double))))
v5)))

:: Exp Double
return (unit v12)

Figure 2: The result of compiling the example TAIL program into Accelerate.

we focus on the translation from the TAIL AST to the untyped
Accelerate AST.

4.1 Translating Types
Let us first consider the translation of TAIL types to Accelerate types.
As we have already seen, in TAIL, we have a number of different type
constructors, including type constructors for arrays, shapes, singleton
integers, and single-element integer vectors. A scalar value can be
typed as either a zero dimensional array or as a singleton (S(𝜅, 𝜌))
depending on whether the value is known at compile-time. Similarly,
single-element vectors can be typed either as a one dimensional
array or as a singleton vector (SV(𝜅, 𝜌)). There are also a number of
subtyping relations. Vectors and single-element vectors are subtypes
of one dimensional arrays and singleton types are subtypes of zero
dimensional arrays (for details, see [11]).

In Accelerate, there are two main data types: Acc for array-valued
computations and Exp for scalar expressions. In addition, there are
also plain Haskell values1, such as Haskell integers. We use 𝑝 to
range over plain Haskell types, which include Int, Bool, Double,
and Char. We first define the following trivial partial translation,
J𝜅 Kb = 𝑝, which map concrete base types 𝜅 to plain Haskell types:

J int Kb = Int J bool Kb = Bool

J double Kb = Double J char Kb = Char
In Accelerate, it is possible to convert values between certain

types, but subtyping, as in TAIL, is not supported. In particular, we
cannot treat a shape vector as an array. Instead, we must arrange that
a shape, for instance, is explicitly converted to an array when needed.
Accelerate gives us the following three functions to convert between
different types:

constant : Elt e ⇒ e → Exp e
unit : Elt e ⇒ Exp e → Acc (Scalar e)
the : Elt e ⇒ Acc (Scalar e) → Exp e

Converting Int values to Double can be done with the Haskell
built-in function fromIntegral and converting from Exp Int to
Exp Double can be done with the fromIntegral function from
Accelerate.

Consider the following TAIL program:

let x:[int]0 = 5 in reduce{[int], [0]}(addi, x, [x])

When translating this program, we have a choice in which type
to give x. We can either give it type Int, type Exp Int, or type
Acc (Scalar Int). The choice we make influences which conver-
sions are made in the call to reduce since the second argument to
reduce should be of type Exp Int while the vector literal should

1 Not to be confused with the Plain associated-type for the Lift type class
in Accelerate.

(𝜖 : 𝑝) ; Exp 𝑝 = constant (𝜖 :: 𝑝)
(𝜖 : 𝑝) ; Acc 𝑟 𝑝 = unit (constant (𝜖 :: 𝑝))
(𝜖 : Exp 𝑝) ; Acc 0 𝑝 = unit 𝜖
(𝜖 : Acc 0 𝑝) ; Exp 𝑝 = the 𝜖
(𝜖 : 𝜏) ; 𝜏 = 𝜖
(𝜖 : 𝜏1) ; 𝜏2 = fail

Figure 4: Type casting rules for converting expressions from one type to
another.

be of type Int. Notice that it is not possible to convert from Exp a
to a. This limitation forces x to be of type Int; otherwise, we cannot
use it in the vector construct.

The type translation from a ground TAIL type 𝜏 (a type with
no free type variables) to a Haskell/Accelerate type 𝜏 ′, written
J 𝜏 Kt = 𝜏 ′ is defined by the following equations:

J [𝜅]0 Kt = Exp J𝜅 Kb J S(𝜅, 𝑖) Kt = Exp J𝜅 Kb

J [𝜅]𝑖 Kt = Acc 𝑖 J𝜅 Kb J ⟨𝜅⟩𝑖 Kt = Acc 1 J𝜅 Kb

J SV(𝜅, 𝑖) Kt = Acc 1 J𝜅 Kb

The mapping requires some explanation as it suggests that scalar
arrays and singletons are always converted to Exp, which is not the
whole story. As we will explain later, these types will be converted
to plain Haskell types if possible. Second, the mapping suggests
that shapes in TAIL (which are represented as integer vectors) are
converted to Accelerate vectors, which is also not the whole story.
Whenever an Accelerate operation requires an Accelerate shape as
argument, the TAIL vector is converted into an Accelerate shape.
If the vector is a vector literal containing only integer constants
then it is translated into an Accelerate shape using the snoc operator.
Otherwise, the vector is converted to an Accelerate shape at run-time
using the shFromVec primitive.

Because values can be used in different contexts that require
different types by Accelerate, we need rules for converting between
types. For this reason the APLACC compiler has a set of type casting
rules. Type casting of a Haskell expression 𝜖 from type 𝜏1 to 𝜏2 takes
the form

(𝜖 : 𝜏1) ; 𝜏2 = 𝜖′

where 𝜖′ is some expression of type 𝜏2. The explicit type of 𝜖 is
sometimes left out if the type is obvious from the context. Figure 4
shows the type casting rules in APLACC. When casting from a plain
type to an Exp type, we also add a type signature because Haskell is
not always able to deduce the type of 𝜖.
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J𝑥 K 𝐸 𝜏 = (𝑥 : 𝜏 ′) ; 𝜏 if 𝐸[𝑥] = 𝜏 ′

J 𝑖 K 𝐸 𝜏 = (𝑖 : Int) ; 𝜏
J tt K 𝐸 𝜏 = (True : Bool) ; 𝜏
J ff K 𝐸 𝜏 = (False : Bool) ; 𝜏
J 𝑑 K 𝐸 𝜏 = (𝑑 : Double) ; 𝜏
J 𝑐 K 𝐸 𝜏 = (𝑐 : Char) ; 𝜏
J inf K 𝐸 𝜏 = (infinity : Double) ; 𝜏
J fn 𝑥 : 𝜏* => 𝑒 K 𝐸 𝜏 = \𝑥 -> J 𝑒 K 𝐸[𝑥 ↦→ J 𝜏* Kt] 𝜏
J𝑥 𝜄 ( �⃗� ) K 𝐸 𝜏 = convertOp 𝑥 𝜄 �⃗� 𝜏
J let 𝑥 : 𝜏* = 𝑒1 in 𝑒2 K 𝐸 𝜏 = let 𝑥 = 𝜖 :: 𝜏2 in J 𝑒2 K 𝐸[𝑥 ↦→ 𝜏2] 𝜏

where (𝜖, 𝜏2) = cancelLift 𝜏1 (J 𝑒1 K 𝐸 𝜏1)
𝜏1 = J 𝜏* Kt

J [�⃗�(𝑛)] K 𝐸 (Acc 1 𝑝) = use (fromList (Z :. 𝑛) [�⃗�]) :: Acc (Vector 𝑝)
where �⃗� = 𝜖0, 𝜖1, . . . , 𝜖𝑛−1

𝜖𝑖 = J 𝑒𝑖 K 𝐸 𝑝

Figure 5: Translation of TAIL expressions to Haskell code.

4.2 Translating Expressions
Rules for converting a TAIL expression 𝑒 to a Haskell expression 𝜖
take the form

J 𝑒 K 𝐸 𝜏 = 𝜖

where 𝐸 is an environment that maps identifiers to their types and 𝜏
is the type context. The type context specifies what type the resulting
expression is expected to have. For example, the TAIL expression 5
in a plain Int context should translate to just the literal 5, while in
an Exp Int context, it should translate to constant (5 :: Int),
which is what the type casting rules are used for.

Figure 5 shows the rules for translating TAIL expressions to
Haskell expressions. In the rules, 𝜏* denotes a TAIL type while we
use 𝜏 to range over Accelerate types.

When translating let-expressions, we use the function cancelLift,
which is defined as follows:

cancelLift (Exp 𝑝) (constant (𝜖 :: 𝑝)) = (𝜖, 𝑝)

cancelLift 𝜏 𝜖 = (𝜖, 𝜏)

To motivate the need for this function, consider the following TAIL
example:

let a:[int]0 = 17
in reduce{[int],[0]}(addi, 0, [a, a])

At the point the value 17 is bound to the variable a of type [int]0,
we might be tempted to convert it to Exp Int using our type
conversion rules. This strategy will not work, however, because
a is used in a vector construct where a plain Int is required. Because
we cannot cast from Exp Int to a plain Haskell Int, we instead
choose Int to be the type of a, and postpone the conversion into an
Exp Int, if needed.

For translating calls to primitive operations, we define a utility
function convertOp:

𝜖 = convertOp 𝑥 𝜄 �⃗� 𝜏

The function takes as argument (1) the name of the operation 𝑥, (2) an
instantiation list 𝜄, (3) a list of arguments �⃗�, and (4) the expected type
of the result. The function looks up the function name in the table
of all available primitive functions. If the function name is found,
the table entry is a function that, given 𝜄 and 𝜏 , returns information
about how to convert each of the arguments and what the return type
will be. The argument expressions are then converted according to
the specification and the information is combined into the resulting
Haskell expression.

Given the translated program, all that is left is to plug the Haskell
expression into a Haskell module with the correct imports and main
function that uses an Accelerate backend to execute the program.

4.3 APL Primitives for Accelerate
We should now have a valid Haskell module that performs the same
computations as the TAIL input. The output we get from the APLACC
compiler cannot work on its own, however. To compile and run
the program, we need Accelerate implementations of the primitive
functions.

Some functions have been straightforward to implement while
others have been more difficult to implement. Functions that have
been straightforward to implement include all scalar functions,
such as addi, maxd, and so on. Also operations such as each,
reduce, rotate and zipWith are readily available in Accelerate as
primitive functions. Examples of functions that are more elaborate
to implement include the TAIL operations take and drop, which
need to cover quite a number of cases compared to those that come
with Accelerate. The TAIL operation take for instance, deals with
all the features of the APL take operation (↑), including, for instance,
the possibility of taking too many columns from the right of a two-
dimensional array [11]. To implement operations such as transp
and transp2 (APL’s monadic and dyadic transpose, respectively),
the Accelerate backpermute operation is used [6]. This function is
also used for implementing TAIL’s reshape operation.

Compared to the functionality documented in [11], quite a larger
subset of APL is treated, which also means that the number of TAIL
operations that needs to be treated by the compilation into Accelerate
has increased. In particular, many of the benchmarks that we report
on in Section 5 make use of the TAIL power operation, which
composes a function with itself 𝑁 times. As recommended in the
Accelerate documentation, we first compile the body of the function
using run1 and then execute the compiled kernel repeatedly. Another
strategy for compiling power, is to use the awhile construct, which
would require an additional GPU-to-host memory transfer on each
iteration. If we instead follow a strategy of repeatedly composing the
function with itself, using Accelerate function composition (>->),
programs are generated that are proportional in size to the number
of iterations. Programs generated this way easily reached a size too
large for Accelerate to handle.

Some primitives also have TAIL versions that operate on vectors,
such as the eachV primitive described in Section 2 and the iotaV
primitive described in Subsection 4.1. Because shapes are converted
to arrays, most of these primitives are just aliases of their non-vector
counterparts. As an example of a primitive function, here is the
implementation of rotate:
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Table 1: Benchmark timings in milliseconds. The timings are averages
over 30 executions. TAIL C is the APL-compiler using a sequential C-code
backend, TAIL Acc is the APL-compiler using Accelerate.

Benchmark Problem size TAIL C TAIL Acc

Integral N = 10,000,000 46.90 3.10
Signal N = 50,000,000 209.03 16.1
Game-of-Life 40× 40, N = 2,000 28.70 2.30
Easter N = 3,000 33.96 -
Black-Scholes N = 10,000 54.0 -
Sobol MC 𝜋 N = 10,000,000 4881.30 2430.30
HotSpot 1024× 1024, N = 360 6072.93 2.03

rotate :: (Shape sh, Slice sh, Elt e)
=> Exp Int -> Acc (Array (sh :. Int) e)
-> Acc (Array (sh :. Int) e)

rotate n arr =
let sh = Acc.shape arr

m = Acc.indexHead sh
idx sh = Acc.lift $ Acc.indexTail sh :.

(Acc.indexHead sh + n) ‘mod‘ m
in Acc.backpermute sh idx arr

5. Performance
In this Section, we evaluate the Accelerate backend and compare,
for a number of smaller benchmarks, the performance of code
generated with the Accelerate-backend to that of code generated
with a sequential C-code backend, based on pull-arrays [11]. For one
of the benchmarks, we also compare against execution time obtained
with a hand-written CUDA implementation. The benchmarks are
listed in Table 1.

All benchmarks were executed on an Intel(R) Xeon(R) CPU E5-
2650 v2 2.60GHz box with 32 cores and equipped with two NVIDIA
GeForce GTX 780 Ti GPUs, each with 3GB ram. All benchmarks
were executed 30 times each, and we report averages of wall-clock
timings. Time spent on file I/O while reading datasets to memory are
not included in the measurements. The benchmark results are shown
in Table 1. The reported timings do not include time for compiling
the CUDA kernels, which for the Accelerate backend was assured
by running the bulk part of a program once, before measuring time
for the 30 consecutive executions.

The Integral benchmark is the example from Section 1. Signal
is a signal processing program derived from the APEX benchmark
suite [2]. We represent the input signal as a materialized array. Easter
is a program from Dyalog Ltd. that calculates 300 times the date
of Easter for all years between year 1 and 3000. Black-Scholes is
the well known benchmark (e.g., from the PARSEC benchmark
suite) that valuates European options using a closed form solution.
In all these micro-benchmarks, the C code generated by TAIL is
similar to what you would write by hand. For the Easter and Black-
Scholes benchmarks, we see that the APLACC compiler fails to
generate executable Haskell code. The problem is that the examples
are making use of nested reduce operations, which are not supported
by Accelerate. Whereas the generated Haskell code does compile,
the Accelerate library issues an error at runtime. We hope to find that
newer versions of Accelerate will support these patterns.

We also have a micro benchmark implementing Conway’s Game
of Life. Here the generated C code is not as you would hope, because
of a case of two much fusion and thus code-duplication. We are
currently investigating how we can improve on this issue. Our
generated Accelerate code though, does not have this problem.

The Sobol-𝜋 benchmark calculates 𝜋 based on Monte Carlo sim-
ulation using Sobol sequences. We use a naive inductive algorithm,
which is why the performance of the C code is not that great, but

the algorithm is embarrassingly parallel and thus the Accelerate ver-
sion should perform much better than the sequential version. We are
investigating possibilities for improvement.

Finally, the HotSpot benchmark is a slightly larger program (60
lines of APL), which iteratively solves a series of differential equa-
tions for estimating a processor temperature distribution. This bench-
mark is taken from the Rodinia benchmark suite for heterogeneous
computing [7]. We have ported the implementation from code in the
APL-like language ELI, originally presented by WM Ching et al.
[8]. The Rodinia benchmark suite provides a CUDA implementation
and we obtain comparable performance; one millisecond for 360
iterations versus two milliseconds in our case. Similarly, we can
report that our generated C code is only slightly slower (around 300
ms) than the C implementation provided with the benchmark suite.

6. Accelerate as a Target Language
We selected Accelerate as a target language, because its selection of
built-in operations seemed to fit well with what we needed and our
shape types seemed compatible with the shape types of Accelerate.
The fact that Accelerate provides segmented reductions and scans,
also indicates that it might be possible to perform a NESL-like
flattening transformation [3] on TAIL programs and thus allow
nested computation. Blelloch’s technique has also been applied in the
context of Data Parallel Haskell [21] and in the context of compiling
NESL [1] to GPU code, but is sometimes incurring a drastic memory
overhead. More work in this area is needed for further evaluation.

Some problems did arise in the process of developing the Accel-
erate backend. The first problem encountered was that the Accelerate
AST is not exposed in a version which is easy to target, as one
would need to generate Higher-order abstract syntax. Moreover, Ac-
celerate relies essentially on Haskell type inference for inferring
shape types. Whereas this dependency is fine when programming
directly in Haskell, it requires the code generation strategy to invoke
a Haskell compiler after generating Haskell code. There seems to be
no way that a compiler for Accelerate, written in Haskell, can avoid
invoking a Haskell compiler.

Another problem introduced by the shapes-as-types strategy in
Accelerate, is that it is difficult for operations to operate on the outer
dimension of an array of arbitrary rank without using inefficient
transpositions. For vertical rotation, for instance, we ended up having
to write specific Accelerate functions for a variety of ranks, using a
fall back transposition strategy (i.e., using backpermute) for higher-
dimensional arrays.

As mentioned previously, Accelerate documentation recommends
using run1 when the same kernel needs to be executed several times.
This suggestion seems odd, as it hinders Accelerate from performing
cross-iteration optimizations. A dedicated looping construct is pro-
vided (awhile), but in our experience, it seemed to generate much
slower code. A problem might be that, if let-bound variables outside
the loop are only used once, the sharing recovery algorithm of Accel-
erate will not detect it and thus the computation will be inlined inside
the loop, effectively forcing a recomputation on every iteration.

One limiting factor of this work is that Accelerate does not
provide for mutable array updates. We have recently extended TAIL
(after this project was carried out) with array indexing and updates,
which seems crucial for one of our larger benchmarks, an option
pricer obtained from a partner company.

Finally, it is often difficult to control when CUDA kernels are
generated. In particular, for comparing the efficiency of the generated
code, usually, the time used for generating kernels should not be
included in the running time. However, with Accelerate, kernels are
generated lazily and special attention is needed for forcing a kernel
to be generated before execution.
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7. Related Work
This paper extends the previous work on compiling APL [11] with a
backend for targeting the Haskell Accelerate Library. For compiling
a larger set of benchmarks, the previous work has also been extended
with support for boolean operations (e.g., compress), new data-
parallel operations (e.g., scan), iterative computations (i.e., the power
operator *̈), and mutable array updates. The enriched treatment of
the language also includes a refined type system for TAIL and a
more complete coverage of primitives. We are not reporting on these
extensions here.

There have been many attempts at compiling APL. For instance,
Guibas and Wyatt have demonstrated how a subset of APL can be
compiled using a delayed representation of arrays [14], much like
how arrays are compiled using the techniques of pull-arrays [10]
in Repa [20], Accelerate [6, 22], and Obsidian [9]. Other attempts
at compiling APL include Timothy Budd’s APL compiler [4] and
the ELI-compiler [8]. One of the most serious attempts at compiling
APL is the work on APEX [2], which also contains a backend for
targeting SAC [12] and thus GPUs [15]. More recent work includes
Aaron Hsu’s APL co-defns compiler, which also aims at compiling
parallel APL constructs [19].

Another pool of related work on array languages is the work on
Futhark [16–18], which, as TAIL, and in opposition to SAC [13],
holds on to the concept of second order array combinators (named
SOACs) in the intermediate representations. One benefit of this
approach is its support for fusion even in cases involving filtering
and scans. As for Futhark, we seek to allow programmers to express
parallel patterns in programs as high-level functional constructs, with
the aim of systematically (and automatically) generating efficient
(and even data-dependent) parallel code. This design choice has
also proven to be useful in the compilation into Accelerate. For
comparison, we are investigating the possibility of compiling TAIL
programs into Futhark.

8. Conclusion and Future Work
We have presented a compiler that compiles a subset of APL to
Accelerate through a typed array intermediate language. The target
programs can be executed using a GPU.

We are currently relying on the Accelerate framework to deal
with many of the code transformations and analyses necessary for
generating efficient low-level CUDA kernel code. These program
transformations and analyses include fusion [22]. An interesting
line of future work would be to address how an APL programmer
could get some controlled influence on how data is processed on
the GPU, including what operations are parallelized and whether
data is accessed by different GPU threads in a coalesced way. An
alternative to using Accelerate as a target for GPU compilation is
to use the Obsidian embedded domain specific language [9] as a
target. Compared to Accelerate, Obsidian gives the programmer
more control over the utilization of a GPU. Thus, using Obsidian as
a target for an APL compiler has potential for also giving an APL
programmer more control over the GPU.

The present paper also highlights some areas where more work
on the APLACC compiler is still needed. Implementation of the
missing primitives and better handling of shapes are topics that we
are currently working on improving. Finally, it would be interesting
to see the results of a more comprehensive benchmark.
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